
Ally: OS-Transparent Packet Inspection
Using Sequestered Cores

Jen-Cheng Huang* Matteo Monchiero† Yoshio Turner‡ Hsien-Hsin S. Lee*

*School of Electrical and Computer Engineering †Intel Labs ‡HP Labs
Georgia Institute of Technology Barcelona, Spain Palo Alto, CA 94304

Atlanta, GA 30332 matteo.monchiero@intel.com yoshio.turner@hp.com
tommy24,leehs@gatech.edu

ABSTRACT
This paper presents Ally, a server platform architecture that
supports compute-intensive management services on multi-
core processors. Ally introduces simple hardware mecha-
nisms to sequester cores to run a separate software environ-
ment dedicated to management tasks, including packet pro-
cessing software appliances (e.g. for Deep Packet Inspection,
DPI) with efficient mechanisms to safely and transparently
intercept network packets. Ally enables distributed deploy-
ment of compute-intensive management services throughout
a datacenter. Importantly, it uniquely allows these services
to be deployed independent of the arbitrary OSs and/or
hypervisor that users may choose to run on the remaining
cores, with hardware isolation preventing the host environ-
ment from tampering with the management environment.
Experiments using full system emulation and a Linux-based
prototype validate Ally functionality and demonstrate low
overhead packet interception; e.g., using Ally to host the
well-known Snort packet inspection software incurs less over-
head than deploying Snort as a Xen virtual machine appli-
ance, resulting in up to 2x improvement in throughput for
some workloads.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General

General Terms
Management, Design, Security

Keywords
multicore, packet inspection, isolation, computer architec-
ture, multicore partitioning

1. INTRODUCTION
Packet processing services like Deep Packet Inspection (DPI)
are used in datacenters for functions including intrusion de-
tection, content insertion, performance monitoring, traffic
classification, and flow management [1]. These services are
provided by specialized appliances deployed at the bound-
ary (e.g. wide-area network gateway) between the datacen-
ter and the external network to process traffic entering or
exiting the datacenter.

This approach is poorly suited to processing traffic that re-
mains local to the datacenter, even though local traffic is

growing in importance. To exploit economies of scale, mod-
ern datacenters consolidate many inter-connected applica-
tions and services. This trend is clear for both private En-
terprise datacenters and public cloud computing datacen-
ters, which support a fast-changing multitude of mutually
untrusted tenants. These models call for packet processing
services to be flexibly placed on-demand throughout a data-
center rather than just at the external boundary. An attrac-
tive approach would co-locate packet processing with user
applications throughout a datacenter [2], enabling packet
processing services to leverage the abundant compute and
memory resources on commodity servers.

This paper presents Ally, a server architecture that provides
the basic building block for distributed packet processing
services. Ally adds hardware partitioning to a server, en-
abling it to run two parallel and independent software stacks
– one stack for user applications and OS or hypervisor, and
a second software stack for packet processing. Ally also adds
processor support for OS-transparent network packet inter-
ception by the packet processing stack. Finally, Ally reuses
the existing management network interface on the server for
datacenter administrators to deploy and control packet pro-
cessing services.

As we enter the era of processors with a large number of
inexpensive cores, like Intel Many Integrated Core (MIC)
architecture [3] which integrates more than 50 lightweight
cores, the approach of Ally is to partition a processor into
a “privileged” set of cores that execute packet processing
services, and an “unprivileged” set of cores that execute user
applications and operating systems. Completely separate
software stacks can run in parallel in the two partitions.
Ally’s hardware extensions are intentionally minimal. They
are invoked only on low frequency I/O actions (interrupts
and memory-mapped I/O accesses), with no impact on other
computation and negligible impact on processor clock speed
and power consumption.

Using multicore partitioning for packet processing has im-
portant advantages over the alternative approaches of en-
hancing NICs or deploying packet processing in hypervisor-
hosted virtual machines (VMs). Compared to enhancing the
NIC, using CPU cores allows new functionality to be pro-
vided in software without hardware changes, and can lever-
age the large capacity of server memory and the high per-
formance of modern processors. General-purpose cores may

Figure 1: Target platform architecture

also be used in future processors to control on-chip hard-
ware accelerators like GPUs or regular expression engines.
Moreover, a CPU-based approach is not limited to packet
processing but could also support management services re-
lated to storage, power, etc. Compared to using VMs for
isolation, Ally’s hardware partitioning may be more reliable
by avoiding resource and fate sharing, and by presenting a
narrower attack surface than the full set of hypercall APIs.
Hardware partitioning also preserves existing software gen-
erality instead of forcing datacenters to use a common hy-
pervisor on every server. Ally preserves and extends existing
server management interfaces and capabilities and supports
both virtualized and non-virtualized OSs.

We carried out functional validation of Ally hardware exten-
sions using the QEMU [4] full system emulator. To evaluate
Ally’s performance, we built a software prototype that mod-
ifies the Linux kernel to emulate Ally hardware functions.
Using the well-known Snort packet inspection software, our
experimental results show that Ally+Snort has acceptably
low overhead for packet interception. For the workloads we
studied, Ally achieves from 56% to 100% higher throughput
than a system that uses a Xen hypervisor driver domain to
transparently intercept and inspect packets.

The rest of the paper is organized as follows. Section 2 de-
scribes our assumptions about the platform architecture and
the NIC-OS model. Section 3 describes the trust and threat
model motivating the design of Ally. Section 4 describes
the Ally architecture, including core sequestering, memory
protection, and packet interception mechanisms. Section 5
presents the experimental evaluation. Section 6 discusses
related work, and Section 7 concludes.

2. ASSUMPTIONS
This section describes our baseline architecture and reviews
the interaction between an OS and a NIC.

2.1 Platform Architecture
Figure 1 is a simplified block diagram of a generic platform
architecture, built around a multicore processor with many
cores sharing a Last Level Cache (LLC). Cores are logically

grouped into a privileged partition and an unprivileged par-
tition. Privileged cores run management applications, while
unprivileged cores run OS/hypervisor and user applications.
As we focus on DPI as a primary use-case, we often refer to
the cores in the privileged partition as DPI cores and the
cores in the unprivileged partition as OS cores.

Each core has a Memory Management Unit (MMU) for
virtual-to-physical address translation, and a local interrupt
controller (Local APIC). An integrated Northbridge has a
Memory (DRAM) Controller, PCIe I/O controller, Interrupt
Unit to route interrupt signals to the proper Local APIC
from the IOAPIC or through Message Signaled Interupts
(MSI), I/O Memory Management Unit (IOMMU), and a
point-to-point high speed link (e.g., Intel DMI) connecting
to a Platform Controller Hub (PCH).

