
Efficient System-on-Chip Energy Management
with a Segmented Bloom Filter

Mrinmoy Ghosh1, Emre Özer1, Stuart Biles1, and Hsien-Hsin S. Lee2

1 ARM Ltd.
{mrinmoy.ghosh, emre.ozer, stuart.biles}@arm.com

2 School of Electrical and Computer Engineering, Georgia Institute of Technology
leehs@ece.gatech.edu

Abstract. As applications tend to grow more complex and use more
memory, the demand for cache space increases. Thus embedded proces-
sors are inclined to use larger caches. Predicting a miss in a long-latency
cache becomes crucial in an embedded system-on-chip(SOC) platform
to perform microarchitecture-level energy management. Counting Bloom
filters are simple and fast structures that can eliminate associative lookup
in a huge lookup space. This paper presents an innovative segmented de-
sign of the counting Bloom filter which can save SOC energy by detecting
misses aiming at a cache level before the memory. The filter presented
is successful in filtering out 89% of L2 cache misses and thus helps in
reducing L2 accesses by upto 30%. This reduction in L2 Cache accesses
and early triggering of energy management processes lead to an overall
SOC energy savings by up to 9%.

1 Introduction

The increasing complexity and shrinking feature size of present day micropro-
cessors has led to energy becoming an important design constraint. Energy is
more of an issue in embedded cores that are a part of System-on-chips (SoCs)
for handheld devices, where the prime concern is battery life. However, also due
to shrinking feature size designers have more transistors per die at their dis-
posal. This has led to large caches, which are major consumer of both static and
dynamic power in embedded SoCs. This paper presents an innovative design to
help reduce energy consumption in caches and also the SoC platform comprising
of the CPU and multi-level caches.

The memory hierarchy of most processors contains single or multi-level caches
designed as SRAM memories followed by a large DRAM backstore. Since an
access to DRAM memory may take 100s of cycles,therefore in in-order processors,
and in some cases for out of order processors, severe stalls may occur on a cache
miss in the cache-level before the DRAM. Hence, the cache miss event can be
used as a trigger for several microarchitectural energy management processes in
the SoC. The energy management processes may include but are not limited to
putting all caches in a state preserving low power drowsy mode and for power
gating all or part of the processor core.

W. Grass et al. (Eds.): ARCS 2006, LNCS 3894, pp. 283–297, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

284 M. Ghosh et al.

Bloom filters are simple and fast structures that can eliminate associative lookup
when the lookup address space is huge. They can replace associative tables with a
simple bit vector that can precisely identify addresses that have not been observed
before. This mechanism provides early detection of events without resorting to the
associative lookup buffers. This has significant implications on the performance
and power consumption considering the fact that Bloom filters are very efficient
hardware structures in terms of area, power consumption and speed.

This paper presents an innovative segmenteddesign of the counting Bloom filter
that saves energy by detecting a miss in the cache level before the memory. The
detection of the miss happens much earlier than the actual request reaches the
particular cache. The early detection would allow the processor to make the energy
managementprocesses quite early in the memoryhierarchy. Starting energy saving
measures early provides more energy saving opportunities than in the case where
the measures are taken after a miss in the lowest cache level is detected.

The rest of this paper is arranged as follows. Section 2 explains the basics of
Bloom filters. Section 3 describes the novel segmented Bloom filter design and
elucidates how it aids in saving energy. Then, Section 4 describes the simulation
methodology and the energy savings obtained using the segmented Bloom filter
and presents the experimental results. Section 5 discusses prior art. Finally,
Section 6 concludes the paper.

2 Bloom Filters

The structure of the original Bloom filter idea as described by Bloom [1] is shown
in Figure 1a. It consists of several hash functions and a bit vector. A given N -bit
address is hashed into k hash values using k different random hash functions.
The output of each hash function is an m-bit index value that addresses the
Bloom filter bit vector of 2m where m is much smaller than N.

Hash Function1

Bit Vector

Address (N bits)

m bits

0

1

2m-1

m bits

L-bit Counters

Hash Function2

Hash Functionk

Hash Function1

Address (N bits) Hash Function2

Hash Functionk

Bit Vector

0

1

2m-1

(a) (b)

m bits

m bits

m bits

m bits

Fig. 1. (a) Original Bloom filter, (b) counting Bloom filter

Efficient System-on-Chip Energy Management 285

Each element of the Bloom filter bit vector contains only 1 bit that can be
set. Initially, the Bloom filter bit vector is zero. Whenever an N -bit address is
observed, it is hashed to the bit vector and the bit value hashed by each m-bit
index is set. When a query is to be made whether a given N -bit address has been
observed before, the N -bit address is hashed using the same hash functions and
the bit values are read from the locations indexed by the m-bit hash values. If
at least one of the bit values is 0, this means that this address has definitely not
been observed before. This is called a true miss. On the other hand, if all of the
bit values are 1, then the address may have been observed but cannot guarantee
it. If the address has not been observed but the bit vector indicates it does, this
is called a false hit.

