
SHARK: Architectural Support for Autonomic Protection
Against Stealth by Rootkit ExploitsAgainst Stealth by Rootkit Exploits

Vikas R VasishtVikas R. Vasisht
Hsien-Hsin S. Lee

School of Electrical and Computer Engineering
Georgia Tech

Rootkit Definition
A set of programs that allows a permanent or
consistent, undetectable presence on a computerco s ste t, u detectab e p ese ce o a co pute

– Not an exploit to gain elevated accessNot an exploit to gain elevated access
– Conceal all evidences and malware activities

Rootkit’s functions:
Hide processes files network connections andHide processes, files, network connections and
conceal malware activities

SHARK: Vasisht & Lee 2

Example - Hidden Keylogger
Adversary

Task Manager looks clean

www.anybank.com
…login…

…password…

SHARK: Vasisht & Lee 3

OS compromised & Rootkit installed

Rootkit Technique (I)

User ProgramE
System Administrator (E.g., “ps”, “top”)

User Program

API Function

Library ReturnImport Address Table

U
SE

R
 S

PA
C

E

Library

Choose Interrupt Choose Syscall Syscall

U

Handler from IDT from SSDT Function

L
S

PA
C

E
K

E
R

N
EL

SHARK: Vasisht & Lee 4

Interrupt Descriptor Table System Service Descriptor Table

Rootkit Technique (I)

User ProgramE
System Administrator (E.g., “ps”, “top”)

User Program

API Function

Library ReturnImport Address Table

U
SE

R
 S

PA
C

E

Library

Choose Interrupt Choose Syscall Syscall

U

Handler from IDT from SSDT Function

L
S

PA
C

E
K

E
R

N
EL

SHARK: Vasisht & Lee 5

Interrupt Descriptor Table System Service Descriptor Table

Modify OS execution flow to hide traces of malware

Rootkit Technique (II)
“ps”

Process-1

Process 2
Safe machine Compromised Machine
>>ps >>psProcess-2

Process-3

>>ps >>ps
P-1 P-1
P-2 P-2
P-3 P-3

Malware

Process-5

Malware P-5
P-5

Direct Kernel Object Modification

Manipulate Kernel Data to remove malware information

SHARK: Vasisht & Lee 6

Rootkit Detection Techniques
• Software based techniques:

– Signature/Behavioral detection
Works for only known rootkits

– Cross-View based detection
Complex rootkits compromise low level OS view

– Integrity based detection
Rootkits fake memory contents – Shadow Walker rootkit

• Hardware based techniques:
– CoPilot (N. Petroni et al. [USENIX’04])

Integrity of host memory checked in a remote admin station√

SHARK: Vasisht & Lee 7

Send a faked memory snapshot to the remote machine.

Sophisticated Rootkits

A1 A2 A3

Sub-Virt1 Bluepill2

Hardware

Host OS Native
OS

M1 M2 A1 A2

Infection VMRUN

Native OS
continues

Hardware

Malicious OS

Virtual Machine Monitor

M1 M2
Host OS

A1 A2
execution
inside VM

Hypervisor

Host OS downgraded to VM

yp
installed on-the-fly

Hypervisor below the host OS

SHARK: Vasisht & Lee 8

1. King et al. [Symposium on Security and Privacy’06] 2. Joanna Rutkowska [Black Hat’06]

Challenge
We cannot detect hidden processes, VMs and

VMMs using software techniques

Seeing a clean systemNo

Applications Sys. Admin Applications

Guest OS

VMM

y
UtilitiesGet direct

feedback
from HW VMM

H/W Malware enjoying
hardware resources

• •

SHARK: Vasisht & Lee 9

Motivation –
Process Context Aware ArchitectureProcess Context Aware Architecture

Process 1 Process 2 Process 3

P S dProcesses Spawned

Possible!

Page Tables
PT 1 PT 2 PT 3

Address Space

AS-1 AS-2 AS-3

OS completely manages processes and HW can be fooled

SHARK: Vasisht & Lee 10

OS completely manages processes and HW can be fooled

SHARK Big Picture
Process 1 Process 2 Process 3

Process Spawnedocess Spa ed

Success Fails

Encrypt
Page Tables

1st Page Table Update Success Fails

g
PT 1 PT 2 PT 3

Address Space

AS -1 AS -2 AS -3

SHARK: Vasisht & Lee 11

Address space isolation achieved by page table encryption

SHARK – Secure Hardware Against RootKits
• Hardware assisted PID Generation

– Software PIDs vulnerable

• Page Table Encryption/Decryption
– Page table update: Hardware support for every update
– TLB miss: Page table decryption

• Process Authentication
– On a context switch, PID → HPID Register
– TLB miss: HPID used for decryption

