Choice Predictor for Free

Mongkol Ekpanyapong, Pinar Korkmaz, and Hsien-Hsin S. Lee

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

{pop, korkmazp, leehs}@ece.gatech.edu

Abstract. Reducing energy consumption has become the first priority in designing microprocessors for all
market segments including embedded, mobile, and high performance processors. The trend of state-of-the-art
branch predictor designs such as a hybrid predictor continues to feature more and larger prediction tables,
thereby exacerbating the energy consumption. In this paper, we present two novel profile-guided static
prediction techniques— Static Correlation Choice (SCC) prediction and Static Choice (SC) prediction for
alleviating the energy consumption without compromising performance. Using our techniques, the hardware
choice predictor of a hybrid predictor can be completely eliminated from the processor and replaced with our
off-line profiling schemes. Our simulation results show an average 40% power reduction compared to several
hybrid predictors. In addition, an average 27% die area can be saved in the branch predictor hardware for
other performance features.

1 Introduction

Advances in microelectronics technology and design tools for the past decade enable microprocessor designers
to incorporate more complex features to achieve high speed computing. Many architectural techniques have
been proposed and implemented to enhance the instruction level parallelism (ILP). However, there are many
bottlenecks that obstruct a processor from achieving a high degree of ILP. Branch misprediction disrupting
instruction supply poses one of the major ILP limitations. Whenever a branch misprediction occurs in superscalar
and/or superpipelined machines, it results in pipeline flushing and refilling and a large number of instructions
is discarded, thereby reducing effective ILP dramatically. As a result, microprocessor architects and researchers
continue to contrive more complicated branch predictors aiming at reducing branch misprediction rates.

Branch prediction mechanisms can be classified into two categories: static branch prediction and dynamic
branch prediction. Static branch prediction techniques [1,6,17] predict branch directions at compile-time. Such
prediction schemes, mainly based on instruction types or profiling information, work well for easy-to-predict
branches such as while or for-loop branches. Since the static branch prediction completely relies on information
available at compile-time, it does not take runtime dynamic branch behavior into account. Conversely, dynamic
branch prediction techniques [12,14,16] employ dedicated hardware to track dynamic branch behavior during
execution. The hybrid branch predictor [12], one flavor of the dynamic branch predictors, improves the prediction
rate by combining the advantages demonstrated by different branch predictors. In the implementation of a
hybrid branch predictor, a choice predictor is used to determine which branch predictor’s results to use for each
branch instruction fetched. Introducing a choice predictor, however, results in larger die area and additional
power dissipation. Furthermore, updating other branch predictors that are not involved in a prediction draws
unnecessary power consumption if the prediction can be done at compile-time. Given the program profiling
information, a static choice prediction could be made by identifying the suitable branch predictor for each
branch instruction. For example, for a steady branch history pattern such as 000000 or 10101010, the compiler
will favor the local branch predictor. On the other hand, for a local branch history pattern of 01011011101 and
global branch history pattern of 0011100111000111001 (boldface numbers correspond to the branch history of
this target branch) it will bias toward the global predictor over the local predictor, because the global pattern
history shows a repetition of the sequence 001 where 1 corresponds to the target branch.

The organization of this paper is as follows. Section 2 describes related work. Section 3 is devoted to our
schemes. Section 4 presents our experimental framework. Results of power, areas and performance are presented
in Section 5. Finally the last section concludes this work.

2 Related Work

Most of the branch prediction techniques focus on exploiting the local behavior of each individual branch as well
as the global branch correlation to improve prediction accuracy, either at static compile-time or dynamic runtime.
Static techniques include two major schemes— profile-guided and program-based schemes. Profile-guided schemes
collect branch statistics by executing and profiling the application in advance. The compiler then analyzes the
application using these statistics as a guide and regenerates an optimized binary code. Program-based schemes
tackle branch prediction problems at source code, assembly, or executable file level without any advanced profiling.
One early study on using profile-guided branch prediction was done by Fisher and Freundenberger [6] , in which
they showed that profile-guided methods can be very effective for conditional branches as most of the branch
paths are highly biased to one direction and this direction almost remains the same across different runs of
the program. Ball and Larus [1] later studied a program-based branch prediction method by applying simple
heuristics to program analysis at static compilation time for generating static branch predictions.