As the number of hash functions increases, the Bloom filter bit vector is
polluted much faster. On the other hand, the probability of finding a zero during
a query increases if more hash functions are used. The major drawback of the
original Bloom filter is the high false hit rate because the filter can get polluted
quickly and filled up with all 1s and it starts signalling false hits.

The original Bloom filter has to be quite large to reduce the false hit rate since
once a bit is set in the filter there is no way we may reset it. So as more bits are
set in the filter, the number of false hits increase. To improve performance of this
kind of filter a mechanism for resetting entries set to one is needed. The counting
Bloom filter as shown in Figure 1b is proposed by Fan et al. in [2], which aims at
web cache sharing, provides the capability of resetting entries in the filter. For a
counting Bloom Filter, an array of counters is added along with the bit vectors
of the classical Bloom Filter. When a new address is observed for addition to the
Bloom filter, each m-bit hash index addresses to a specific counter in an L-bit
counter array. Then, the counter is incremented by one. Similarly, when a new
address is observed for deletion from the Bloom filter, each m-bit hash index
addresses to a counter, and the counter is decremented by one. If more than one
hash index addresses to the same location for a given address, the counter is
incremented or decremented only once. If the counter becomes non-zero, the bit
in the Bloom filter bit vector addressed by the same m-bit index is set. If the
counter becomes zero, then the bit is reset. Queries to a counting Bloom filter
are similar to the original Bloom filter.

3 Segmented Bloom Filter Design

We propose an innovative segmented counting Bloom filter as shown in Figure 2
where the counter array of L bits per counter is decoupled from the bit vec-
tor and the hash function is duplicated on the bit vector side. The cache line
allocation/de-allocation addresses are sent to the counter array using one hash
function while the cache request address from the CPU is sent to the bit vector
using the copy of the same hash function. The segmented Bloom filter design
allows the counter array and bit vector to be in separate physical locations.

A single duplicated hash function is sufficient as our experiments show that
the filtering rate of a Bloom filter with a single hash function is as good as the

286 M. Ghosh et al.

Allocation/
De-allocation

Address

Hash
Function

Hash
Index

L-bit Counters

Decoupled Bit Vector

Duplicated
Hash

Function

Cache Access
Address

Hash
Index

1 L-bit
Counter

Zero/Nonzero
Detector

Bit Write

Bit Read

Hash
Index

Bit Update

Increment/Decrement

Fig. 2. Segmented Bloom filter

one with two or more hash functions. The implemented hash function chops the
physical address into several chunks of hash index long and bitwise XOR them to
obtain a single hash index. The number of bits needed per counter (L) depends
on how the hash function distributes indeces across the Bloom filter. In the worst
case, if all cache lines map to the same counter, the bit-width of the counter must
be at most log2(Numofcachelines) to prevent overflows. In reality, the required
number of bits per counter is much smaller than the worst-case.

The counter array is updated with cache line allocation and de-allocation
operations. Whenever a new cache line is allocated, the address of the allocated
line is hashed into the counter array and the associated counter is incremented.
Similarly, when a cache line is evicted from the cache, its associated counter is
decremented.

The counter array is responsible for keeping the bit vector up-to-date. The
update from the counter array to the bit vector is done only for a single bit
location if and only if the counter becomes zero from one during decrement
operation or one from zero during increment operation. The following are the
steps taken for updating the bit vector:

1) The L-bit counter value is read from the counter array prior to an increment
or decrement operation.

2) The counter value is checked for a zero boundary condition by the
zero/nonzero detector whether it will become non-zero from zero or zero
from non-zero inferred by the increment/decrement line.

3) If a zero boundary condition is detected, the bit update line is asserted,
which forwards the hash index to the bit vector.

4) Finally, the bit write line is made 1 to set the bit vector location if the
counter will become non-zero. Otherwise, the bit write line is made 0 to
reset the bit vector location.

5) If there is no zero boundary condition, then the bit update is not activated,
which disables the hash index forwarding to the bit vector.

When the CPU issues a lookup in the cache, the cache address is also sent to
the bit vector through the duplicated hash function. The hash function generates

Efficient System-on-Chip Energy Management 287

an index and reads the single bit value from the vector. If the value is 0, this is
a safe indication that this address has never been observed before. If it is 1, it
is an indefinite response, i.e. can be either miss or hit.

