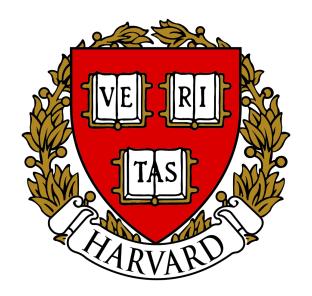
The Architectural Implications of Facebook's **DNN-based** Personalized Recommendation

<u>Udit Gupta</u>, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen

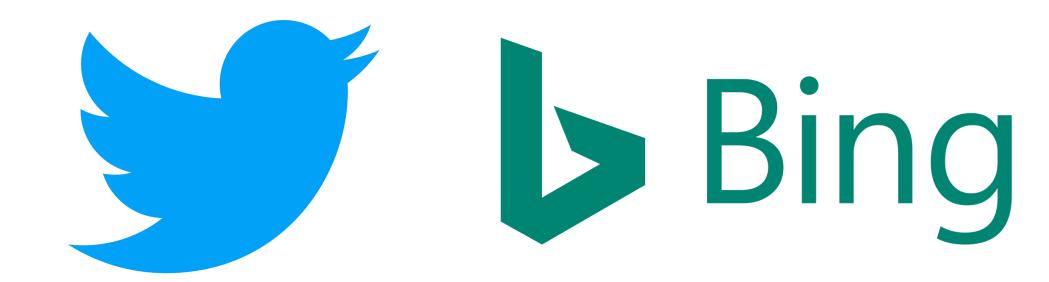
David Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, Xuan Zhang



HPCA 2020

Personalized Recommendation is everywhere

Microsoft YouTube amazon NETFLIX

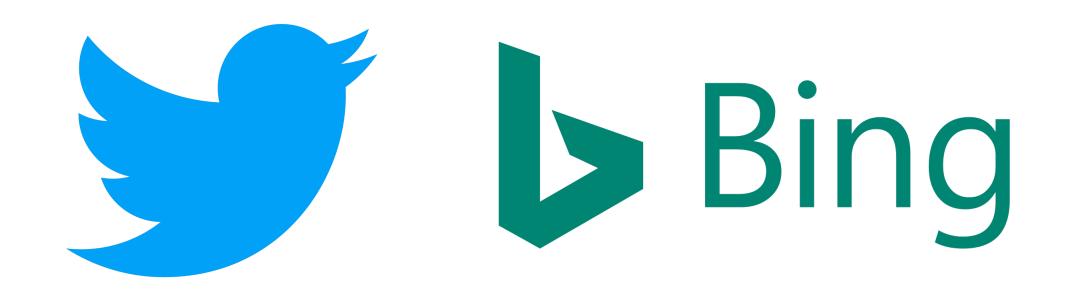


Personalized Recommendation is everywhere

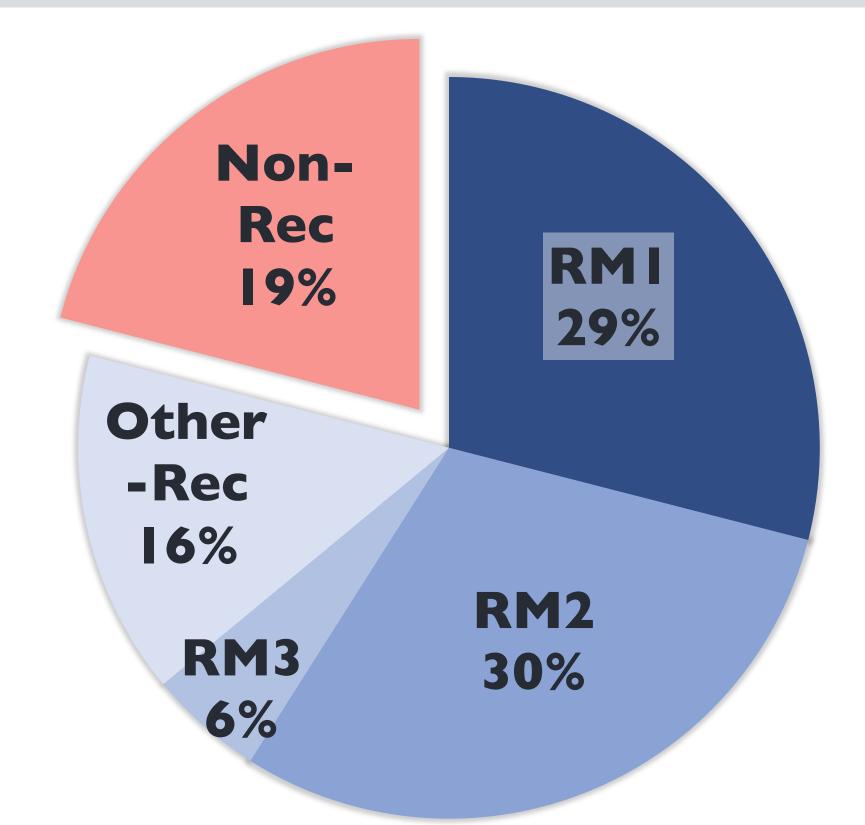
Microsoft You Tube

NETFLIX

"35% of purchases on Amazon and 75% of videos on Netflix are powered by recommendation algorithms" McKinsey & Co

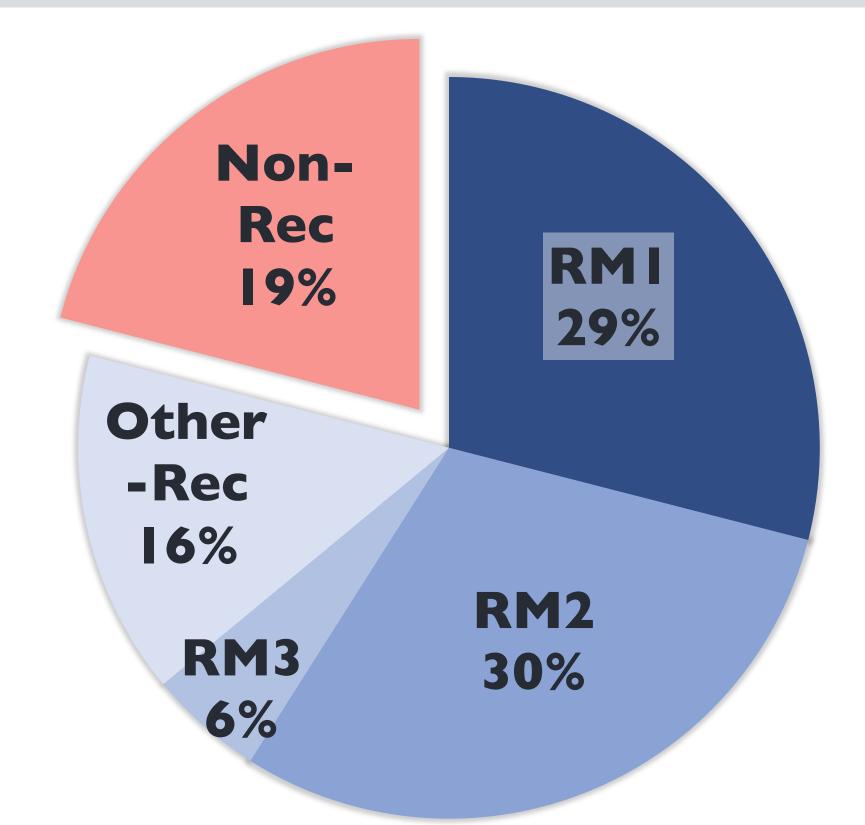


Optimizing DNN-based recommendation is key for improving datacenter efficiency



Al inference cycles in Facebook's datacenter

Optimizing DNN-based recommendation is key for improving datacenter efficiency



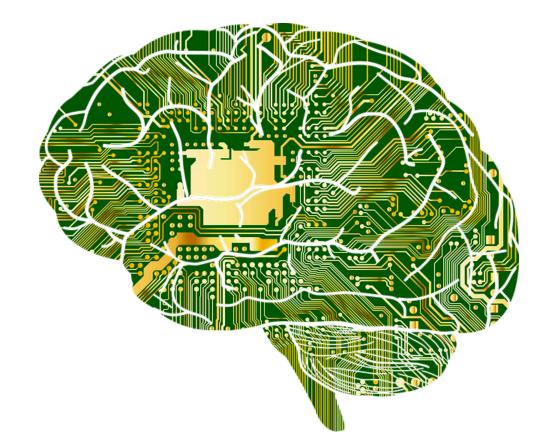
Al inference cycles in Facebook's datacenter

Recommendation uses cases account for over 80% of all Al inference cycles in Facebook's datacenter

Lots of opportunities for HW research in recommendation

Data

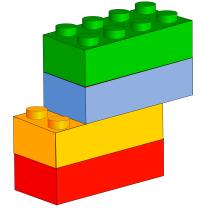
Algorithms



Lots of opportunities for HW research in recommendation

Data

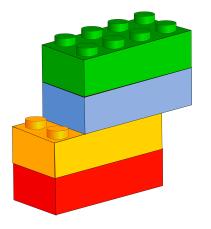
Algorithmic



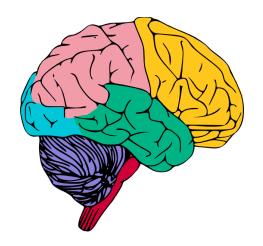
General model structure

Requires optimizing operators with new storage, compute, and memory access requirements

Algorithmic



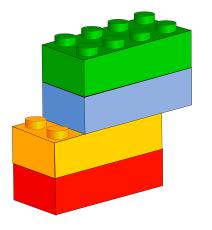
General model structure



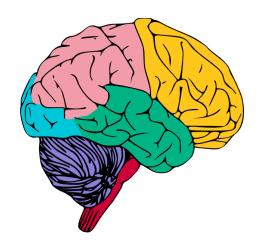
Diverse model architectures Requires optimizing operators with new storage, compute, and memory access requirements

Accelerating recommendation needs flexible and diverse system solutions

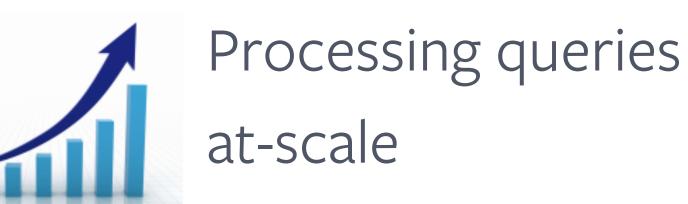
Algorithmic



General model structure



Diverse model architectures

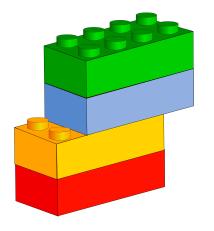


Requires optimizing operators with new storage, compute, and memory access requirements

Accelerating recommendation needs flexible and diverse system solutions

Exploiting hardware heterogeneity and parallelism can optimize latency-bounded throughput

Algorithmic



General model structure

Diverse model architectures

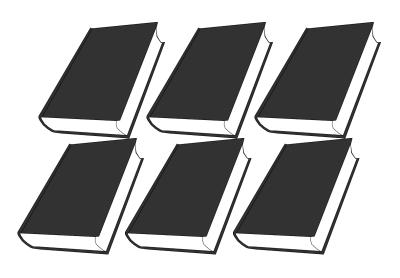
Processing queries at-scale

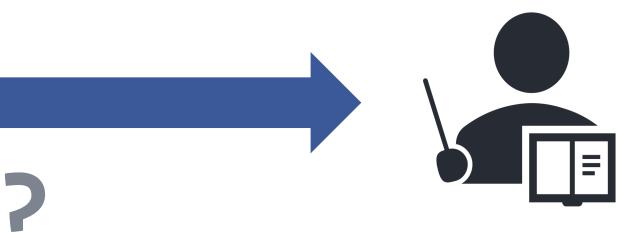
Requires optimizing operators with new storage, compute, and memory access requirements

Accelerating recommendation needs flexible and diverse system solutions

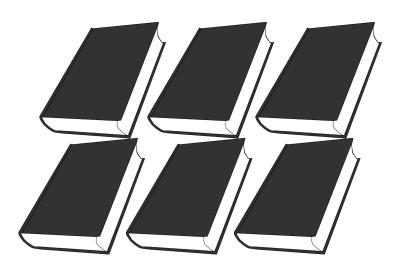
Exploiting hardware heterogeneity and parallelism can optimize latency-bounded throughput