One important characteristics of branch prediction is that a branch can either exhibit self-correlation or
can be correlated with other branches. Yang and Smith [17] proposed a static correlated branch prediction
scheme using path profiling to find the correlated paths. After identifying all the correlated paths, the technique
either duplicates or discriminates the paths depending on the type of correlation. Due to path duplication, their
technique increases the code size while reducing misprediction rate.

In spite of the hardware savings, static branch prediction is infeasible for all the branches in a program since
a branch can demonstrate very dynamic behavior due to various correlations and will not be strongly biased to
one direction or another in their lifetime. Therefore, most of the sophisticated branch prediction mechanisms
focus on dynamic prediction mechanisms. Dynamic branch predictors make predictions based on runtime branch
direction history. Yeh and Patt [16] introduced the concept of two-level adaptive prediction that maintains a
first level N-bit branch history register (BHR) and its corresponding 2% entry pattern history table (PHT) as a
second level for making predictions. The BHR stores the outcomes of the N most recently committed branches
used to index into the PHT in which each entry contains a 2-bit saturating up-down counter. They studied both
local and global prediction schemes. Local prediction schemes keep the local history of individual branches while
global prediction schemes store the global direction history of a number of branches equal to the history register
size.

McFarling [12] pioneered the idea of hybrid branch prediction that uses a meta-predictor (or choice predictor)
to select a prediction from two different branch predictors. The two branch predictors studied in his paper were
bimodal and gshare branch predictors. The bimodal branch predictor consists of a 2-bit counters array indexed
by the low order address bits of the program counter (PC). The gshare predictor, which was also christened
by McFarling in the same paper is a two-level predictor that exclusive-ORs the global branch history and the
branch PC address as the PHT index to reduce destructive aliasing among different branches sharing the same
global history pattern. The choice predictor, also a 2-bit counters, is updated to reward the predictor generating
correct prediction.

The Alpha 21264 processor implemented a hybrid branch predictor called tournament branch predictor [9]
which features three predictors including a local predictor, a global predictor, and a choice predictor. The
local predictor, one variation of a 2-level predictor, consists of a 1024-entry 10-bit local history table and its
corresponding 1024x3 bits prediction table. The global predictor, also a 2-level predictor, provides a 12-bit global
history register and its corresponding 4096x2 bits prediction table. The choice predictor, yet another 2-level
predictor, uses the same global history register to index its own 4096x2 prediction table. The 2-bit saturating
counter of the choice predictor is incremented for one predictor (e.g. global) and decremented for another (e.g.
local) whenever one predictor makes the correct prediction and the other does not. The counter is updated to
reward the one making correct prediction.

Chang et al. [3] studied branch classification. Their classification model groups branches based on profiling
data. They also proposed a hybrid branch predictor which takes the advantages of both static and dynamic
predictors. Using the profiling data, they perform static prediction for those branches that strongly bias to one
direction in their lifetime. Their work is analogous to ours in the sense that we both employ static and dynamic
branch prediction method. Comparison and simulation data will be presented and discussed in Section 5.

Another work presented by Grunwald et al. in [7] also adopts static prediction for a hybrid predictor. Despite
a large experimental data were presented, it remains unclear about their algorithms with respect to how they
derive the choice prediction directions at static compile-time. In addition, they compared their static prediction
scheme with only McFarling hybrid prediction scheme, while we compare our technique against several other
hybrid branch predictors and evaluate the impact to both power and die area.

Addr Addr Addi

r Hist.
Choice Local Global | |Addr Addr | ceat Hist Giopal
Bpred.| Bpred. Bpred. L' BTB Bpred. t Sosid.
LI 1 bit sta]
choice pr}
Valid bit

Fig. 1. Branch prediction lookup schemes.

BTB

Valid bit o
— prediction

Recently, Huang et al. [4] proposed an energy efficient methodology for branch prediction. Their baseline case
is a 2Bc-gskew-pskew hybrid branch predictor. They used profiling to find out the branch predictor usage of
different modules in a program and used clock gating to shut down the unused predictors of the above hybrid
branch predictor. Different from them, we considered many hybrid branch prediction schemes and we collected
profile data for each branch instead of for each module.

