ACT: Designing Sustainable Computer Systems With An <u>Architectural</u> <u>Carbon Model</u> <u>T</u>ool

Udit Gupta

Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, Carole-Jean Wu

At International Symposium on Computer Architecture (ISCA 2022)

Computing incurs a growing environmental footprint

900 Million tons of CO,

- 2.1 3.9% of worldwide emissions

Mobile

Communication

Computing's emissions are rising given its growing demand!

• On par with the aviation industry's footprint

Data center

Hardware manufacturing is a dominating source of carbon

Chasing Carbon: The Elusive Environmental Footprint of Computing

Udit Gupta^{1,2}, Young Geun Kim³, Sylvia Lee², Jordan Tse², Hsien-Hsin S. Lee², Gu-Yeon Wei¹, David Brooks¹, Carole-Jean Wu²

¹Harvard University, ²Facebook Inc., ³Arizona State University

ugupta@g.harvard.edu carolejeanwu@fb.com

Abstract-Given recent algorithm, software, and hardware innovation, computing has enabled a plethora of new applications. As computing becomes increasingly ubiquitous, however, so does its environmental impact. This paper brings the issue to the attention of computer-systems researchers. Our analysis, built on industry-reported characterization, quantifies the environmental effects of computing in terms of carbon emissions. Broadly, carbon emissions have two sources: operational energy consumption, and hardware manufacturing and infrastructure. Although carbon emissions from the former are decreasing thanks to algorithmic, software, and hardware innovations that boost performance and power efficiency, the overall carbon footprint of computer systems continues to grow. This work quantifies the carbon output of computer systems to show that most emissions related to modern mobile and data-center equipment come from hardware manufacturing and infrastructure. We therefore outline future directions for minimizing the environmental impact of computing systems.

Index Terms-Data center, mobile, energy, carbon footprint

I. INTRODUCTION

The world has seen a dramatic advancement of information and communication technology (ICT). The rise in ICT has resulting in a proliferation of consumer devices (e.g., PCs, mobile phones, TVs, and home entertainment systems), efficiency [3]. For salient applications, such as AI [4]-[9], networking technologies (e.g., wired networks and 3G/4G LTE), and data centers. Although ICT has enabled applications including cryptocurrencies, artificial intelligence (AI), ecommerce, online entertainment, social networking, and cloud storage it has incurred tremendous environmental impacts

Fig. 1. Projected growth of global energy consumption by information and computing technology (ICT). On the basis of optimistic (top) and expected (bottom) estimates, ICT will by 2030 account for 7% and 20% of global demand, respectively [1].

For instance, between the late twentieth and early twenty-first centuries, Moore's Law has enabled fabrication of systems that have billions of transistors and $1,000 \times$ higher energy molecular dynamics [10], video encoding [11], and cryptography [12], systems now comprise specialized hardware accelerators that provide orders-of-magnitude higher performance and energy efficiency. Moreover, data centers have become more efficient by consolidating equipment into large warehouse-

Gupta et. al. Chasing Carbon: The Elusive CO₂ Footprint of Computing(HPCA 2021)

Hardware manufacturing is a dominating source of carbon

Chasing Carbon: The Elusive Environmental Footprint of Computing

Udit Gupta^{1,2}, Young Geun Kim³, Sylvia Lee², Jordan Tse², Hsien-Hsin S. Lee2, Gu-Yeon Wei1, David Brooks1, Carole-Jean Wu2

¹Harvard University, ²Facebook Inc., ³Arizona State University

ugupta@g.harvard.edu carolejeanwu@fb.com

Abstract-Given recent algorithm, software, and hardware innovation, computing has enabled a plethora of new applications. As computing becomes increasingly ubiquitous, however, so does its environmental impact. This paper brings the issue to the attention of computer-systems researchers. Our analysis, built on industry-reported characterization, quantifies the environmental effects of computing in terms of carbon emissions. Broadly, carbon emissions have two sources: operational energy consumption, and hardware manufacturing and infrastructure. Although carbon emissions from the former are decreasing thanks to algorithmic, software, and hardware innovations that boost performance and power efficiency, the overall carbon footprint of computer systems continues to grow. This work quantifies the carbon output of computer systems to show that most emissions related to modern mobile and data-center equipment come from hardware manufacturing and infrastructure. We therefore outline future directions for minimizing the environmental impact of computing systems.