There are several reasons for designing a segmented Bloom filter: 1) We only
need the bit vector, whose size is smaller than the counter, to know the outcome
of a query to the Bloom filter. Decoupling the bit vector enables faster and low
power accesses to the Bloom Filter. So, the result of a query issued from the core
can be obtained by just looking at the bit vector. 2) The update to the counters
is not time critical with respect to the core. So, the segmented design allows
the counter array to run at a much lower frequency than the bit vector. The
vector part being smaller provides a fast access time, whereas the larger counter
part runs at a lower frequency to save energy. The only additional overhead of
this segmented design is the duplication of the hash function hardware. Using a
single hash function in the Bloom filter also simplifies the implementation and
duplication of the hash function. 3) The decoupled bit vector can sit between the
L1 and L2 caches or can also be integrated into the core. For systems in which
the L1 and L2 caches are inclusive, the integrated bit vector can also filter out
the L1 instruction and data caches if an L2 cache miss is detected.

3.1 SoC Energy Management

This section explains how the segmented Bloom Filter detects L2 Cache misses,
and saves the overall system energy without losing performance in an in-order
processor. In an in-order processor with two cache levels, severe stalls may occur
due to an L2 Cache miss. This is because after a data access misses the L2 cache,
it accesses the DRAM memory, which may take more than 100 cycles, depending
on the processor frequency before the data returns.

By detecting an L2 cache read miss early with a segmented Bloom filter, we
can save static energy of the system by turning off all or part of the core and by
putting the L1 and L2 caches into drowsy or low-power state-preserving mode
until the data returns. The overhead incurred by this technique is turning on and

Allocation/ Deallocation Address

L2 Cache Miss Indication

L1 I Cache

CPU Power Down Signal

L1/L2 Cache Drowsy Signal

Early Miss Indication
L1 D Cache

CPU

L2 Cache
Counter Array

Bit Vector

Memory

L1 Cache Miss Address

Update

Fig. 3. SOC with caches not assumed to be
inclusive and the bit vector below the L1
Cache

L1 I CacheL1 D Cache

L2 Cache

Memory

Bit Vector

L1/L2 Cache Drowsy Signal

Early Miss Indication

L2 Cache Miss Indication

Allocation/ Deallocation Address

Update

CPU

Counter Array

Fig. 4. SOC with inclusive caches and
the bit-vector inside the CPU

288 M. Ghosh et al.

turning off of the core and caches. This overhead is not much of a concern because
the turn-off period overlaps with the memory access, which may take hundreds
of cycles. Also, since it is known exactly when the data returns from memory,
the turned-off units can be turned on in stages to save power. In addition to
reducing static energy, dynamic energy of the system can also be reduced by
preventing an L2 Cache access. Not only does this save the dynamic energy of
the L2 but also reduces the bus energy consumption due to reduction in bus
switching activity.

The segmented Bloom filter is shown in Figure 3 for a SOC in which the L1
and L2 caches which are not assumed to exhibit inclusive behaviour. In such a
system, the bit vector is located just below the L1 caches. The CPU issues a
cache address to the L1 data cache. On a miss, the bit vector snoops the address
and signals in a cycle if the L2 cache does not have the cache line. On receiving
the signal, the CPU is powered down and the L1 I and D and L2 caches can be
put into the drowsy mode. The access to the L2 cache is also stopped.

Figure 4 shows a system where the L2 cache is inclusive with the L1 caches.
Here, the bit vector is placed inside the core and can detect L2 cache misses before
they are sent to the L1 caches. In a cache system using inclusion property, an L2
miss is also a miss in the L1 cache. Thus, a cache request address can be sent to
directly to memory when a miss is detected by the bit vector inside the core.

For both systems, the bit vector may not be 100% consistent with the counter
array as there is some delay occuring between the counter array and bit vector.
This situation happens if incrementing the counter in the counter array is de-
ferred till the time of a linefill. At that moment, the corresponding bit location
in the bit vector might be 0. So, if the counter changes from 0 to 1, the counter
array sends an update to the bit vector to set the bit location in the vector.
Before this update reaches the bit vector, if the CPU accesses to the same bit
location, then it reads 0 and assumes that this line is not in the cache and there-
fore forwards the request to memory. This drawback is eliminated if the counter
is incremented at the time of the miss, rather than the linefill. By the time the
actual linefill occurs, the bit vector will have been updated by the counter array.
We see that segmenting the Bloom Filter allows the bit vector to be placed in
a different physical location leading to more energy saving opportunities. This
concept may be extended to cases where there are more than two levels of caches
and the segmented bloom filter is used to filter out requests to the cache that is
accessed just before DRAM memory. In such a case, though the counter array
would be updated for the cache before memory, the bit vector may be kept at
a place where it would be accessible with any of the previous cache levels, thus
providing early miss indication.

