
Total Recall: A Debugging Framework 

Ahmad Sharif and Hsien

Total Recall: A Debugging Framework 

for GPUs

Ahmad Sharif and Hsien-Hsin Sean Lee, Georgia Institute 

of Technology



Outline

•Motivation

•Related Work

•Goals

•Key Concepts

•Basic implementation

•Acceleration

•Challenges/Future Work

•Conclusion



Motivation for a GPU Debugger

•GPUs are massively parallel machines w/ billion transistor 

budgets

•Hard for CPU programmers to debug shader code

•Lack of native debugging support (breakpoints, watchpoints, •Lack of native debugging support (breakpoints, watchpoints, 

etc.)

•Debugging is a time sink

“GPU programmers have just a small handful of languages to 

choose from, and few if any full

profilers.” (Owens et al., A Survey of General

Computation on Graphics Hardware, COMPUTER 

GRAPHICS forum, 2007)

Motivation for a GPU Debugger

GPUs are massively parallel machines w/ billion transistor 

Hard for CPU programmers to debug shader code

Lack of native debugging support (breakpoints, watchpoints, Lack of native debugging support (breakpoints, watchpoints, 

GPU programmers have just a small handful of languages to 

choose from, and few if any full-featured debuggers and 

profilers.” (Owens et al., A Survey of General-Purpose 

Computation on Graphics Hardware, COMPUTER 



Related Work

• PIX by MS (for D3D) has a pixel history feature

• Does not allow debugging across render targets, though

• GLSL Devil by Strengert et al allows debugging of 

OpenGL shaders

• gDebugger by GraphicsRemedy

• No single stepping as of May 2007

• REF_RAST & Visual Studio by MS

• Too slow for big/complex shaders

• Shadesmith by Purcell et al

• Relational Debugging Engine by 

D) has a pixel history feature

Does not allow debugging across render targets, though

et al allows debugging of 

GraphicsRemedy

REF_RAST & Visual Studio by MS

Relational Debugging Engine by Duca et al



Total Recall Goals

•Application transparent debugger

•Given a frame consisting of series of: [SetX]* [DrawX]* 

Present, and breakpoint conditions, obtain 

the pixel that hits the breakpoint.

•Deterministically replay all conditions that led to 

breakpoint condition.

•Done on the CPU

•Stepping/Watchpoints/etc. become easy to do this way

Application transparent debugger

Given a frame consisting of series of: [SetX]* [DrawX]* 

Present, and breakpoint conditions, obtain entire history of 

the pixel that hits the breakpoint.

Deterministically replay all conditions that led to 

Stepping/Watchpoints/etc. become easy to do this way



Total Recall Goals II

•Debug multipass in a unified fashion

• Ex: Env/Shadow Maps, Deferred shading, etc.

•Current debuggers only debug single render pass

• Need a way to debug multiple render passes

Total Recall Goals II

Debug multipass in a unified fashion

Ex: Env/Shadow Maps, Deferred shading, etc.

Current debuggers only debug single render pass

Need a way to debug multiple render passes



Multipass Debugging of pixel 

shaders
// Linearized execution stream

float4 val1;

float4 val2;

// Look up static texture

val1 = lookup(input_tex, s’, t’, lod’);

// Run it through the shader // Run it through the shader 

dyn_tex[s,t] = shader1(val1);

// Look up dynamic texture now

val2 = lookup(dyn_tex, s, t, lod);

// Run it through second shader

output[x,y] = shader2(val2)

// This is the output that hit the 

breakpoint

Multipass Debugging of pixel 



Key Features of the Debugger

• Breakpoints

• Support 2 kinds

• Pixel coordinate breakpoints

• Conditional breakpoints• Conditional breakpoints

• Once a breakpoint is hit, need to figure out all input data 

for deterministic replay

• Obtain only necessary data without too much overhead

• Need to go deeper than just a couple of draw calls

• Need entire frame in memory!

• Need emulation module

Key Features of the Debugger

Pixel coordinate breakpoints

Once a breakpoint is hit, need to figure out all input data 

Obtain only necessary data without too much overhead

Need to go deeper than just a couple of draw calls

Need entire frame in memory!