Index Terms-Data center, mobile, energy, carbon footprint

I. INTRODUCTION

The world has seen a dramatic advancement of information and communication technology (ICT). The rise in ICT has resulting in a proliferation of consumer devices (e.g., PCs, mobile phones, TVs, and home entertainment systems), networking technologies (e.g., wired networks and 3G/4G LTE), and data centers. Although ICT has enabled applications including cryptocurrencies, artificial intelligence (AI), ecommerce, online entertainment, social networking, and cloud storage it has incurred tremendous environmental impacts

Fig. 1. Projected growth of global energy consumption by information and computing technology (ICT). On the basis of optimistic (top) and expected (bottom) estimates, ICT will by 2030 account for 7% and 20% of global demand, respectively [1].

For instance, between the late twentieth and early twenty-first centuries, Moore's Law has enabled fabrication of systems that have billions of transistors and $1,000 \times$ higher energy efficiency [3]. For salient applications, such as AI [4]-[9], molecular dynamics [10], video encoding [11], and cryptography [12], systems now comprise specialized hardware accelerators that provide orders-of-magnitude higher performance and energy efficiency. Moreover, data centers have become more efficient by consolidating equipment into large warehouse-

Gupta et. al. Chasing Carbon: The Elusive CO₂ Footprint of Computing(HPCA 2021)

Apple's 2019 carbon emissions

This work: <u>Architectural Carbon Modeling Tools</u> (ACT)

This work: <u>Architectural Carbon Modeling Tools</u> (ACT)

This work: <u>Architectural Carbon Modeling Tools</u> (ACT)

Overview of ACT

Comparing ACT to other methodologies

This work: <u>Architectural Carbon Modeling Tools</u> (ACT)

Comparing ACT to other methodologies

Sustainability aware-design case studies

This work: <u>Architectural Carbon Modeling Tools</u> (ACT)

Overview of ACT

Comparing ACT to other methodologies

Sustainability aware-design case studies

Model

Hardware/software input

Model

 $Carbon = OP_{CF} + \frac{Runtime}{Lifetime} \frac{Emb_{CF}}{Emb_{CF}}$

Hardware/software input

Performance/power/energy and **lifetime** of hardware

Model

 $Carbon = OP_{CF} + \frac{Runtime}{Lifetime} \frac{Emb_{CF}}{Emb_{CF}}$

 $OP_{CF} = CI_{use} \times Energy$

Hardware/software input

Performance/power/energy and **lifetime** of hardware

Energy efficiency and environment (carbon intensity)

Model

 $Carbon = OP_{CF} + \frac{Runtime}{Lifetime} \frac{Emb_{CF}}{Emb_{CF}}$

$OP_{CF} = CI_{use} \times Energy$

Hardware/software input

Performance/power/energy and lifetime of hardware

Energy efficiency and environment (carbon intensity)

r

 Emb_r

Overhead of hardware manufacturing

 $Emb_{SoC} = Area \times \frac{(CI_{fab} \times Fab_{ene})}{(CI_{fab} \times Fab_{ene})}$

Data sources:

- [IMEC] DTCO including Sustainability: Power-Performance-Area-Cost-Environmental \bullet score (PPACE) Analysis for Logic Technologies. Bardon et. al (IEDM 2020)
- [TSMC] TSMC Sustainability Reports 2018-2020

Data sources:

- [IMEC] DTCO including Sustainability: Power-Performance-Area-Cost-Environmental score (PPACE) Analysis for Logic Technologies. Bardon et. al (IEDM 2020)
- [TSMC] TSMC Sustainability Reports 2018-2020

Data sources:

- [IMEC] DTCO including Sustainability: Power-Performance-Area-Cost-Environmental score (PPACE) Analysis for Logic Technologies. Bardon et. al (IEDM 2020)
- [TSMC] TSMC Sustainability Reports 2018-2020

Additional details found in the paper...

