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Computing incurs a growing environmental footprint

900 Million tons of CO,

* On par with the aviation industry’s footprint
* 2.1 - 3.9% of worldwide emissions

Mobile Communication Data center

Computing’s emissions are rising given its growing demand!
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Crucial to look at emissions across HW life cycle
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Hardware manufacturing is a dominating source of carbon
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Abstract—Given recent algorithm, software, and hardware in-
novation, computing has enabled a plethora of new applications.
As computing becomes increasingly ubiquitous, however, so does
its environmental impact. This paper brings the issue to the
attention of computer-systems researchers. Our analysis, built on
industry-reported characterization, quantifies the environmental
effects of computing in terms of carbon emissions. Broadly,
carbon emissions have two sources: operational energy consump-
tion, and hardware manufacturing and infrastructure. Although
carbon emissions from the former are decreasing thanks to
algorithmic, software, and hardware innovations that boost
performance and power efficiency, the overall carbon footprint
of computer systems continues to grow. This work quantifies the
carbon output of computer systems to show that most emissions
related to modern mobile and data-center equipment come
from hardware manufacturing and infrastructure. We therefore
outline future directions for minimizing the environmental impact

of computing systems.
Index Terms—Data center, mobile, energy, carbon footprint

I. INTRODUCTION

The world has seen a dramatic advancement of informa-
tion and communication technology (ICT). The rise in ICT
has resulting in a proliferation of consumer devices (e.g.,
PCs, mobile phones, TVs, and home entertainment systems),
networking technologies (e.g., wired networks and 3G/M4G
LTE), and data centers. Although ICT has enabled applica-
tions including cryptocurrencies, artificial intelligence (Al), e-
commerce, online entertainment, social networking, and cloud

ctaraoce 1t hace inenrred tremendone snviranmental imnacte
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Fig. 1. Projected growth of global energy consumption by information and
computing technology (ICT). On the basis of optimistic (top) and expected
(bottom) estimates, ICT will by 2030 account for 7% and 20% of global
demand, respectively [1].

For instance, between the late twentieth and early twenty-first
centuries, Moore's Law has enabled fabrication of systems
that have billions of transistors and 1,000x higher energy
efficiency [?]. For salient applications, such as AI [4]-[9],
molecular dynamics [10], video encoding [!!], and cryptogra-
phy [ 2], systems now comprise specialized hardware acceler-
ators that provide orders-of-magnitude higher performance and
energy efficiency. Moreover, data centers have become more

pfhicient hv canenlidatine seominment inta laros  warrhnnee.
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(bottom) estimates, ICT will by 2030 account for 7% and 20% of global
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that have billions of transistors and 1,000x higher energy
efficiency [?]. For salient applications, such as AI [4]-[9],
molecular dynamics [10], video encoding [!!], and cryptogra-
phy [ 2], systems now comprise specialized hardware acceler-
ators that provide orders-of-magnitude higher performance and
energy efficiency. Moreover, data centers have become more
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Challenge: How do we design sustainable systems by considering the footprint across lifecycles
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Challenge: How do we design sustainable systems by considering the footprint across lifecycles
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% Overview of ACT

b‘ Comparing ACT to other methodologies

‘ ’ Sustainability aware-design case studies
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Architectural Carbon Model

Model

Hardware/software input
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Architectural Carbon Model

Model Hardware/software input

Runtime Emb,p Performance/power/energy and

Carbon = OPqr + ———
Lifetime lifetime of hardware
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Architectural Carbon Model

Model Hardware/software input
Runtime
Carbon = OP, + Emb; Performance/power/energy and
Lifetime lifetime of hardware

Energy efficiency and
environment (carbon intensity)

OPq,r = ClL,;,XEnergy
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Architectural Carbon Model

Model Hardware/software input
Runtime
Carbon = OP, + Emb; Performance/power/energy and
Lifetime lifetime of hardware

Energy efficiency and
environment (carbon intensity)

OPq,r = ClL,;,XEnergy

SoC,Memory,Storage

Emb.r = Packaging + 2 Emb, Overhead of hardware

manufacturing
r
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Embodied carbon of application processors (SoC’s)

Emb = A X
MPsoc = £ATEA Yield

(leab XFabenergy) + Fabchemicals + Fabmaterials
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Embodied carbon of application processors (SoC’s)

Energy Device and fab characterization
source (grid) (industry fabs, device data)

N

Embe. - — Areq x \Cfas XF@benergy) + Fabehemicats + Fabmateriats

Hardware design




Embodied carbon of application processors (SoC’s)

Embec,r = Area X CPA
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Embodied carbon of application processors (SoC’s)

Embec,r = Area X CPA

N

Carbon-per-area
=

(kg CO, per cm?)