DNNs for Recommendation



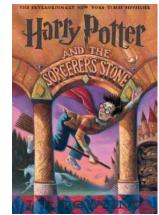


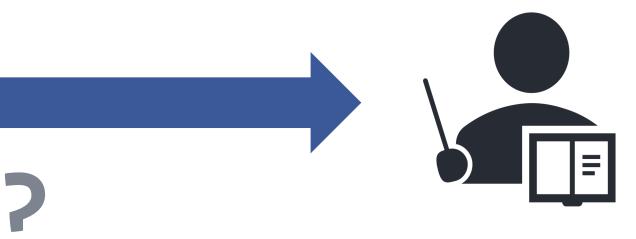
DNNs for Recommendation

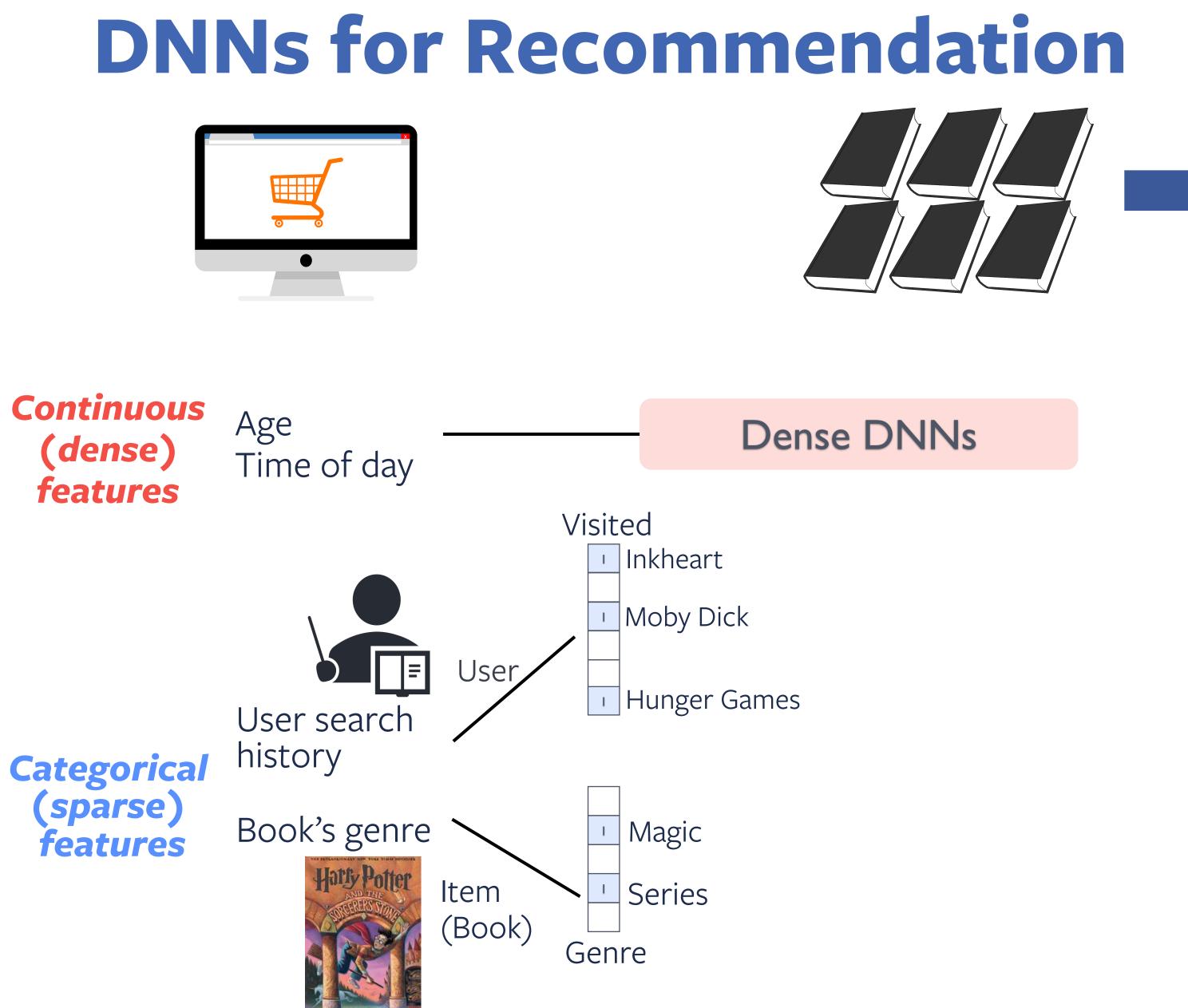


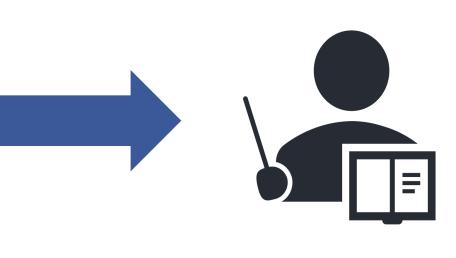
Categorical (sparse) features

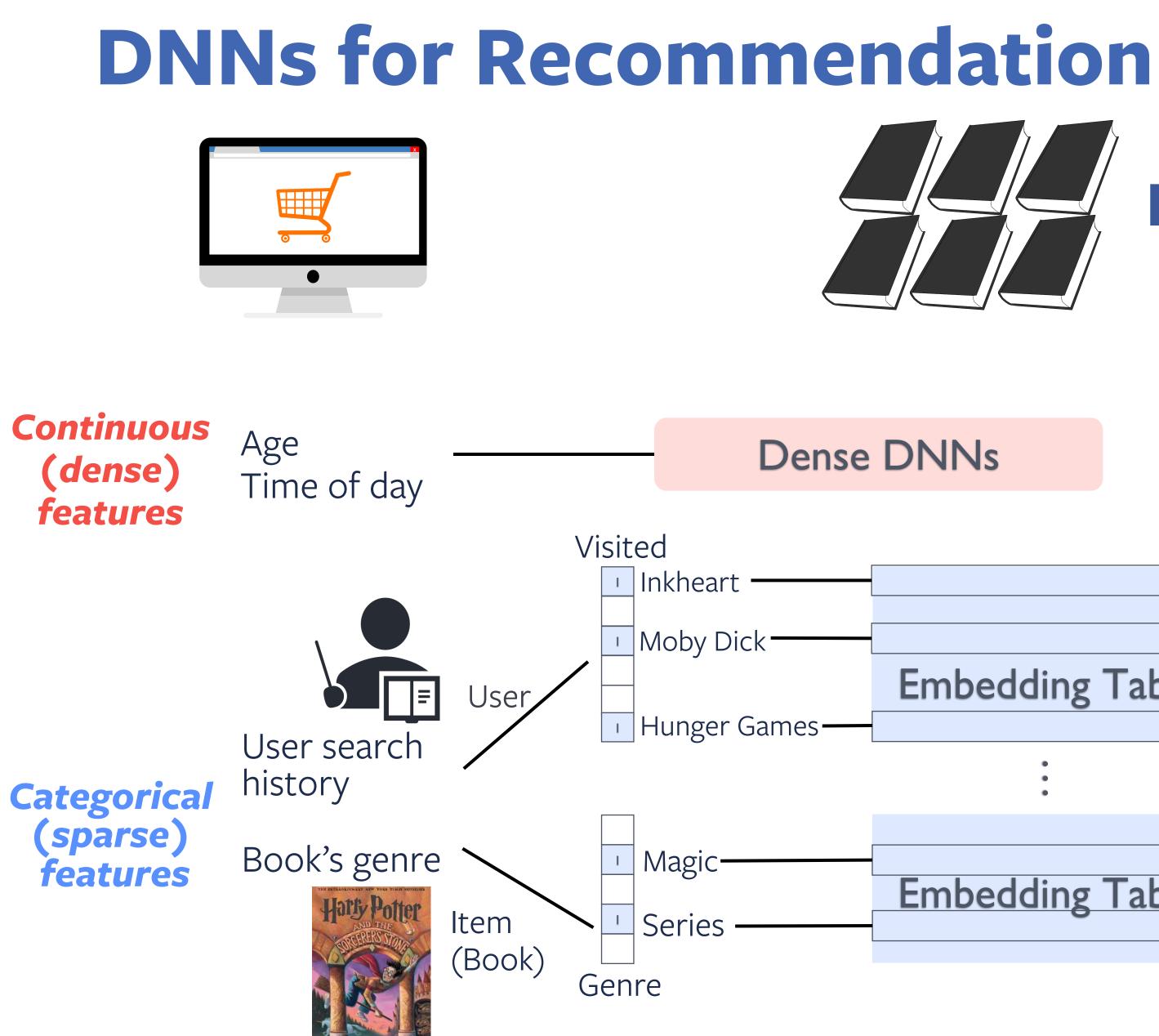
Book's genre





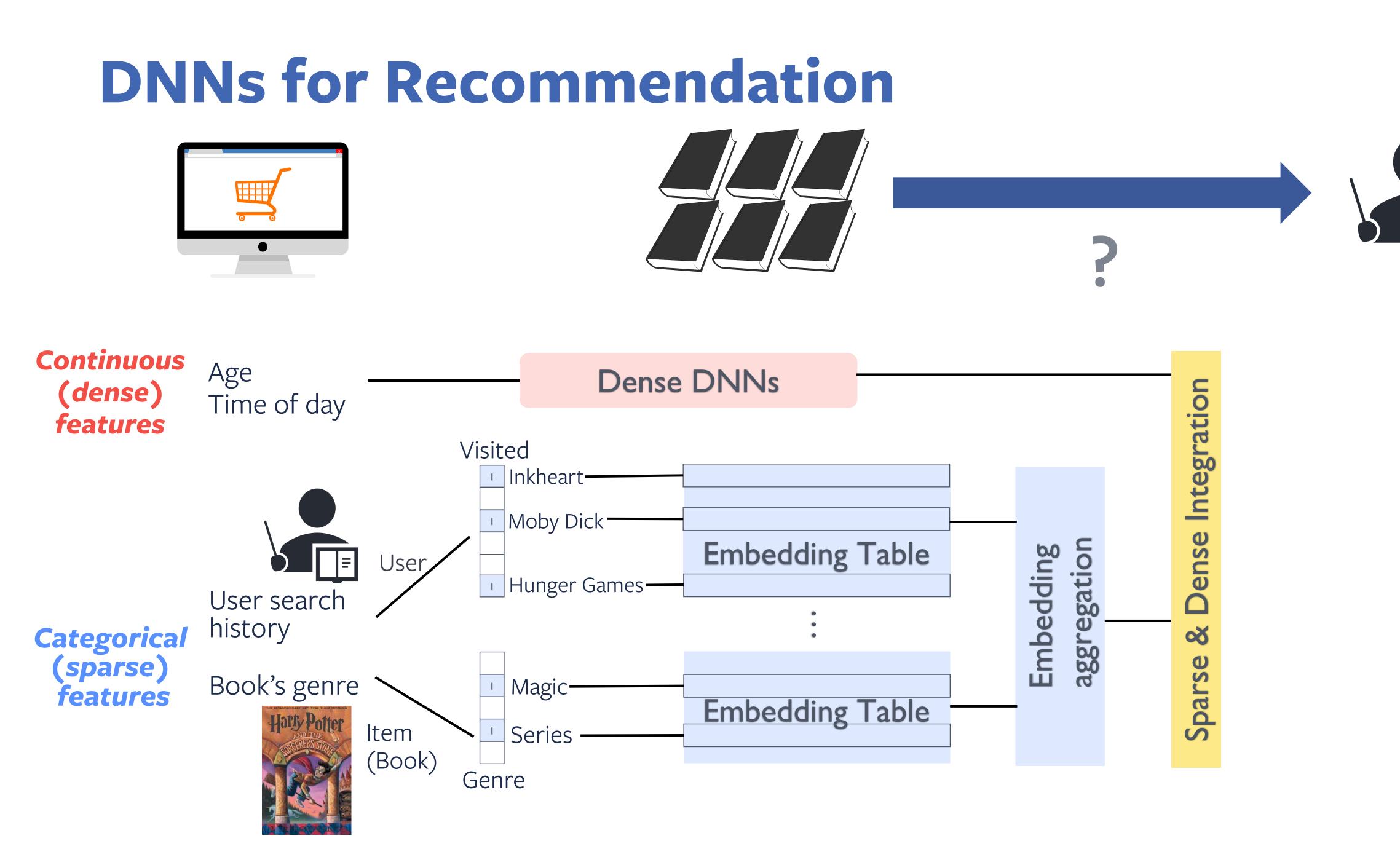


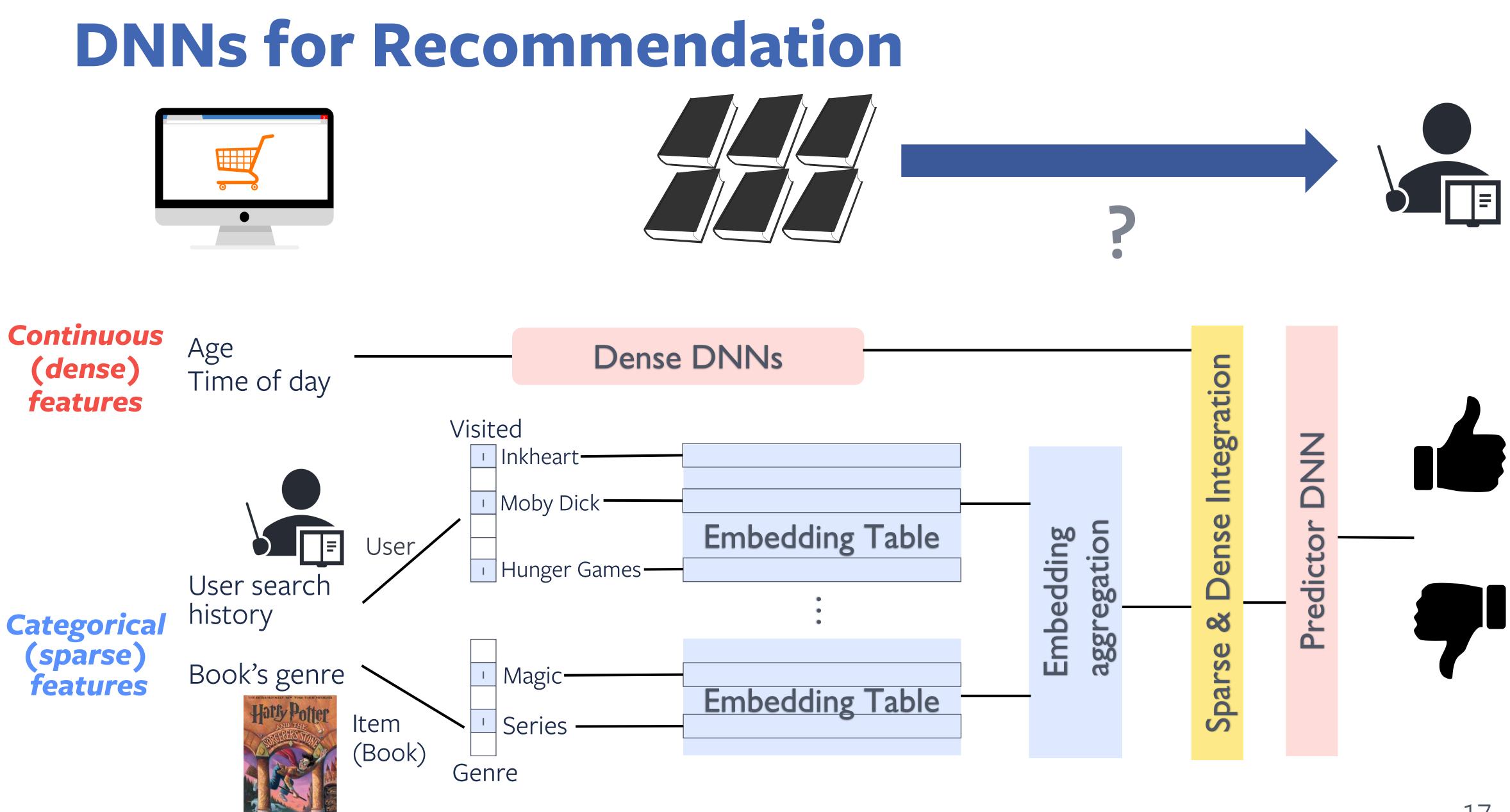


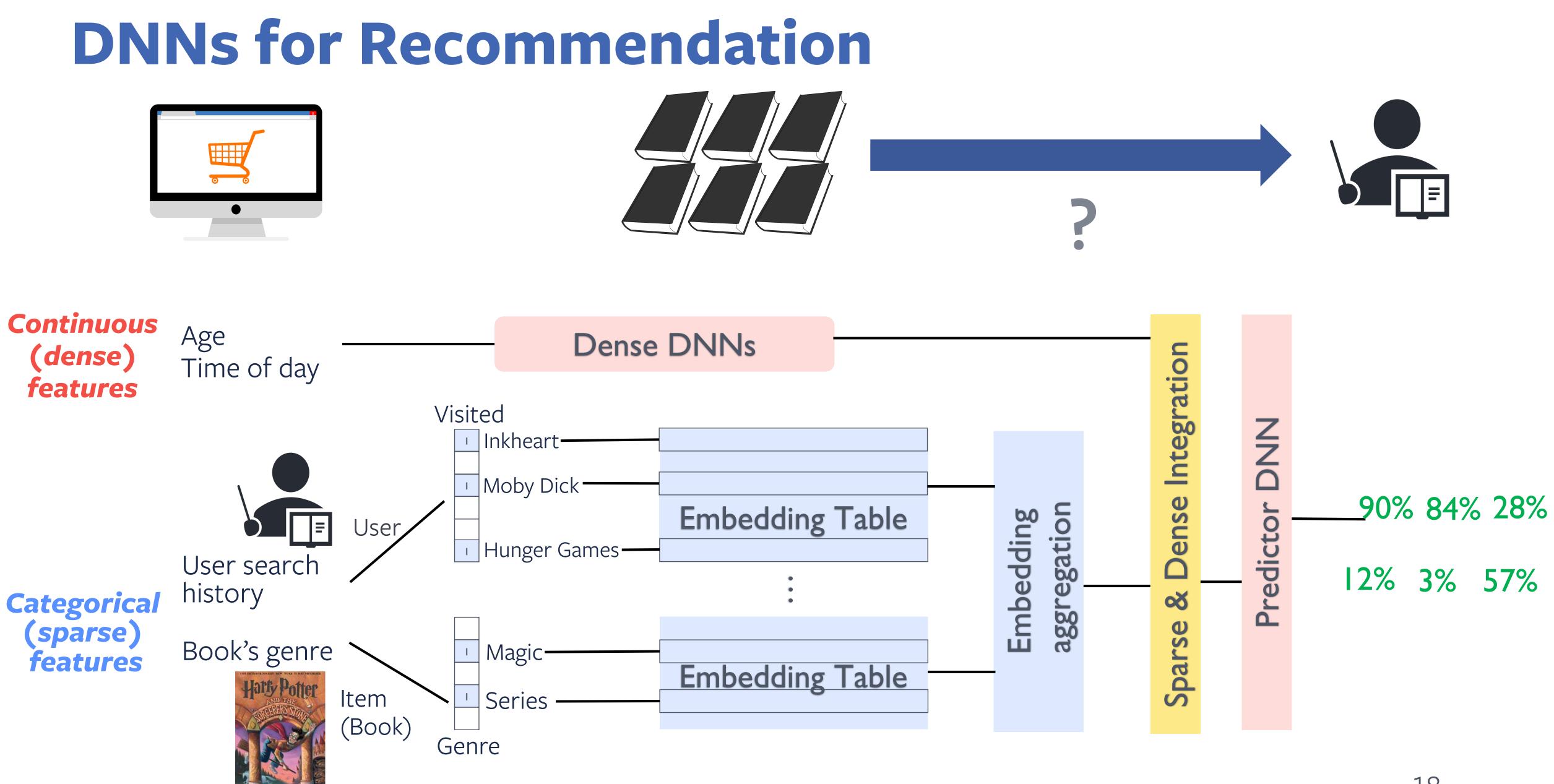


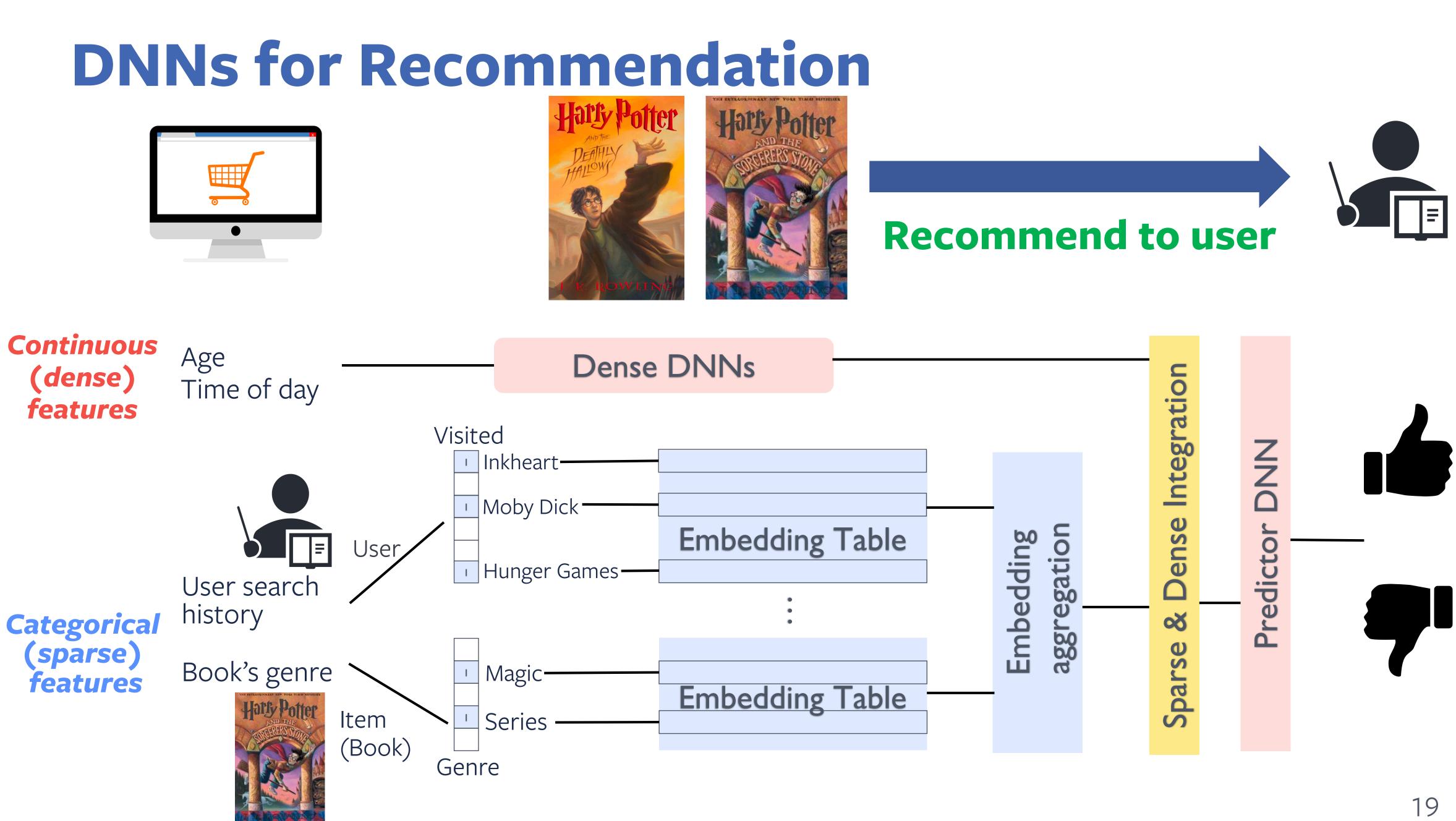
	0
	-0
nbedding Table	0.
• •	
nbedding Table	

0.7 0.8

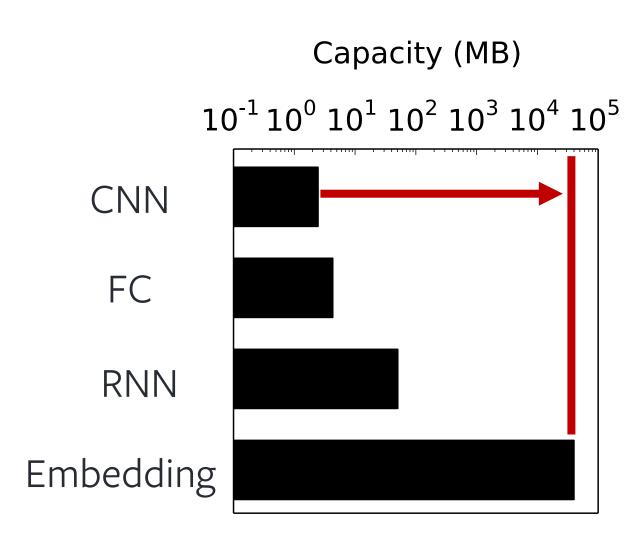








Embedding tables pose new challenges

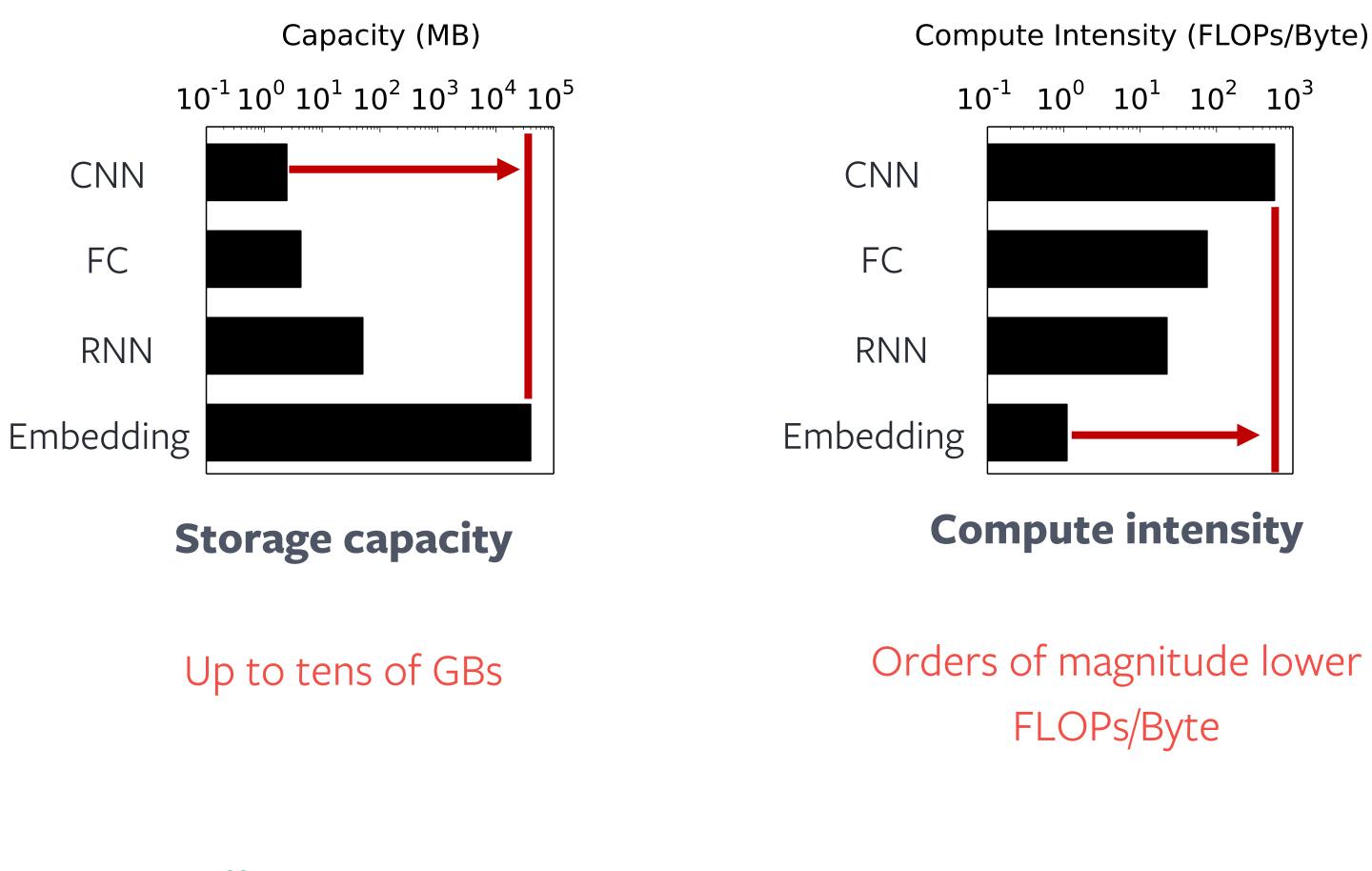


Storage capacity

Up to tens of GBs

Off-chip memory (DRAM, NVM)

