Hercules: Heterogeneity-Aware Inference Serving for At-Scale Personalized Recommendation

Liu Ke*▲, Udit Gupta*+, Mark Hempstead[◇], Carole-Jean Wu*, Hsien-Hsin S. Lee*, Xuan Zhang▲

*Meta, AWashington University in St. Louis, +Harvard University, >Tufts University

- Motivation
- Background
- Proposed Design: Hercules
- Performance Evaluation
- Conclusion

Nowadays, personalized recommendation is a fundamental building block of many internet services.

NETFLIX

<mark>淘宝</mark> Taobao

DL-based Recommendation Models

- Deep learning (DL-)based recommendation model consists of
 - dense features processed by fully-connected (FC) layers
 - sparse features processed by indexing embedding tables, implemented as SparseLengthsSum (SLS) operator in Caffe2

Challenges of Inference Serving at-Scale

Model Diversity

- Construct differently for a wide variety of services
- Evolve rapidly for higher prediction accuracy

Challenges of Inference Serving at-Scale

Time-varying Load Patterns

- The query sizes arriving individual servers exhibit a heavy-tail distribution
 - Constraint: strict tail-latency target set by Service Level Agreement (SLA)
- The diurnal loads arriving the cluster exhibit highly-fluctuating & synchronous patterns
 - Constraint: global throughput target

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Challenges of Inference Serving at-Scale

Cloud-scale System Heterogeneity

- System upgrades occur periodically
- Domain-specific accelerators are increasingly deployed in datacenters

- Motivation
- Background
- Proposed Design: Hercules
- Performance Evaluation
- Conclusion

Background: System Stack

- System stack consists of task scheduler, DL framework, underlying hardware architecture
- Task scheduler exploits data-, model-, and operator-parallelism

Background: Cluster Management

- Workload classification: rank the workloads' performance on the different server architectures
- Scheduling policy: heterogeneity-oblivious scheduler and greedy scheduler in [1][2]

[1] Christina Delimitrou, Christos Kozyrakis, "Paragon: QoS-aware scheduling for heterogeneous datacenters," in ASPLOS, 2013 [2] Christina Delimitrou, Christos Kozyrakis, "Quasar: Resource-Efficient and QoS-Aware Cluster Management," in ASPLOS, 2014

- Motivation
- Background
- Proposed Design: Hercules
- Performance Evaluation
- Conclusion

SLA-aware Task Scheduling

- Latency-critical recommendation workloads must satisfy the strict SLA latency target
- Hercules proposes gradient-based search to identify the optimal task scheduling configuration

System Stack

Heterogeneity-aware Provisioning

- Why consider heterogeneity at cluster level?
 - Up to 30x performance and 6x energy efficiency variation
- Offline profiling
 - Measure and record $QPS_{1:H,1:M}$ and $Power_{1:H,1:M}$ for accurate workload classification

CPU Server	CPU-T1	CPU-T2		
Chip	Intel Xeon D-2191	Intel Xeon Gold 6138		
Frequency	1.6 GHz	2.0 GHz		
Physical Cores	18	20		
L1/L2 size	32 KB / 1 MB			
LLC size	24.75 MB	27.5 MB		
TDP	86 W	125 W		

System Configurations

GPU	Nvidia P100	Nvidia V100		
GPU Boost Clock	1480 MHz	1530 MHz		
SMs / TPCs	56 / 28	80 / 40		
Memory	16 GB HBM	@ 900 GB/s		
Interface	PCIe Gen3 @ 16 GB/s			
TDP	300 W			

	DDR4	DDR4	NMP	NMP	NMP
Memory	(CPU-T1)	(CPU-T2)	x2	x4	x8
	Real system		Simulation		
Memory Channels	4	4	4	4	4
DIMM per Channel	1	1	1	2	4
Ranks per DIMM	1	2	2	2	2
Capacity (GB)	64	128	128	256	512
TDP (Watt)	28	50	50	100	200

Heterogeneity-aware Provisioning

- Hercules formulates the provisioning as a constrained optimization problem
- Online serving
 - Calculate $N_{1:H,1:M}(t)$ with standard linear optimization solver, e.g. simplex, interior-point

Heterogeneity-aware Provisioning

- Hercules formulates the provisioning as a constrained optimization problem
- Online serving
 - Calculate $N_{1:H,1:M}(t)$ with standard linear optimization solver, e.g. simplex, interior-point

Heterogeneity-aware Provisioning

- Hercules formulates the provisioning as a constrained optimization problem
- Online serving
 - Calculate $N_{1:H,1:M}(t)$ with standard linear optimization solver, e.g. simplex, interior-point

Heterogeneity-aware Provisioning

- Hercules formulates the provisioning as a constrained optimization problem
- Online serving
 - Calculate $N_{1:H,1:M}(t)$ with standard linear optimization solver, e.g. simplex, interior-point

$$Minimize \sum_{m=1}^{M} \left(\sum_{h=1}^{H} (N_{h,m}(t) \times Power_{h,m})\right) (1), \ subject \ to$$
$$\forall m \in [1..M], \sum_{h=1}^{H} (N_{h,m}(t) \times QPS_{h,m}) \ge load_m(t)(1+R\%) \ (2)$$
$$\forall h \in [1..H], \sum_{m=1}^{M} N_{h,m}(t) \le N_h \quad (3)$$

Constraint: the activated servers are not exceeding the total available servers.

- Motivation
- Background
- Proposed Design: Hercules
- Performance Evaluation
- Conclusion

Performance Evaluation

- Synthetic model evolution •
 - Linearly varying the composition of the workloads
 - On CPU-only cluster, the snapshots on Day-D1 and Day-D2
 - Cluster Capacity: 2.3x at peak
 - Provisioned Power: 1.8x at peak

Cluster Configuration

Performance Evaluation

- Comparison with prior cluster schedulers
 - SOTA greedy scheduler vs. heterogeneity-oblivious (NH) scheduler
 - 76% capacity saving and 51% provisioned power saving at peak
 - Hercules scheduler vs. greedy scheduler
 - 48% capacity saving and 24% provisioned power saving at peak

- Motivation
- Background
- Proposed Design: Hercules
- Performance Evaluation
- Conclusion

Conclusion

- Challenges of Inference Serving at-Scale
 - Model Diversity
 - Time-varying Load Patterns
 - Cloud-scale System Heterogeneity
- Proposed Hercules Design
 - SLA-aware Task Scheduling
 - Heterogeneity-aware Provisioning
- Hercules achieves up to 48% capacity saving and 24% provisioned power saving over a SoTA greedy scheduler

Contact: ke.l@wustl.edu This presentation and recording belong to the authors. No distribution is allowed without the authors' permission