28nm 20nm 14nm 10nm 8nm 7/nm 5nm 3nm
(EUV) (EUV) (EUV) (EUV)

Data sources:

* [IMEC] DTCO including Sustainability: Power-Performance-Area-Cost-Environmental
score (PPACE) Analysis for Logic Technologies. Bardon et. al (IEDM 2020)

* [TSMC] TSMC Sustainability Reports 2018-2020
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Embodied carbon of application processors (SoC’s)

Embec,r = Area X CPA
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Embodied carbon of application processors (SoC’s)

Embec,r = Area X CPA
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Additional details found in the paper...

Memory and storage
Embpray = DRAMcapacity XCPSpram

Embgsp =SS Dcapacity X CPSgsp

600 -

DRAM

N
o
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(g CO, per GB)

200 H

Carbon footprint, CPSpram

50nm 40nm 30nm 30nm 20nm 20nm 1X 1X
DDR3 DDR3 DDR3 LPDDR3 LPDDR3 LPDDR2 DDR4 LPDDR4
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SSD
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o

=
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Carbon footprint, CPSyanp
mobile(kg CO, per GB)

o

30nm 20nm 10nm 17 V3 3D-V4 Apple
NAND NAND NAND NAND TLCNAND TLCNAND TLC

Data sources: SK Hynix, Apple

ACT parameters

Parameter | Description Range
T App. execution time From SW profiling
Lk HW lifetime 1-10 years
N; Number of ICs From HW design
K; IC packaging footprint 0.15 kg CO,
A IC Area From HW design (cm?)
p Process node 3-28 nm
MPA Procure materials ~0.50kg CO2 per cm®
EPA Fab energy 0.8-3.5 kWh per cm?
Clyee HW CO; intensity 30-700 g CO; per kWh
Clgp Fab CO; intensity 30-700 g CO; per kWh
GPA GHG from fab 0.1-0.5 kg CO; per cm?
X Fab yield 0-1
CPA CO2 from fab 0.1-0.4 kg CO2 per cm®
EprAM DRAM embodied CO; 0-0.6 kg CO2 per GB
Essp SSD embodied CO2 0-0.03 kg CO2 per GB
Exvpp HDD embodied CO2 0-0.12 kg CO2 per GB
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Challenge: How do we design sustainable systems by considering the footprint across lifecycles

This work: Architectural Carbon Modeling Tools (ACT)

x Overview of ACT mode|

Developed an extensible, carbon model based on industry data for
modern hardware architectures.

b‘ Comparing ACT to other methodologies
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Comparing ACT with Apple’s product environmental reports

B Other IC’s
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Comparing ACT with Apple’s product environmental reports
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Challenge:

ow do we design sustainable systems by considering the footprint across lifecycles

This work: Architectural Carbon Modeling Tools (ACT)

.
y

O

Overview of ACT mode|

Developed an extensible, carbon model based on industry data for
modern hardware architectures.

Comparing ACT to other methodologies

ACT provides first order carbon estimates of modern systems

Sustainability aware-design case studies

28



Tenets of Environmental Design

Design leaner footprint
software and hardware.

Reduce

oD

Recycle Reuse

Recover discarded Repurpose systems
systems and components. already produce.
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Reuse: General purpose versus custom mobile HW

Al inference case study (MobileNet) assuming 3 year hardware lifetime, and same utilization in all cases
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Al inference case study (MobileNet) assuming 3 year hardware lifetime, and same utilization in all cases
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Reuse: General purpose versus custom mobile HW
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Reuse: General purpose versus custom mobile HW

Al inference case study (MobileNet) assuming 3 year hardware lifetime, and same utilization in all cases
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Tenets of Environmental Design

Design leaner footprint
software and hardware.

Reduce

oD

Recycle Reuse

Recover discarded Repurpose systems
systems and components. already produce.