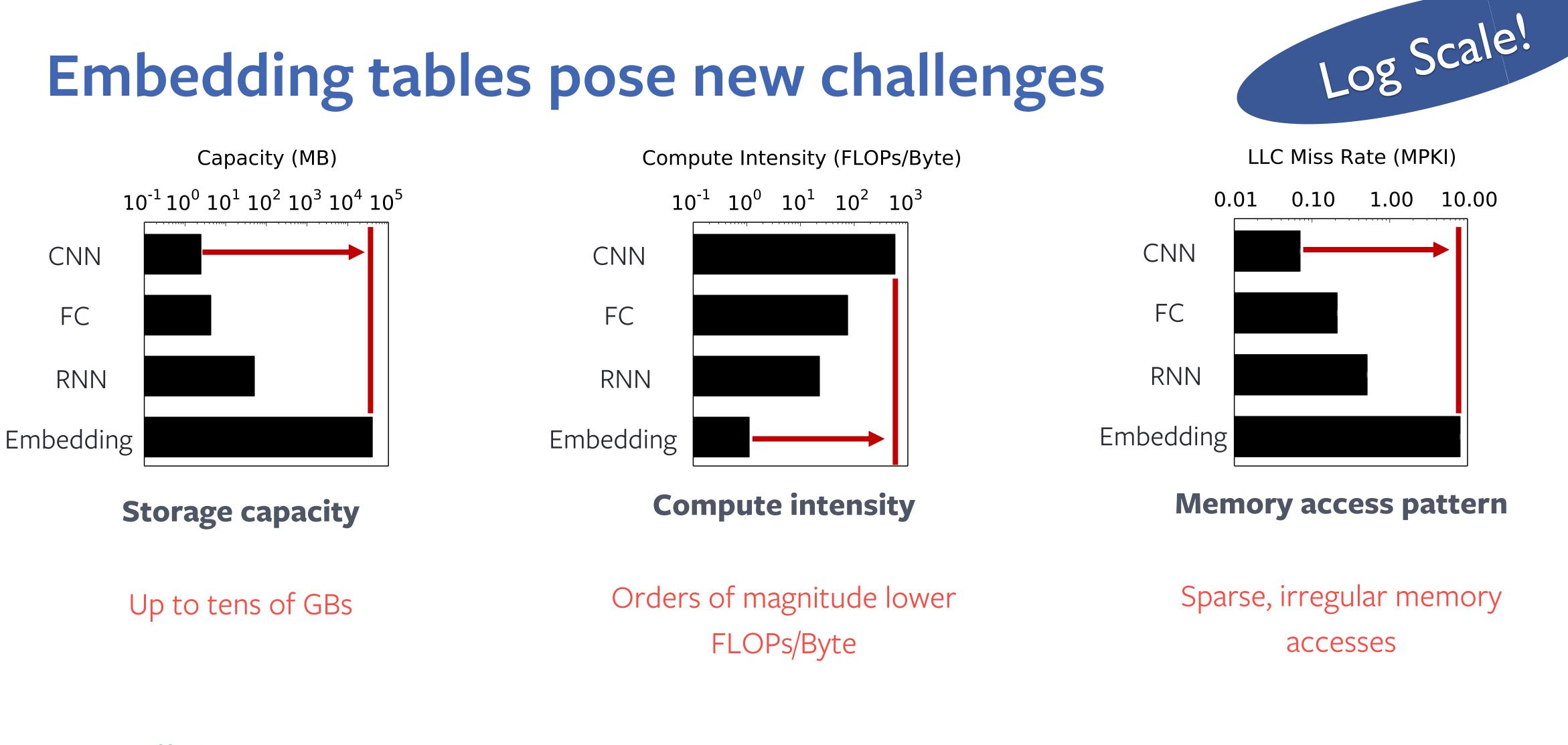
Embedding tables pose new challenges



Off-chip memory (DRAM, NVM)

Unique acceleration opportunities

- (Near memory computing)

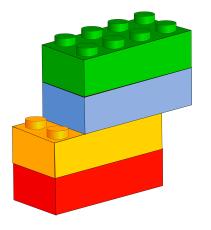


Off-chip memory (DRAM, NVM)

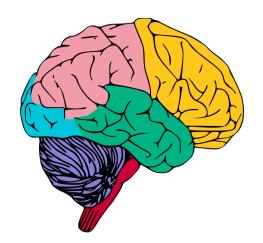
- Unique acceleration opportunities
- (Near memory computing)

- Specialized caching and pre-fetching capabilities

Algorithmic



General model structure



Diverse model architectures

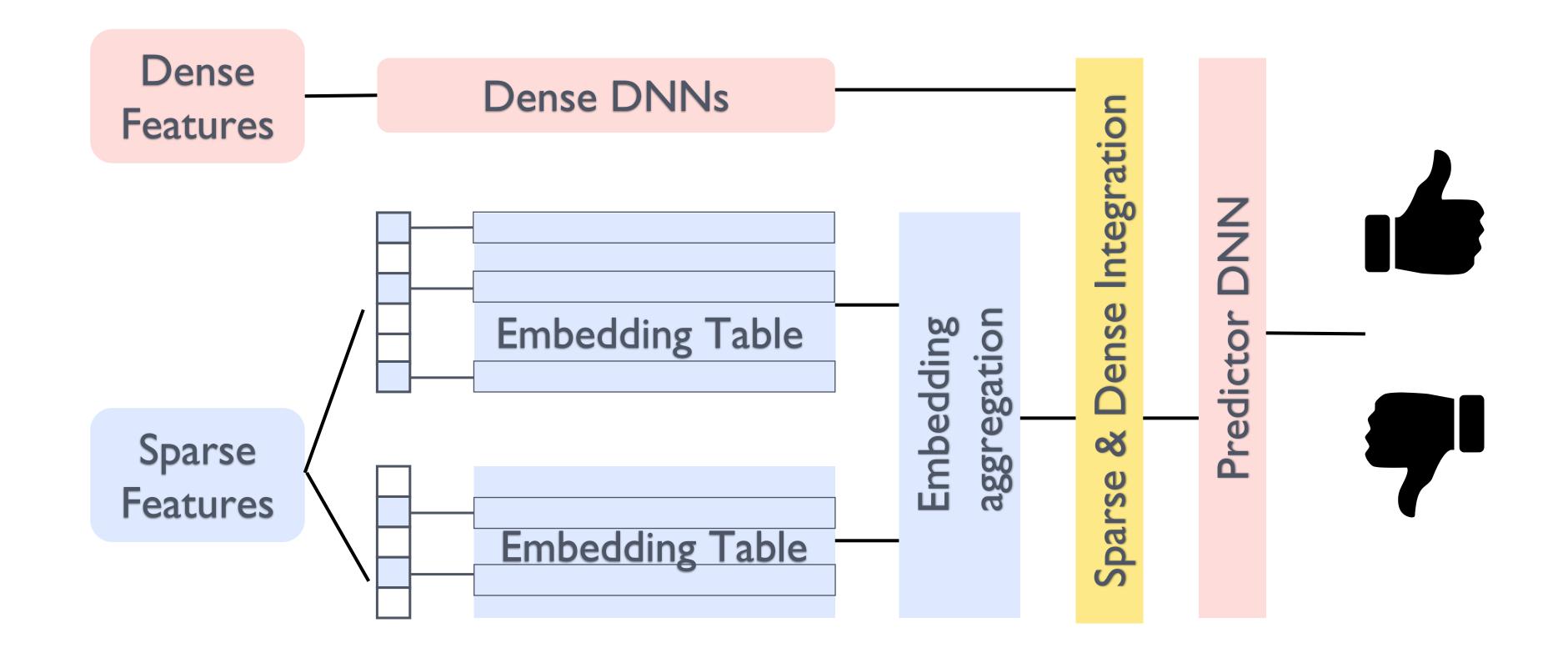
Processing queries at-scale

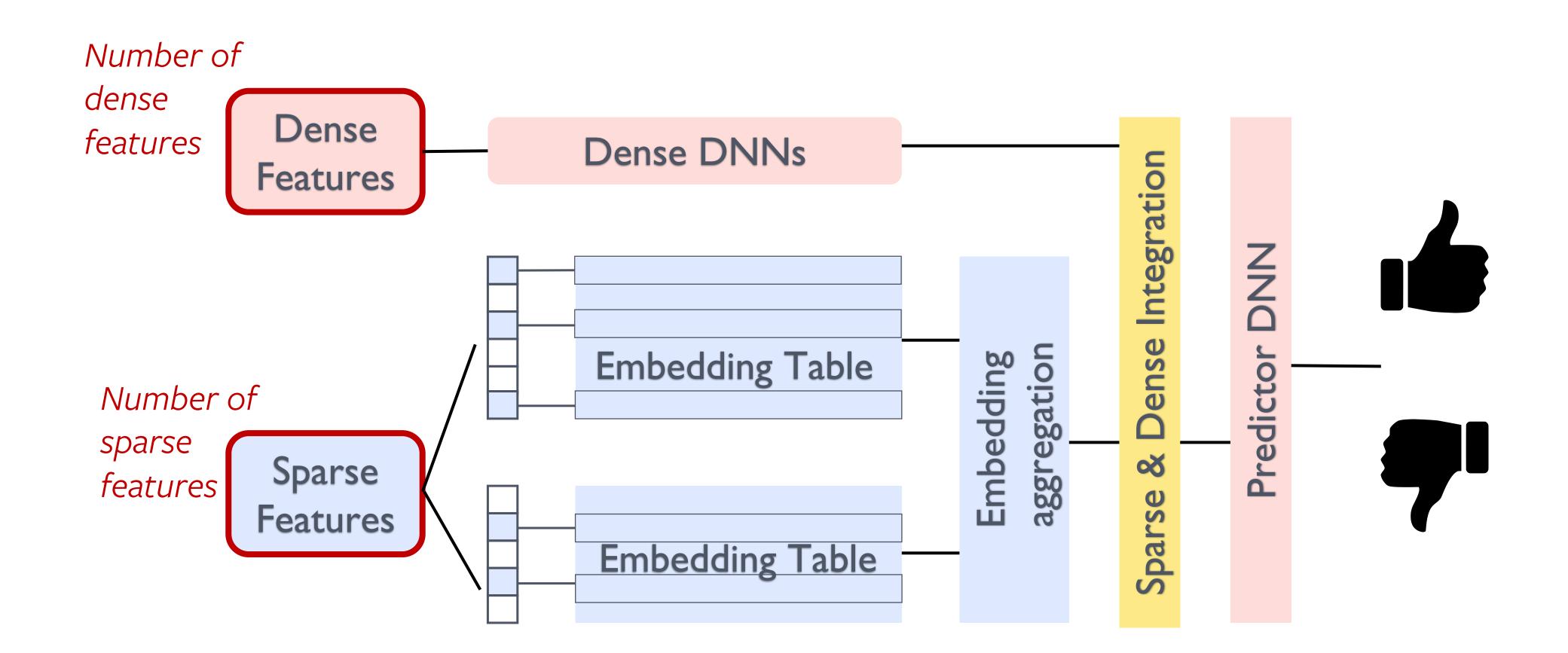
Requires optimizing operators with new storage, compute, and memory access requirements

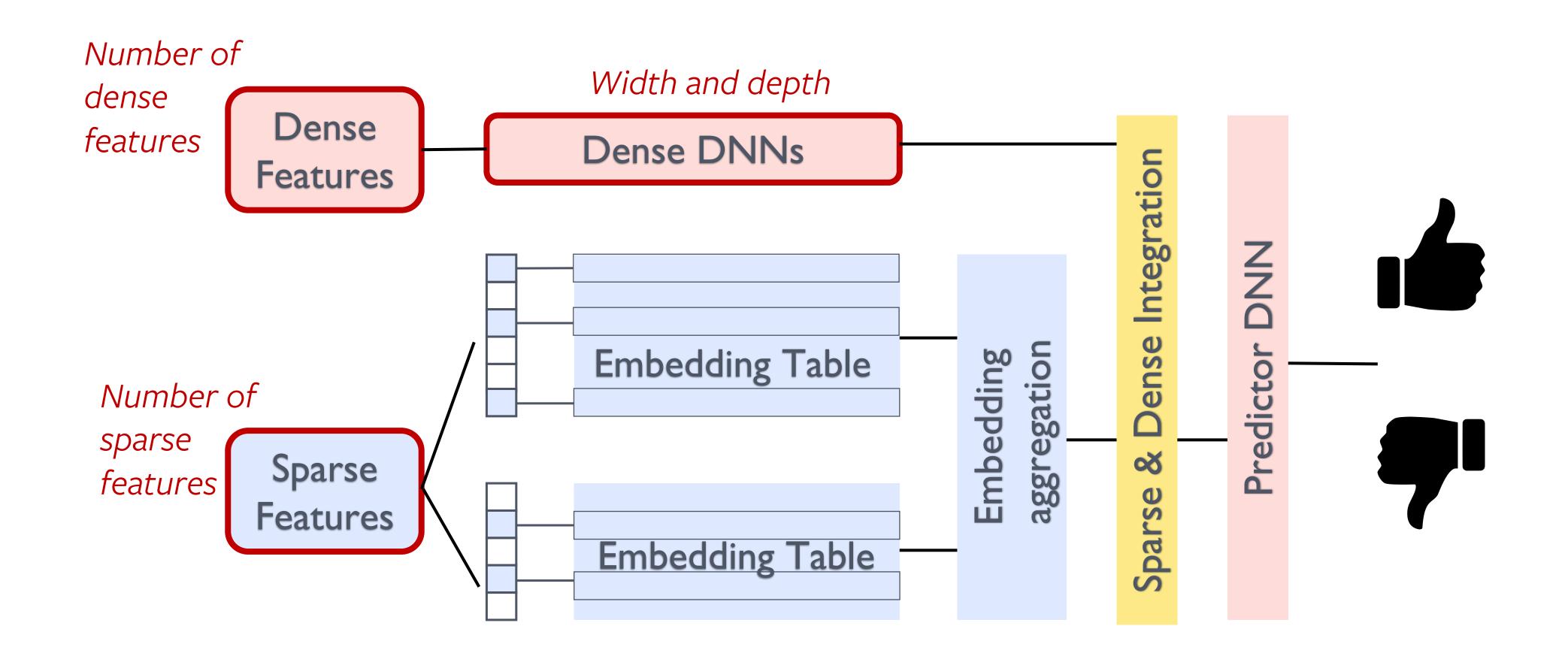
Exploiting hardware heterogeneity and parallelism can optimize latency-bounded throughput