Memory and storage

$Emb_{DRAM} = DRAM_{capacity} \times CPS_{DRAM}$

 $Emb_{SSD} = SSD_{capacity} \times CPS_{SSD}$

Data sources: SK Hynix, Apple

ACT parameters

Description	Range
App. execution time	From SW profiling
HW lifetime	1-10 years
Number of ICs	From HW design
IC packaging footprint	0.15 kg CO ₂
IC Area	From HW design (cm
Process node	3-28 nm
Procure materials	~0.50kg CO ₂ per cm
Fab energy	0.8-3.5 kWh per cm
HW CO ₂ intensity	30-700 g CO ₂ per kW
Fab CO ₂ intensity	30-700 g CO ₂ per kW
GHG from fab	0.1-0.5 kg CO ₂ per cr
Fab yield	0-1
CO ₂ from fab	0.1-0.4 kg CO ₂ per cr
DRAM embodied CO ₂	0-0.6 kg CO ₂ per Gl
SSD embodied CO ₂	0-0.03 kg CO ₂ per G
HDD embodied CO ₂	0-0.12 kg CO ₂ per G
	DescriptionApp. execution timeHW lifetimeNumber of ICsIC packaging footprintIC packaging footprintIC AreaProcess nodeProcure materialsFab energyHW CO2 intensityFab CO2 intensityGHG from fabFab yieldCO2 from fabDRAM embodied CO2SSD embodied CO2HDD embodied CO2

This work: <u>Architectural Carbon Modeling Tools</u> (ACT)

Overview of ACT model Developed an **extensible**, carbon model based on **industry data** for modern hardware architectures.

Comparing ACT to other methodologies

Comparing ACT with Apple's product environmental reports

Comparing ACT with Apple's product environmental reports

This work: <u>Architectural Carbon Modeling Tools</u> (ACT)

Overview of ACT model Developed an **extensible**, carbon model based on **industry data** for modern hardware architectures.

Comparing ACT to other methodologies

- ACT provides first order carbon estimates of modern systems

Sustainability aware-design case studies

Tenets of Environmental Design

Recycle

Recover discarded systems and components.

Reduce

Design leaner footprint software and hardware.

Reuse

Repurpose systems already produce.

Tenets of Environmental Design

Recycle

Recover discarded systems and components.

Reduce

Design leaner footprint software and hardware.

Reuse

Repurpose systems already produce.

Al inference case study (MobileNet) assuming 3 year hardware lifetime, and same utilization in all cases

Al inference case study (MobileNet) assuming 3 year hardware lifetime, and same utilization in all cases

Al inference case study (MobileNet) assuming 3 year hardware lifetime, and same utilization in all cases

Al inference case study (MobileNet) assuming 3 year hardware lifetime, and same utilization in all cases

Al inference case study (MobileNet) assuming 3 year hardware lifetime, and same utilization in all cases

Tenets of Environmental Design

Recycle

Recover discarded systems and components.

Reduce

Design leaner footprint software and hardware.

Reuse

Repurpose systems already produce.

This work: <u>Architectural Carbon Modeling Tools</u> (ACT)

Overview of ACT model Developed an **extensible**, carbon model based on **industry data** for modern hardware architectures.

Comparing ACT to other methodologies

Sustainability aware-design case studies Can eliminate carbon footprint by up **3x** (Reduce) and **2x** (Reuse) and **2x** (Recycle)

ACT provides first order carbon estimates of modern systems

This work: ACT

Develop the model

Case studies

This work: ACT

Develop the model

More details in the paper!

- Modeling parameters and industry sources for data
- **Carbon-aware metrics** for early DSE (e.g., EDP, CDP, CEP)
- Detailed **comparison** against industry LCA's
- Reuse case study: impact of **reconfigurable accelerators** (FPGA's)
- Recycle case study: Enabling **second life** & SSD provisioning

Case studies

data CDP, CEP)

erators (FPGA's) ovisioning

This work: ACT

Develop the model

More details in the paper!

- Modeling parameters and industry sources for data
- **Carbon-aware metrics** for early DSE (e.g., EDP, CDP, CEP)
- Detailed **comparison** against industry LCA's
- Reuse case study: impact of **reconfigurable accelerators** (FPGA's)
- Recycle case study: Enabling **second life** & SSD provisioning

Case studies

Open-source!