3 Static Prediction Generation

Profiling feedback is now a widely accepted technology for code optimization, in particular for static architectures
such as Intel/HP’s EPIC, we propose a new methodology that utilizes profiling data from prior executions,
classifies branches according to the types of correlation exhibited (e.g. local or global), and then decides which
prediction result to use. During profile-guided recompilation, these decisions are embedded in the corresponding
branch instructions as static choice predictions. For example, the branch hint completer provided in the Itanium
ISA [5] can be encoded with such information.

The basic branch prediction lookup scheme for a hybrid branch predictor with a hardware choice predictor
and our scheme with static choice prediction are illustrated in Figure 1. In our scheme, the static choice prediction
is inserted as an extra bit in the modified branch target buffer (BTB) entry. For each branch predicted, both
the local and global predictors are accessed and the prediction implied by the static choice prediction bit in
the indexed BTB entry is chosen. The critical path for this branch predictor is not lengthened with such a
mechanism, hence no impact to clock speed. Furthermore, using this bit to clock gate the branch predictor might
lead to further power reduction, however, it is not explored in this paper.

Most of the hybrid branch predictors with a dynamic choice predictor [9, 12] update all the branch prediction
components for each branch access. This is because that, in a dynamic choice predictor, the choice predictor is
updated dynamically depending on the prediction results of both branch predictors and for the further accesses
to the same branch address there is uncertainty about which branch predictor will be used, hence updating both
of them will result in more accuracy. In our model, we update only the branch predictor whose prediction is used,
since every branch is already assigned to one of the predictors and updating only the assigned branch predictor
is necessary. In our case, updating both branch predictors would not only consume more power but also increase
the likelihood of aliasing.

In the following sections, we propose and evaluate two enabling techniques — Static Correlation Choice
(SCC) prediction and Static Choice (SC) prediction from power and performance standpoints.

3.1 SCC model

In the SCC model, we profile and collect branch history information for each branch. We apply this technique
to a hybrid branch predictor that consists of a local bimodal branch predictor [15] and a global two-level branch
predictor [16]. The algorithm for the SCC model with the hybrid branch predictor is described in the following
steps:

1. If a branch is biased to one direction either taken or not taken during its lifetime in execution, we favor its
prediction made by the bimodal branch predictor. The bias metric is based on a default threshold value that
represents the execution frequency of the direction of a branch (e.g. 90% in this study, this is based on our
intuition that higher than 90% hit rate is acceptable).

2. To model the bimodal branch predictor, we count the total number of consecutive taken’s and consecutive
not taken’s for each branch collected from profile execution. This count based on the local bimodal branch
predictor is denoted by Crp. For example, if the branch history of a particular branch is 111100000101010:
the number of consecutive ones is 4-1 = 3 and number of consecutive zeros is 4, therefore, Cpp = 3+4 = 7.

3. To model the global branch predictor, we collect global history information for each branch on-the-fly during
profile execution and compare it against all prior global histories collected for the same branch. If the last
k bits of the new global history match the last k£ bits of any prior global history, then the new prediction
is called to be within the same history group. There are 2¥ possible groups in total. For each branch that
is included in a group, we count the total number of consecutive taken’s and consecutive not taken’s. At
the end of the profile run, we sum up the consecutive counts including taken and not taken for each history
group and denote the value by Cgp. For example, assume we have four history groups (k=2) — 00, 01, 10
and 11 for a profile run. For a particular target branch after the profile execution, we have a branch history
101000001111 for the 00 group, 11111111110 for the 01 group, 1110 for the 10 group, and 1000000 for the
11 group. Then the summation for this global branch predictor, for this particular branch would be Cgp =
7+9+2+5 = 22. Note that the history does not include the direction of the current reference.

4. CLp and Cgp values are collected after the profiling execution. The static choice prediction is made off-line
by comparing the values of Cpp and Cgp. The final choice, provided as a branch hint, as to which predictor
to use for each branch is determined by favoring the larger value. In other words, if Cpp is greater than
Cgp, the choice prediction uses the prediction made by the bimodal predictor otherwise the prediction of
the global branch predictor is used.