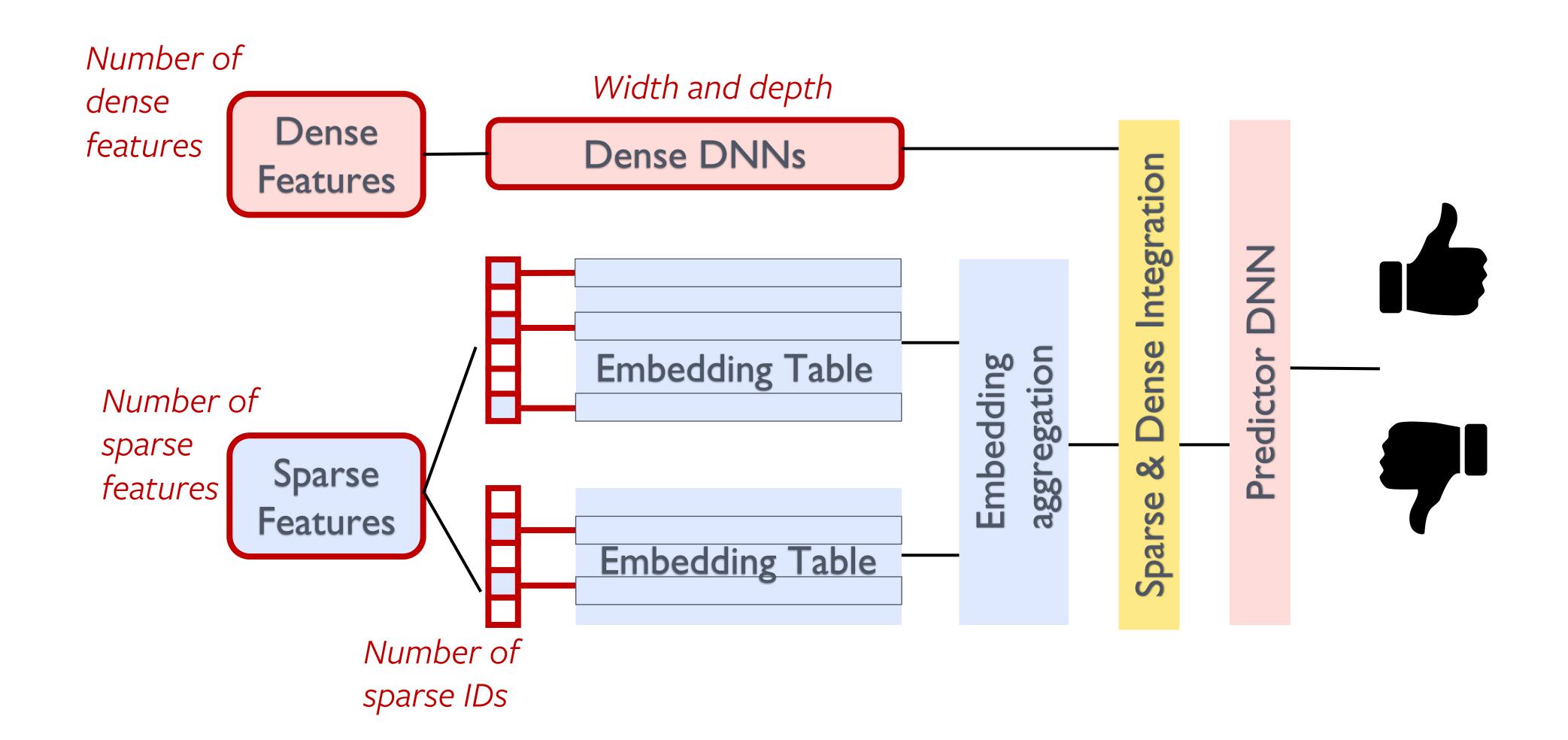
Hardware

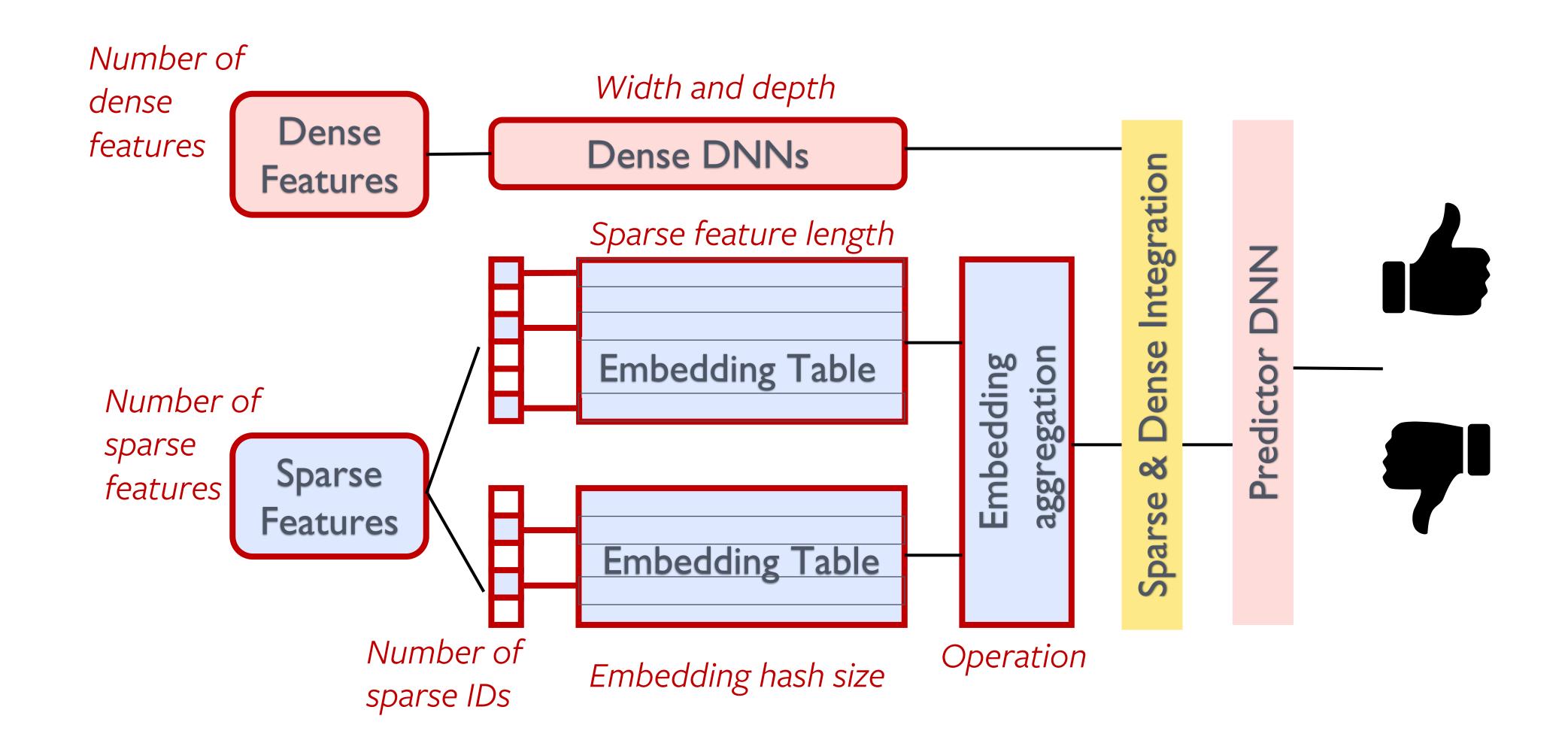
Accelerating recommendation needs flexible and diverse system solutions

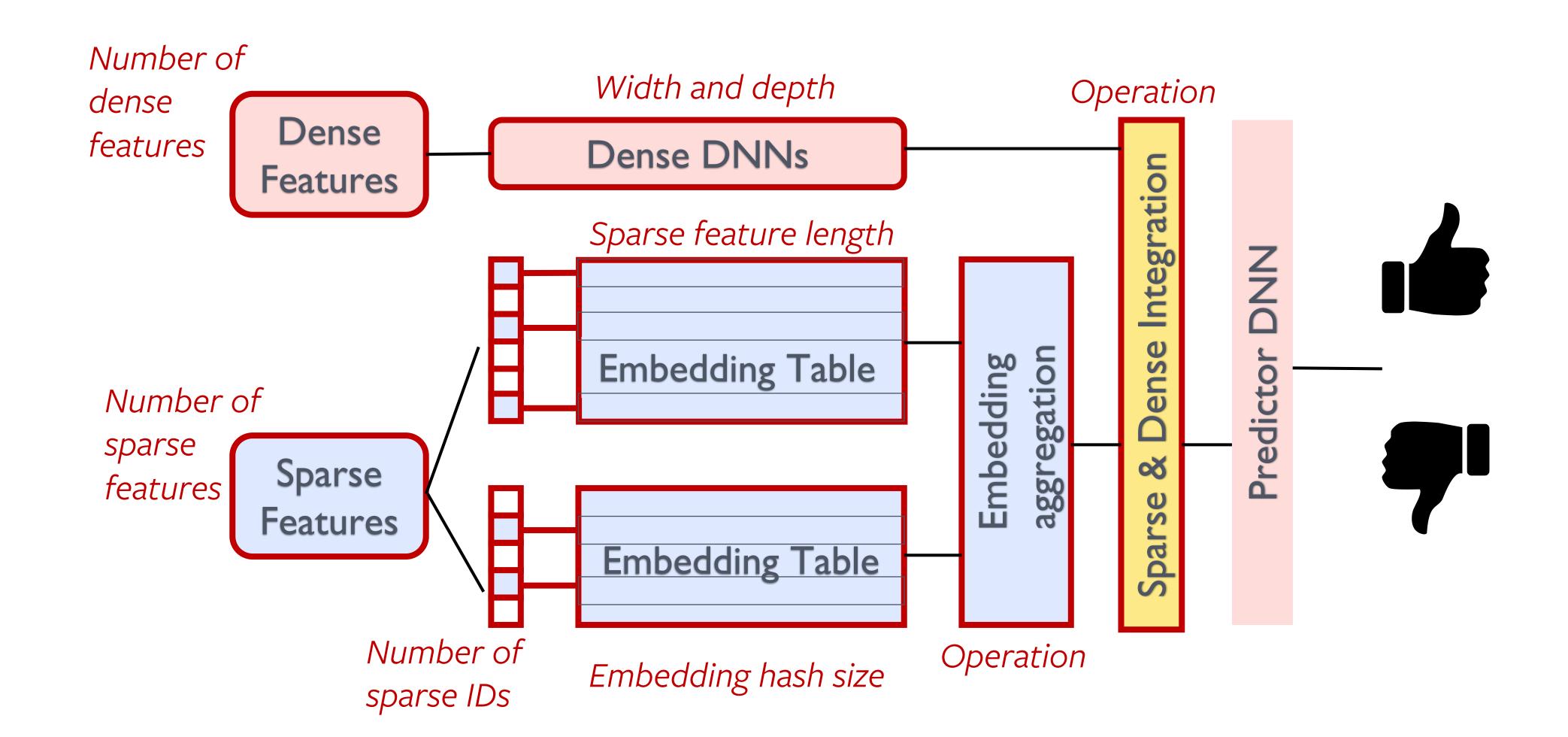


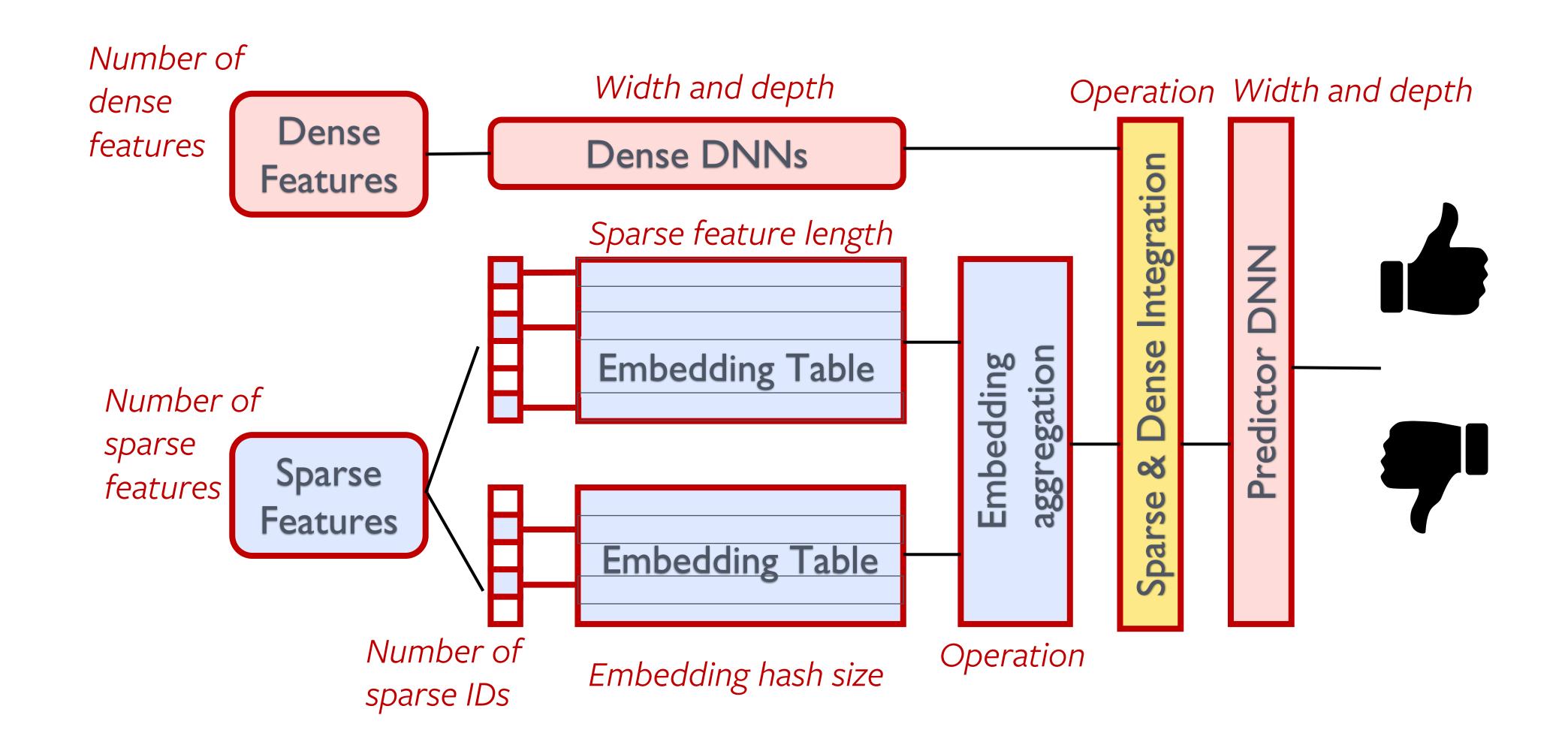






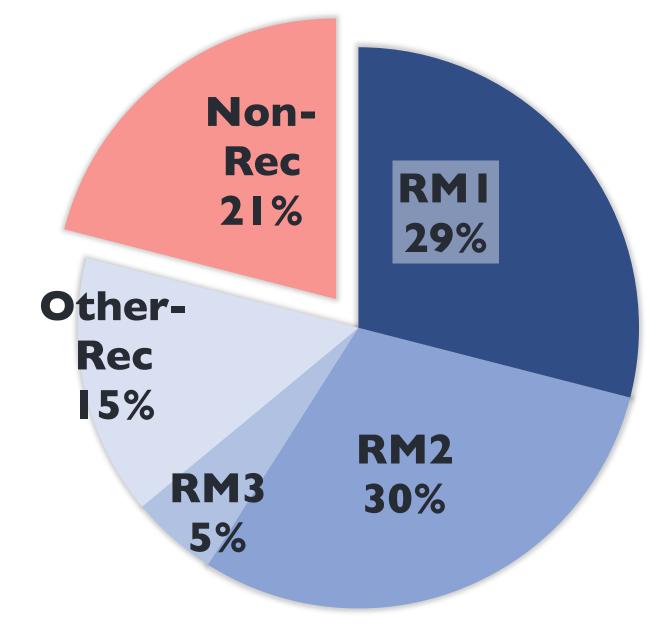


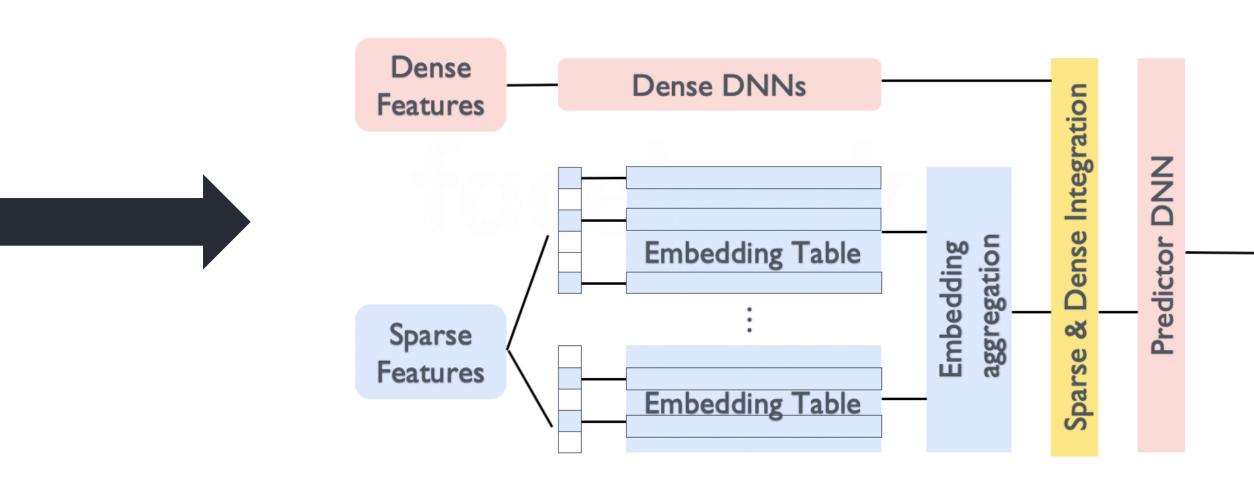




Benchmarks represent key models in Facebook's datacenter

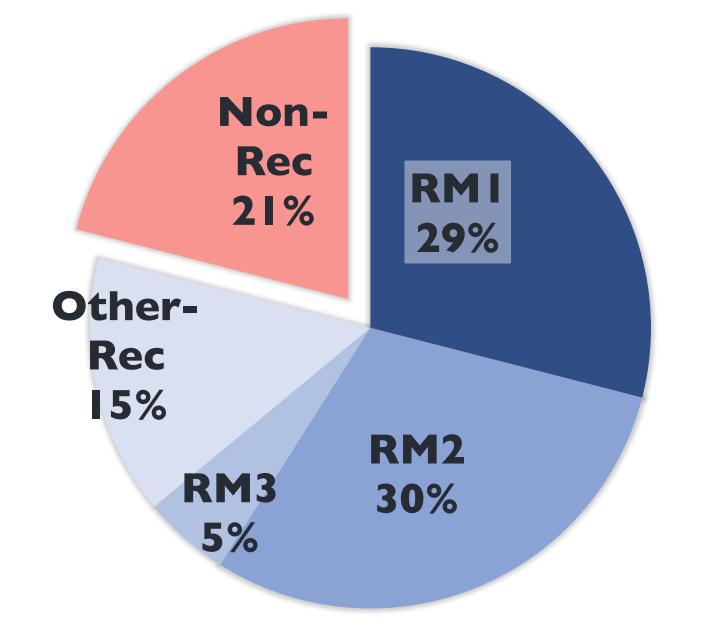
Al inference cycles in Facebook's datacenter



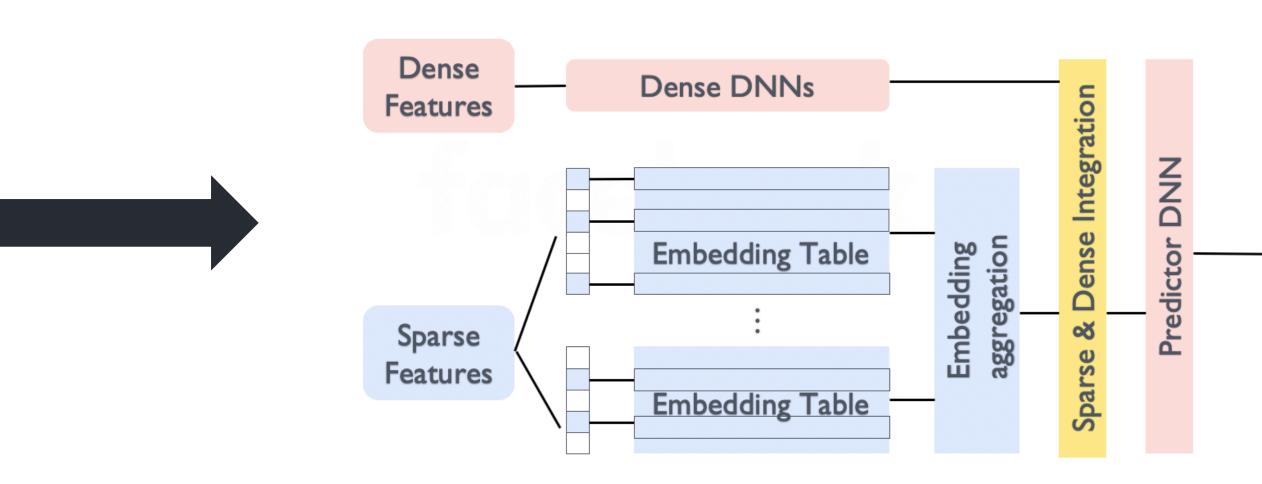


Benchmarks represent key models in Facebook's datacenter

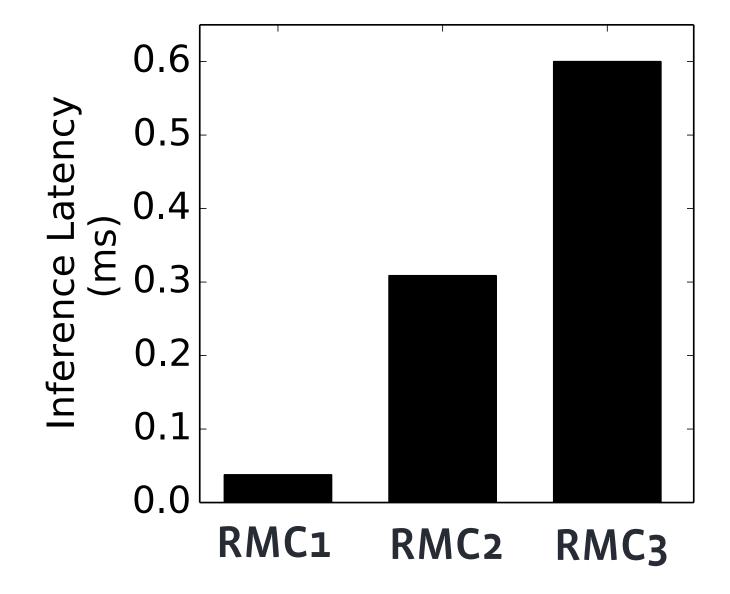
Al inference cycles in Facebook's datacenter



