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Personalized Recommendation
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Nowadays, personalized recommendation is a fundamental 

building block of many internet services.
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DL-based Recommendation Models

• Deep learning (DL-)based recommendation model consists of
▪ dense features processed by fully-connected (FC) layers

▪ sparse features processed by indexing embedding tables, implemented as 

SparseLengthsSum (SLS) operator in Caffe2
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Challenges of Inference Serving at-Scale

• Model Diversity
▪ Construct differently for a wide variety of services

▪ Evolve rapidly for higher prediction accuracy
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Inference Query Size Distribution

Challenges of Inference Serving at-Scale

• Time-varying Load Patterns
▪ The query sizes arriving individual servers exhibit a heavy-tail distribution

‣ Constraint: strict tail-latency target set by Service Level Agreement (SLA)

▪ The diurnal loads arriving the cluster exhibit highly-fluctuating & synchronous patterns

‣ Constraint: global throughput target
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Challenges of Inference Serving at-Scale

• Cloud-scale System Heterogeneity
▪ System upgrades occur periodically

▪ Domain-specific accelerators are increasingly deployed in datacenters

7

Intel Xeon CPUs
Broadwell         Skylake       Cooper lake

Nvidia GPUs
P100          V100          A100

Google

TPU

Alibaba

Hanguang

CPU

NMP PU

CPU

Accelerator

CPU

NMP PU

P
C

Ie

Server Type I Server Type II

Server Type III

……

Processing-in/near Memory



Overview

• Motivation

• Background

• Proposed Design: Hercules

• Performance Evaluation

• Conclusion

8



Background: System Stack

• System stack consists of task scheduler, DL framework, 

underlying hardware architecture

• Task scheduler exploits data-, model-, and operator-parallelism
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Background: Cluster Management

• Workload classification: rank the workloads’ performance on the 

different server architectures

• Scheduling policy: heterogeneity-oblivious scheduler and 

greedy scheduler in [1][2]
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[1] Christina Delimitrou, Christos Kozyrakis, “Paragon: QoS-aware scheduling for heterogeneous datacenters,” in ASPLOS, 2013

[2] Christina Delimitrou, Christos Kozyrakis, “Quasar: Resource-Efficient and QoS-Aware Cluster Management,” in ASPLOS, 2014
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• Latency-critical recommendation workloads must satisfy the 

strict SLA latency target

• Hercules proposes gradient-based search to identify the optimal 

task scheduling configuration
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• Why consider heterogeneity at cluster level?
▪ Up to 30x performance and 6x energy efficiency variation

• Offline profiling 
▪ Measure and record 𝑄𝑃𝑆1:𝐻,1:𝑀 and 𝑃𝑜𝑤𝑒𝑟1:𝐻,1:𝑀 for accurate workload classification 
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Heterogeneity-aware Provisioning
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• Hercules formulates the provisioning as a constrained 

optimization problem 

• Online serving
▪ Calculate 𝑁1:𝐻,1:𝑀(𝑡) with standard linear optimization solver, e.g. simplex, interior-point
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• Hercules formulates the provisioning as a constrained 

optimization problem 

• Online serving
▪ Calculate 𝑁1:𝐻,1:𝑀(𝑡) with standard linear optimization solver, e.g. simplex, interior-point
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Heterogeneity-aware Provisioning
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• Hercules formulates the provisioning as a constrained 

optimization problem 

• Online serving
▪ Calculate 𝑁1:𝐻,1:𝑀(𝑡) with standard linear optimization solver, e.g. simplex, interior-point
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Heterogeneity-aware Provisioning
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• Hercules formulates the provisioning as a constrained 

optimization problem 

• Online serving
▪ Calculate 𝑁1:𝐻,1:𝑀(𝑡) with standard linear optimization solver, e.g. simplex, interior-point
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Heterogeneity-aware Provisioning

Proposed Design: Hercules

Constraint: the activated servers are not 

exceeding the total available servers.
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Cluster Configuration

Performance Evaluation

• Synthetic model evolution
▪ Linearly varying the composition of the workloads

▪ On CPU-only cluster, the snapshots on Day-D1 and Day-D2

‣ Cluster Capacity: 2.3x at peak

‣ Provisioned Power: 1.8x at peak
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Performance Evaluation

• Comparison with prior cluster schedulers
▪ SOTA greedy scheduler vs. heterogeneity-oblivious (NH) scheduler

‣ 76% capacity saving and 51% provisioned power saving at peak

▪ Hercules scheduler vs. greedy scheduler 

‣ 48% capacity saving and 24% provisioned power saving at peak
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Conclusion

• Challenges of Inference Serving at-Scale
▪ Model Diversity

▪ Time-varying Load Patterns

▪ Cloud-scale System Heterogeneity

• Proposed Hercules Design
▪ SLA-aware Task Scheduling 

▪ Heterogeneity-aware Provisioning

• Hercules achieves up to 48% capacity saving and 24% 

provisioned power saving over a SoTA greedy scheduler
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