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3D Integration
Multiple layers of silicon

Interconnected with TSVs
Etched through thinned 
wafers

Several integration options
Technology

• Different processing 
technologies are tightly 
integrated

Architecture
• Blocks split across layers

Circuit
• Transistors split across 

layers
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Previous Work

Alpha 21364 3D Pre-bond Test

IEEE 1149.1 TAP

ISP ISP
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IEEE 1149.1 TAP

CSC

CSC

* Dean L. Lewis and Hsien-Hsin S. Lee. A Scan-Island Based Design Enabling Pre-bond Testability in Die-Stacked
  Microprocessors. In Proceedings of the IEEE International Test Conference 2007 (ITC), Santa Clara, CA, October, 2007.
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Previous Works – Results

Layer 1

Layer 2

Scan Cell Size 75.8 μm2

Inter-die Vias 2397

Scan Cell Count
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Kogge-Stone Adder
Binary summation tree

P and G signals represented 
by arrows
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Kogge-Stone Adder
Binary summation tree

P and G signals represented 
by arrows

Trades off hardware for 
reduced fan-out

In second stage, there are 
two disjoint sets of logic

These sets do not interact, 
yet they compete for wiring 
tracts

Four sets at third level
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Bit-Split Kogge-Stone Adder
Bit-splitting separates 
disjoint logic sets across 
layers

For two layers, we get an 
even layer and an odd layer
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Bit-Split Kogge-Stone Adder
Bit-splitting separates 
disjoint logic sets across 
layers

For two layers, we get an 
even layer and an odd layer

TSVs shuffle P&G signals 
in first level of logic

Now the second and third 
stages are much less 
congested
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Bit-Split Kogge-Stone Adder
But now first stage is much 
more complex
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Bit-Split Kogge-Stone Adder
But now first stage is much 
more complex

Bit-splitting can be repeated
TSVs in first two levels

One-fourth the complexity 
in all other levels
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Bit-Split Kogge-Stone Adder
But now first stage is much 
more complex

Bit-splitting can be repeated
TSVs in first two levels

One-fourth the complexity 
in all other levels

Trading off TSVs for 
reduced complexity
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Testing the Adder
Few TSVs located near the 
edge of the circuit

Scan-based test acceptable 01234567
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Testing the Adder
Few TSVs located near the 
edge of the circuit

Scan-based test acceptable

Add a scan-cell to each TSV
Two per adder column

No observation cells 
required

Values generated in level 
one logic observable at 
adder POs
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Many-Port Register File
Many ports to allow parallel 
access to many entries

20 or more in recent out-of-
order processors
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Many-Port Register File
Many ports to allow parallel 
access to many entries

20 or more in recent out-of-
order processors

Wiring in cell grows 
quadratically with port count

Required to make room for 
extra word- and bit-lines

This increases
Cell size

Word-line length

Bit-line length

All of these slow circuit down
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Port-Split Register File
To fight quadratic growth, 
we split ports across layers

This reduces
Cell size

Word-line length

Bit-line length

A very big win for 3D

But how do we test the top 
layer pre-bond
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Memory Test
Suk and Reddy's Test B

Write '0' to all cells
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Memory Test
Suk and Reddy's Test B

Write '0' to all cells

Write '1' to a particular cell

Read written cell and 
neighbors

This algorithm tests not only 
each cell's functionality but 
also bridging between 
neighboring cells

Standard neighborhood
Four adjacent cells



Pre-bond Memory Test
We can't write to cells

Write
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Pre-bond Memory Test
We can't write to cells

But we can write through 
them

Transmit test
Write and read 
simultaneously

Requires at least one write 
and one read port per layer



Experimental Setup
Design

3D layouts using the 3D 
Magic tool

DRC rules from MITLL 
180nm process

Simulation with HSPICE

Lvl 49 transistor model

Adder Test
Verilog models

• Separate bottom, top, and 
integrated models for 3D 
adder

FlexTest for test modeling

RF Test
Algorithm 



64-Bit Planar KS Adder



64-Bit 3D KS Adder

Top Layer

Bottom Layer



Kogge-Stone Comparison

2D Adder 3D Adder %
35.4k 23.5k 66%
35.4k 11.8k 33%
7.46 6.08 82%
26.1 22.6 87%

Area (μm2)
Footprint (μm2)

Delay (ns)
Power (mW)

Design Pattern Count
2D Adder 313

3D Adder

Top 146
Bottom 145

10
Total 301
Vias



128-bit, 6-port Planar RF



128-bit, 6-port 3D RF

Top Layer

Bottom Layer



Register File Comparison

2D RF 3D RF %
20.3k 12.5k 61%
20.3k 6.24k 31%

Read '0' 1401 1043 74%
Read '1' 1407 1050 75%
Write '0' 520 308 59%
Write '1' 1381 735 53%
Read '0' 0.149 0.126 85%
Read '1' 0.149 0.127 85%
Write '0' 2.342 1.704 73%
Write '1' 2.342 1.710 73%

Area (μm2)
Footprint (μm2)

Delay (ps)

Energy (pJ)



Register File Comparison

Design Pattern
2D RF 8192

3D RF

Top 256
Bottom 4096

512
Total 4864
Vias

Test Access
Transmit '0' 1346
Transmit '1' 1744
Transmit '0' 0.189
Transmit '1' 0.139

Delay (ps)

Energy (pJ)



Conclusion
3D pre-bond circuit test can be done

It can be done using straight-forward extensions to planar scan-
based test

Even circuit-partitioned designs can, in most cases, be tested 
with scan-chain test

Some designs will require new test algorithms

Complete 3D test is similar in cost to, and sometimes 
significantly less, planar test
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Thank you!

http://arch.ece.gatech.edu/mars.html
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