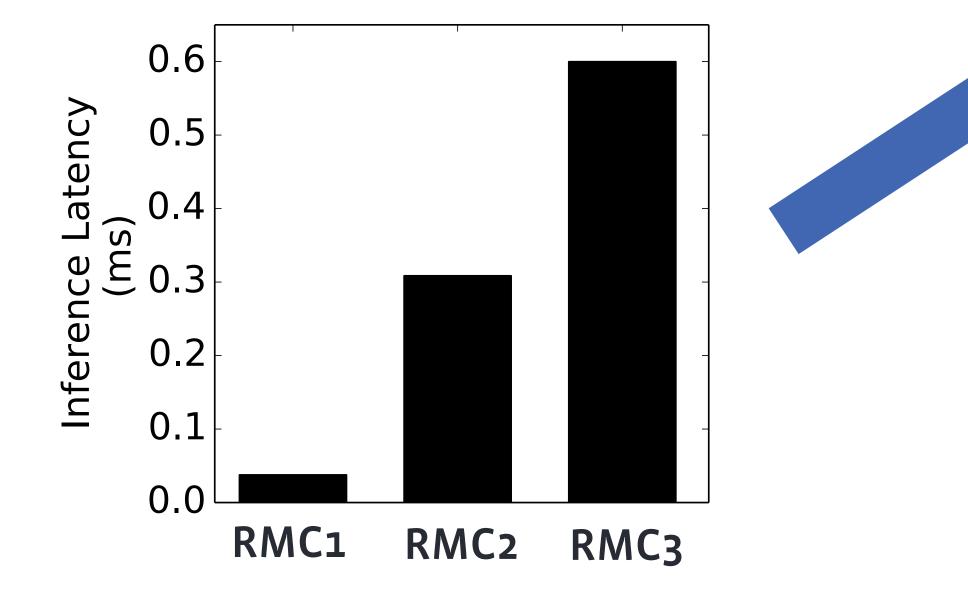
	RM1	RM2	RM3
FC sizes	Small	Medium	Large
Number of embedding tables	O(10)	O(50)	O(10)
Size of embeddings	Small	Medium	Large
Number of lookups per table	O(100)	O(100)	O(10)

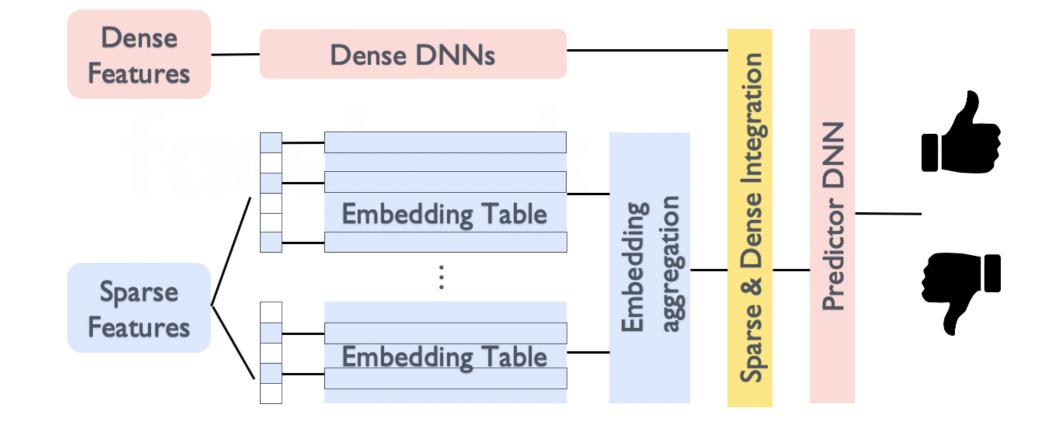


Diverse solutions are needed to optimize recommendation

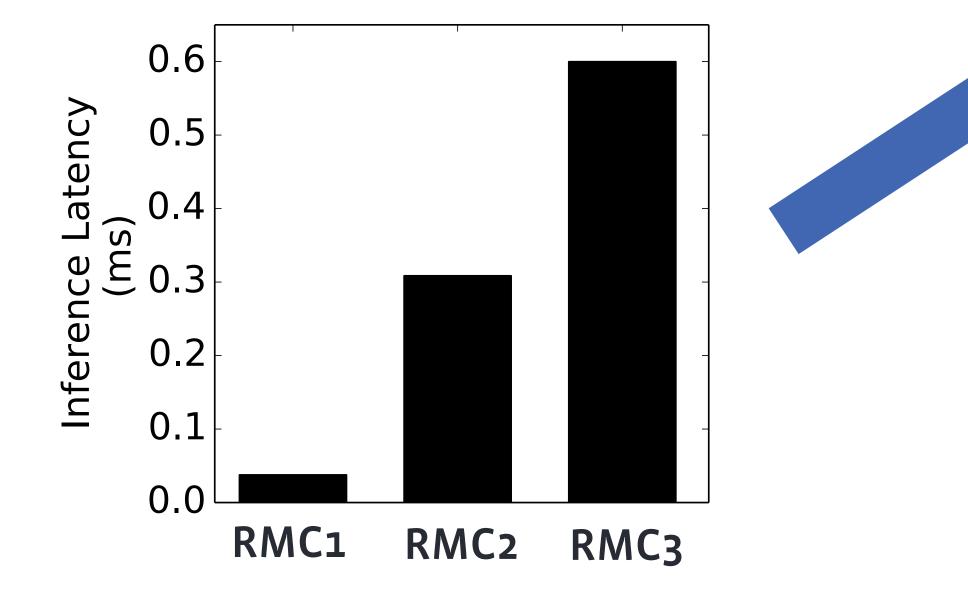


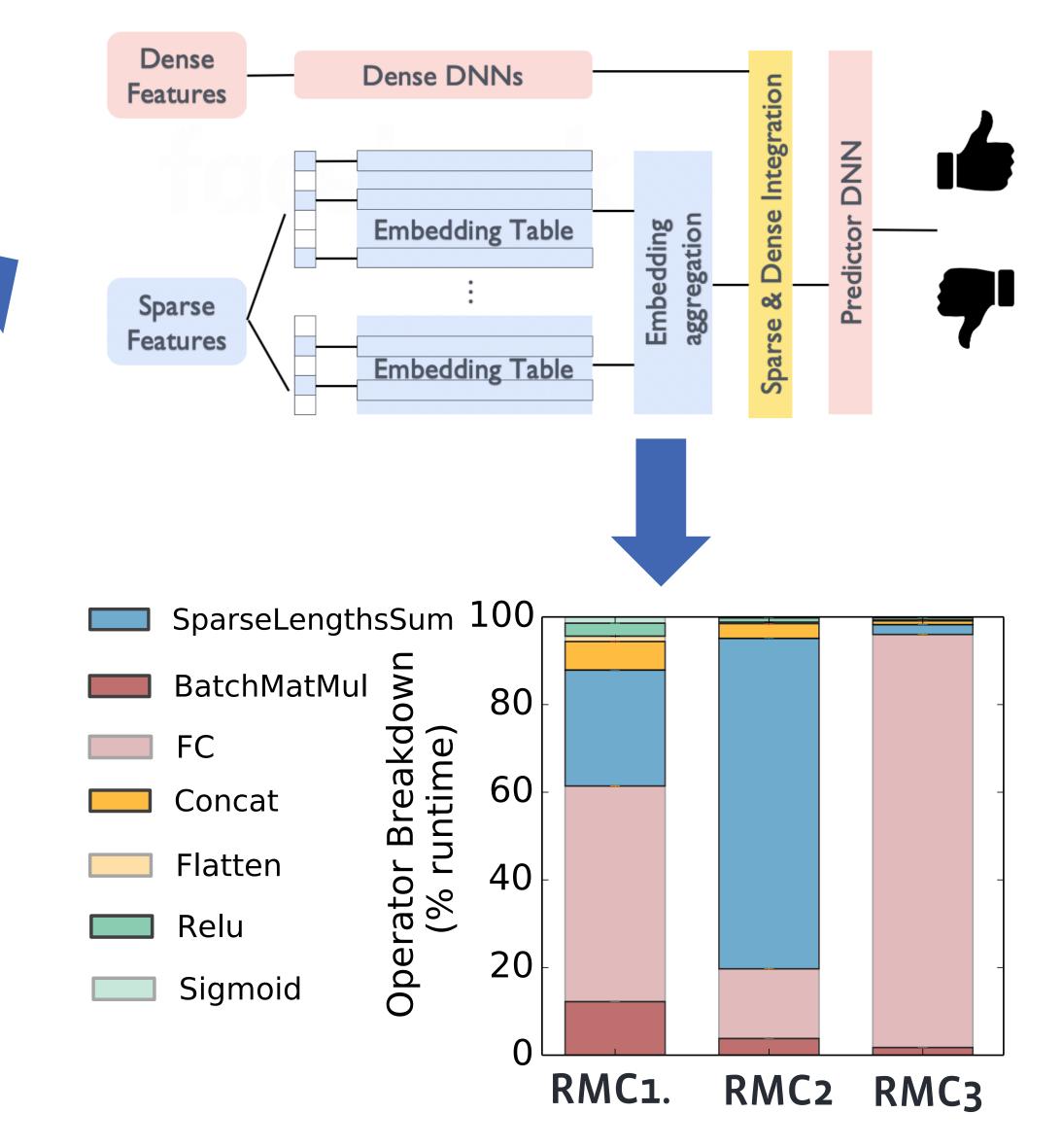
Diverse solutions are needed to optimize recommendation



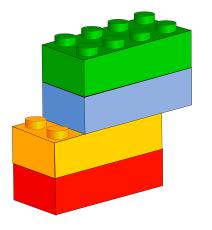


Diverse solutions are needed to optimize recommendation

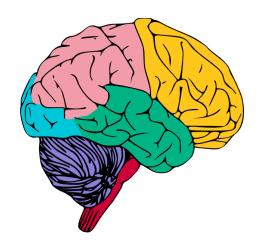




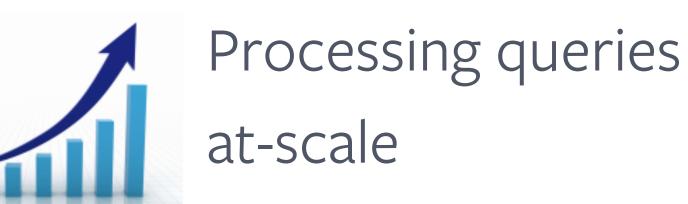
Algorithmic



General model structure



Diverse model architectures



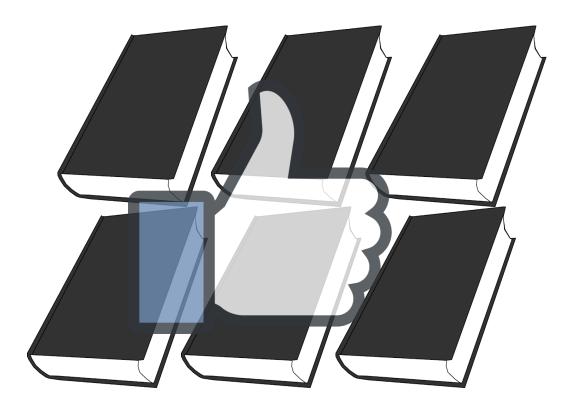
Requires optimizing operators with new storage, compute, and memory access requirements

Accelerating recommendation needs flexible and diverse system solutions

Exploiting hardware heterogeneity and parallelism can optimize latency-bounded throughput

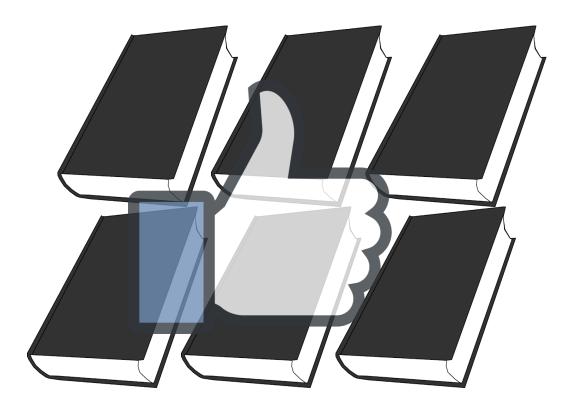
Ranking more items leads to better recommendation quality

High throughput!



Ranking more items leads to better recommendation quality

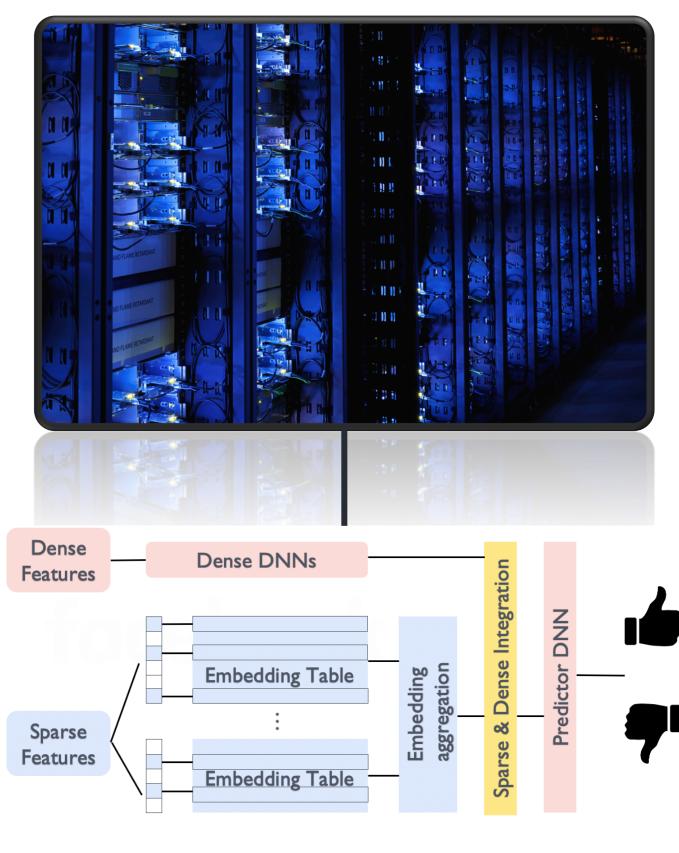
High throughput!

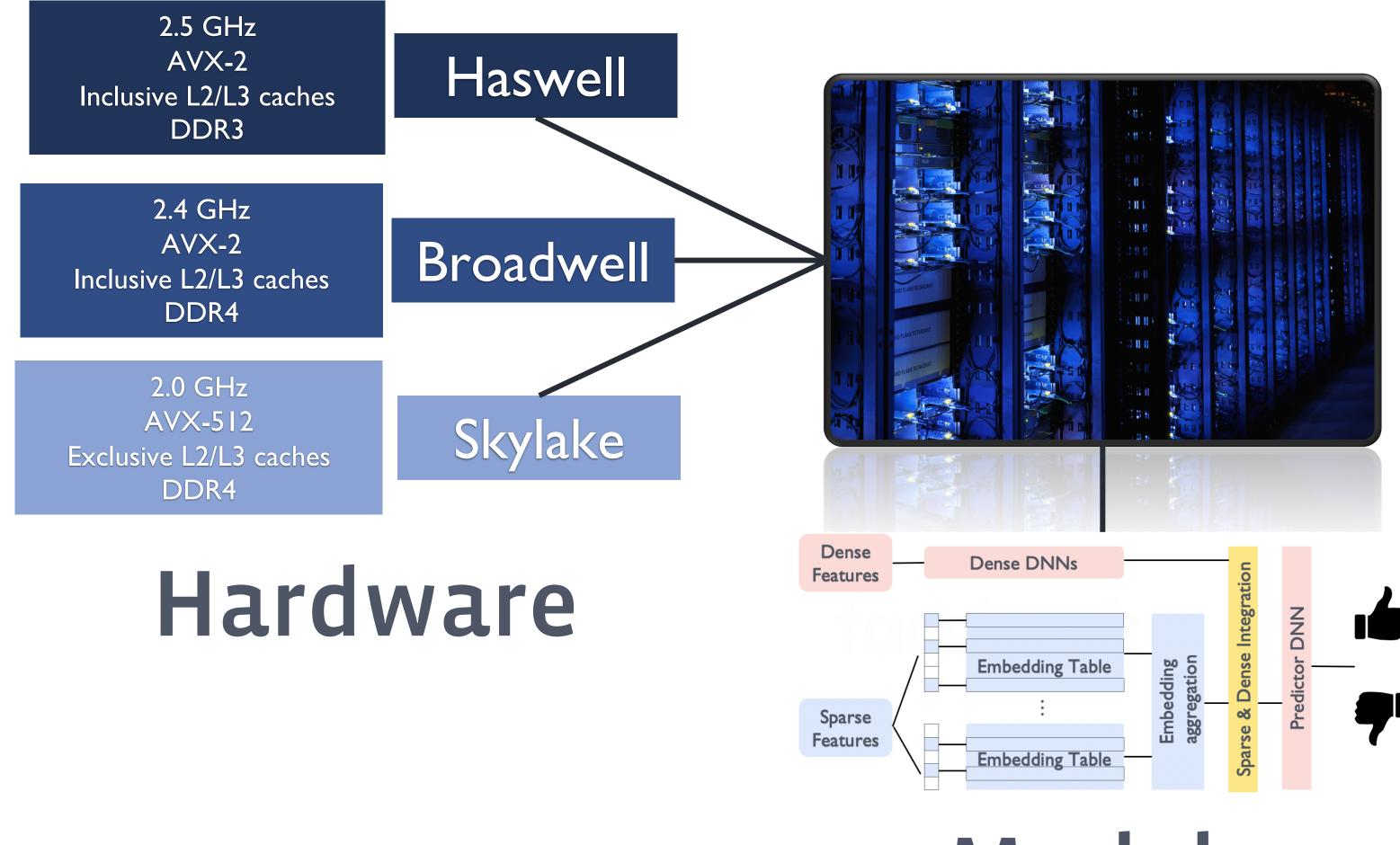


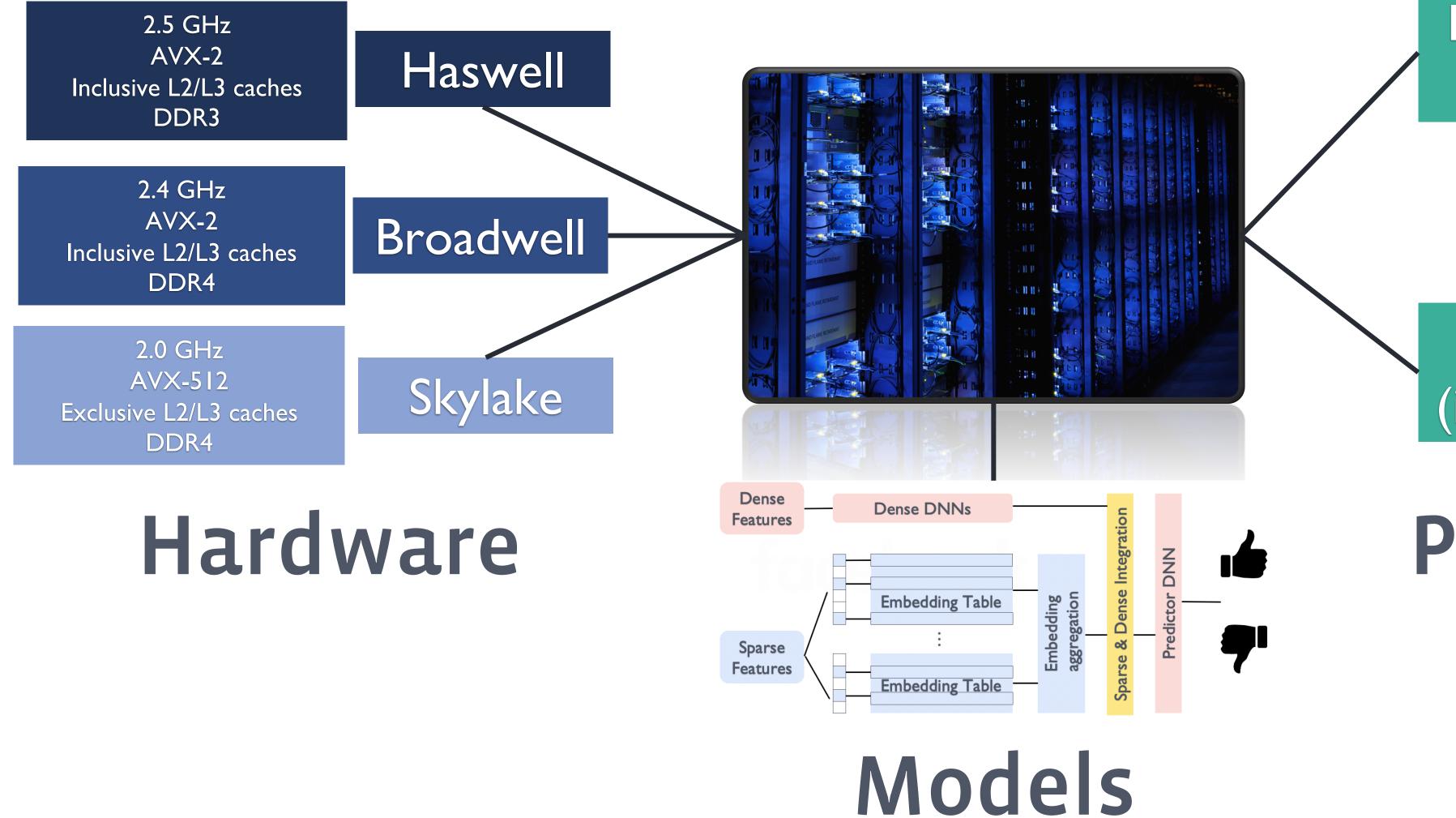
Low latency!