4 Experimental Results

4.1 Experimental Framework and Benchmarks

We use SimpleScalar [3] to model the behavior of caches and segmented Bloom
filter. The CPU is an in-order processor that stalls on a load operation, which is

Efficient System-on-Chip Energy Management 289

a typical behavior of many embedded processors. We compute the total energy
consumption of the on-chip system including the CPU, caches and the Bloom fil-
ter. Our baseline model is the system with no Bloom filter. We use a total of eight
applications, bzip2, gcc, gzip, mcf, parser, vortex and vpr from SPECint2000,
lame MP3 player application from MiBench [4]. 2 billion instructions are sim-
ulated in the SPECint benchmarks while lame runs to completion. SPECInt
benchmarks were chosen because they are known to stress the L2 cache. Only a
few embedded applications such as lame could stress the L2 cache.

Table 1. Architectural assumptions

Drowsy-mode in/out time = 10 cycles
CPU turn-on/off time = 10 cycles
Shutdown Penalty = 20 cycles
Bit vector access time = 1 cycle
Memory access time = 100 cycles
CPU Energy = 2 x L1 Cache Energy
Cache Drowsy Energy = 1/6 x Cache Leakage Energy

Other pertinent architectural assumptions or fixed-parameters are listed in
Table 1. The following assumptions are made to estimate the energy consump-
tion of the baseline system (i.e. system without the Bloom filter) and a low-power
system with the segmented Bloom filter. The time taken to put the caches in
drowsy mode is 10 cycles, and it also takes another 10 cycles to put them into the
normal mode. Similarly, the time taken to turn the CPU components off is also
assumed to be 10 cycles. The total time for turning on and turning off, that is 20
cycles is called the shutdown penalty. The access time to the bit vector takes one
cycle while the memory access time is 100 cycles. We also assume that the CPU
energy consumption is twice the total L1 instruction and data cache energy con-
sumption. This is a realistic assumption as embedded processors tend to have this
trend as illustrated in [5]. The cache leakage energy in the drowsy mode is taken
to be one sixth of the cache leakage energy as estimated by Flautner et al in [6].

We experiment two different cache architecture configurations as shown in
Table 2. The first configuration has 2-way set-associative 8KB L1 instruction
and data caches, 4-way 64KB L2 cache, a 8192-bit Bloom filter bit vector and a

Table 2. Architectural configurations

Description Configuration 1 Configuration 2
L1 I and D cache 2-way 8KB 2-way 32KB
L2 cache 4-way 64 unified 4-way 256 unified
Bit vector size 8192 bits 32768 bits
Counter array size 8192 3-bit counters 32768 3-bit counters
L1 latency (cycles) 1 4
L2 latency (cycles) 10 30

290 M. Ghosh et al.

Bloom filter counter array of 8192 entries with 3-bit1 counter per entry. The line
size is 32B for both L1 and L2 caches. The latencies of the L1 instruction and
data caches and L2 cache are 1 and 10 cycles, respectively. This configuration
represents low-end market such as industrial and automative applications in the
embedded domain.

The second configuration includes 2-way set-associative 32KB L1 instruction
and data caches, 4-way 256KB L2 cache, each has a 32B line size. The Bloom
filter consists of a 32768-bit bit vector and a counter array of 32768 entries with
3-bit counter per entry.

The latencies of the L1 instruction and data caches and L2 cache are 4 and
30 cycles, respectively. This configuration represents the domain where slightly
larger scale applications are targeted, e.g. consumer and wireless applications.

We have chosen the number of Bloom Filter entries to be around four times
the number of cache lines. We experimented with different BF sizes and found
this emperical ratio to provide best results. The area overhead for the Bloom
Filters is about 6% of the L2 Cache area for both the configurations.

4.2 Energy Modeling

The L1 caches, L2 cache, bit vector and the counter array were designed using
the Artisan 90nm SRAM library [7] in order to get an estimate on the dynamic
and static energy consumption of the caches and the segmented Bloom filter. The
Artisan SRAM generator is capable of generating synthesizable verilog code for
SRAMs in 90nm technology. The generated datasheet gives an estimate of the
read and write power of the generated SRAM. The datasheet also provides a
standby current from which we can estimate the leakage power of the SRAM.

We have two system energy models. The first model is the baseline model in
which the dynamic and static energy consumption of the CPU, L1 instruction
and data caches and the L2 cache are calculated. The second system model is the
low-power system model in which the dynamic and static energy consumption
of the bit vector and counter array is also added to the rest of the system com-
ponents. Table 3 shows the abbreviation of the variables used in the formulation
to evaluate the system energy of the baseline and low-power system models.

Baseline System Energy Model.