A service processor (e.g. Intel iAMT [5] or HP iLO [6])
is used to manage the platform. The service processor in-
terfaces to the CPU via the PCH. The service processor
has a a dedicated network interface typically attached to a
dedicated management network. With Ally, datacenter ad-
ministrators use this management network to deploy packet
processing services in the privileged partition.

2.2 OS-NIC Interaction
We describe OS-NIC interaction using the popular Intel Pro/1000
NIC. The same description applies to most modern NICs
with only minor differences.

The NIC has transmit/receive buffers and a set of device
registers mapped into the system memory address space.
One register points to a transmit descriptor queue and an-
other one to a receive descriptor queue. Both queues re-
side in the host main memory. Each descriptor contains a
pointer to packet data that must be transmitted or to receive
buffers. For each queue, memory-mapped Head Pointer and
Tail Pointer registers record the head and tail position in
the queue as buffers are posted and as packets are received
and transmitted.

The OS advances the Tail Pointer to notify the NIC that
some descriptors have been posted and await being con-
sumed (either transmitted or received). The NIC uses Direct
Memory Access (DMA) to transfer descriptors and packets
between the NIC buffers and the main memory. Once a
transfer has completed, the NIC updates the Head Pointer
and raises a completion interrupt. Most NICs use interrupt
coalesce timers to reduce interrupt frequency and associ-
ated software processing overheads by waiting for a batch
of packet I/Os to be completed before signaling an inter-
rupt. The OS may determine which I/Os have completed
by reading the Head Pointer or by inspecting the status of
the queued descriptors.

3. TRUST AND THREAT MODEL
The trusted entities of an Ally-based system are the hard-
ware, the firmware (BIOS), and the software running on the
privileged (DPI) cores. We assume that the BIOS FLASH
chips include hardware protection against re-writing by OSs.
For maximum security, the firmware and the privileged cores’
software are not directly exposed to the external network.
Instead, a dedicated management channel is provided to con-

figure the BIOS and to deploy services on the DPI cores, in-
cluding platform-specific device drivers. This channel uses a
distinct network interface connected to a management net-
work via a service processor, as shown in Figure 1. Addition-
ally, the DPI cores can use this channel to raise management
alerts when suspicious traffic is detected. Each hardware ex-
tension in Ally is controlled through memory-mapped I/O
(MMIO) configuration registers accessible only to the priv-
ileged cores and exposed to the datacenter via the manage-
ment channel.

Ally can be used to deploy a DPI engine to protect against
transmission and reception of malicious network traffic for
the workloads running on unprivileged cores. As described
in Section 4.3, Ally offers configurable mechanisms for packet
interception. This allows administrators to select the degree
of protection provided depending on the perceived threat
level of the workloads running in the unprivileged domain,
allowing a configurable trade-off between cost/performance
and protection.

Denial of service attacks where software on unprivileged
cores guesses the Local APIC ID of the DPI-Core and gen-
erates corresponding interrupts can be avoided by having
the DPI cores configure their Interrupt Descriptor Tables to
ignore all interrupts from non-authorized devices.

4. ARCHITECTURE
Ally provides an ensemble of hardware, firmware, and soft-
ware mechanisms. Ally creates two partitions: a privileged
partition for DPI cores, and an unprivileged partition for OS
cores. Physical memory is split in two separate regions, one
for each partition, and independent software stacks boot in
each partition. Memory protection is extended to prevent
OS cores from reading or writing the memory region of the
DPI cores, while allowing DPI cores in the privileged parti-
tion to access OS memory. Simple mechanisms enable DPI
cores to intercept packets exchanged between OS cores and
NIC. Table 1 summarizes the hardware modifications.

Ally’s approach of using hardware partitioning leverages the
current trend toward very high core count processors. Some
cores can be assigned to packet processing on behalf of other
cores, enabling better utilization of processor resources. Us-
ing Ally, a datacenter manager can adjust the number of
sequestered cores at boot time depending on system load
and the computational intensity of the DPI engine.

4.1 Core Sequestration
Core sequestration enables distinct software environments to
be booted in each partition. Conventional Intel multiproces-
sor (MP-compliant) systems use a standard boot procedure
at startup. Ally works with this boot procedure to launch
the DPI environment on the DPI cores and to conceal the
DPI cores from the OS cores.

In the conventional procedure, a core (called BSP core)
wakes up the other cores (called AP cores). Each AP core
runs code loaded from BIOS which executes a self-test and
enters the core’s unique identifier (Local APIC ID) into the
ACPI’s Multiple APIC Description Table (MADT) and the
MP configuration table. The OS uses the MADT and the
MP configuration table to find all information needed to

Table 1: Hardware/Firmware Modifications

Unit Modification
OS cores’ MMU Prevent memory accesses to DPI memory

from OS cores
IOMMU Prevent non authorized DMA to DPI

memory
IDT Prevent non authorized interrupts

from OS cores to DPI cores
BIOS Boot DPI appliance and hide DPI cores/

memory
Interrupt Unit Redirect NIC interrupts to DPI cores
OS cores’ MMU Redirect MMIO register accesses to

DPI memory
All units Extra MMIO registers to configure Ally

functionalities

Figure 2: Modified Memory Management Unit.
Ally uses a modified TLB Miss Handler to protect
from unauthorized memory accesses

discover and communicate with a core. After initialization,
each AP core halts and waits for an Inter-Processor Inter-
rupt (IPI) to resume execution.

Ally uses a modified BIOS that selects some AP cores as
DPI cores and loads a custom initialization procedure onto
each DPI core. The custom procedure deletes the DPI core’s
entry from the MADT and the MP configuration table, thus
hiding the DPI core from the OS cores. The DPI cores then
load the custom Interrupt Descriptor Table and begin to
load the DPI software environment.

The DPI cores interact with the built-in service processor
to request the most up-to-date DPI application from a re-
mote management server. The service processor downloads
an executable image via the management network into DPI
memory for the DPI cores to execute.

4.2 Memory Protection
Ally splits the physical address space in two regions identi-
fied by a simple range check, i.e., checking whether physical
addresses are above or below a dividing boundary line. Ally
adds a memory-mapped I/O (MMIO) configuration register
to the MMU for each core that stores the boundary address
between DPI and OS memory. This range check is much
simpler than adding a new level of address translation, and
is fully compatible with the existing address translation hi-
erarchy, including nested or extended page tables.