The SCC model basically targets McFarling’s hybrid branch predictor yet collects these information at static
compile-time. As aforementioned, McFarling’s hybrid branch predictor consists of a bimodal local predictor and a
gshare global predictor. The justification behind the calculation of Cpp (a metric for bimodal branch prediction)
is that, for a bimodal predictor the more the branch result stays in state 00 (strongly not-taken) or 11 (strongly
taken), the more stable the prediction will be. On the other hand, Cgp of a branch is the metric for the global
branch prediction and its calculation is based on counting the number of occurrences of consecutive takens and
not-takens (0’s and 1’s) for this branch for the possible number of different branch histories depending on the
length of history. This is similar to the two-bit saturating counters which are chosen by the global history register
in the gshare scheme.

3.2 SC model

In the SC model, static choice predictions completely rely on the results collected from the software-based choice
predictor of an architecture simulator. During profiling simulation, we collect the information with respect to
how many times the choice predictor is biased to the bimodal predictor versus the global branch predictor for
each branch. The final static choice prediction then relies on the majority reported from the profiling simulation.

4 Simulation Framework

Our experimental framework is based on sim-outorder from SimpleScalar toolkit version 3.0 [11]. We modified the
simulator to (1) model a variety of hybrid branch predictors , (2) collect the profiling information for the SCC and
SC models, and (3) perform static choice branch prediction. Table 1 shows the parameters of our processor model.
The SPEC CPU2000 integer benchmark suite [8] was used for our evaluation. All of the benchmark programs were
compiled into Alpha AXP binaries with optimization level -O3. All the data presented in Section 5 were obtained
through runs of one billion instructions. Since profiling is involved, the experiments were performed among test,
train and reference profiling input sets while all the performance evaluation results come from reference input set.
In other words, we collected different profiling results in order to analyze the impact of our proposed mechanisms
with different profiling input sets.

As our proposed technique provides an opportunity to eliminate the choice predictor hardware, we evaluate
and quantify the overall power improvement using Wattch [2] toolkit due to the absence of a hardware choice
predictor. We modified Wattch to enable clock-gating in different functional blocks of a branch predictor including
the BTB, the local, global, and choice predictors, and return address stack.

5 Experimental Results

This section presents our performance and power analysis. In the first experiment, we study the impact of our
static models for choice prediction on performance, including branch prediction rate and speedup. The train input
set in SPECint2000 benchmarks was used for collecting profile information, while the reference input set was

Table 1. Parameters of the processor model.

Execution Engine Out-of-order
Fetch Width 8 instruction
Issue Width 8 instruction
ALU Units 4 units

Branch Target Buffer|4-way, 4096 sets
Register Update Unit|128 entries

Cache organization |4-way split I- and D-L1:
64 KB each

2 cycle hit latency

32 bytes line

4-way L2(unified):

512 KB

16 cycle hit latency

64 bytes line

Memory latency 120 core cycles
m gsharel0 mgsharell W gsharel2 O hybrid_g10 O hybrid_g10+scc
mhybrid_gio+sc mhybrid_gi10+scdt mhybrid_gi0+rand mhybrid_gli+scc W hybrid_gli+sc
0.2 -
0.18
0.16
0.14

0.12 -
0.1
0.08 -
0.06 -
0.04 -
0.02 -

0.

gzip vpr mcf crafty parser peri gap bzip2 twolf Avg
Fig. 2. Miss prediction rates with different branch predictors.

used for performance evaluation. Results show that our prediction model performs on par or sometimes better
than a hardware choice predictor. It is reported in [10] that energy-delay product is sometimes misleading, hence
we report the performance and energy separately.

