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Personalized Recommendation is everywhere
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Personalized Recommendation is everywhere

“35% of purchases on Amazon and 75% of videos on Netflix are 
powered by recommendation algorithms”

McKinsey & Co
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Optimizing DNN-based recommendation is key 
for improving datacenter efficiency
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Hardware insights of recommendation
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Embedding tables pose new challenges

Storage capacity

Up to tens of GBs

Compute intensity

Orders of magnitude lower 
FLOPs/Byte

Memory access pattern

Sparse, irregular memory 
accesses

Off-chip memory 
(DRAM, NVM)

Unique acceleration 
opportunities

(Near memory computing)

Specialized caching and 
pre-fetching capabilities

Embedding

RNN

FC

CNN

22

Log Scale!

Embedding

RNN

FC

CNN

Embedding

RNN

FC

CNN



Hardware insights of recommendation

23

Algorithmic Hardware

Requires optimizing operators with new storage, 
compute, and memory access requirements

Accelerating recommendation needs flexible and 
diverse system solutions

Exploiting hardware heterogeneity and parallelism can 
optimize latency-bounded throughput

General model structure

Diverse model 
architectures

Processing queries 
at-scale



DLRM: Configurable benchmark for end to end models
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AI inference cycles in Facebook’s datacenter

RM1
29%

RM2
30%RM3

5%

Other-
Rec
15%

Non-
Rec
21%

RM1 RM2 RM3
FC sizes Small Medium Large

Number of embedding tables O(10) O(50) O(10)
Size of embeddings Small Medium Large

Number of lookups per table O(100) O(100) O(10)
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Ranking more items leads to better 
recommendation quality

High throughput! Low latency!

Optimize latency-bounded throughput
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RM1

RM2

RM3

Data parallelism: Characterizing latency bounded 
throughput design space

Batch latency 
(lower is better)

Increasing data-level parallelism
(batch-size)
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Co-locating models improves recommendation quality and 
reduces infrastructure capacity

Latency and 
batch critical 
application

51

Latency critical 
application

Latency critical 
application

Target 

latency



Co-locating models improves recommendation quality and 
reduces infrastructure capacity

Latency and 
batch critical 
application

52

Latency critical 
application

Latency critical 
application

Target 

latencyBatch processing

Batch processing



Co-locating models improves recommendation quality and 
reduces infrastructure capacity

Target 

latency

Latency and 
batch critical 
application

53

Latency critical 
application

Latency critical 
application

Batch processing

Batch processing

Recommendation 
inferenceCo-locating 

recommendation 
models

Increase the amount of 
work (items ranked)

Target 

latency

Recommendation 
inference

Recommendation 
inference

Recommendation 
inference

Recommendation 
inference

Recommendation 
inference

…

… …

…



Target 

latency

Latency and 
batch critical 
application

54

Latency critical 
application
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Increase server utiliz
ation

(reduce infrastructure capacity)

Co-locating models improves recommendation quality and 
reduces infrastructure capacity
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Task parallelism: Characterizing latency bounded 
throughput

RMC2
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Skylake is throughput optimal
• Wider AVX width
• Exclusive L2/L3 caches

Broadwell is 
latency optimal
• Higher CPU frequency
• Inclusive L2/L3 caches
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Hardware opportunities ahead
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Hardware acceleration Model optimizations Large scale systems

Evaluating current 
accelerator proposals

Designing new hardware 
solutions

Designing new 
compression methods 

(i.e., quantization)

Optimizing system level 
latency-bounded 

throughput

Performance variability



https://github.com/facebookresearch/dlrm

DLRM (Deep learning recommendation model) is open source! 

“Deep Learning Recommendation Model for Personalization and 
Recommendation Systems” (Naumov, et. al.)
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