To prevent OS cores from accessing DPI memory, the MMU
needs a simple address check on each hardware page table
walk, to verify that the translated physical address falls in
an accessible region for the core that caused the access. The
modified TLB Miss Handler (TMH), shown in Figure 2, ver-
ifies that any physical address, which is being loaded in the
TLB on an OS core, is not in the range of DPI memory. This
address check has very low overhead on the performance of
the system. It has no overhead on TLB hits, since it happens
only for TLB misses. In this case, the address comparison
is likely to take a fraction of cycle, a negligible overhead for
a TLB miss, which may have orders of magnitude higher
latency.

Ally uses a similar check for the I/O Memory Management
Unit (IOMMU) to prevent non-authorized devices from per-
forming DMA writes to DPI memory. Both checks are also
used to protect DPI memory in x86 real address mode (usu-
ally only needed early in the boot process).

4.3 Packet Interception
Ally enables DPI cores to transparently intercept, examine
and potentially modify packets in both transmit and receive
directions between OS and NIC. Packet interception is ac-
complished by virtualizing the NIC descriptor queues. Ally
maintains a copy of each descriptor queue in DPI memory
and configures the NIC to use these queues (DPI queues)
instead of the descriptor queues in OS memory (OS queues)
through configuring the base pointers of descriptor queues.
The DPI cores are thus responsible for synchronizing the
DPI queues with the OS queues.

DPI cores inspect packets referenced by the enqueued de-
scriptors. Once packet processing is done, DPI cores trans-
fer descriptors between the virtual descriptor queues seen by
the device driver on OS cores and the real NIC descriptor
queues.

The DPI cores interpose between the OS and the NIC. This
interposition is logically transparent to both the OS (or hy-
pervisor) running on the OS core and the NIC because the
usage of the descriptor queue is device dependent, not OS
dependent. Thus, no modification is needed to the OS (in-
cluding the device driver) or the NIC.

The DPI cores download modified NIC drivers via the ser-
vice processor. The modifications are mostly on the transmit
and receive paths, which previous work has shown comprises
only a small portion of the driver code, and which can even
be separated out using an automated process [7] [8]. Modi-
fied drivers would likely be provided by the server vendor to
increase the value of their server management components.
Development costs would be reasonable, since each vendor of
datacenter-class servers ships only a small set of NIC models
to enjoy large volume cost savings and simplify certification.

Since an OS interacts with a NIC through interrupts and
MMIO operations, Ally provides configurable redirection of
these operations to DPI cores for I/O interception. For inter-
rupt redirection, a DPI core specifies which NIC interrupts
(IOAPIC and MSI) are to be redirected, and the modified
Interrupt Unit in the Northbridge steers the selected inter-
rupts to DPI cores. The software on DPI core uses Inter-

!"#$
%&'()*+$
,--'.//$

0.-&'.1234$#&($

"*/($".5.+$
6*17.$

89$
0.-&'.1234$
#&($&/$!').$

0.:*;;.-$
<7=/&1*+$
,--'.//$

<7=/&1*+$<*>.$

%&'()*+$;*>.$

<7=/&1*+$
,--'.//$

!'*4/+*234$

?@/.($
A&//$

B&($

"33C$);$&4$
(7.$
0.-&'.1234$
!*D+.$

E.4.'*(.$8<8$

63'.$

Figure 3: Address redirection flow, involving TLB
redirection and access to the Redirection Table
cached in the Last Level Cache

Processor Interrupts (IPIs) to mimic NIC interrupts back to
the OS.

For MMIO redirection, any MMIO access performed by an
OS core and directed to the NIC descriptor queue registers
must be redirected to a reserved area of DPI memory. This
leaves the DPI cores in control of the NIC real registers. The
accesses that need to be redirected include accesses to the
base pointers of the descriptor queues and the Tail/Head
registers of each queue. In addition, accesses to interrupt-
related registers must also be redirected. This allows the
DPI cores to control the interrupt rate based on the packet
processing speed and allows the OS cores to transparently
use interrupt mitigation techniques like Linux NAPI. Over-
all, there should be less than ten MMIO registers needed to
be redirected.

Ally enhances the MMU and TLB to provide MMIO access
redirection. Figure 3 shows an efficient implementation. All
MMIO remappings are specified in a Redirection Table in
DPI memory. This table is small, requiring less than ten
entries per NIC. Each entry specifies an MMIO address and
the translated address to the redirected location.

On OS core TLB miss, the TLB Miss Handler (TMH) per-
forms the usual page table walk. Since MMIO pages are
by definition uncacheable, the TMH checks if the resulting
physical address refers to an uncacheable page (and hence
potentially an MMIO page). If the page is uncacheable, then
the TMH checks the Redirection Table to see if any address
in the table belongs to the faulting page. If so, the TMH
sets a new “redirection” bit in the TLB entry.

Redirection Table lookup also occurs when an OS core per-
forms a memory access that results in a TLB hit to an entry
that has the redirection bit set. The lookup determines if
the specific address that was accessed has a remapping. If
a remapping is found, the MMU uses the remapped address
as the translated address, and raises an IPI to notify a DPI
core of the access attempt by the OS core.

As an exception of our memory protection mechanism, the

OS core MMU allows accesses to some special regions in DPI
memory in cases of MMIO access redirection and Redirec-
tion Table lookup. Since the access conditions and special
regions are predefined by the privileged partition, other ille-
gal accesses cannot bypass the OS core MMU and accesses
DPI memory randomly.

For normal memory accesses, the redirection bit is not set,
incurring no extra overhead. For the minority of accesses
that need Redirection Table lookup, Ally uses the Last Level
Cache (LLC) to cache the small Redirection Table, speeding
up table lookup. Overall, Redirection Table lookup has neg-
ligible impact on silicon area, has no impact on normal mem-
ory accesses, and slightly increases the latency of MMIO
accesses comprising only a small fraction of total memory
accesses.

We next describe the steps taken by DPI cores to inter-
cept packets and virtualize the device queues. Since the
real Head/Tail Pointer registers in the NIC refer to DPI
queues, we call them DPI Head/Tail Pointers, while the vir-
tual Head/Tail Pointers stored in the reserved DPI memory
region refer to OS queues, so we call them OS Head/Tail
Pointers.