Figure 2 summarizes the branch prediction miss rates from different branch predictors for SPECint2000
benchmarks. For each benchmark program, experiments are conducted with a variety of branch prediction
schemes. Among them are gsharel0, gsharell, gsharel2, hybrid_g10, hybrid _gl10-+scc, hybrid_gl10+-sc,
hybrid_gl1+scc, and hybrid_gll+4sc. The gsharel0, same as McFarling’s gshare scheme [12], indexes a
1024-entry 2-bit counter array by exclusive-ORing the branch address and its corresponding 10-bit global his-
tory. Similarly, gsharell and gsharel2 perform the same algorithm by simply extending the sizes of their
global history to 11 and 12 bits, thereby increasing their corresponding 2-bit counter arrays to 2048 and 4096
entries, respectively. The predictor, hybrid_g10 uses a hybrid branch predictor approach similar to McFarling’s
combining branch predictor [12]. It consists of a bimodal predictor, a two-level predictor, and a choice predictor
each of them with a size of 1024x2 bits. The hybrid_gl10+sc is the same as hybrid_gl10 except replaces the
hardware choice predictor with a profiling-based choice prediction mechanism using the SC model described in
Section 3. Likewise, hybrid_gl10+scc uses the SCC model for choice predictions. Predictors hybrid_gl1+scc
and hybrid_gl1+sc are extended versions of the hybrid_gl10+4scc and hybrid_gl104sc models, respectively,
as they increase the size of the two-level branch predictor to 2048x2 bits.

Moreover, we also implement the prediction model proposed by Chang et al. [3] which we call SCDT model.
In SCDT, profiling is used to classify branches into different groups based on dynamic taken rates and for each
group the same branch predictor is used. If the dynamic taken rate of a branch is 0-5% or 95-100% then this
branch is predicted using the bimodal predictor, otherwise it is predicted using gshare predictor. If there are a
lot of branches that change their behavior dynamically, then SCC captures such behavior better than SCDT.

For example, if the behavior of a branch has k consecutive 0’s and k consecutive 1’s, a bimodal prediction will
be better off since it might reduce aliasing in gshare. By contrast SCDT will always use gshare. We also perform
experiments using a random choice model which we call RAND model and it randomly selects a branch predictor
statically. The hybrid_gl10+scdt and hybrid_gl104rand results are based on the SCDT and RAND models
respectively.

As shown in Figure 2, increasing the size of the global branch predictor alone does not perform as well as
using a hybrid branch predictor. For example, the gsharel2 predictor consists of more prediction entries than
the hybrid_g10 branch predictor provides (area comparison is shown in Table 2), but none of the benchmarks
shows the gsharel2 branch predictor outperforming the hybrid_g10 branch predictor.

Also shown in Figure 2, instead of having a hardware choice predictor, we can achieve comparable prediction
rates using a static off-line choice predictor. Our simulation results show that SCC does not perform as well as
SC. This is because the SC model can account for aliasing in its model and hence is more accurate. The difference
of these two models is less than 2% in branch miss prediction rates.

Comparing between SCC and SCDT, both schemes provide comparable results. This suggests that branches
with varying behavior, as explained earlier, rarely occur in SPEC2000. Selecting branch predictors at random
does not provide as good an average result as our SCC and SC.

We also show that instead of having a hardware hybrid choice predictor, we can employ a static choice
prediction and increase the size of the global branch predictor. The hybrid_gl1-+sc model demonstrates the
best prediction rate among others for most of the benchmarks.

Figure 3 shows the normalized performance speedups of various prediction schemes; the baseline in this figure
is gsharel0. The results show that the speedup’s improve as the prediction rates increase. We expect the increase
will be more significant with deeper, and wider machine.

@ gsharell B gsharel2 O hybrid_g10 O hybrid_gl0+scc mhybrid _g10+sc
ll:lgr;yb rid_giQ+scdt mhybrid_gi0+rand Chybrid_gli+scc mhybrid_gli+sc

1.3

gzip vpr mcf crafty parser perl gap bzip2 twolf
Fig. 3. Normalized speedup with different branch predictors.

Previously, we explained that the motivation of our work is to reduce the area and power consumption of a
branch predictor while retaining the performance. To this end, we use Wattch to collect the power statistics of the
branch predictor and other functional units of the processor. Both dynamic and static power consumption were
considered in our evaluation. For each functional block (such as BTB, branch predictor, i-cache, and d-cache),
the switching power consumed per access is calculated along with the total number of accesses to that block.
Additionally, when a block is not in use, we assume an amount of static power equal to 10% of its switching power
is consumed. Note that this amount will increase significantly when migrating to the future process technology.
Thus, the elimination of the choice predictor will gain more advantage in overall power dissipation. We also
want to mention that we examined the effect of our branch prediction schemes on the power consumption of
the branch direction predictor, and we claim improvements on the power consumption of the branch direction
predictor.