Cycoff = NumL2readmiss ∗ (Latmem − SP)

Cycon = Cyctot − Cycoff

Ebase
cpu = Cycon ∗ CPUdyn + Cycoff ∗ CPUleak

Ebase
$ (type) = Numcacheaccess ∗ $dyn + Cycon ∗ $leak + Cycoff ∗ $dr

Ebase
sys = Ebase

cpu + Ebase
$ (I) + Ebase

$ (D)

+Ebase
$ (L2) (1)

1 Although the worst case number of bits required per counter is 12, we observe in
our experiments that the value of each counter never exceeds 4. Thus we use 3 bits
per counter to save energy and have a policy of disabling a particular counter if it
saturates.

Efficient System-on-Chip Energy Management 291

Table 3. Abbreviations and their descriptions

Abbreviation Description
Cyctot Total Number of Cycles
Cycoff Number of Idle Cycles
Cycon Number of Active Cycles
Numcacheaccess Number of Cache Accesses
NumL2readmiss Number of L2 Read Misses
NumL2access Number of L2 Accesses without filtering
NumL1access Num of L1 Accesses
NumL2filt Number of Filtered L2 Misses
Latmem Memory Latency
SP Shutdown Penalty
LatL2 L2 latency
Latvector Bit vector latency
CPUdyn CPU Dynamic Energy per Cycle
CPUleak CPU Leakage Energy per Cycle
$dyn Cache Dynamic Energy per Cycle
$leak Cache Leakage Energy per Cycle
Cachedr Cache Drowsy Energy per Cycle
BVdyn Bit Vector Dynamic Energy per Cycle
BVleak Bit Vector Leakage Energy per Cycle
BVdr Bit Vector Drowsy Energy per Cycle
Counterdyn Counter Array Dynamic Energy per Cycle
Counterleak Counter Array Leakage Energy per Cycle
Counterdr Counter Array Drowsy Energy per Cycle

Low-Power System Energy Model. We now estimate the energy consump-
tion of the low-power system model having L1 and L2 caches which are assumed
to exhibit inclusive behaviour with the segmented Bloom filter as follows:

Cycoff = NumL2readmiss ∗ (Latmem − SP) + NumL2filt ∗ (LatL2 − Latvector)

Cycon = Cyctot − Cycoff

Elow
cpu = Cycon ∗ CPUdyn + Cycoff ∗ CPUleak

Elow
L2 = (NumL2access − NumL2filt) ∗ L2dyn + Cycon ∗ L2leak + Cycoff ∗ L2dr

Elow
L1 (type) = NumL1access ∗ L1dyn + Cycon ∗ L1leak + Cycoff ∗ L1dr

Elow
vector = NumL2access ∗ BVdyn + Cycon ∗ BVleak + Cycoff ∗ BVdr

Elow
counter = NumL2access ∗ Counterdyn + Cycon ∗ Counterleak + Cycoff ∗ Counterdr

Elow
sys = Ecpu + Elow

L1 (I) + Elow
L1 (D) + Elow

L2 + Elow
vector + Elow

counter

If the L1 and L2 caches are inclusive, then the energy consumption of the L1
cache is determined by the total number of L1 accesses less the number of filtered
L2 misses. Also, the number of L2 accesses is replaced by the number of L1
accesses in the bit vector energy equation.

Elow
L1 (type) = NumL1access − NumL2filt ∗ L1dyn + Cycon ∗ L1leak + Cycoff ∗ L1dr

Elow
vector = NumL1access ∗ BVdyn + Cycon ∗ BVleak + Cycoff ∗ BVdr

292 M. Ghosh et al.

Finally, the percentage savings in the total system(Dynamic + Leakage) en-
ergy is defined by the following equation:

% Savings =
Ebase

sys − Elow
sys

Ebase
sys

(2)

4.3 Cache and Bloom Filter Statistics

The cache miss rates for the L1 instruction and data caches and L2 cache and
the miss filter rates of the Bloom filter for the two configurations are provided
in Table 4 and Table 5. The miss filter rates in the last column of the tables are
the percentage of the L2 misses that the Bloom filter can detect. For instance,
94% of the L2 misses can be detected by the Bloom filter in gcc for the first
configuration. The remaining 6% of them cannot be detected, i.e. false hit rate.
The average miss filter rates across all benchmarks are 86% and 88% for both
configurations. These rates imply that a great majority of the L2 misses can be
caught by the Bloom filter. An 88% filtering of L2 misses also implies that the
Bloom Filter is able to reduce accesses to the L2 cache by more than 30%.