Figure 4 illustrates the operation of the descriptor queues on
packet reception. The OS preallocates descriptors in the OS
queue. A DPI core copies the descriptors to the DPI queue
and updates the DPI Tail Pointer, which is visible to the
NIC, thus notifying the NIC that descriptors are available for
the incoming packets. The NIC copies the received packets,
completes the descriptors in the DPI queue, and updates
the DPI Head Pointer. At this point the DPI processes the
received packets. To allow the OS to consume the received
descriptors, the DPI marks the descriptors as complete in
the OS queue and updates the OS Head Pointer. Finally, the
DPI sends an IPI to an OS core to notify it that reception is
complete. The OS can thus proceed to consume the received
packets.

In the case of packet transmission, the OS posts descriptors
in its transmit queue and advances the Tail Pointer. Ally
intercepts the write to the Tail Pointer which is not prop-
agated to the NIC, but to the copy kept in DPI memory,
i.e., the OS Tail Pointer. The OS core’s MMU raises an
IPI to a DPI core, enabling the DPI core to detect that the
Tail Pointer has been updated. The DPI copies the newly
posted descriptors from the OS queue to the DPI queue. It
processes the packets referenced by the descriptors, and up-
dates the DPI Tail Pointer. This Tail Pointer is visible to the
NIC, which then fetches the descriptors from the DPI queue
and also the corresponding packets. After transmission is
complete, the DPI core marks the descriptors complete in
the OS queue and raises an IPI to notify the OS core.

The packet interception mechanism is sufficient to protect
low threat workloads on OS cores from inadvertently read-
ing uninspected packet data on the receive path. In order
to maliciously transmit uninspected data, the OS core soft-
ware would need to modify the packet data after inspection
completes but before the data DMA to the NIC completes
– a time window that cannot be predicted in general.

(a) Descriptors are made available by the OS
in the OS descriptor queue. OS increases OS
Tail Pointer

(b) DPI gets interrupted by the OS core, copies
descriptors, and updates DPI Tail Pointer

(c) NIC copies received packets and descrip-
tors, marking descriptors as completed in the
DPI queue. NIC updates DPI Head Pointer.
DPI processes packets

(d) DPI marks descriptors in the OS queue as
completed. DPI updates OS Head Pointer.
The OS can thus consume the packets and
clean the OS queue

Figure 4: Receive: Evolution of the descriptor
queues in Ally

To provide higher levels of protection, Ally could operate
in conjunction with slightly enhanced NIC hardware. Cur-
rent NICs compute packet data checksums, and could be
extended to write checksum values to the receive descriptor
queue, and verify DPI-computed checksum values that it
reads from the transmit descriptor queue, thereby enabling
full detection of packet content tampering. Alternatively, a
naive software-only solution to enhance protection for high
threat workloads is to copy packet data between OS and
DPI memory, incurring higher overheads.

4.4 User-Kernel Space Interaction

Table 2: QEMU Results

TCP STREAM TCP MAERTS TCP RR

Instructions/pct 21.33 71.99 246.40
Interrupts/pct 0.04 0.39 1.98
Data movements 19.34 31.88 63.05
(bytes/pct)

Ally supports the execution of a complete operating system
in DPI cores with separate kernel-level and user-level exe-
cution modes. In this case, the DPI engine can be deployed
as a user space application. This has several advantages
in terms of programmability, allowing the use of standard
libraries and debugging tools, but requires efficient kernel
space - user space communication.

The basic Ally services (packet interception) run in the ker-
nel, while packet inspection is performed in user space. We
developed an efficient software mechanism to deliver inter-
cepted packets from kernel space to user space on DPI cores
leveraging Ally’s operating model. Since all code on DPI
cores is trusted, the DPI cores can fetch packet data di-
rectly from the kernel-level packet buffers pointed to by the
NIC TX and RX descriptors. This is accomplished by map-
ping the whole kernel space into DPI address space (e.g.
using /dev/mem in Linux). In addition, we use a socket-like
mechanism (netlink in Linux) to communicate updates of
the descriptor head and tail pointers to the DPI engine. For
example, when the OS tries to transmit packets by updating
the tail register of the virtual TX queue, the updated value
is sent as a netlink message to the user space packet inspec-
tion software, which inspects all packets enqueued between
the old and new value of the tail register.

The netmap [9] mechanism that has been developed for the
FreeBSD operating system provides fast packet interception
from kernel to user level, similar to our implementation for
Linux. The netmap mechanism additionally preserves the
classic socket API and provides kernel memory protection
for kernel memory not involved in I/O.

5. EVALUATION
We employ a dual strategy to evaluate Ally. First, we vali-
date the functionality of the proposed hardware and firmware
modifications by adding Ally enhancements to an x86 full
system emulator (QEMU [4]). Second, to assess the per-
formance of Ally on real hardware, we built a Linux-based
prototype. The prototype modifies Linux to emulate the key
functionality of Ally needed for packet interception. The re-
sulting system has performance that should approach the
performance of real Ally hardware.

For both the QEMU-based and Linux-based prototypes, we
use the Netperf micro-benchmarks (www.netperf.org) as
the initial application workload running on an OS core. We
use the two Netperf streaming tests, TCP STREAM for
transmit and TCP MAERTS for receive, and the request-
reply TCP RR test. In all cases, an additional machine
running unmodified Linux was used as the network client.
Finally, we evaluate Ally performance using SPECWeb2005,
a more realistic workload scenario than Netperf in which ap-
plication processing is significant relative to packet process-

ing.

5.1 Full System Emulation
The QEMU-based system successfully boots unmodified De-
bian Linux onto a subset of the emulated CPUs, while retain-
ing one core for exclusive use by the DPI engine. Through
modifications of the BIOS of QEMU, Linux does not de-
tect the existence of the reserved DPI core. In addition,
the DPI core executes custom code loaded from the modi-
fied BIOS. This custom code intercepts all packets between
Linux and the emulated Intel Pro/1000 Ethernet device in
order to verify our queue virtualization technique. After in-
tercepting each packet, the custom code simply forwards it
to the NIC or the OS core. To provide insight into the basic
cost of packet interception, the custom code on the DPI core
was designed only to intercept packets and does not perform
actual DPI processing in this initial test.