Figure 4 shows the normalized power consumption values for different branch predictors, relative to the
power consumption of gsharel0. From this Figure and Figure 3, we can tell that for nearly all the benchmarks,
hybrid_gl10+sc yields the best processor performance for little branch prediction power. We can use Figures
3 and 4 as guides in a design space exploration framework, where the power budget of the branch predictor is
limited, and a specific performance constraint has to be satisfied. For example, the results in Figure 4 show that
the removal of the choice predictor in hybrid_g10 can reduce the power consumption to a level comparable to
that of gsharell. Similarly Figure 3 shows that hybrid_g10+sc outperforms gsharell, for all the benchmarks.
Hence we can deduce that using hybrid_g10+sc is more advantageous in terms of both the power dissipation

mgsharell m gsharel2 Ohybrid_g10 O hybrid_g10+scc mhybrid_gi0+sc
m hybrid_g10+scdt m hybrid_g10+rand [1hybrid_gi1+scc mhybrid_gli+sc

3.5+

3 M
2.5 1

2 =
1.54

1

gzip vpr mcf crafty parser perl gap bzip2z twolf Avg
Fig. 4. Normalized power consumption of different branch predictors.
E %%?{5191,1 0_scdt = ﬁ?ﬁ?ﬁl& 0_rand % Wgﬂgf’él ?_scc E %Bﬂgﬁ] ?:ggc BIGRLELA

gzip vpr mcf crafty parser perl gap bzip2 twolf Avg
Fig. 5. Normalized processor energy with different branch predictors.

and performance. We present the total energy consumption of the processor in Figure 5. Despite the fact that
gsharel0 has lowest power consumption, all other branch predictors outperform gsharel0 in terms of total
energy consumption. When we compare the power consumption with static and dynamic methods for the same
type of branch predictor, static choice predictor consumes less power. However the total energy consumption
depends not only the power consumption but also execution time. Hence hybrid_g10 model which has better
the performance on average than hybrid_gl0-+scc has smaller energy consumption. Hybrid_gl10+sc instead
has the smaller energy consumption than most of branch predictors including hybrid_g10 since it is faster and
consumes less power. Moreover hybrid_gl1-+4sc which has higher branch prediction’s power dissipation than
hybrid_g10+sc outperforms all branch predictors in terms of total energy consumption.

Next, we study the impact of profiling on the training input set of our SC and SCC training. We aim to show
how our models SCC and SC are affected as a result of various training data. We use three different input sets
for profiling: test, train, and reference. The results show little impact on the branch prediction outcomes. The
results are detailed in Figure 6 where the baseline is again gsharel0. Figure 6 shows that SCC is less sensitive
to profile information than SC. This is because SC incorporates aliasing information in its model. Let us consider
the Control Flow Graph (CFG), which is shown in Figure 7. Assume that branches ¢ and ¢ point to the same
location in global branch predictor and also are predicted accurately by a global branch predictor if there is no
destructive aliasing. If branches a and ¢ destructively interfere with each other, this results in profiling say that
loop A-C'is called more frequently than loop B-C hence static choice predictor will assign both branches a and
¢ to local branch predictor. However on the running input set, if loop C-A runs more often than loop B-A then
assigning both @ and ¢ to local branch predictor can reduce branch prediction accuracy. Figure 6 also shows
that if profile information has the same behavior as the real input set, static choice predictor can outperform
hardware choice predictor in most benchmarks.

We then perform experiments using different hybrid branch predictors to show that SC and SCC are equally
compatible with different kinds of hybrid branch predictors. In this set of experiments, gsharel0 is our chosen
baseline. The results are shown in Figure 8. Note that hybrid PAg is a hybrid branch predictor similar to
the one used in Alpha 21264 processor. It consists of a two-level local predictor with a local history table size
of 1024x10 bits, local predictor size of 1024x2 bit and with global and choice predictors of size 1024x2 bit.
hybrid_GAp stands for a hybrid branch predictor with a 1024x2 bit bimodal predictor and four of 1024x2 bit
counters instead of one such counter as in hybrid_g10.