Table 4. Cache miss and miss filtering rates for configuration 1

Benchmark L1 I L1 D L2 Bloom Filter
bzip2 4.82% 0.002% 45.55% 83.21%
gcc 10.52% 4.19% 48.56% 94%
gzip 5.66% 0.01% 45.99% 96.12%
mcf 26.21% 1.24% 58.07% 87.60%
parser 6.08% 0.68% 36.68% 82.76%
vortex 3.84% 13.24% 21.41% 84.49%
vpr 3.64% 2.14% 13.35% 81.47%
lame 2.76% 0.78% 27.61% 81%
MEAN 7.84% 2.78% 37.15% 86.33%

Table 5. Cache miss and miss filtering rates for configuration 2

Benchmark L1 I L1 D L2 Bloom Filter
bzip2 3.54% 0.0002% 48.90% 88.36%
gcc 10.01% 1.55% 55.92% 99.07%
gzip 4.72% 0.001% 12.45% 95.25%
mcf 25.12% 0.0001% 63.74% 83.43%
parser 3.60% 0.05% 31.81% 86.38%
vortex 1.36% 4.84% 5.88% 77.96%
vpr 1.71% 0.21% 39.19% 83%
lame 0.99% 0.30% 12.36% 93.88%
MEAN 6.38% 0.87% 33.78% 88.42%

Efficient System-on-Chip Energy Management 293

4.4 Energy Consumption Results

Table 6 shows the L2 dynamic energy savings for the two configurations with
respect to the L2 cache in the baseline model. gzip, parser, vortex and lame
suffer a drop in L2 dynamic energy savings in the second configuration because
of improvements in L2 miss rates for using a much larger L2 cache. As the L2 miss
rate improves, the number of misses of which the Bloom filter can take advantage
to shutdown the CPU and caches diminishes. The L2 energy savings drop rates in
gzip, vortex and lame are more dramatic because their miss filtering rates also
drop in the second configuration except for lame where it actually improves.
However, this increase in the miss filtering rate is not sufficient to boost the L2
energy savings for lame. The miss filtering rate for parser also improves in the
second configuration. This explains why the drop in L2 energy savings in the
second configuration for parser is not as significant as the others.

In summary, using the segmented Bloom filter provides an average of 33% and
30% savings in the L2 dynamic energy respectively for the two configurations.

Figure 5 plots the SoC static energy savings. The SoC static energy includes
the leakage energy of the CPU, L1 and L2 caches in the baseline model, and

Table 6. L2 cache energy savings

Benchmark Configuration 1 Configuration 2
bzip2 37.90% 43.21%
gcc 45.65% 55.40%
gzip 44.21% 11.85%
mcf 50.87% 53.18%
parser 30.35% 27.47%
vortex 18.09% 4.59%
vpr 10.88% 32.53%
lame 22.37% 11.60%
MEAN 32.54% 29.98%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

22.00%

24.00%

26.00%

28.00%

30.00%

bzip2 gcc gzip mcf parser vortex vpr lame MEAN

Sy
st

em
 s

ta
tic

 (l
ea

ka
ge

) e
ne

rg
y

sa
vi

ng
s

(%
)

Config1 Config1-inclusive Config2 Config2-inclusive

Fig. 5. Static SoC energy results

294 M. Ghosh et al.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

22.00%

24.00%

26.00%

28.00%

30.00%

bzip2 gcc gzip mcf parser vortex vpr lame MEAN

Sy
st

em
 to

ta
l e

ne
rg

y
sa

vi
ng

s
(%

)

Config1 Config1-inclusive Config2 Config2-inclusive

systemenergy.eps

Fig. 6. Total SoC energy results

the leakage energy of the bit vector and the counter array are accounted for the
low-power SoC model. In addition to the two configurations, we also show the
results of the inclusive versions for each configuration. In the inclusive version,
the bit vector is embedded within the core and filters out the L1 instruction and
data cache accesses as well.

The percentage increases in the system static energy savings are quite signifi-
cant for gcc and mcf from a smaller configuration to larger one. In configuration
2, 24% and 21% of the static energy consumption can be saved by using the
segmented Bloom filter for gcc and mcf, respectively. The percentage increase in
gcc is higher than mcf because the L2 miss rate increases and the miss filtering
rate improves in gcc . Similar to the L2 dynamic energy results, when switching
from a smaller configuration to a larger one, gzip, vortex and lame benchmarks
observe some percentage loss in the static energy savings due to lower L2 miss
rates. However, the static energy savings of parser in configuration 2 is slightly
higher than that of configuration 1 even though its L2 miss rate is lower. This is
because the high miss filtering rate in configuration 2 is sufficient to boost the
energy savings.

The inclusive versions for both configurations show slightly better savings
than the cases where inclusion is not assumed, for all benchmarks because the
inclusive configuration allows early turning off the system components, which
reduces the system static energy consumption.

