tinyML. Research Symposium

Enabling Ultra-low Power Machine Learning at the Edge

March 27, 2023

www.tinyML.org

Memory-Oriented Design-Space Exploration of Edge-Al Hardware for XR Applications

Vivek Parmar¹, Syed Shakib Sarwar², Ziyun Li², Hsien-Hsin S. Lee², Barbara De Salvo^{2†}, and Manan Suri¹

manansuri@ee.iitd.ac.in

RESEARCH

Meta

¹Indian Institute of Technology Delhi ²Meta Reality Labs Research

© March 2023, NVM and Neuromorphic Research Group-IITD and Meta Reality Labs, tinyML Research Symposium 2023

Motivation & Scope

Demonstrate benefits of memory-centric computing utilizing advanced NVM technology for XR-EAI applications

- Exploit normally-off computing due to nature of workload
- Analyze memory & power budgets for hybrid architectures through DTCO
- Estimates/Projections at multiple nodes and type of NVM devices
- Relevant Metrics

🔿 Meta

TABLE IPROJECTED SPECS OF STATE-OF-THE-ART XR DEVICES [1].

Metric	HTC	Ideal	Microsoft	Ideal	
	Vive Pro	VR	HoloLens2	AR	
Resolution (MP)	4.6	200	4.4	200	
Refresh rate (Hz)	90	90-144	120	90-144	
Motion-to-photon latency (ms)	<20	<20	<9	<5	
Power (W)	N/A	1-2	>7	0.1-0.2	

1. M. Huzaifa, et.al., arXiv preprint arXiv:2004.04643 (2020).

XR-EAI Workloads Investigated

Network 4

Hand

Radius

Hand

Center

Training

Validation

6

1. Eye Segmentation

Dataset: OpenEDS 2019

- Network: Unet ٠ (backbones: MobileNetv2)
- Framework: • Tensorflow

2. Hand detection

Dataset: FPHAB*

- Network: DetNet (MegaTrack)
- Framework: PyTorch •
- * Indian Institute of Technology Delhi obtained and used the FPHAB dataset

(f) Training Evolution

Garbin, Stephan J., et al. "Openeds: Open eve dataset." arXiv preprint arXiv:1905.03702 (2019).

2. Garcia-Hernando, Guillermo, et al. "First-person hand action benchmark with rgb-d videos and 3d hand pose annotations." CVPR. 2018.

Network

EDSNet

Detnet

#Params

6.63 M

1.45 M

Size (kB)

6474

1414

© March 2023, NVM and Neuromorphic Research Group-IITD and Meta Reality Labs, tinyML Research Symposium 2023

(e) EDSNet (UNet + MobileNetV2)

Meta

XR-EAI Workloads: Impact of Quantization

Comparable performance between full-precision and quantized versions

Meta

• Weight distribution profile changes due to use of additional scaling factors specific to layers during quantization

Performance on CMOS-based Systolic Accelerators

Framework Platform		Qkeras	Timeloop+Accelergy			Workload	Platform	Energy Breakdown (%	
		CPU	Eyeriss Simba					Compute	Memor
Base	Base		14×12 =168	16×16 =256				Compute	Memory
PE Organization	V1	1	32×32	32×32 =1024			CPU	44.90%	55.10%
organization	V2		64×64	=4096		DetNet	Eyeriss	3.90%	96.10%
MAC Precision		int8				<u> </u>	- - - - - - - - - -		
Input buffer			12B × 168 (8)	64kB × 16 (64)			Simba	5.80%	94.20%
Output buffer Weight buffer Global buffer (I/O) Global buffer (W)			16B × 168 (8)	384B × 64 (24)		EDSNet	CPU	90.50%	9.50%
		16 MB × 1	192B × 168 (8)	4kB × 64 (64)			Everies	7 100/	02.000
			8 MB (64)	8 MB (256)			Eyenss	7.10%	92.90%
			8 MB (64)	8 MB (256)			Simba	9.70%	90.30%

(e) Energy Contribution

- 2. Parashar, Angshuman, et al. "Timeloop: A systematic approach to dnn accelerator evaluation." ISPASS. IEEE, 2019.
- 3. Wu, Yannan Nellie, et al. "Accelergy: An architecturelevel energy estimation methodology for accelerator designs." ICCAD. IEEE, 2019.
- 4. Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks." IEEE JSSC, 52.1 (2016): 127-138.
- 5. Shao, Yakun Sophia, et al. "Simba: Scaling deep-learning inference with multi-chip-module-based architecture." Micro. 2019.

Meta

Performance on CMOS-based Systolic Accelerators

- Technology scaling based on DeepScale [1] for: 22 nm, 28 nm
- 7nm estimates based on TPUv4 [2] scaling factors
- Benefits of scaling diminishing at 7nm

- 1. S. Sarangi and B. Baas, "DeepScaleTool: A Tool for the Accurate Estimation of Technology Scaling in the Deep-Submicron Era," 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 2021, pp. 1-5, doi: 10.1109/ISCAS51556.2021.9401196.
- 2. N. P. Jouppi et al., "Ten Lessons From Three Generations Shaped Google's TPUv4i : Industrial Product," 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), 2021, pp. 1-14, doi: 10.1109/ISCA52012.2021.00010.