Ranking more items leads to better recommendation quality

Optimize latency-bounded throughput



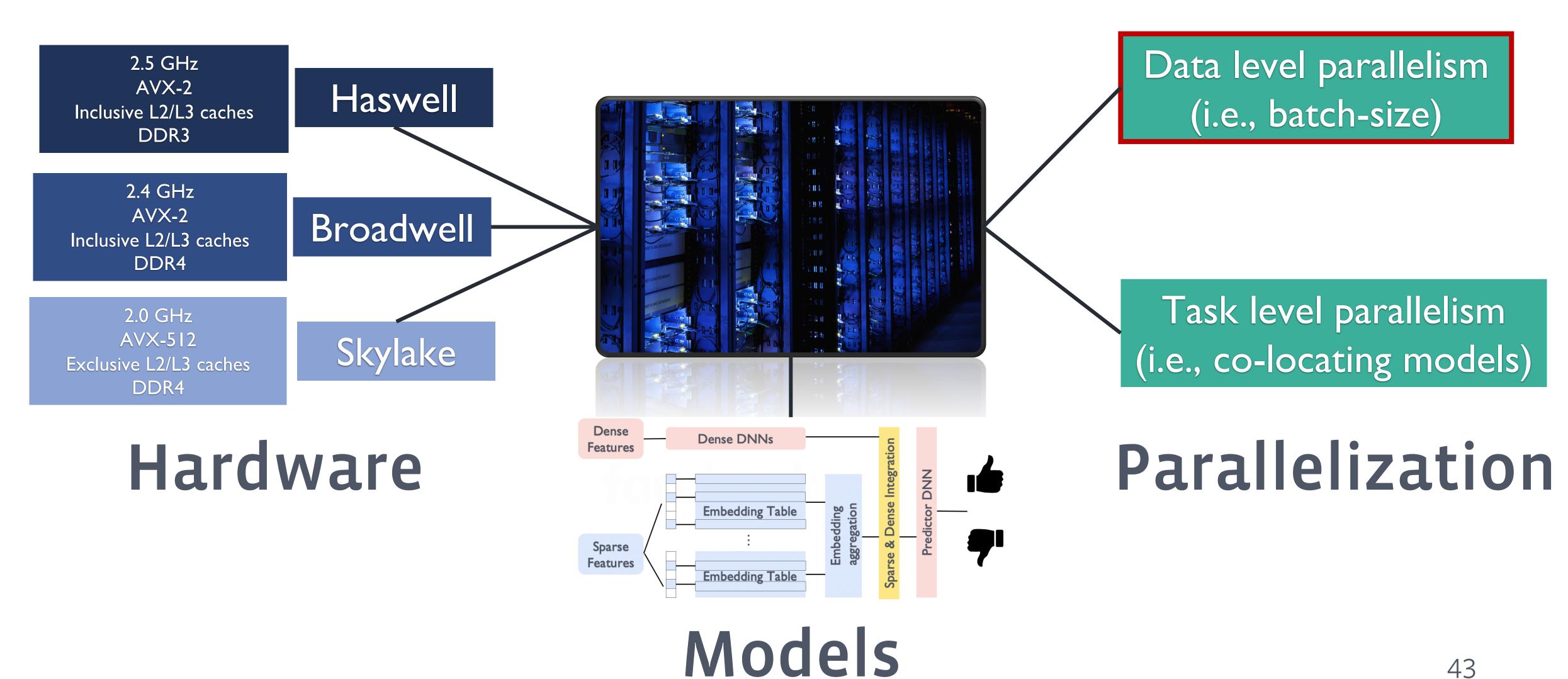


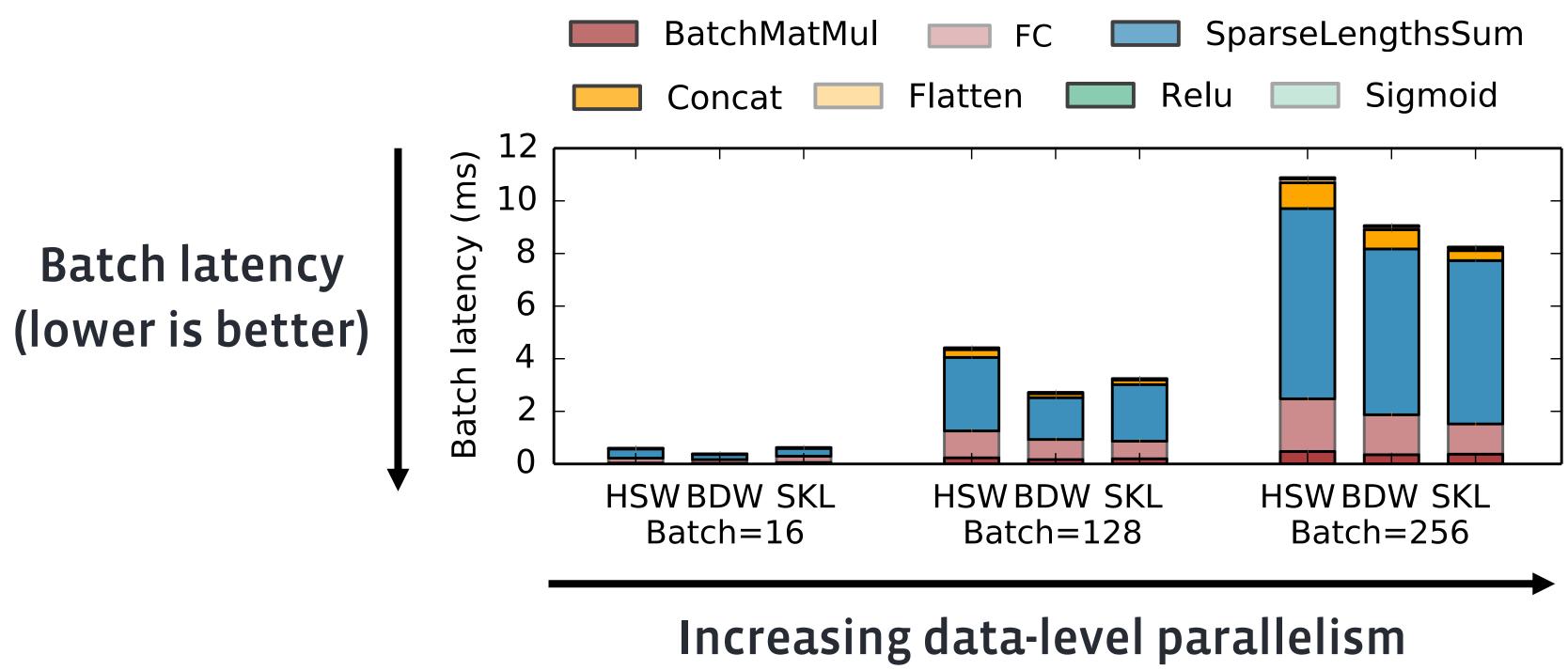


Data level parallelism (i.e., batch-size)

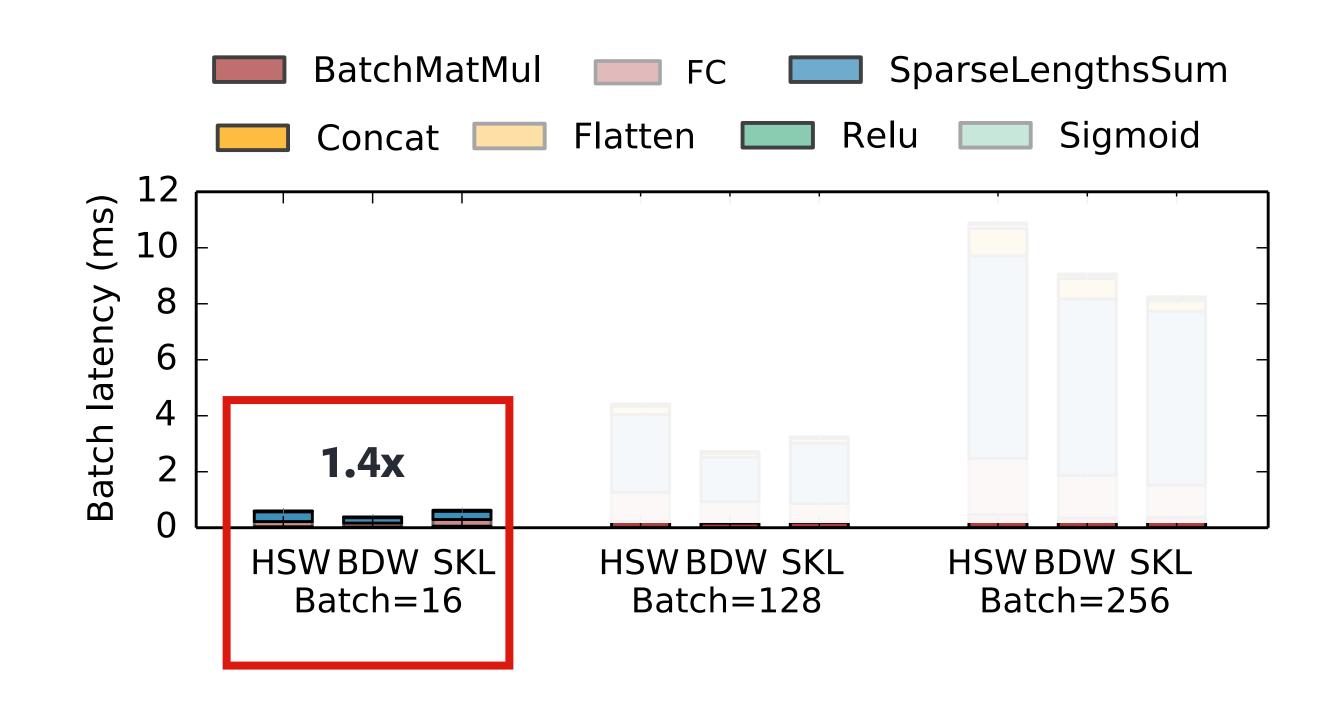
Task level parallelism (i.e., co-locating models)

Parallelization

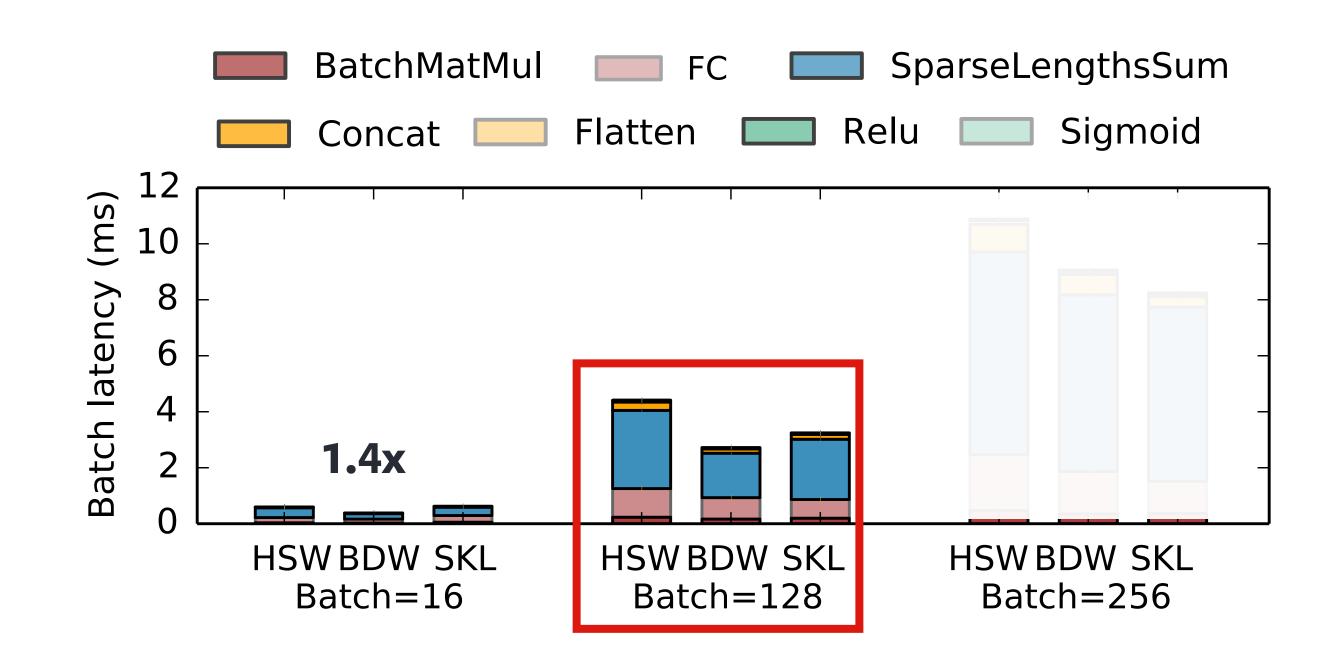




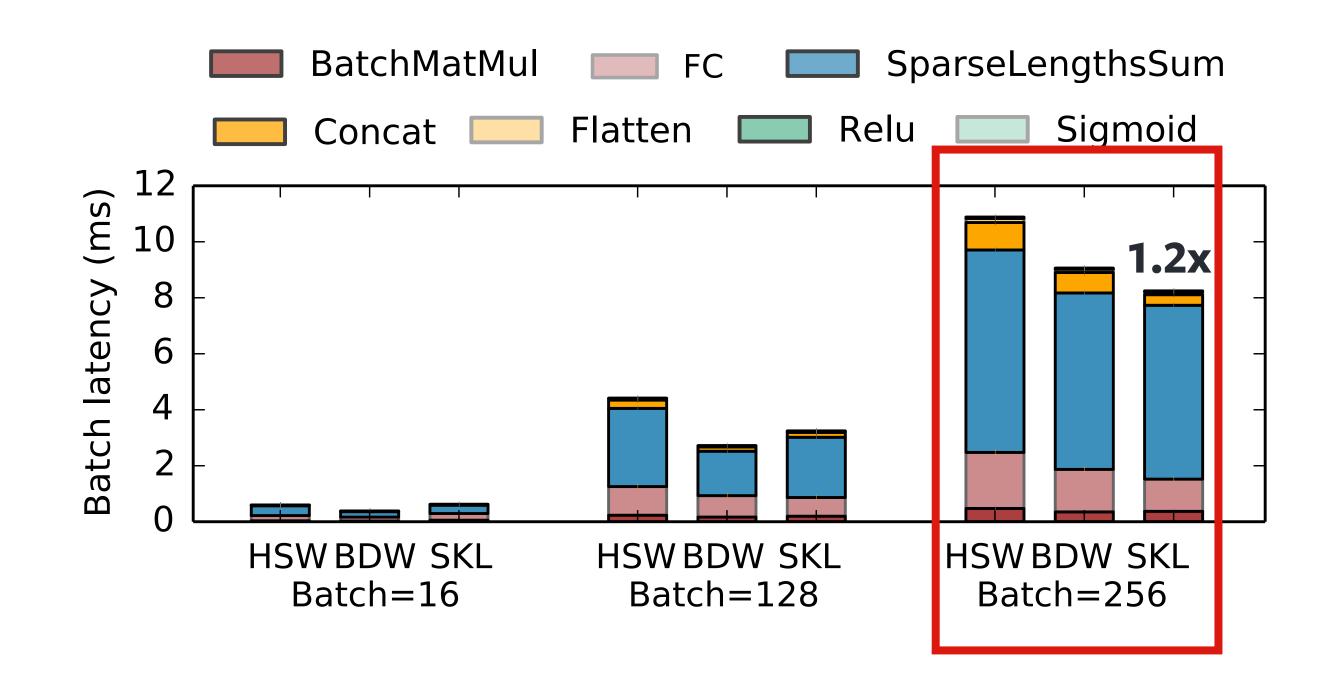
data-level parallelism (batch-size)



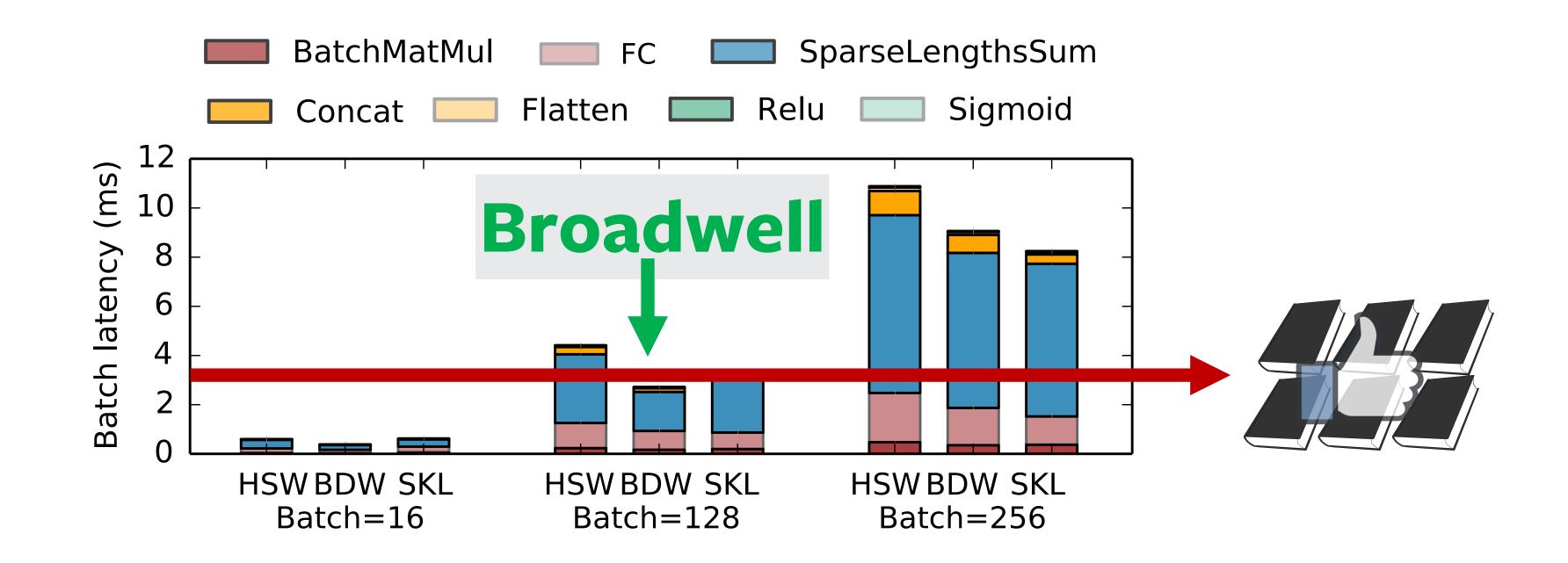
 At smaller batch-sizes Broadwell has 1.4x lower batch latency - Skylake: 20% lower CPU frequency and lower AVX-512 utilization (70%)