The average system static energy savings are 3.9%, 4.4%, 7.7% and 8.7% for
configuration 1, its inclusive version, configuration 2 and its inclusive version,
respectively.

Figure 6 plots the total SoC energy savings in percentage. The total SoC
energy is defined as the total dynamic and static energy consumed by the CPU,
L1 caches, L2 cache for the baseline model. This also includes the dynamic and
static energy consumption of the bit vector and the counter array for the low-
power SoC model. Here, we see a very similar trend to the system static energy

Efficient System-on-Chip Energy Management 295

savings graph above in terms of rise and falls in the system total energy savings
when changing to a larger configuration from a smaller one.

Similar to the SoC static energy reduction, the inclusive versions for both
configurations reduces the total energy more than the cases where inclusion
property is not assumed, for all benchmarks because of reductions in the number
of L1 cache accesses, which reduces the dynamic as well as the static energy
consumption.

The average total SoC energy savings for the first configuration and its in-
clusive version are 3.6% and 4.2%, respectively. These rates go up to 7.2% and
8.1% for the second configuration and its inclusive version. The reason for the
additional improvement is due to much higher the L2 latency in the second con-
figuration. A large amount of static energy can be saved during the long-latency
L2 accesses by turning off the CPU, caches and also the counter array. Since
the bit vector access time is constant, the effective gain in the total energy with
increasing L2 latencies (i.e. larger L2 caches) also rises.

5 Related Work

The initial purpose of Bloom Filters was to build memory efficient database ap-
plications. Bloom filters have found numerous applications in networking and
database areas [8] [9] [10] [11] [12] [13]. Bloom filters are also used as microar-
chitectural blocks for tracking load/store addresses in load/store queues. For
instance, Akkary et al. [14] uses one to detect the load-store conflicts in the store
queue. Sethumadhvan et al. [15] improve the scalability for load store queues
with a Bloom filter. More recently, Roth [16] uses a Bloom filter to reduce the
number of load re-executions for load/store queue optimizations.

The earliest example of tracking cache misses with a counting Bloom filter is
given by Moshovos et al. [17], which proposes a hardware structure called Jetty
to filter out cache snoops in SMP systems. Each processing node has a Jetty that
tracks its own L2 cache accesses, and snoop requests are first checked in the Jetty
before searching the cache. This is reported to reduce snoop energy consumption
in SMP systems. A Jetty-like filter is also used by Peir et al. [18] for detecting
load misses early in the pipeline so as to initiate speculative execution. Similarly,
Mehta et al. [19] also uses a Jetty-like filter to detect L2 misses early so that
they can stall the instruction fetch to save processor energy. We, on the other
hand, propose a decoupled Bloom filter structure where the small bit vector can
potentially be kept within the processor core to perform system dynamic and
static energy conservation of L1 and L2 caches and the core itself.

Memik et al. [20] proposes some early cache miss detection hardware tech-
niques encapsulated as Mostly No Machine(MNM) to detect misses early in the
multi-level caches below L1 (i.e. L2, L3 and etc). Their goal is to reduce dynamic
cache energy and to improve the performance by bypassing the caches that will
miss. The MNM is a multi-ported hardware structure that collects block re-
placement and allocation addresses from these caches and can be accessed after
the L1 access or in parallel with it. In comparison to the MNM, the segmented

296 M. Ghosh et al.

Bloom filter design allows the processor to access only the bit vector, which is
smaller and much faster. Potentially, it can run at the processor frequency. Since
the counter array is located at the L2 cache, it can run at the same clock fre-
quency as the slower L2 cache. This is a more energy-efficient design than the
MNM. Besides, the bit vector can also be located inside the processor so that
the L1 instruction and data cache misses can also be filtered out in the case of
an inclusion between the L1s and L2. This way, we can save L1 I and D cache
dynamic energy by not accessing them at all, and static energy by putting them
into a drowsy mode. The MNM did not discuss static energy consumption in
the caches, CPU or filters.

6 Conclusion

This paper introduces a segmented counting Bloom filter to perform microarchi-
tectural energy management in an embedded SoC environment and evaluates its
energy saving capabilities. We have shown that the segmented Bloom filter tech-
nique can be an efficient microarchitectural mechnanism for reducing the total
SoC energy consumption. A significant part of the total SoC energy including
L2 dynamic cache energy, L1, L2 and CPU static static energy can be saved in a
system where the cache hierarchy is not assumed to exhibit inclusive behaviour.
However, the segmented design is shown to be particularly more energy-efficient
if the cache hierarchy exhibits inclusive behaviour. This is because the segmented
design provides the opportunity to make the bit vector accesible before the L1
Cache access and allows for detection of misses much earlier in the memory hi-
erarchy. The segmented counting bloom filter has been shown to filter out more
than 89% of L2 misses, causing a 30% reduction in accesses to the L2 Cache.
This results in a saving of more than 33% of L2 Dynamic Energy. The results
also demonstrated that the overall SoC energy can be reduced by up to 9% using
the proposed segmented Bloom filter.