We extended QEMU to measure significant events for Ally.
As shown in Table 2, we measured the baseline overhead of
Ally in terms of the number of extra instructions, memory
accesses, and interrupts per packet. By packet, we mean
an Ethernet frame that is transmitted or received over the
external network link. The size of a packet can range from
minimum Ethernet frame size to full size 1514-byte frame.
All results shown in this Table measure cost on the DPI-
core only. Using three Netperf benchmarks, the results in-
dicate that Ally requires at most a few hundred instructions
per packet, and tens of bytes of data movement for MMIO
and receive descriptors. This overhead would typically be
dwarfed by the processing required for an actual DPI appli-
cation.

5.2 Linux-Based Prototype
To estimate the performance of Ally on real hardware in-
stead of QEMU emulated hardware, we extended Linux with
kernel software modifications that emulate Ally hardware
extensions. We favor this evaluation approach over using an
architectural simulator. This is because the additional la-
tency of Ally’s hardware operations such as MMIO redirec-
tion is small (Section 4.3), and so software emulation of these
operations is likely to be conservative. In addition, architec-
ture simulators are very slow, precluding accurate evalua-
tion for realistic workloads having non-trivial runtimes. In
contrast, our approach enables accurate evaluation of Ally
performance for realistic workloads while fully incorporating
the software and hardware complexity of a real system.

Our prototype extends Linux 2.6.28.7 running on an Intel
Core 2 Duo (2GHz) and an Intel PRO/1000 gigabit Ether-
net card. The prototype emulates core sequestration by pin-
ning all the OS activity on one core with Linux CPUSETS,
and the DPI environment on the other core. It is configured
to direct NIC interrupts to the DPI core, and we manually
inserted instructions into the NIC driver source code to gen-
erate IPIs when virtualized registers are accessed. Another
change is for the NIC driver to notify the DPI application
when the DPI core receives an IPI. This requires sending a
Netlink message from kernel to user space. This somewhat
violates the isolation property since the DPI core uses the
Netlink Service provided by the Linux kernel. However, fur-
ther investigation shows that this adds almost no overhead
to the Linux kernel. In this way, the prototype emulates in

software the redirection of the accesses to the NIC registers
that would be provided in the Ally hardware by the mod-
ified MMU. The prototype provides timing-faithful results
not possible to obtain with QEMU.

To evaluate Ally in the context of real packet inspection soft-
ware, we deployed Snort (www.snort.org) on the DPI core.
Snort is a popular open source Intrusion Detection/Prevention
System. All packets intercepted on the DPI core are pro-
cessed by Snort before being forwarded to the NIC or the
OS core. We modified Snort for Ally to use our kernel-user
communication mechanism described in Section 4.4.

While Ally can use an arbitrary number of cores, we limited
experiments to one core for DPI. This is due to the single
threaded nature of Snort. Parallelization techniques could
be used to enable multicore scalability of Snort, but this is
out of the scope of this paper.

We compare our prototype, Ally, with two alternative sys-
tems. The first, Linux, deploys Snort on unmodified Linux.
Linux is configured such that NIC interrupts and Snort are
pinned on one core (“DPI core”), while all other activities
are pinned on a second core (“OS core”). We stress that
this Linux system is not a viable alternative to Ally since
it provides no transparency whatsoever. We use it only
to verify that Ally does not increase processing costs sig-
nificantly compared to native Linux, and to evaluate the
benefits of Ally’s user-kernel interaction mechanism. For
the second system, Xen, we deployed two virtual machines
(VMs), Dom0 and DomU. Each domain has one virtual CPU
(VCPU). Snort runs in Dom0, which intercepts all packets
to/from DomU. The Dom0 VCPU acts as DPI core while the
DomU VCPU acts as OS core. Since the number of VCPUs
is equal to the number of physical cores, we use core pinning
between virtual and physical CPU to avoid performance loss
due to VCPU scheduling, context switching and migration.
In addition, Dom0 and DomU are paravirtualized (PV) do-
mains, which continue to provide higher performance than
fully virtualized (HVM) domains even with modern hard-
ware support for virtualization. The resulting configuration
with VCPU pinning and PV domains is arguably the most
efficient setting we can use in the current Xen implementa-
tion.

Figure 5 shows the throughput achieved by Ally, Linux, and
Xen for the Netperf benchmarks. For the streaming work-
loads, the DPI core is saturated for all three systems and
limits the achieved throughput. For Ally and Linux this
is mainly a result of choosing a highly CPU-intensive rule-
set for Snort as our example use case. Less CPU-intensive
packet processing use cases – e.g., passive monitoring, load
balancing – would likely achieve full line rate bandwidths.
Ally achieves 25-32% higher throughput than Linux for the
streaming benchmarks (TCP MAERTS and TCP STREAM),
and both systems far exceed the performance of Xen. The
low overhead of Ally’s packet interception mechanism leaves
more CPU cycles available for Snort to process packets when
the DPI core is saturated. In contrast, the transaction rate
in TCP RR is limited by the round-trip latency instead of
the CPU cycles Snort can consume. Ally’s queue virtualiza-
tion adds a small delay to the transmit and receive paths
compared to Linux. As a result, Ally achieves similar but

0

1000

2000

3000

4000

5000

6000

7000

0

100

200

300

400

500

600

Ally Linux Xen Ally Linux Xen Ally Linux Xen

TCP_MAERTS TCP_STREAM TCP_RR

Tr
an

sa
ct

io
n

s/
s

M
b

/s

Figure 5: Throughput for Ally, Linux, and Xen
running with Snort. Throughput is in Mb/s for
TCP MAERTS and TCP STREAM, left y-axis,
while TCP RR uses transactions/s, right y-axis

slightly lower TCP RR transaction rates than Linux, and
both systems significantly outperform Xen.

To better understand the reasons behind these high-level
performance results, we used OProfile to analyze the break-
down of CPU processing cost on each core, as described
next.

5.3 Per-Core Processing Costs
Figure 6 shows the CPU cycles consumed on DPI core and
OS core to process each packet on each system for the three
Netperf benchmarks. Since Snort is the only user-level pro-
cess running on the DPI core, we further divide DPI core
cycles into DPI (user) and DPI (kernel) to explicitly show
Snort overhead. The results show that Snort (i.e. DPI-user)
consumes a similar number of cycles per packet across the
three systems. Thus, Snort performs about the same amount
of work per packet in all three systems. Further studies (not
shown) revealed that most cycles are consumed by Snort’s
pattern matching algorithm, which is used to compare the
packet payload against all rules. Snort consumes the ma-
jority of CPU cycles in TCP MAERTS and TCP STREAM
since many packets with large payload are inspected. In
contrast, for TCP RR, only one small packet is inspected at
a time.