SHARK: Vasisht & Lee 12

Hardware Assisted PID Generation
New Process Page

Table
OS

Encrypted PTE

1st PTE Counter mode
AES

64-bit Counter

PID++
PID

S
EncryptionSHARK

128-bit
Secret Hardware Key

PID t d t th OS l ft i iti l ti

SHARK: Vasisht & Lee 13

PID returned to the OS only after initial encryption

Page Table Encryption (x86)
3rd Level - PT

V PTE
Faulted VPN

Byte within
pageLevel 3Level 2Level 1

28
 V

-B
its

2nd Level - PMD

4 P
TE

s

1

1st Level - PGD

2 Level PMD

V PDE

V-
B

its 32-bits PTE

12
8

V

SHARK: Vasisht & Lee 14

CR3

Page Table Encryption (x86)
Faulted VPN

Byte within
pageLevel 3Level 2Level 1 3rd Level - PT

V PTE

28
 V

-B
its

2nd Level - PMD

4 P
TE

s

1

1st Level - PGD

2 Level PMD

V PDE

V-
B

its 32-bits PTE

12
8

V

SHARK: Vasisht & Lee 15

CR3

Page Table Encryption (x86)
3rd Level - PT

V PTE

12
8

V-
Bi

ts PID PID

128 bit t

4 PTEs

1

AES – 128128-bit secret
H/W key

128 bit128 bit

32-bits PTE

128-bit
Plain-Text

4-PTEs

128-bit
Cipher-Text

4- PTEs

PID PID

AES – 128
128-bit secret

H/W key

V-Bit
Block ID Counter(PID) not a secret;

HW key is secret
H/W key

SHARK: Vasisht & Lee 16

128-bit
Plain-Text
V-bit Array

128-bit
Cipher-Text
V-bit Array

TLB Update (x86) – Handled by SSM
VPN PPN

p () y

3rd Level PT
V PTE

Memory Access TLB miss: Two V-bit array decryptions
+ one PTE decryption

TLB Update

Miss

3rd Level - PTVPN PPN

TLB

Miss

Page Table
walk

Counter
Mode

Decryption
(AES-128)V PDE

Hardware Page Table
Walk

Counter
Mode

Counter
Mode

()
1st Level -PGD

Mode
Decryption
(AES-128)

ode
Decryption
(AES-128)

SHARK: Vasisht & Lee 17

HPID RegisterCR3

Instructions supported in SHARK
• GENPID- Generate a new PID

Used when a new process is created– Used when a new process is created

MODPT U d h bl f• MODPT- Update the page table of a process
– Used when page tables have to be modified

• DECPT- Decrypt a process' page table entry
– Used to know the physical pages of processes

SHARK: Vasisht & Lee 18

MODPT: Physical Page Tracking
• MODPT used to Invalidate a page table entry:

PID

Physical

Page
SHA-256

Checksum

Counter
Mode

Encryption
(AES-128)

Physical

Page

(AES 128)
32B Encrypted

Checksum

MODPT sed to Validate a page table entr• MODPT used to Validate a page table entry:

SHA 256 Counter

PID
Update PTE

YES
Physical

Page

32B Encrypted
Checksum

SHA-256
Checksum

Counter
Mode

Encryption
(AES-128) Illegal PT Update

=? NO
YES

SHARK: Vasisht & Lee 19

Checksum

Tracks the association of memory page and owning process

Stealth Checker
OS

Context Switch

I can compare
and catch hidden
software contexts

“ps”

Page TablesHPID
VPN PPN

• •

PID 1
PID 2

PID 3
Master PID List

SHARK
VPN-PPN

PIDs
Hardware

• Implemented in Firmware p
• Encrypts and sends PIDs to a remote system admin machine
• Hardware and software lists compared in the remote machine

SHARK: Vasisht & Lee 20

Experimental Analysis
• Functionality Evaluation

– BOCHS emulator + modified Linux 2.6.16.33
– Rootkits installed: Adore 0.42, Knark 2.4.3, Phide,

Enyelkm.en.v1.1, and Mood-nt-2.3
SHARK bl t d t t ll tkit– SHARK was able to detect all rootkits

• Performance Evaluation• Performance Evaluation
– VirtuTech SIMICS
– Performance overhead due to encryption/decryption– Performance overhead due to encryption/decryption

SHARK: Vasisht & Lee 21

Performance Evaluation
• SPEC 2006 benchmark suite
• Emulated first 2B instructions

– More page faults and TLB updates

• SHARK Overhead in recompiled Linux kernel 2.6.16.33
MODPT instruction: 6 * AES + SHA 256– MODPT instruction: 6 AES + SHA-256

– TLB Refill: 3 * AES
– DECPT instruction: 3 * AES

• Sensitivity study for different TLB configurations
– 4 KB and 2 MB pages supported (x86)
– Varied number of TLB entriesVaried number of TLB entries

• TLB flushed upon every context switch as in x86 machines

SHARK: Vasisht & Lee 22

SPEC2006

Performance impact with different TLB organizations

• More context switches and more TLB misses
• Sensitive to the number of entries for 2MB pages in TLB

g

SHARK: Vasisht & Lee 23

• Sensitive to the number of entries for 2MB pages in TLB
• Average CPI overhead is 1.3%

SPEC2006 (6 System Configurations)

• Larger AES latency increases the overhead• Larger AES latency increases the overhead
• Larger L2 cache (longer L2 latency) lowers the overhead
• Average overhead:

SHARK: Vasisht & Lee 24

g
Range : 0.45% - 4.7%

Conclusions

• SHARK is the first synergistic micro-architecture
and OS technique to address the Rootkit exploitsand OS technique to address the Rootkit exploits

C l d ti it t U K l d VMM l l• Concealed activity at User, Kernel and VMM levels
will be revealed

• Low performance overhead makes it practical

SHARK: Vasisht & Lee 25

Thank you

http://arch.ece.gatech.eduhttp://arch.ece.gatech.edu

SHARK: Vasisht & Lee 26