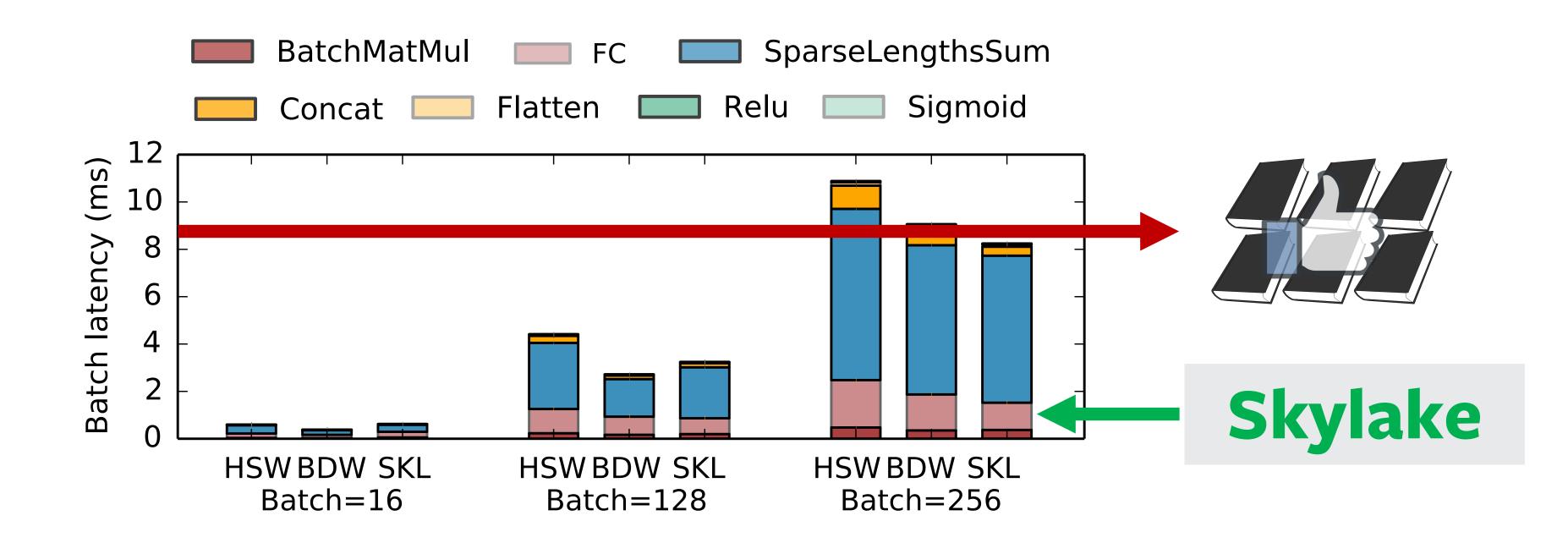
At smaller batch-sizes Broadwell has 1.4x lower batch latency
Haswell: 50% lower DRAM frequency



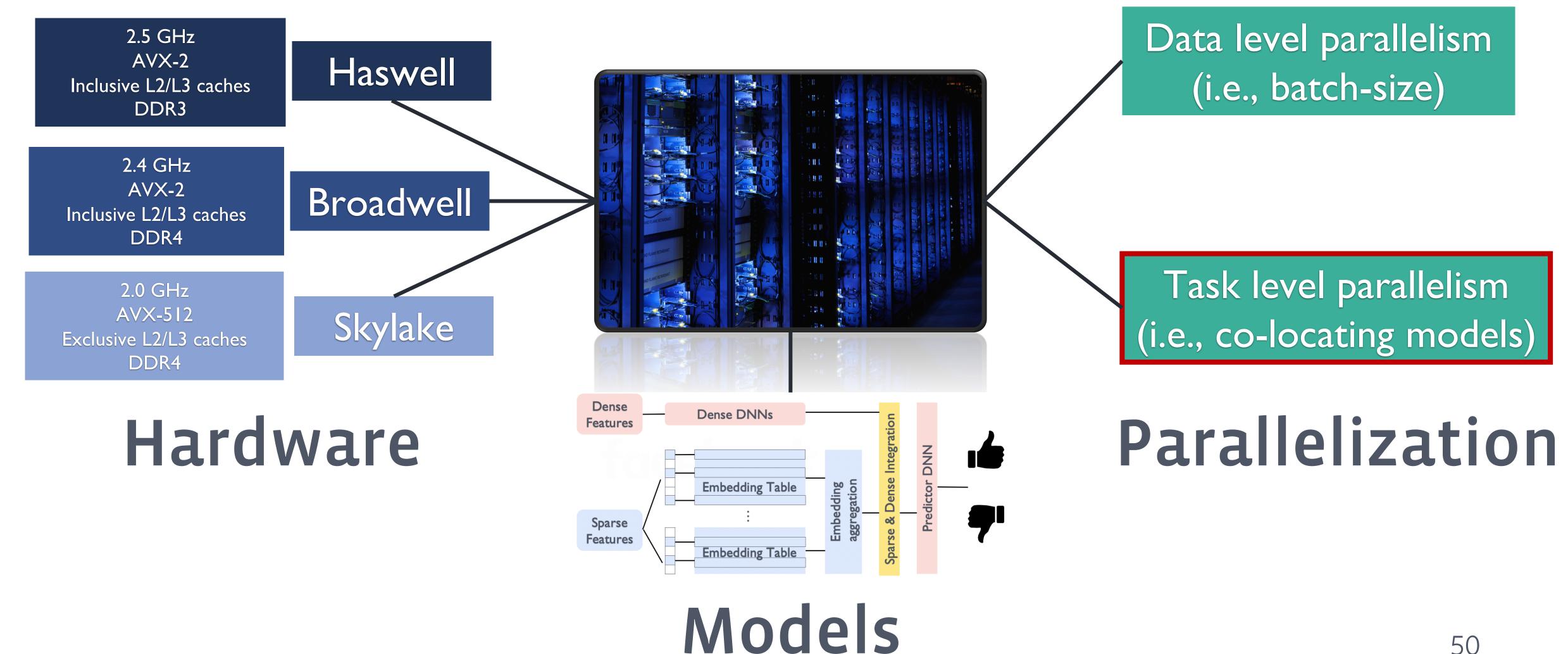
At higher batch-sizes Skylake has lower batch latency
Wider vector width and higher AVX-512 utilization (90%)



At higher batch-sizes Skylake has lower batch latency
Wider vector width and higher AVX-512 utilization (90%)



At higher batch-sizes Skylake has lower batch latency
Wider vector width and higher AVX-512 utilization (90%)



Co-locating models improves recommendation quality and reduces infrastructure capacity

Latency and batch critical application

Latency critical

application

	-		 5
			 5
Ľ			 7
		0	
Ζ.			

Latency critical

application

Target latency

Co-locating models improves recommendation quality and reduces infrastructure capacity

Latency and batch critical application

_	
Latency critical application	Bat
Latency critical application	Bat

tch processing

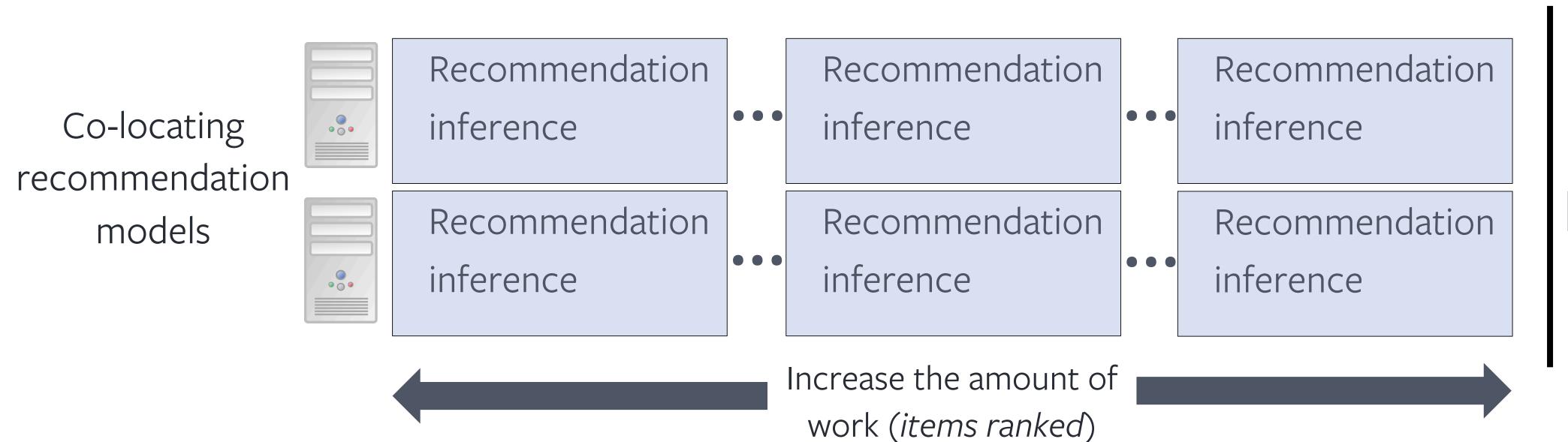
tch processing

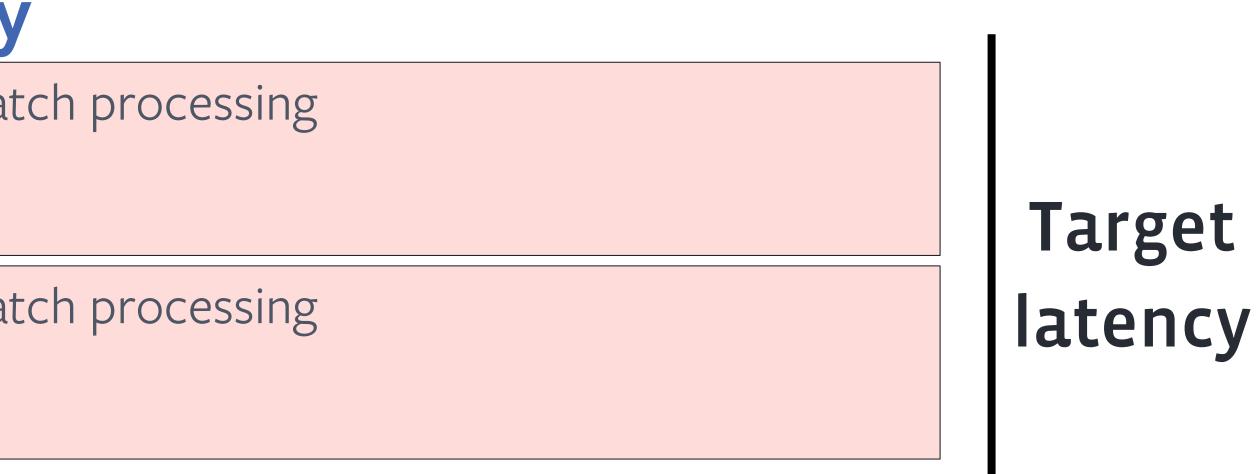
Target latency

Co-locating models improves recommendation quality and reduces infrastructure capacity

Latency and batch critical application

Latency critical application	Bat
Latency critical application	Bat

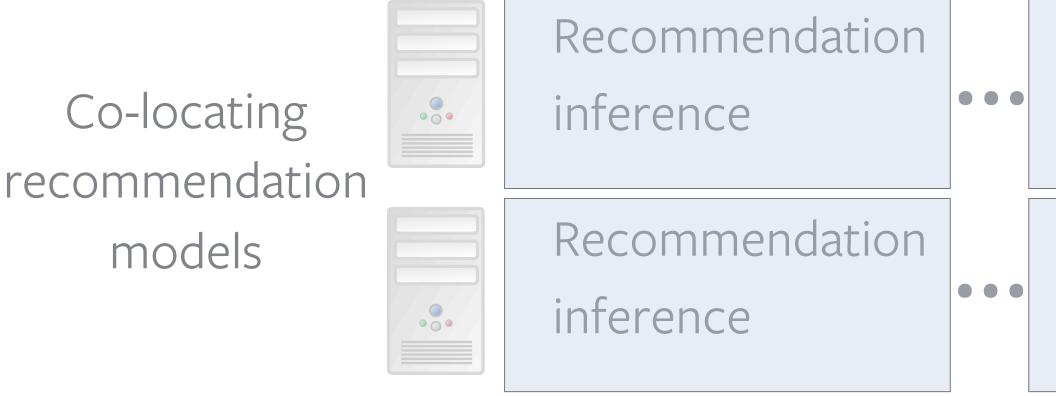




Target latency

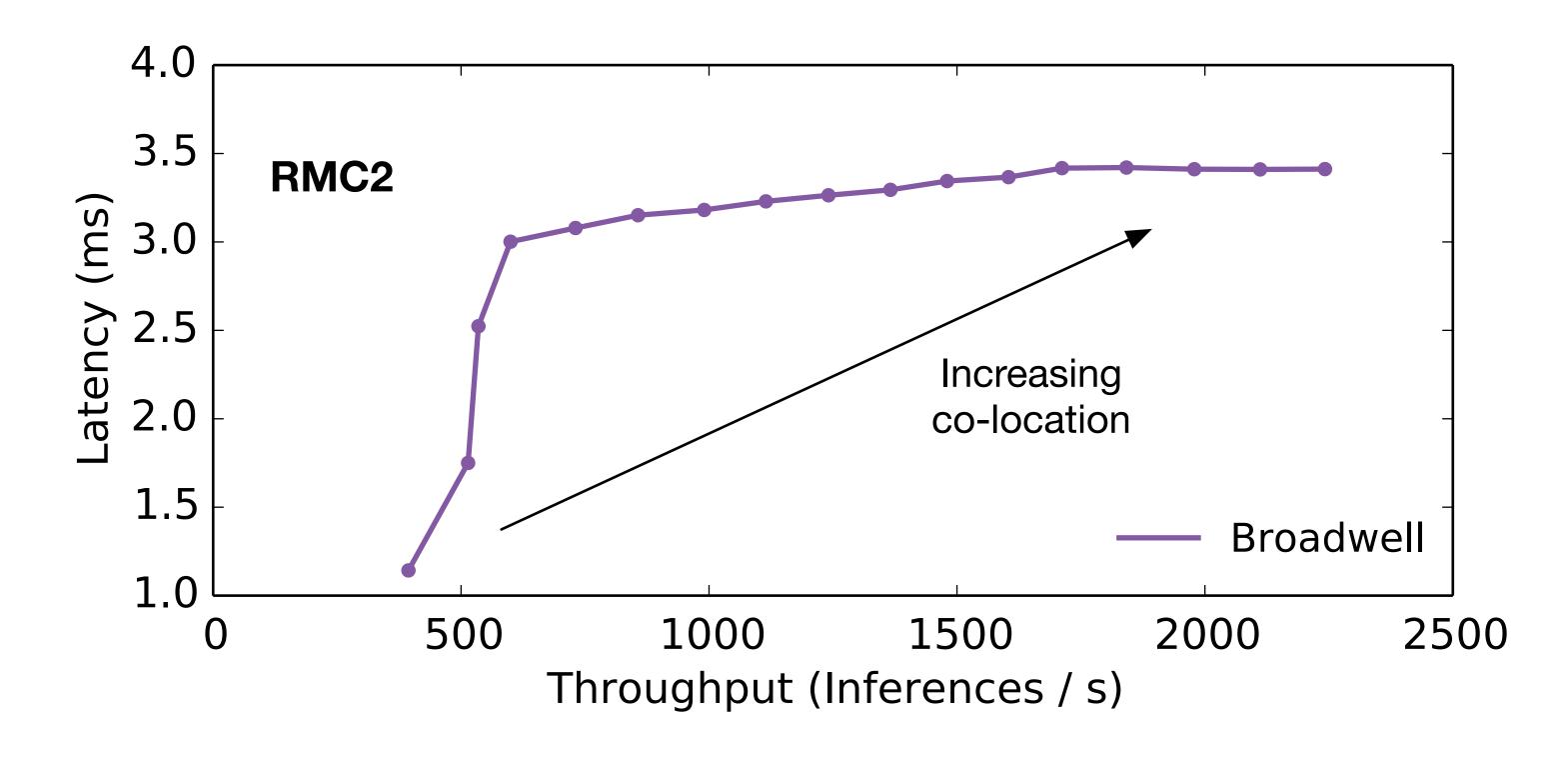
Co-locating models improves recommendation quality and reduces infrastructure capacity atch processing Latency and Target batch critical atch processing latency application Recease server utilization Recease server utilization Increase server utilization Increase server utilization Increase server utilization Iato Recommendation Recommendation Co-locating inference inference Recommendation Recommendation models $\bullet \bullet \bullet$ inference inference Increase the amount of

Latency critical application	Ba
Latency critical application	Ba

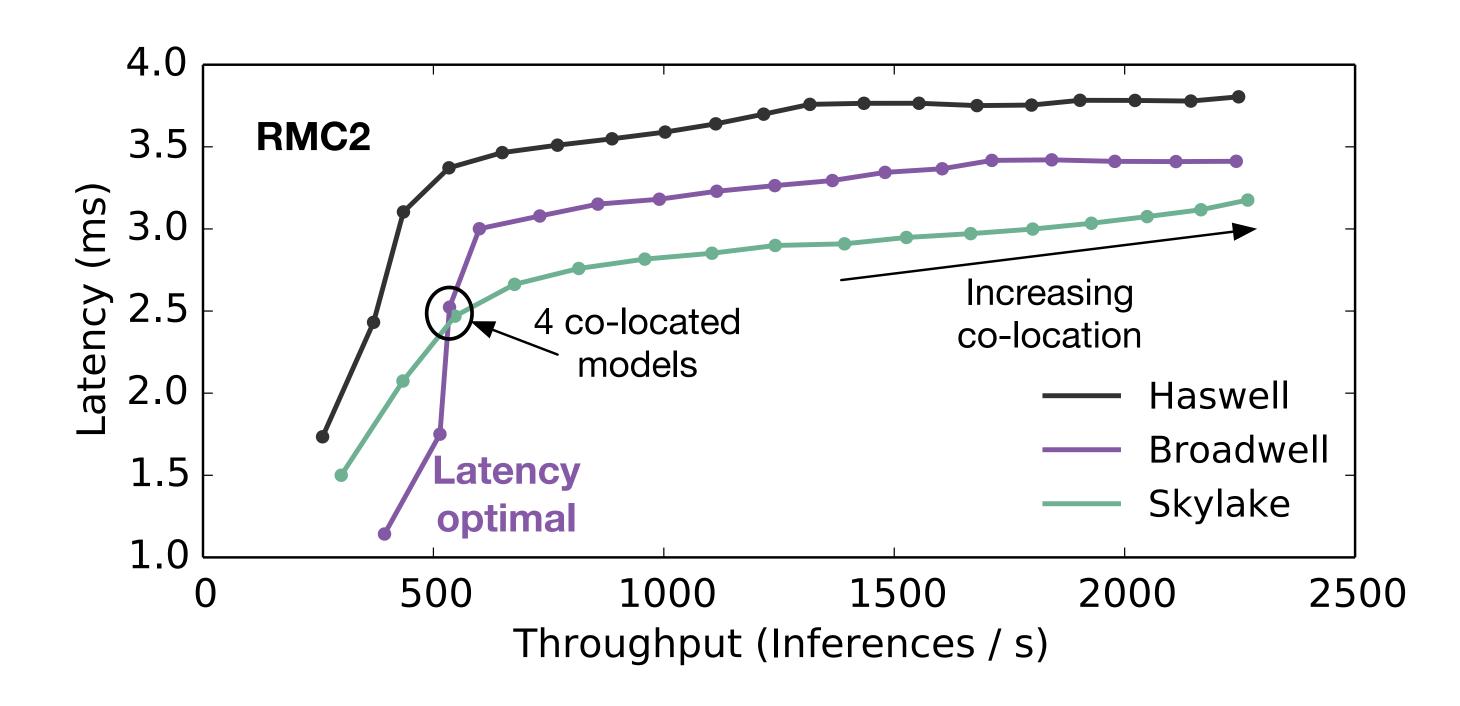


work (items ranked)