The three systems have significantly different processing costs
for DPI (kernel) and OS core. Ally and Linux have roughly
similar OS core costs which are much lower than for Xen.
Ally has lower DPI (kernel) costs than Linux and Xen for
all three benchmarks.

To analyze these differences, we need a further breakdown
of processing costs for DPI (kernel) and OS core. We thus
group source code functions into the cost categories shown in
Table 3. Functions are placed into these categories based on
a static analysis of the Linux source tree and on an analysis
of the dynamic call graph of kernel execution. The following
subsections break down the cost of DPI (kernel) and OS core

0

20

40

60

80

100

120

Ally Linux Xen Ally Linux Xen Ally Linux Xen

TCP_MAERTS TCP_STREAM TCP_RR

cy
cl

e
s/

p
ac

ke
t

*
1

0
3

OS core DPI core (kernel) DPI core (user)

Figure 6: CPU cycles (OS core and DPI core) for
Ally, Linux, and Xen running with Snort

Table 3: Classes grouping Linux functions

Class Description
Packet Interception Functions used to intercept packets
Memory copy Functions used to copy data be-

tween kernel and user space
Network Transmit/receive path related func-

tions
Hypervisor Functions in Xen
Other e.g. time, scheduling

according to these function categories.

5.3.1 DPI Core Costs
Figure 7 shows the breakdown of DPI (Kernel) cost per
packet using the categories of Table 3. We are interested in
the comparison of packet interception mechanism between
Ally and Linux and their corresponding costs on memory
copying. In Linux, Snort normally uses the libipq mecha-
nism to fetch packets from kernel space. This mechanism
leverages the Linux iptables mechanism to intercept and en-
queue network packets at kernel-level into a special queue.
From there, the packets are delivered to the user-level Snort
application using the Linux netlink mechanism, which pro-
vides a standard sockets interface for user-kernel commu-
nication. Each netlink message contains one packet and is
copied from kernel space to user space. After inspection,
Snort sends a verdict back into the kernel specifying how to
deal with those packets (ACCEPT or DROP). Packets ac-
cepted by Snort continue to traverse the network stack. This
libipq mechanism is used in the Linux and Xen systems.

As shown in Figure 7, Linux has higher packet interception
overhead than Ally for the streaming workloads. For libipq
used in Linux, the number of netlink messages is equal to
the number of packets that are analyzed by Snort. There-
fore, Linux has similar netlink overhead per packet in each
benchmark. For Ally, the queue virtualization mechanism
generates a netlink message each time the tail/head point-
ers are updated. For the streaming benchmarks, each update

0

10

20

30

40

50

60

70

80

Ally Linux Xen Ally Linux Xen Ally Linux Xen

TCP_MAERTS TCP_STREAM TCP_RR

cy
cl

e
s/

p
ac

ke
t

*
1

0
3

Packet Interception Memory Copy Hypervisor Network Other

Figure 7: CPU cycles for DPI core (Kernel) for Ally,
Linux, and Xen

corresponds to multiple packets instead of just one packet,
leading to lower overhead for these workloads than in Linux.

In addition, Ally has the lowest overhead in the memory
copy category. The reason is that in Linux the libipq uses
the netlink mechanism to transport entire packets to user
space whereas in Ally the netlink connection is only used to
transport the descriptor head and tail pointers to Snort and
all packet data are directly accessed via memory mapping.
For all benchmarks, Ally has no overhead in the network
category. This indicates the overhead incurred on the DPI
core is purely for packet interception.

For the TCP RR benchmark, Ally has higher packet inter-
ception overhead than Linux, for two reasons. First, the
number of updates of the tail/head pointers is the same as
the number of packets, since only one packet is sent or re-
ceived at a time. Therefore, the number of netlink messages
is similar for Ally and Linux. Second, queue virtualization
requires updating the real head and tail pointers by perform-
ing costly MMIO accesses whose latency cannot be hidden
in TCP RR.

In all cases Xen has much higher DPI core processing cost
than Ally and Linux. Most of the hypervisor overhead is
due to the expensive grant table mechanism which is used to
remap packets from one domain to the other. Even the net-
work processing within Dom0 greatly exceeds that of Linux
and Ally because of the complex backend driver and bridge
mechanism added in Dom0. Overall this result reflects a rel-
atively high cost of packet interception and network interface
virtualization in the current Xen implementation. However,
virtualization costs will likely be reduced by future enhance-
ments to Xen [10, 11]. In addition, optimizations similar to
those we added to Ally could potentially be applied to Dom0
to reduce the cost of intercepting and sending packets to the
user-level Snort application in Dom0, but this is out of scope
of this paper.

In summary, Ally has lower overhead for the streaming work-
loads due to the queue virtualization mechanism and the

0

20

40

60

80

100

120

Ally Linux Xen Ally Linux Xen Ally Linux Xen

Bank Ecommerce Support

cy
cl

e
s/

p
ac

ke
t

*
 1

0
6

OS core (user) OS core (kernel) DPI core (user) DPI core (kernel)

Figure 8: Processing costs for SPECWeb2005 work-
load

reduction in memory copies due to the kernel space to user
space communication mechanism. Of these two mechanisms,
the queue virtualization mechanism contributes a larger por-
tion of the overhead reduction. For the latency sensitive
workload (TCP RR), Ally’s mechanisms provide compara-
ble packet processing latency compared to native Linux. In
all cases, Ally outperforms Xen due to its hypervisor over-
heads and less efficient packet interception.

5.3.2 OS Core Costs
Recall from Figure 6 that OS core costs with Ally are sim-
ilar to the costs with unmodified Linux. In fact the costs
with Ally are slightly lower. However, the difference is less
than 15%. We found that several causes for this difference.
First, in Ally, the OS core accesses virtualized NIC regis-
ters rather than performing the MMIO accesses which incur
higher latency. (Ally performs these MMIO accesses on the
DPI core, and their cost is reflected in the results of Fig-
ures 7). Second, Ally incurs a little more overhead in netlink
functions due to the service shared by the DPI core. Lastly,
for the receive-heavy TCP MAERTS workload in Ally, the
DPI core processing can fetch packet data into the processor
cache hierarchy in advance of OS core processing of the same
packets, potentially reducing the cost of OS core processing.