🔿 Meta

Proposed NVM-based Enhancements

(c) Al Inference - Memory Operation Breakdown							
Read inputs (R)	Read Weights R / (R+W)	Compute (R+W)	Write output (W)				
(i) Traditional Memory Mapping (baseline CPU, Eyeriss, Simba)							
DRAM (1 st layer) / SRAM	DRAM / SRAM (load from DRAM)	Registers /SRAM	SRAM				
(ii) Proposed P0 Mapping (NVM for weight matrix)							
SRAM	MRAM	Registers /SRAM	SRAM				
(iii) Proposed P1 Mapping (NVM in all buffers)							
MRAM	MRAM	Registers /SRAM	MRAM				

Two flavours explored

- 1. P0: MRAM for only weights
- 2. P1: MRAM everywhere except compute registers

Performance Analysis for Proposed NVM-enhanced variants

Direct Area saving in all variants

TABLE II ESTIMATION OF AREA BENEFITS ON SYSTOLIC ACCELERATORS USING PROPOSED P0 AND P1 VARIANTS AT 7NM NODE.

Architecture	7 nm Are	a (mm	Area savings		
	SRAM-only	PO	P1	PO	P1
Simba	2.89	2.41	1.88	16.56%	34.97%
Eyeriss	2.56	2.11	1.67	17.52%	34.98%

28nm P0 savings

- DetNet: ~50% with CPU, ~80% with Eyeriss, ~70% with Simba
- EDSNet: ~ 7% with CPU, ~70% with Eyeriss, ~1% with Simba

Energy saving evident in some variants (28nm-P0, all applications) w.r.t SRAM only variants

🔿 Meta

Energy Breakdown for Compute & Memory

At 7nm energy estimated for NVM-based variants (P0,P1) > "SRAM-only" variant

- 7nm MRAM type considered is writeoptimized (ref-IMEC). However, the XR application is <u>Read Dominant</u>.
- Gains @ 7nm can be obtained with a read optimized MRAM.
- Mem Read E > Mem Write E in P0 (all cases) → Reduced write operations in weight memory <u>inference</u> <u>dominated workload</u> (not true for SRAM though)

© March 2023, NVM and Neuromorphic Research Group-IITD and Meta Reality Labs, tinyML Research Symposium 2023

IPS-Analysis

IPS (#Inferences Per Second over op time) / Effective Latency & not actual Inference Latency

A more relevant performance metric for edge XR-AI as inference operations may:

Invoke AI for XR in Asymmetric/Infrequent manner after long/erratic intervals

Configure: Min. Hand Detection IPS ~ 10 (use) Min. Eye segmentation IPS ~ 0.1 (use only during initiation of gaze tracking or authentication)

🔿 Meta

IPS-Analysis

© March 2023, NVM and Neuromorphic Research Group-IITD and Meta Reality Labs, tinyML Research Symposium 2023

IPS Analysis - Summary

TABLE III IPS Analysis summary for proposed architectures using PE configuration v2 (64×64).

XR-AI		Inference Latency (ms)		$\begin{array}{c c} P_{Mem} \text{ Savings} \\ @ IPS_{min} \end{array}$		
Workload	Architecture					
		PO	P1	PO	P1	
DetNet	Simba	0.34	0.42	27%	31%	
$IPS_{min}=10$	Eyeriss	0.86	0.86	-4%	9%	
EDSNet	Simba	48.57	60.72	29%	24%	
$IPS_{min}=0.1$	Eyeriss	45.22	45.22	-15%	-26%	

Clear power saving even with write optimized MRAM!

Conclusion

(X) Meta

- 1. Detailed study on 2 XR-AI workloads (hand-detection and eye-segmentation).
- Design exploration for mapping workloads on CPU and systolic accelerators (QKeras & Timeloop + Accelergy frameworks).
- 3. Node-scaling analysis and detailed energy breakdown analysis (compute Vs memory).
- 4. Memory-oriented DTCO based on the use of different types of the emerging MRAM devices.
 - a) Memory-Energy Savings ≥ 24% observed for hand detection (at IPS = 10) and eye segmentation (at IPS=0.1) for Simba-like NVM accelerator variant.
 - b) Substantial area reduction (\geq 30%) due to the high-density feature of MRAM technology.

Thank You

manansuri@ee.iitd.ac.in

🔿 Meta

© March 2023, NVM and Neuromorphic Research Group-IITD and Meta Reality Labs, tinyML Research Symposium 2023

Copyright Notice

This presentation in this publication was presented at the tinyML[®] Research Symposium (March 27,2023). The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org