

Testing Circuit-Partitioned 3D IC Designs

Dean L. Lewis, Hsien-Hsin S. Lee IEEE Computer Society Annual Symposium on VLSI Tampa, Fl, 2009 http://arch.ece.gatech.edu/mars.html

Multiple layers of silicon

- Multiple layers of silicon
- Interconnected with TSVs
 - Etched through thinned wafers

- Multiple layers of silicon
- Interconnected with TSVs
 - Etched through thinned wafers
- Several integration options
 - Technology
 - Different processing technologies are tightly integrated

- Multiple layers of silicon
- Interconnected with TSVs
 - Etched through thinned wafers
- Several integration options
 - Technology
 - Different processing technologies are tightly integrated
 - Architecture
 - Blocks split across layers

- Multiple layers of silicon
- Interconnected with TSVs
 - Etched through thinned wafers
- Several integration options
 - Technology
 - Different processing technologies are tightly integrated
 - Architecture
 - Blocks split across layers
 - Circuit
 - Transistors split across layers

Motivation

Motivation

Motivation

Previous Work

* Dean L. Lewis and Hsien-Hsin S. Lee. A Scan-Island Based Design Enabling Pre-bond Testability in Die-Stacked Microprocessors. In Proceedings of the IEEE International Test Conference 2007 (ITC), Santa Clara, CA, October, 2007.

Previous Works – Results

Kogge-Stone Adder

- Binary summation tree
 - P and G signals represented by arrows
- Trades off hardware for reduced fan-out

Georgia

12

Kogge-Stone Adder

- Binary summation tree
 - P and G signals represented by arrows
- Trades off hardware for reduced fan-out
- In second stage, there are two disjoint sets of logic

Kogge-Stone Adder

- Binary summation tree
 - P and G signals represented by arrows
- Trades off hardware for reduced fan-out
- In second stage, there are two disjoint sets of logic
 - These sets do not interact, yet they compete for wiring tracts
- Four sets at third level

- Bit-splitting separates disjoint logic sets across layers
 - For two layers, we get an even layer and an odd layer

Georgia

- Bit-splitting separates disjoint logic sets across layers
 - For two layers, we get an even layer and an odd layer
- TSVs shuffle P&G signals in first level of logic

- Bit-splitting separates disjoint logic sets across layers
 - For two layers, we get an even layer and an odd layer
- TSVs shuffle P&G signals in first level of logic
- Now the second and third stages are much less congested

 But now first stage is much more complex

- But now first stage is much more complex
- Bit-splitting can be repeated
 - TSVs in first two levels
 - One-fourth the complexity in all other levels

- But now first stage is much more complex
- Bit-splitting can be repeated
 - TSVs in first two levels
 - One-fourth the complexity in all other levels
- Trading off TSVs for reduced complexity

Testing the Adder

- Few TSVs located near the edge of the circuit
 - Scan-based test acceptable

Testing the Adder

- Few TSVs located near the edge of the circuit
 - Scan-based test acceptable
- Add a scan-cell to each TSV
 - Two per adder column
- No observation cells required
 - Values generated in level one logic observable at adder POs

Many-Port Register File

- Many ports to allow parallel access to many entries
 - 20 or more in recent out-oforder processors

Many-Port Register File

- Many ports to allow parallel access to many entries
 - 20 or more in recent out-oforder processors
- Wiring in cell grows quadratically with port count
 - Required to make room for extra word- and bit-lines

Many-Port Register File

- Many ports to allow parallel access to many entries
 - 20 or more in recent out-oforder processors
- Wiring in cell grows quadratically with port count
 - Required to make room for extra word- and bit-lines
- This increases
 - Cell size
 - Word-line length
 - Bit-line length
- All of these slow circuit down

Port-Split Register File

- To fight quadratic growth, we split ports across layers
- This reduces
 - Cell size
 - Word-line length
 - Bit-line length
- A very big win for 3D
- But how do we test the top layer pre-bond

- Suk and Reddy's Test B
 - Write '0' to all cells

- Suk and Reddy's Test B
 - Write '0' to all cells
 - Write '1' to a particular cell

- Suk and Reddy's Test B
 - Write '0' to all cells
 - Write '1' to a particular cell
 - Read written cell and neighbors

- Suk and Reddy's Test B
 - Write '0' to all cells
 - Write '1' to a particular cell
 - Read written cell and neighbors
- This algorithm tests not only each cell's functionality but also bridging between neighboring cells
- Standard neighborhood
 - Four adjacent cells

We can't write to cells

- We can't write to cells
- But we can write through them

- We can't write to cells
- But we can write through them
- Transmit test
 - Write

- We can't write to cells
- But we can write through them
- Transmit test
 - Write and read simultaneously
- Requires at least one write and one read port per layer

Experimental Setup

- Design
 - 3D layouts using the 3D Magic tool
 - DRC rules from MITLL 180nm process
 - Simulation with HSPICE
 - Lvl 49 transistor model

- Adder Test
 - Verilog models
 - Separate bottom, top, and integrated models for 3D adder
 - FlexTest for test modeling
- RF Test
 - Algorithm

64-Bit Planar KS Adder

Georgia Tech

64-Bit 3D KS Adder

Kogge-Stone Comparison

	2D Adder	3D Adder	%
Area (µm²)	35.4k	23.5k	66%
Footprint (µm ²)	35.4k	11.8k	33%
Delay (ns)	7.46	6.08	82%
Power (mW)	26.1	22.6	87%

Design		Pattern Count	
2D Adder		313	
3D Adder	Тор	146	
	Bottom	145	
	Vias	10	
	Total	301	

128-bit, 6-port Planar RF

128-bit, 6-port 3D RF

Register File Comparison

		2D RF	3D RF	%
Area (µm²)		20.3k	12.5k	61%
Footprint (µm ²)		20.3k	6.24k	31%
Delay (ps)	Read '0'	1401	1043	74%
	Read '1'	1407	1050	75%
	Write '0'	520	308	59%
	Write '1'	1381	735	53%
Energy (pJ)	Read '0'	0.149	0.126	85%
	Read '1'	0.149	0.127	85%
	Write '0'	2.342	1.704	73%
	Write '1'	2.342	1.710	73%

Register File Comparison

Design		Pattern
2D RF		8192
3D RF	Тор	256
	Bottom	4096
	Vias	512
	Total	4864

Test Access		
Delay (ps)	Transmit '0'	1346
	Transmit '1'	1744
Energy (pJ)	Transmit '0'	0.189
	Transmit '1'	0.139

Conclusion

- 3D pre-bond circuit test can be done
- It can be done using straight-forward extensions to planar scanbased test
- Even circuit-partitioned designs can, in most cases, be tested with scan-chain test
- Some designs will require new test algorithms
- Complete 3D test is similar in cost to, and sometimes significantly less, planar test

Thank you!

http://arch.ece.gatech.edu/mars.html