Reduce: Designing leaner hardware systems

{ Nvidia DL Accelerator (NVDLA) } —_—

Architectural
Carbon Model

ﬁ

Performance/energy vs.
Carbon
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Reduce: Designing leaner hardware systems

{ Nvidia DL Accelerator (NVDLA) } —_—
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Reduce: Designing leaner hardware systems
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Reduce: Designing leaner hardware systems

. Architectural
Nvidia DL Accelerator (NVDLA) —_—
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Reduce: Designing leaner hardware systems

. Architectural
Nvidia DL Accelerator (NVDLA) —_—
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Reduce: Designing leaner hardware systems

idia DL Accelerator (NVDLA Architectural Performance/energy vs.
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Reduce: Designing leaner hardware systems
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Reduce: Designing leaner hardware systems

Nvidia DL Accelerator (NVDLA Architectural Performance/energy vs.
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Challenge: How do we design sustainable systems by considering the footprint across lifecycles

This work: Architectural Carbon Modeling Tools (ACT)

% Overview of ACT mode|

Developed an extensible, carbon model based on industry data for
modern hardware architectures.

b‘ Comparing ACT to other methodologies

ACT provides first order carbon estimates of modern systems

‘ ’ Sustainability aware-design case studies

Can eliminate carbon footprint by up 3x (Reduce) and 2x (Reuse)
and 2x (Recycle) 45




This work: ACT

SW design &
performance

HW design &
power

Develop the model

Case studies

) , ,
. Design leaner footprint
~ ) g P
| "I\ Reduce software and hardware.
Environmental
Arch. Carbon Model Operational CO,
CO,-aware HW [ Embodied CO,
design metrics CDP, CEP, etc.
1
: Recycle Reuse
1
__________ CO, -aware 4____________: Recover discarded Repurpose systems
HW optimization systems and components. already produce.
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This work: ACT

Develop the model Case studies

5

SW design &
performance

power

' Design leaner footprint

™~ )
<l | /I\ Reduce software and hardware.

|

Fab Environmental 0

Arch. Carbon Model

CO,-aware HW
design metrics

Operational CO,
= Embodied CO,
CDP, CEP, etc.

CO, -aware
HW optimization

Recycle Reuse

g Recover discarded Repurpose systems
systems and components. already produce.

More details in the paper!

Modeling parameters and industry sources for data
Carbon-aware metrics for early DSE (e.g., EDP, CDP, CEP)

Recycle case study:

Detailed comparison against industry LCA’s
Reuse case study: impact of reconfigurable accelerators (FPGA’s)

Enabling second life & SSD provisioning
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This work: ACT

Develop the model

5

SW design &
performance

power

HW optimization

Environmental
Arch. Carbon Model Operational CO,
> CO,-aware HW » Embodied CO,
design metrics CDP, CEP, etc.
I
I
I
I
e it CO, -aware e 1

Case studies

Design leaner footprint
software and hardware.

Reduce

oD

Repurpose systems
already produce.

Recycle

Recover discarded
systems and components.

More details in the paper!

Modeling parameters and industry sources for data
Carbon-aware metrics for early DSE (e.g., EDP, CDP, CEP)

Detailed comparison against industry LCA’s
Reuse case study: impact of reconfigurable accelerators (FPGA’s)
Recycle case study: Enabling second life & SSD provisioning

0D DD DD D DODDDODDODOEREERRETERTSE
(2]

.gitignore

CONTRIBUTING.md
LICENSE
README.md
dram_model.py
hdd_model.py
logic_model.py
model.py

setup.sh

ssd_model.py

README.md

CODE_OF_CONDUCT.md

Open-source!

Initial commit
Initial commit
Initial commit
Initial commit
Initial commit
Initial commit
Initial commit
Initial commit
Initial commit
Initial commit
Update README.md
Initial commit
Initial commit
Initial commit
Initial commit
Initial commit

Initial commit

ACT: Architectural Carbon Modeling Tool

14 days ago

14 days ago

14 days ago

14 days ago

14 days ago

14 days ago

14 days ago

14 days ago

14 days ago

14 days ago

13 days ago

14 days ago

14 days ago

14 days ago

14 days ago

14 days ago

14 days ago

ACT is an carbon modeling tool to enable carbon-aware design space exploration. ACT comprises an analytical,

architectural carbon-footprint model and use-case dependent optimization metrics to estimate the carbon

footprint of hardware. The proposed model estimates emissions from hardware manufacturing (i.e., embodied

carbon) based on workload characteristics, hardware specifications, semiconductor fab characteristics, and

environmental factors.
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Thank you! This work: ACT

Develop the model Case studies Open-source!