5.4 SPECWeb Results
While Netperf is useful for understanding system behavior
in network-intensive scenarios that place high requirements
on packet processing services, most real workloads present
a more balanced mix of computing and networking. We ran
experiments using SPECWeb2005 to evaluate Ally with a
realistic workload presenting a mix of requirements for each
resource type. Each benchmark – Bank, Ecommerce and
Support – is run with 100 simultaneous sessions. Apache is
run on OS core (user) while Snort is run on DPI core (user).

The results in Figure 8 show that Support has the highest
number of packets per request which in turn increases the
per-request processing cost of Snort. Traffic encryption in
Bank makes Apache consume much more cycles among all
cases. The kernel cost in Ally shows that its packet inter-

0

2

4

6

8

10

12

14

16

18

20

Ally Native Ally Native Ally Native

Bank Ecommerce Support

C
ac

h
e

 m
is

se
s/

re
q

u
e

st
 *

 1
0

3

OS core (kernel) OS core (user) DPI core (kernel) DPI core (user)

Figure 9: Cache misses for the SPECWeb2005 work-
loads

ception mechanism is more scalable than Xen in which case
the hypervisor cost increases a lot under higher number of
packets in Support.

To study the potential cache sharing and interference effects,
we run Apache with and without Snort using the SPECweb
workloads. Results in Figure 9 show that Apache has a sim-
ilar number of cache misses running with or without Snort.
The cache misses of OS core (kernel) in Ally are a little more
than in Linux possibly because of resource contention due
to the Netlink service shared by the DPI core. The majority
of remaining misses are due to kernel page allocation. The
cache misses of Snort (“DPI core (user)”) are mainly due
to packet decoding and payload inspection, since received
packet data is first touched in our solution by Snort rather
than the Linux kernel (zero-copy for inspection). The DPI
core (kernel) cache misses in Ally are due to descriptor queue
synchronization, as descriptors are invalidated in the cache
when the NIC DMAs the modified descriptors into the main
memory. We also found that there is almost no difference
between the average request latencies of the two cases. The
main contribution to the latency is Apache, not of the packet
processing in Snort. In this experiment, cache interference
is insignificant since the SPECweb traffic workload exercises
only a subset of the Snort rules. It is possible that different
traffic types could lead to higher cache interference depend-
ing on the number of active rules and traffic burstiness. In
such cases, cache partitioning techniques [12] can help to
reduce the interference effect. How to partition the cache
between privileged and unprivileged partitions is left as a
topic for future work.

6. RELATED WORK
Conventional DPI appliances, and other network packet pro-
cessing appliances such as firewalls, are typically implemented
as special-purpose devices at a datacenter gateway [13]. Ally
enables adding this functionality to standard server plat-
forms enabling distributed deployment of local packet pro-
cessing in software. Previous work advocated implementing
these functionalities in virtual machines (VMs) running on
a hypervisor along with application VMs, and using Trusted

Computing (TC) hardware in modern processors to ensure
that the I/O appliances are running authorized code [2].
Ally differs from these approaches by removing dependence
on a hypervisor. By maintaining independence from host
software, Ally provides a general solution serving a wide
variety of customers with diverse OSes and hypervisor de-
ployments, even in a shared datacenter. Moreover, the core
sequestration model avoids the complexities of constructing
chains of attestation using TCB.

In the context of business laptops, the Intel Vpro technol-
ogy [14] provides limited packet filtering capabilities in the
NIC. Ally provides a much more flexible and powerful in-
frastructure applicable to packet analysis or other compute-
intensive system management functions.

Similarly to Ally, a hypervisor could be used to provide sys-
tem partitioning (OS-partition and DPI-partition). Hyper-
visors can additionally host virtual machines called driver
domains to transparently intercept data exchanged between
running guest VMs and I/O devices [15, 16]. Additional
packet processing such as DPI could be performed in soft-
ware in these driver domains [17]. In comparison to using
software virtualization for partitioning and I/O interception,
the hardware/software approach provided by Ally has the
conceptual advantage that the “OS-partition” can run ar-
bitrary user code. In particular, the OS-partition can it-
self run a hypervisor. Without hardware partitioning, this
would require full support for nested layers of virtualiza-
tion. Recent work indicates that such nesting may be feasi-
ble with reasonable performance degradation [18]. However,
this solution achieved good performance for I/O only by
bypassing the virtualization layers, precluding packet inter-
ception. In addition, the hardware-based isolation mecha-
nisms used in Ally are arguably more resistant to attacks
compared to potentially buggy hypervisor software. This
is the case even if Trusted Computing [19] techniques are
used to verify the authenticity of binary executables. Some
researchers have argued recently that hardware partitioning
offers several significant advantages over software hypervi-
sors [20]. Ally strikes a balance by fully supporting OS core
use of hypervisors (and hardware support for virtualization
like Intel VT-x and Extended Page Tables) while providing
a simple form of hardware partitioning that sets aside DPI
cores as needed for transparent datacenter-wide distributed
packet processing.

Some techniques that Ally uses for lightweight packet inter-
ception could also be adapted for driver domains in software
virtualized environments. For example, a running guest VM
that has direct access to a NIC (or virtual context of a NIC)
could be transparently switched on-the-fly by the hypervisor
to use a driver domain that intercepts and inspects packets
by virtualizing the NIC queue using similar techniques as
Ally.

The BitVisor hypervisor aims to provide transparent I/O
services for a single guest VM using device queue virtual-
izations that are similar to our approach [21]. BitVisor dif-
fers from Ally in not using hardware core sequestering, and
therefore cannot support a full operating system and appli-
cation stack on a dedicated DPI core, or run a hypervisor
with multiple guest OSes on the OS cores. TwinDrivers [7]

also uses queue virtualization, but places this functionality
in a hypervisor to accelerate NIC virtualization. Unlike Ally,
TwinDrivers does not try to provide packet processing ser-
vices, and thus lacks core sequestering and support for full
software stacks for general packet processing services.

The use of a high privileged core for security and monitoring
has been proposed for a system called INDRA [22] and by
Chen et al. in the context of log-based architectures [23].
In these systems, the privileged core is called “resurrector”
or “lifeguard”. Ally extends this functionality providing ef-
ficient I/O analysis capabilities to the privileged core.