	carbon_intensity	Initial commit	14 days ago
	dram	Initial commit	14 days ago
	exps	Initial commit	14 days ago
	hdd	Initial commit	14 days ago
	logic	Initial commit	14 days ago
	ssd	Initial commit	14 days ago
C	.gitignore	Initial commit	14 days ago
C	CODE_OF_CONDUCT.md	Initial commit	14 days ago
Ľ	CONTRIBUTING.md	Initial commit	14 days ago
C	LICENSE	Initial commit	14 days ago
C	README.md	Update README.md	13 days ago
Ľ	dram_model.py	Initial commit	14 days ago
Ľ	hdd_model.py	Initial commit	14 days ago
Ľ	logic_model.py	Initial commit	14 days ago
C	model.py	Initial commit	14 days ago
C	setup.sh	Initial commit	14 days ago
C	ssd_model.py	Initial commit	14 days ago
∷≡	README.md		Ø

ACT: Architectural Carbon Modeling Tool

ACT is an carbon modeling tool to enable carbon-aware design space exploration. ACT comprises an analytical, architectural carbon-footprint model and use-case dependent optimization metrics to estimate the carbon footprint of hardware. The proposed model estimates emissions from hardware manufacturing (i.e., embodied carbon) based on workload characteristics, hardware specifications, semiconductor fab characteristics, and environmental factors

Thank you!

Develop the model

More details in the paper!

- Modeling parameters and industry sources for data
- Carbon-aware metrics for early DSE (e.g., EDP, CDP, CEP)
- Detailed **comparison** against industry LCA's
- Reuse case study: impact of **reconfigurable accelerators** (FPGA's)
- Recycle case study: Enabling **second life** & SSD provisioning

This work: ACT

Open-source!

Case studies

	carbon_intensity	Initial commit	14 d
	dram	Initial commit	14 d
	exps	Initial commit	14 d
	hdd	Initial commit	14 d
	logic	Initial commit	14 d
	ssd	Initial commit	14 d
D	.gitignore	Initial commit	14 d
D	CODE_OF_CONDUCT.md	Initial commit	14 d
D	CONTRIBUTING.md	Initial commit	14 d
0	LICENSE	Initial commit	14 d
۵	README.md	Update README.md	13 d
Ľ	dram_model.py	Initial commit	14 d
D	hdd_model.py	Initial commit	14 d
D	logic_model.py	Initial commit	14 d
D	model.py	Initial commit	14 d
D	setup.sh	Initial commit	14 d
۵	ssd_model.py	Initial commit	14 d

E README.md

ACT: Architectural Carbon Modeling Tool

ACT is an carbon modeling tool to enable carbon-aware design space exploration. ACT comprises an analytical, architectural carbon-footprint model and use-case dependent optimization metrics to estimate the carbon footprint of hardware. The proposed model estimates emissions from hardware manufacturing (i.e., embodied carbon) based on workload characteristics, hardware specifications, semiconductor fab characteristics, and environmental factors.

data DP, CEP)

erators (FPGA's) ovisioning

days ago lays ago lays ago days ago days ago days ago lays ago days ago lays ago

700 Million tons of CO₂

- Half the aviation industry's footprint
- 2.1 3.9% of worldwide emissions

Computing incurs a growing environmental footprint

700 Million tons of CO₂

- Half the aviation industry's footprint
- 2.1 3.9% of worldwide emissions

Doubling over the next decade!

59% of world online

Future improvements challenging (e.g., slowing Moore's Law, PUE)

Emerging applications demanding higher compute

Arch. Carbon Model Carbon-aware HW design metrics

DRAM carbon per storage model

DDR3 LPDDR3 LPDDR3 LPDDR2 DDR4 LPDDR4

Data sources: SK Hynix

SSD carbon per storage model

Data sources: SK Hynix, Apple

More comparisons (ACT vs. LCA's) in the paper...

ACT vs. Dell R740 server LCA

ACT vs. Fairphone 3 mobile device LCA

More comparisons (ACT vs. LCA's) in the paper...

IC component	ACT vs. Dell R740 server LCA	ACT vs. Fairphone 3 mobile device LCA	
Compute (processors, SoC's)	Within 2.2x	Within 1.18x	
Memory	Within 1.62x	Within 2.1x	
Storage	Within 1.05-2.2x		

Takeaways

(1) ACT provides first-order approximate of LCA's that use old technology nodes (45nm NAND, 32nm CPU) (2) ACT enables architects to study new technology nodes

Recycle: Extending hardware lifetime

Mobile SoC's Geekbench characterization

Enabling 2nd life requires enhancing **HW reliability**

See <u>paper</u> for case study on storage reliability using SSD overprovisioning