As future embedded applications demand more memory and shrinking feature
sizes allow more transistors on a die, embedded processors would be inclined
to have larger caches. Having these longer latency caches would provide more
opportunities for the segmented design to facilitate microarchitectural energy
management earlier in the memory hierarchy. Therefore cache miss detection in
general and the segmented filter design presented in this paper would play a key
role in energy management for future embedded processors.

References

1. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(4) (1970)

2. Fan, L., Cao, P., Almeida, J., Broder, A.: Summary cache: A scalable wide-area
web cache sharing protocol. IEEE/ACM Transactions on Networking 8(3) (2000)
281–293

Efficient System-on-Chip Energy Management 297

3. Burger, D., Austin, T.M.: The simplescalar tool set, version 2.0. Technical Re-
port 1342, Computer Science Department, University of Wisconsin-Madison and
MicroComputer Research Labs, Intel Corporation (1997)

4. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.:
MiBench: A Free, Commercially Representative Embedded Benchmark Suite. In:
the IEEE 4th Annual Workshop on Workload Characterization, Austin, TX (2001)

5. Fan, D., Tang, Z., Huang, H., Gao, G.R.: An energy efficient tlb design method-
ology. In: Proceedings of the International Symposium on Low Power Electronics
and Design. (2005)

6. Flautner, K., Kim, N.S., Martin, S., Blaauw, D., Mudge, T.: Drowsy caches: Sim-
ple techniques for reducing leakage power. In: Proceedings of the 29th Annual
International Symposium on Computer Architecture. (2002)

7. Artisan: Sram libraries. http://www.artisan.com (2005)
8. Border, A., Mitzenmacher, M.: Network application of bloom filters: A Survey. In:

40th Annual Allerton Conference on Communication, Control, and Computing.
(2002)

9. Rhea, S., Kubiatowicz, J.: Probabilistic location and routing. In: IEEE INFO-
COM’02. (2002)

10. Dharmapurikar, S., Krishnamurthy, P., Sproull, T., Lockwood, J.: Deep packet
inspection using parallel bloom filters. In: IEEE Hot Interconnects 12. (2003)

11. Kumar, A., Xu, J., Wang, J., Spatschek, O., Li, L.: Space-code bloom filter for
efficient per-flow traffic measurement. In: Proc. IEEE INFOCOM. (2004)

12. Chang, F., Feng, W., Li, K.: Approximate caches for packet classification. In:
Proc. IEEE INFOCOM. (2004)

13. Cohen, S., Matias, Y.: Spectral bloom filters. In: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data. (2003)

14. Akkary, H., Rajwar, R., Srinivasan, S.T.: Checkpoint processing and recovery:
Towards scalable large instruction window processors. In: Proceedings of the 36th
International Symposium for Microarchitecture. (2003)

15. Sethumadhavan, S., Desikan, R., Burger, D., Moore, C.R., Keckler, S.W.: Scalable
hardware memory disambiguation for high ilp processors. In: Proceedings of the
36th International Symposium for Microarchitecture. (2003)

16. Roth, A.: Store vulnerability window (svw): Re-execution filtering for enhanced
load optimization. In: Proceedings of the 32th International Symposium on Com-
puter Architecture (ISCA-05). (2005)

17. Moshovos, A., Memik, G., Falsafi, B., Choudhary, A.: Jetty: Snoop filtering for
reduced power in smp servers. In: Proceedings of International Symposium on High
Performance Computer Architecture (HPCA-7). (2001)

18. Peir, J.K., Lai, S.C., Lu, S.L., Stark, J., Lai, K.: Bloom filtering cache misses for
accurate data speculation and prefetching. In: Proceedings of the 16th International
Conference of Supercomputing. (2002) 189–198

19. Mehta, N., Singer, B., Bahar, R.I., Leuchtenburg, M., Weiss, R.: Fetch halting on
critical load misses. In: Proceedings of the The 22nd International Conference on
Computer Design. (2004)

20. Memik, G., Reinman, G., Mangione-Smith, W.H.: Just say no: Benefits of early
cache miss determination. In: Proceedings of the Ninth International Symposium
on High Performance Computer Architecture. (2003)

http://www.artisan.com

	Introduction
	Bloom Filters
	Segmented Bloom Filter Design
	SoC Energy Management

	Experimental Results
	Experimental Framework and Benchmarks
	Energy Modeling
	Cache and Bloom Filter Statistics
	Energy Consumption Results

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

