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Personalized Recommendation is everywhere
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Optimizing DNN-based recommendation is key
for improving datacenter efficiency

Al inference cycles in Facebook’s datacenter




Optimizing DNN-based recommendation is key
for improving datacenter efficiency

Al inference cycles in Facebook’s datacenter

Recommendation uses cases
account for over 80% of all
Al inference cycles in
Facebook’s datacenter




Lots of opportunities for HW research in recommendation
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Lots of opportunities for HW research in recommendation
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Hardware insights of recommendation

Algorithmic Hardware

General model structure Requires optimizing operators with new storage,
compute, and memory access requirements
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Hardware insights of recommendation

Algorithmic Hardware

General model structure Requires optimizing operators with new storage,
compute, and memory access requirements
@ Diverse model Accelerating recommendation needs flexible and
S0~ architectures diverse system solutions
/ Processing queries Exploiting hardware heterogeneity and parallelism can
““ll at-scale optimize latency-bounded throughput
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Hardware insights of recommendation

Algorithmic Hardware

. General model structure Requires optimizing operators with new storage,

compute, and memory access requirements
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DNNs for Recommendation
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DNNs for Recommendation
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Embedding tables pose new challenges
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Embedding tables pose new challenges
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Hardware insights of recommendation

Algorithmic Hardware

General model structure Requires optimizing operators with new storage,
compute, and memory access requirements

Diverse model Accelerating recommendation needs flexible and
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DLRM: Configurable benchmark for end to end models
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Benchmarks represent key models in Facebook’s datacenter

Al inference cycles in Facebook’s datacenter
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Benchmarks represent key models in Facebook’s datacenter

Al inference cycles in Facebook’s datacenter
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Diverse solutions are needed to optimize recommendation
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Diverse solutions are needed to optimize recommendation
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Diverse solutions are needed to optimize recommendation
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Hardware insights of recommendation

Algorithmic Hardware

General model structure Requires optimizing operators with new storage,
compute, and memory access requirements
@ Diverse model Accelerating recommendation needs flexible and
S0~ architectures diverse system solutions
/ Processing queries Exploiting hardware heterogeneity and parallelism can
““ll at-scale optimize latency-bounded throughput
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Ranking more items leads to better
recommendation quality

High throughput!
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Ranking more items leads to better
recommendation quality

High throughput! Low latency!
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Ranking more items leads to better
recommendation quality

High throughput! Low latency!
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Optimize latency-bounded throughput
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Characterizing latency bounded throughput design space
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Characterizing latency bounded throughput design space
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Characterizing latency bounded throughput design space
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Characterizing latency bounded throughput design space

25 GHz Data level parallelism
AVX-2

Inclusive L2/L3 caches Haswe” - L .. (i.e., batCh'Size)
DDR3 ; -~ 1

2.4 GHz
AVX-2

Inclusive L2/L3 caches Broadwe”
DDR4

2.0 GHz 2 alEsl . M3 Task level parallelism
AVX-512 Skvlal e 5 | oo : :
Exclusive L2/L3 caches ()' dKE (|.e., CO-|OcatIng mOdGIS)

DDR4

e Dense DNNs .5 Py P
H r r g P r
e z 1
T | - 0O
—  Embedding Table e B
— | 9 8 o U
Vo 0O _ T '
Qv o Q
Sparse - o8 0% -
£ 88 o o
Features T — | w e
| _Embedding Table — a
| — | n

Models .



Data parallelism: Characterizing latency bounded
throughput design space
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Data parallelism: Characterizing latency bounded
throughput design space
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Data parallelism: Characterizing latency bounded
throughput design space
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Data parallelism: Characterizing latency bounded
throughput design space
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* At higher batch-sizes Skylake has lower batch latency
- Wider vector width and higher AVX-512 utilization (90%)
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Data parallelism: Characterizing latency bounded
throughput design space
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Data parallelism: Characterizing latency bounded
throughput design space
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Characterizing latency bounded throughput design space
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Co-locating models improves recommendation quality and
reduces infrastructure capacity
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Co-locating models improves recommendation quality and
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Co-locating models improves recommendation quality and

reduces infrastructure capacity
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Co-locating models improves recommendation quality and
reduces infrastructure capacity
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Task parallelism: Characterizing latency bounded
throughput
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Task parallelism: Characterizing latency bounded

throughput
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Hardware insights of recommendation

Algorithmic Hardware

General model structure Requires optimizing operators with new storage,
compute, and memory access requirements
@ Diverse model Accelerating recommendation needs flexible and
S0~ architectures diverse system solutions
/ Processing queries Exploiting hardware heterogeneity and parallelism can
““ll at-scale optimize latency-bounded throughput

Hardware opportunities ahead 59



Hardware opportunities ahead

Hardware acceleration

Evaluating current
accelerator proposals

Designing new hardware
solutions
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Hardware opportunities ahead

Hardware acceleration Model optimizations

Evaluating current

Designing new
accelerator proposals

compression methods

o .e., quantization
Designing new hardware (e, q )

solutions
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Hardware opportunities ahead

Hardware acceleration

Evaluating current
accelerator proposals

Designing new hardware
solutions

Model optimizations

Designing new
compression methods
(i.e., guantization)

Large scale systems

Optimizing system level
latency-bounded
throughput

Performance variability
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DLRM (Deep learning recommendation model) is open source!

“Deep Learning Recommendation Model for Personalization and
| Recommendation Systems” (Naumov, et. al.)
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Cost of co-locating models: Variability
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Cost of co-locating models: Variability
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