7. CONCLUSIONS
Ally enables software-independent and transparent deploy-
ment of packet processing services like DPI on a multicore
processor. Our evaluation on a system emulator and a pro-
totype Ally system demonstrate the feasibility of the Ally
approach and analyze in detail the contributions of the de-
sign components to overall performance. Our results demon-
strate that Ally is competitive in efficiency with deploying
DPI non-transparently on native Linux. Ally is more effi-
cient than a system that uses Xen software virtualization
to achieve transparent packet inspection. Moreover, Ally is
transparent to and supports the use of arbitrary operating
systems and/or hypervisors running in the OS core parti-
tion, and is compatible with the use of hardware support for
virtualization like Intel VT-i.

We plan to extend this work to support and evaluate packet
processing services using emerging multi-context NICs (PCIe
SR-IOV NICs) [24]. Given the low cost of queue virtualiza-
tion observed in our current prototype, it is highly likely
that the cost of Ally’s interception mechanisms will be a
function dominated by the link bandwidth or packet rate,
and not by the number of contexts. In addition, we plan to
evaluate Ally for larger-scale multicore systems. Ally should
easily leverage future processors equipped with several tens
of cores by distributing the packet inspection engine.

Ally and complementary technologies are bringing greater
packet processing capabilities to general purpose servers with
powerful programmable CPUs and large amounts of mem-
ory, enabling new rich network services. This motivates
many potential future research investigations in the context
of large datacenters to study problems including secure de-
ployment, configuration, and coordination of an ensemble of
Ally instances and services.

8. REFERENCES
[1] Deep packet inspection: 2009 market forecast.

Lightreading Insider, 8(11), December 2008.

[2] C. Dixon, H. Uppal, V. Brajkovic, D. Brandon,
T. Anderson, and A. Krishnamurthy. Ettm: a scalable
fault tolerant network manager. In Proceedings of the
8th USENIX conference on Networked systems design
and implementation, 2011.

[3] Intel. Introducing Intel many integrated core
architecture, Online:
http://www.intel.com/technology/architecture-
silicon/mic/index.htm.

[4] F. Bellard. Qemu, a fast and portable dynamic

translator. In ATEC ’05: Proceedings of the annual
conference on USENIX Annual Technical Conference,
pages 41–41. USENIX Association, 2005.

[5] Intel Active Management Technology. Online:
http://www.intel.com/technology/platform-
technology/intel-amt.

[6] HP Integrated Lights-Out (iLO) Standard. Online:
http://www.hp.com/go/ilo.

[7] A. Menon, S. Schubert, and W. Zwaenepoel.
Twindrivers: semi-automatic derivation of fast and
safe hypervisor network drivers from guest os drivers.
In Proceeding of the 14th international conference on
Architectural support for programming languages and
operating systems, ASPLOS ’09, pages 301–312, New
York, NY, USA, 2009. ACM.

[8] V. Ganapathy, M. Renzelmann, A. Balakrishnan,
M. Swift, and S. Jha. The design and implementation
of microdrivers. In Proceedings of the 13th
international conference on Architectural support for
programming languages and operating systems,
ASPLOS XIII, pages 168–178, New York, NY, USA,
2008. ACM.

[9] Luigi Rizzo and Matteo Landi. netmap: memory
mapped access to network devices. In SIGCOMM
2011 Poster, Aug 2011.

[10] J. Santos, Y. Turner, G. Janakiraman, and I. Pratt.
Bridging the gap between software and hardware
techniques for i/o virtualization. In USENIX 2008
Annual Technical Conference on Annual Technical
Conference, pages 29–42, Berkeley, CA, USA, 2008.
USENIX Association.

[11] K. Ram, J. Santos, Y. Turner, A. Cox, and S. Rixner.
Achieving 10 gb/s using safe and transparent network
interface virtualization. In Proceedings of the 2009
ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, VEE ’09, pages
61–70, New York, NY, USA, 2009. ACM.

[12] Moinuddin K. Qureshi and Yale N. Patt. Utility-based
cache partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches. In
Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture,
MICRO 39, pages 423–432, Washington, DC, USA,
2006. IEEE Computer Society.

[13] CloudShield Technologies. Online:
http://www.cloudshield.com.

[14] Intel Vpro Technology. Online:
http://www.intel.com/vpro.

[15] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz.
Unmodified device driver reuse and improved system
dependability via virtual machines. In Proceedings of
the 6th Symposium on Operating Systems Design and
Implementation, San Francisco, CA, December 2004.

[16] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, Andrew
Warfield, and Mark Williams. Safe hardware access
with the Xen virtual machine monitor. In OASIS ’04:
Proceedings of the 1st Workshop on Operating System
and Architectural Support for the on demand IT
Infrastructure, October 2004.

[17] D. McAuley and R. Neugebauer. A case for virtual
channel processors. In NICELI ’03: Proceedings of the
ACM SIGCOMM workshop on Network-I/O

convergence, pages 237–242, New York, NY, 2003.
ACM.

[18] M. Ben-Yehuda, M. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and
B. Yassour. The turtles project: Design and
implementation of nested virtualization. In OSDI
2010.

[19] J. McCune, B. Parno, A. Perrig, M. Reiter, and
H. Isozaki. Flicker: an execution infrastructure for tcb
minimization. In Eurosys ’08: Proceedings of the 3rd
ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008, 2008.

[20] E. Keller, J. Szefer, J. Rexford, and R. Lee. Nohype:
virtualized cloud infrastructure without the
virtualization. In ISCA ’10: Proceedings of the 37th
annual international symposium on Computer
architecture, 2010.

[21] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote,
S. Hasegawa, T. Horie, M. Hirano, K. Kourai,
Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo,
and K. Kato. Bitvisor: a thin hypervisor for enforcing
i/o device security. In VEE ’09: Proceedings of the
2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, pages
121–130, 2009.

[22] Weidong Shi, Hsien-Hsin S. Lee, Laura Falk, and
Mrinmoy Ghosh. An integrated framework for
dependable and revivable architectures using
multicore processors. In ISCA ’06: Proceedings of the
33rd annual international symposium on Computer
Architecture, pages 102–113, 2006.

[23] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi,
P. Gibbons, T. Mowry, V. Ramachandran, O. Ruwase,
M. Ryan, and E. Vlachos. Flexible hardware
acceleration for instruction-grain program monitoring.
In ISCA ’08: Proceedings of the 35th International
Symposium on Computer Architecture, 2008.

[24] Y. Dong, Z. Yu, and G. Rose. SR-IOV networking in
Xen: Architecture, design and implementation. In
WIOV ’08: Proceedings of the 1st Workshop on I/O
Virtualization.