Breakpoint Conditions

•2 kinds of breakpoints

• Break at certain condition

• Break at certain pixel location

•Conditional breakpoints:•Conditional breakpoints:

• Bind debug render target; write on condition; occlusion query to 

check if hit

•Pixel breakpoints

• Clear 4 sub-rectangles of z-buffer to lowest value

• Occlusion Query to check if hit

Breakpoint Conditions

Bind debug render target; write on condition; occlusion query to 

buffer to lowest value



Pixel Shader Inputs

•Bind debug RT & pass-through pixel shader

• RT has to be big, otherwise require multiple passes

• Scatter support?

•s, t values obtained from inputs; dx, dy to compute mip•s, t values obtained from inputs; dx, dy to compute mip

levels for filtering

Pixel Shader Inputs

through pixel shader

RT has to be big, otherwise require multiple passes

s, t values obtained from inputs; dx, dy to compute mip-s, t values obtained from inputs; dx, dy to compute mip-



Main Loop

•Intercept and record all program state

•Breakpoint hit?

•Obtain shader inputs

• Include texture coordinates

•Program breakpoint at coordinates, replay scene stored in 

memory

Intercept and record all program state

Program breakpoint at coordinates, replay scene stored in 



SW Architecture of Implementation

•Used Direct3D 9

•DLL that encapsulates D3D exported interfaces

• Saves per frame state changes

• Pixel breakpoints implemented 

• Performs several passes to obtain complete history

• Uses occlusion queries and temporary render targets

•Shader emulation can be done via a vendor

SW Architecture of Implementation

DLL that encapsulates D3D exported interfaces

Performs several passes to obtain complete history

Uses occlusion queries and temporary render targets

Shader emulation can be done via a vendor-provided library



Intercepting DLL

•DLL exports CreateDevice()

•Wraps IDirect3DDevice9, IDirect

IDirect3DIndexBuffer, etc.

•From the IDirect3DDevice9 interface, rest are hooked

•Every SetX() and DrawX() calls are recorded in replay 

buffers

• Memory requirements vary: several MBs per frame to hundreds of 

MBs per frame

•Mouse hooked to indicate pixel of interest (Win

Hooks) 

DLL exports CreateDevice() 

, IDirect3DVertexBuffer, 

interface, rest are hooked

Every SetX() and DrawX() calls are recorded in replay 

Memory requirements vary: several MBs per frame to hundreds of 

Mouse hooked to indicate pixel of interest (Win32 



Diagram of Implementation

3D Application

Debug DLL
Shader 

Instrumentation
Debug DLL

D3D9 Runtime

Driver & HW

Debug State
(RTs/Pixels 
Read Back) 

Instrumentation

Diagram of Implementation

3D Application

Debug DLL

State Changes & 
Draw Calls

Debug DLL

D3D9 Runtime

Driver & HW

Mouse & Keyboard
Hooks



Challenges

•Proprietary floating point formats

• Functional emulation library can solve it

•Texture super-sampling/multi-sampling

•Alpha Blending (multiple primitives causing write at the 

same pixel) 

Proprietary floating point formats

Functional emulation library can solve it

sampling

Alpha Blending (multiple primitives causing write at the 



Acceleration

•Low resolution debug render targets

•Main loop is fill-intensive

•Sub-divide screen into parts, and replay only relevant parts

•Track dependencies using bitvector

• Propagate on shader texture read

• Expose to debugger so it can be made use of

•Once dependencies are replayed, emulate like usual

Low resolution debug render targets

divide screen into parts, and replay only relevant parts

Track dependencies using bitvector

Propagate on shader texture read

Expose to debugger so it can be made use of

Once dependencies are replayed, emulate like usual



Future Work

•Extension to GS/VS

•Extension to GPGPU

• Entire history of single particle in PS

•History of race conditions (two writes to single memory 

location) 

Entire history of single particle in PS

History of race conditions (two writes to single memory 



Conclusions

•A framework for debugging is presented with a sample 

implementation

• Allows debugging of breakpoints via selective emulation

• Makes GPU debugging look like CPU debugging• Makes GPU debugging look like CPU debugging

• Hardware support for acceleration is proposed

•Limitations

• Relies on runtime/driver/hardware to behave correctly

• Deviations from actual results possible in emulation unless vendor 

provides emulation library

A framework for debugging is presented with a sample 

Allows debugging of breakpoints via selective emulation

Makes GPU debugging look like CPU debuggingMakes GPU debugging look like CPU debugging

Hardware support for acceleration is proposed

Relies on runtime/driver/hardware to behave correctly

Deviations from actual results possible in emulation unless vendor 



Questions

• Please email ahmad@gatech.eduPlease email ahmad@gatech.edu