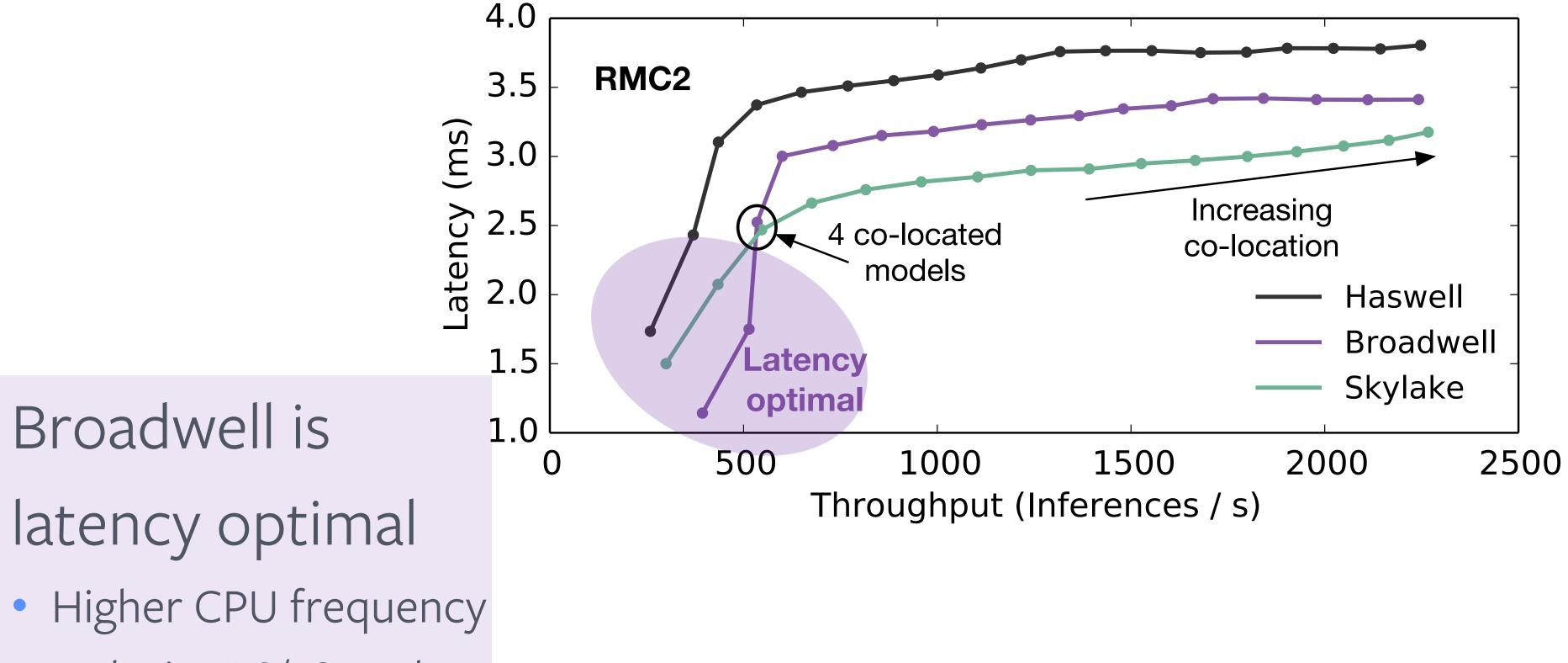
Task parallelism: Characterizing latency bounded throughput



Task parallelism: Characterizing latency bounded throughput

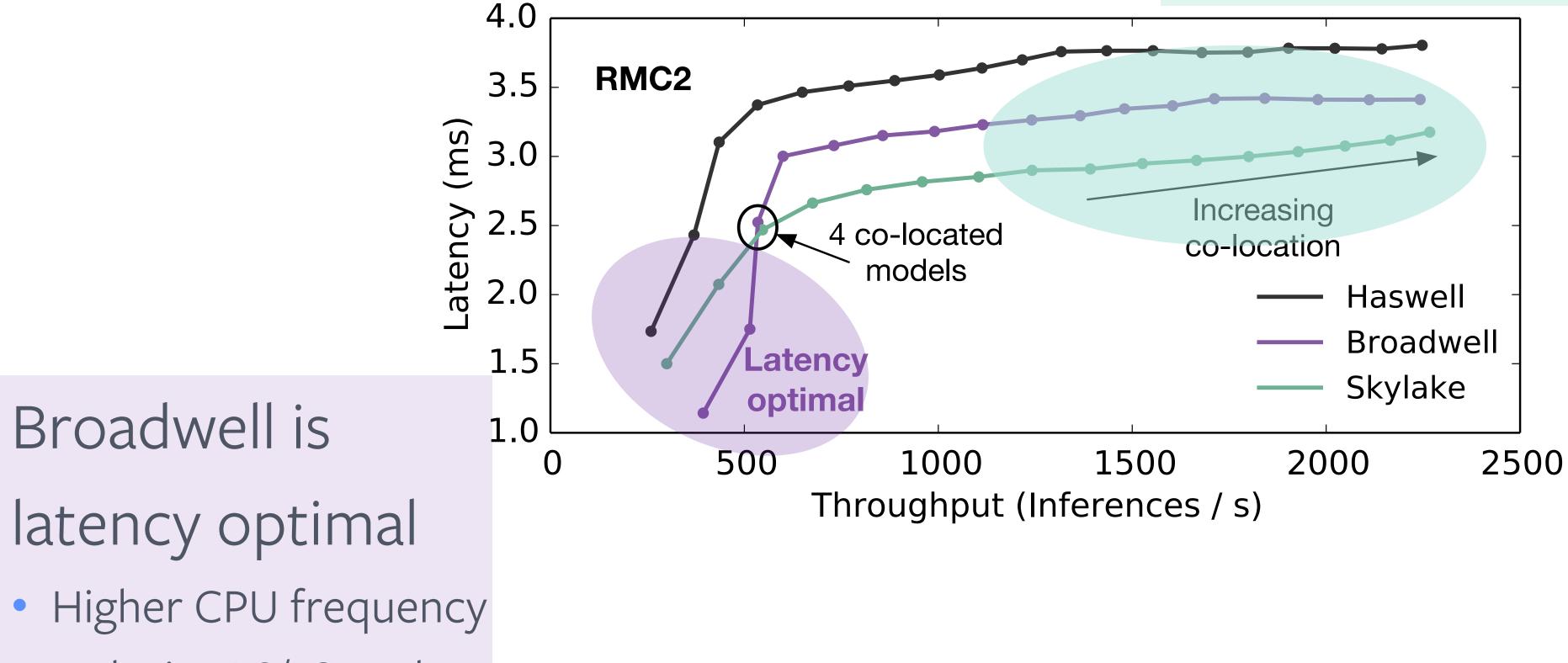


Task parallelism: Characterizing latency bounded throughput



Inclusive L2/L3 caches

Task parallelism: Characterizing latency boundedthroughputSkylake is throughput optimal

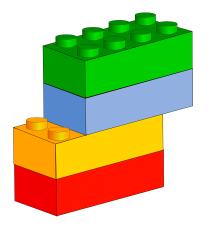


Inclusive L2/L3 caches

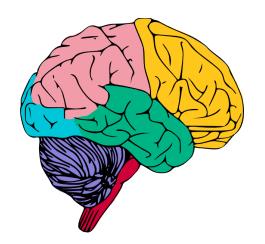
- Wider AVX width
- Exclusive L2/L3 caches

Hardware insights of recommendation

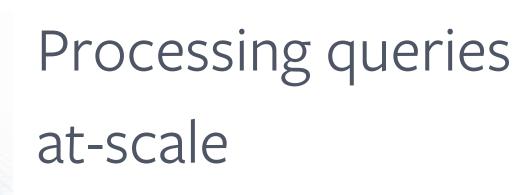
Algorithmic



General model structure



Diverse model architectures



Requires optimizing operators with new storage, compute, and memory access requirements

Accelerating recommendation needs flexible and diverse system solutions

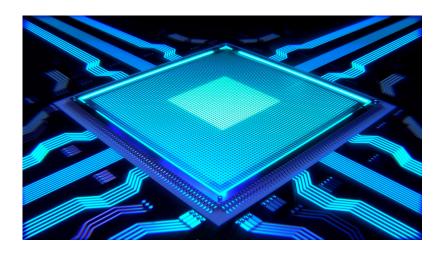
Exploiting hardware heterogeneity and parallelism can optimize latency-bounded throughput

Hardware opportunities ahead

Hardware

Hardware opportunities ahead

Hardware acceleration

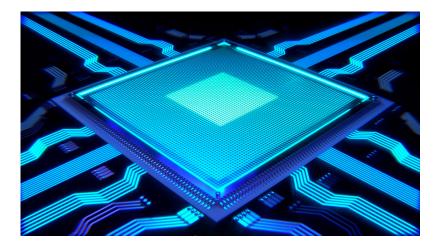


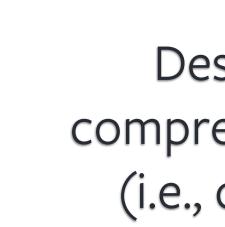
Evaluating current accelerator proposals

Designing new hardware solutions

Hardware opportunities ahead

Hardware acceleration

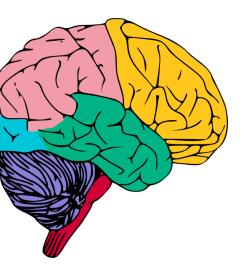




Evaluating current accelerator proposals

Designing new hardware solutions

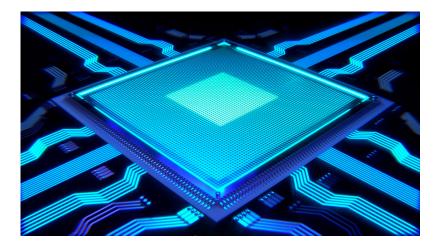
Model optimizations

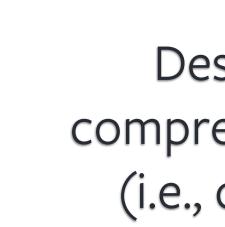


Designing new compression methods (i.e., quantization)

Hardware opportunities ahead

Hardware acceleration

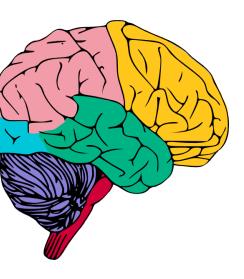




Evaluating current accelerator proposals

Designing new hardware solutions

Model optimizations



Designing new compression methods (i.e., quantization)

Large scale systems

Optimizing system level latency-bounded throughput

Performance variability

The Architectural Implications of Facebook's **DNN-based Personalized Recommendation**

Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen

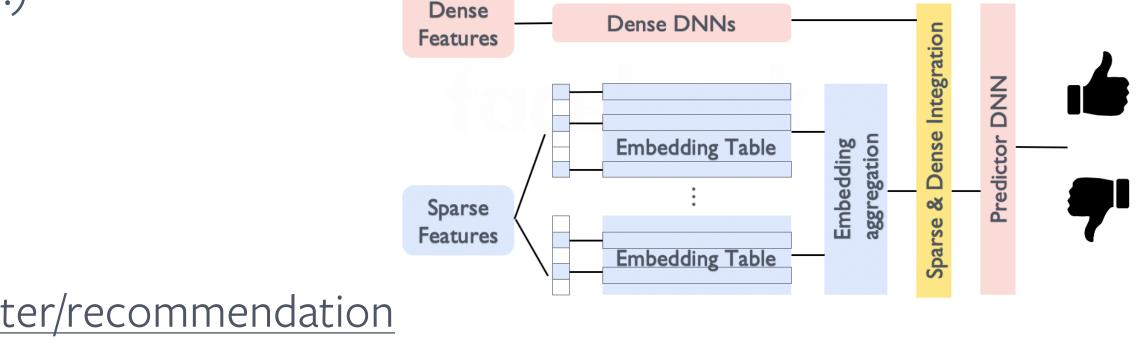
David Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, Xuan Zhang

DLRM (Deep learning recommendation model) is open source!

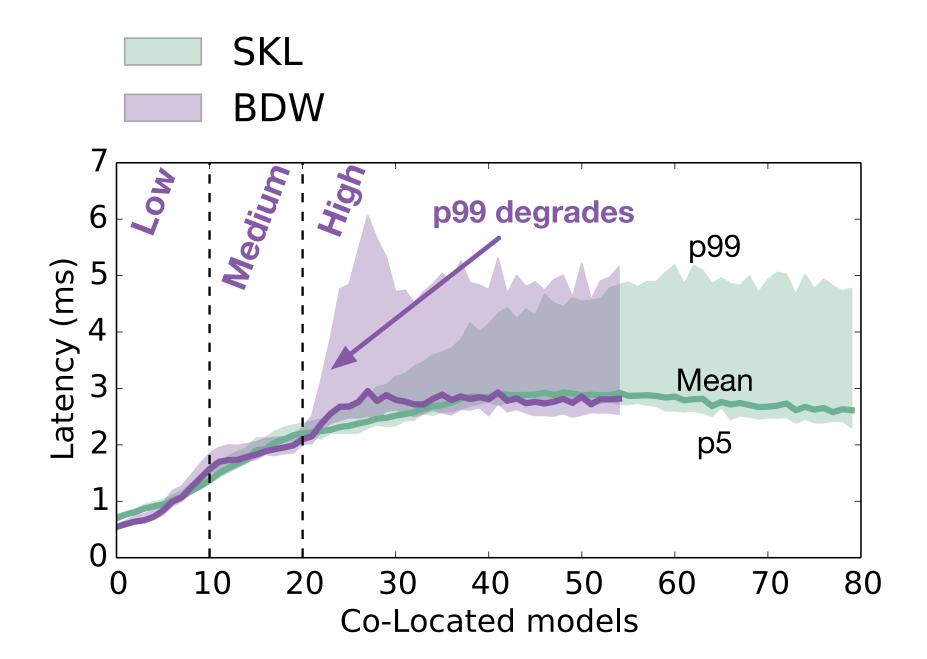
"Deep Learning Recommendation Model for Personalization and Recommendation Systems" (Naumov, et. al.)

https://github.com/facebookresearch/dlrm

https://github.com/mlperf/training/tree/master/recommendation

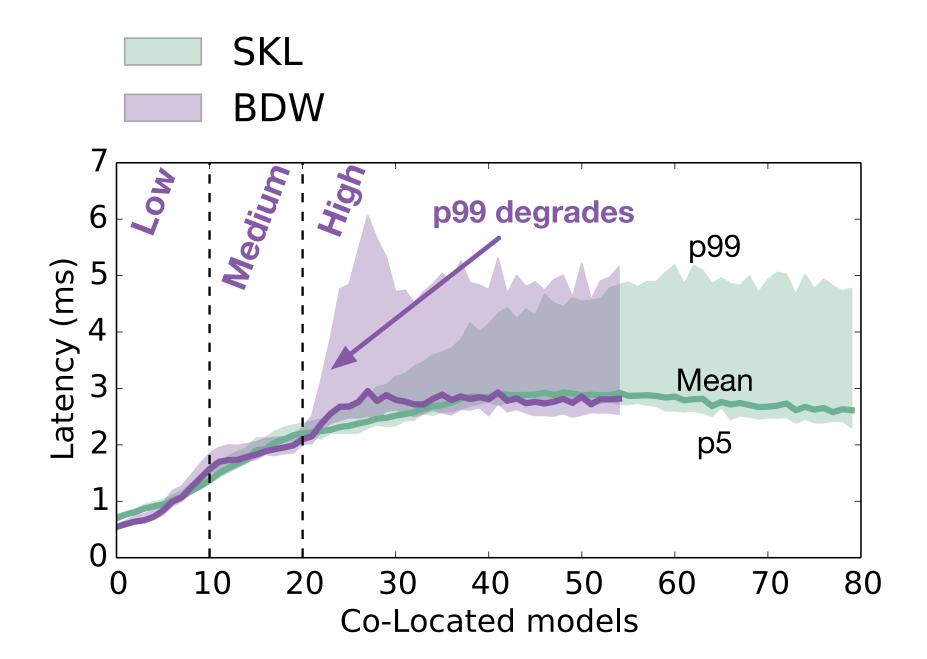


Cost of co-locating models: Variability



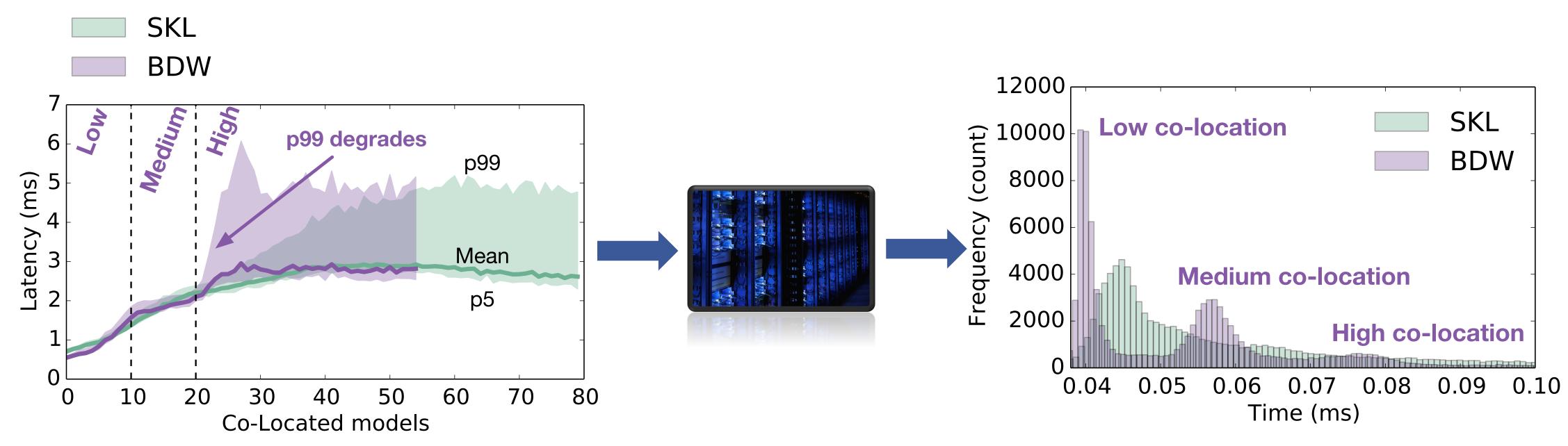
Broadwell and Skylake follow unique distribution as we increase degree of co-location

Cost of co-locating models: Variability



Broadwell and Skylake follow unique distribution as we increase degree of co-location

Cost of co-locating models: Variability



Broadwell and Skylake follow unique distribution as we increase degree of co-location

Distinct distributions found in production datacenters as well