carbon_intensity Initial commit 14 days ago

B dram Initial commit 14 days ago

' exps Initial commit 14 days ago

; ; @ hdd Initial commit 14 days ago

Tt Reduce o7 %iee -

ég! . i ssd Initial commit 14 days ago

Environmental [ .gitignore Initial commit 14 days ago

[ CODE_OF_CONDUCT.md Initial commit 14 days ago

SW design & l n [ CONTRIBUTING.md Initial commit 14 days ago
peronmanes Arch. Carbon Model Operational CO, O LCENsE iitial commit 14 days ago
> COz-aware HW &> Embodied C02 [ README.md Update README.md 13 days ago

design metrics CDP, CEP, etc. Rl e e 14 days age

| (3 hdd_model.py Initial commit 14 days ago

| Recycle Reuse B m—

| (3 model.py Initial commit 14 days ago

e (= o o e e CO-aware | _ _ _ . _: Recover discarded Repurpose systems O -sstpah boomadi e

P HW optimization systems and components. already produce. Bl G R P—

‘= README.md 7

ACT: Architectural Carbon Modeling Tool

ACT is an carbon modeling tool to enable carbon-aware design space exploration. ACT comprises an analytical,

M O re d etai | S i n t h e p a p e r ' architectural carbon-footprint model and use-case dependent optimization metrics to estimate the carbon
[ ]

footprint of hardware. The proposed model estimates emissions from hardware manufacturing (i.e., embodied
carbon) based on workload characteristics, hardware specifications, semiconductor fab characteristics, and
environmental factors.

* Modeling parameters and industry sources for data

* Carbon-aware metrics for early DSE (e.g., EDP, CDP, CEP)

* Detailed comparison against industry LCA’s

* Reuse case study: impact of reconfigurable accelerators (FPGA’s)
* Recycle case study: Enabling second life & SSD provisioning

49



700 Million tons of CO,

* Half the aviation industry’s footprint
* 2.1-3.9% of worldwide emissions

Mobile Communication Data center
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Computing incurs a growing environmental footprint

700 Million tons of CO,

* Half the aviation industry’s footprint

e 2.7 -3.9% of worldwide emissions

Mobile

Communication

Data center

) Doubling over the next decade!

59% of world online

Future iImprovements
challenging (e.g., slowing
Moore’s Law, PUE)

Emerging applications
demanding higher
compute
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Overview of ACT

Arch. Carbon Model

Carbon-aware HW
design metrics
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Overview of ACT
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Overview of ACT
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Overview of ACT
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DRAM carbon per storage model

- @)
- -
- -

(g CO, per GB)
N)
-
-

Carbon footprint, CPSpram

50nm 40nm 30nm 30nm 20nm 20nm 1X 1X
DDR3 DDR3 DDR3 LPDDR3 LPDDR3 LPDDR2 DDR4 LPDDRA4

Data sources: SK Hynix
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SSD carbon per storage model

N W
- -

=
-

Carbon footprint, CPSyanp
mobile(kg CO, per GB)

30nm 20nm 10nm 17 V3 3D-V4
NAND NAND NAND NAND TLCNAND TLCNAND TLC

Data sources: SK Hynix, Apple

Apple

59



==
- Wednesday 24 Apr | @140¢

FAIRPHONE ‘

e

7T NI 114 H {

¥y ‘

ACT vs. Fair.phone 3
e on mobile device LCA
server LCA

60



More comparisons (ACT vs. LCA’s) in the paper...

® ‘
o s

C component ACT vs. Dell R740 ACT vs. Fairphone 3
P server LCA mobile device LCA
Compute (processors, SoC’s) Within 2.2x Within 1.18x
Memory Within 1.62x o
—— Within 2.1x
Storage Within 1.05-2.2x
Takeaways

(1) ACT provides first-order approximate of LCA’s that use old technology nodes (45nm NAND, 32nm CPU)
(2) ACT enables architects to study new technology nodes
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Recycle: Extending hardware lifetime
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Recycle: Extending hardware lifetime

Mobile SoC’s
Geekbench characterization
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Recycle: Extending hardware lifetime

Mobile SoC’s Architectural
—p —
Geekbench characterization Carbon Model

Operational vs.
Embodied carbon
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Recycle: Extending hardware lifetime

Mobile SoC’s Architectural
— —
Geekbench characterization Carbon Model

Operational vs.
Embodied carbon

Bl crnbodied CO, I Operational CO,

1.00
Cc‘?
SO 0.75
)
Sv
Y+ 0.50
O "
oS
'—§ 0.25
0.00

Embodied Operational
reduction degradation

X

2 4 5 38 10
Mobile Lifetime (years)

Enabling 2" life
requires enhancing
HW reliability

See paper for case
study on storage
reliability using
SSD overprovisioning
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