Since SCC is not intended to target hybrid_PAg, i.e it cannot exploit full advantages from local branch
predictor in hybrid PAg, we exclude the result of the SCC on hybrid PAg. For example, if we have local

m hybrid_g10 mhybrid_glO+scc+test [hybrid_glO+scc+train O hybrid_g10+scc+ref
W hybrid_g10+scc+test mhybrid_glQ+sc+train m hybrid_g10+sc+ref

1.35 -
1.3
1.25
1.2
1.15
1.1

1.05 4
At

0.95
gzip vpr mecf crafty parser perl gap bzip2 twolf Avg

Fig. 6. Normalized speedup on different profiling input sets.

Basic block A'| [Basic block B
Inst 1 Inst 1

Hist. Global
Bpred.

a: branch b: branch

Basic block C
Inst 1

¢: branch

Fig. 7. CFG example showing aliasing impact.

history pattern of 1010101010, Cp is 0 and SC will not choose local branch predictor but local predictor in
hybrid_PAg can predict this pattern accurately.

Results shown in Figure 8 also indicate that SC works well with hybrid PAg.

@ hybrid_g10 [] hybr'ld%lo,scc O hybrid_g10_sc O hybrid_PAg

135 ® hybrid_PAg_sc mhybrid_GAp mhybrid_GAp_scc Dhybrid_GAp_sc
1.3

1.25 I

1.2

1.1

1.05 4
AT
0.95 - -
gzip vpr mcf crafty parser perl gap bzip2 twolf Avg
Fig. 8. Normalized speedup on different hybrid branch predictors.

We now report the power consumption of different branch predictors and total energy consumption of the
processor using these branch predictors. Figure 9 shows the normalized power consumption for different hybrid
predictors relative to gsharel0. In this figure, we observe that for hybrid_g10, and hybrid_GAp, using SC
and SCC methods bring an improvement of 42% on average. The average improvement for hybrid_ PAg is
around 37%. The power consumption in hybrid_GAp is not too high compared with hybrid_g10 since clock
gating is applied to unused predictors. Figure 10 shows the total energy consumption of the processor using these
hybrid predictors. Using SC method with hybrid_PAg branch predictor gives the best result in terms of the
energy consumption of the processor and this is due to the high speedup obtained using hybrid _PAg_sc which
is observed on Figure 8.

These results allow the possibility of replacing the hardware choice predictor with our schemes, and reclaim
in its corresponding die area. Assuming a static memory array area model, as described in [13], for the branch
predictor, the area can be quantified as followings:

areastatic_memory = 0.6 (sizey + 6) (liney + 6) rbe (1)

where size, is the number of words, line, is the number of bits and rbe is an area unit of a register cell.
The two +6 terms approximate the overhead for the decoder logic and sense amplifiers. Based on equation 1,
we derived the normalized areas of different branch predictors relative to gsharel0 in Table 2. Note that the
branch predictor area saved by using our profile-guided SCC and SC schemes for hybrid_gl10 predictor is
33.18%. The saving is less for other predictors because these predictors are comprised of more complicated local
and global predictors which consume a lot of area. One interesting result in the table shows that the area of
hybrid_GAp-sc/scc is smaller than the area of hybrid_gl10. This is due to the fact that fewer decoders
are needed for hybrid_GAp+sc/scc compared to hybrid_g10. The four 1024x2 bit tables in hybrid _GAp
share the same decoder, hence we need only one 10x1024 decoder and one 2x4 decoder for hybrid_GAp, while
hybrid_g10 needs three separate 10x1024 decoders (one for each predictor).

Table 2. Normalized area of hybrid branch predictors.

Branch predictor |Normalized area

gsharell 1.9822

gsharel2 4.806

hybrid_g10 2.973

hybrid_gl0+scc/sc 1.986

hybrid_gl1 3.955

hybrid_gll+scc/sc 2.968

hybrid PAg 4.946

hybrid PAg+sc 3.959

hybrid_GAp 3.713

hybrid_GAp+sc/scc 2.726
O hybr‘id_%lo B hyb ﬁd_%lO_SCC O hybrid_g10_sc O hybrid_PAg
mhybrid_PAg sc mhybrid_GAp m hybrid_GAp_scc [hybrid_GAp_sc

Ll Y I TS T SO, B - R e
I

gzip vpr mcf crafty parser perl gap bzip2z twolf Avg

Fig. 9. Normalized power consumption of different hybrid branch predictors.

6 Conclusions

In this paper, we study two profile-guided techniques: Static Correlation Choice and Static Choice, for performing
off-line static choice predictions. Our work offers the possibility of eliminating the hardware choice predictor while
achieving comparable performance results. In other words, the branch prediction rates attained by dynamic choice
predictors can also be achieved using the two proposed models, thus resulting in similar performance. The studies

@ hybrid_g10 W hybrid_g10_scc O hybrid_g10_sc O hybrid_PAg
_%Ag_sc O hyb ridfa

W hybrid Ap W hybrid_GAp_scc O hybrid_Gap_sc

gzip vpr mcf crafty parser perl gap bzip2 twolf Avg
Fig. 10. Normalized processor energy with different hybrid branch predictors.

we carried out using different input data further indicate that the SC and SCC techniques are largely insensitive
to profiling data. By using our techniques, we can reduct the power dissipation of the branch predictor by 40%
on average. Moreover, an average saving of 27% in branch predictor area can be saved.

References

N =

o

14.

15.
16.

17

S © N

T. Ball and J. R. Larus. Branch Prediction for Free. In PLDI-6, 1993.

D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for Architectural-Level Power Analysis and Opti-
mizations. ISCA-27, June 2000.

P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y. N. Patt. Branch Classification: a New Mechanism for Improving Branch
Predictor Performance. International Journal of Parallel Programming, Vol. 24, No. 2:133-158, 1999.

Daniel Chaver, Luis Pinuel, Manuel Prieto, Francisco Tirado, and Michael C. Huang. Branch Prediction on Demand:
an Energy-Efficient Solution . In Proceedings of the 2008 International Symposium on Low Power Electronics and
Design, 2003.

Intel Corporation. TA-64 Application Developer’s Architecture Guide. Intel Literature Centers, 1999.

J. A. Fisher and S. M. Freudenberger. Predicting Conditional Branch Directions From Previous Runs of a Program.
In ASPLOS-5, pages 85-95, 1992.

D. Grunwald, D. Lindsay, and B. Zorn. Static Methods in Hybrid Branch Prediction. In PACT’98, 1998.

John L. Henning. SPEC CPU2000: Measuring CPU Performance in the New Millennium. IEEE Micro, July 2000.
R. E. Kessler. The ALPHA 21264 Microprocessor. IEEE Micro, March/April 1999.

H.-H. S. Lee, J. B. Fryman, A. U. Diril, and Y. S. Dhillon. The Elusive Metric for Low-Power Architecture Research.
In Workshop on Complezity-Effective Design, 2003.

. SimpleScalar LLC. SimpleScalar Toolkit version 3.0. http://www.simplescalar.com.
12.
13.

S. McFarling. Combining Branch Predictors. Technical Report TN-36, Compaq Western Research Lab, 1993.

J. M. Mulder, N. T. Quach, and M. J. Flynn. An Area Model for On-Chip Memories and its Application. IEEE
JSSC, Vol. 26 No. 2, February 1991.

Shien-Tai Pan, Kimming So, and Joseph T. Rahmeh. Improving the Accuracy of Dynamic Branch Prediction Us-
ing Branch Correlation. Proceedings of the 5th International Conference on Architectural Support for Programming
Languages and Operating Systems, 1992.

J. E. Smith. A Study of Branch Prediction Strategies. In ISCA-8, 1981.

T.-Y. Yeh and Y. N. Patt. Two-Level Adaptive Training Branch Prediction. In MICRO-24, 1991.

C. Young and M. D. Smith. Static Correlated Branch Prediction. ACM TOPLAS, 1999.

