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Abstract
Integrating more processor cores on-die has become the unanimous
trend in the microprocessor industry. Most of the current research
thrusts using chip multiprocessors (CMPs) as the baseline to ana-
lyze problems in various domains. One of the main design issues
facing CMP systems is the growing number of snoops required
to maintain cache coherency and to support self/cross-modifying
code that leads to power and performance limitations. In this pa-
per, we analyze the internal and external snoop behavior in a CMP
system and relax the snoopy cache coherence protocol based on
the program semantics and properties of the shared variables for
saving power. Based on the observations and analyses, we propose
two novel techniques: Selective Snoop Probe (SSP) and Essential
Snoop Probe (ESP) to reduce power without compromising perfor-
mance. Our simulation results show that using the SSP technique,
5% to 65% data cache energy savings per core for different proces-
sor configurations can be achieved with 1% to 2% performance im-
provement. We also show that 5% to 82% of data cache energy per
core is spent on the non-essential snoop probes that can be saved
using the ESP technique.

Categories and Subject Descriptors B.3.2 [Design Styles]: [Cache
memories]

General Terms Design, Experiment, Power, Performance

Keywords Chip Multiprocessors, Internal and External Snoops,
Self-Modifying Code, and MESI protocol

1. Introduction
The continuous miniaturization of devices has brought chip multi-
processors (CMPs) into all market segments ranging from servers
to mobile products. In addition to improving performance, CMPs
can also be used to address emerging issues such as security [32],
reliability [18, 34], etc. In a CMP system, cache coherence main-
tenance is a complex task, and the support for self-modifying code
(SMC) and cross-modifying code (XMC) further increases its de-
sign complexity. There are two kinds of snoops in a CMP-SMP sys-
tem (CMP-based SMP system), internal and external snoops. The
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internal snoops are triggered and responded to by cores within the
same CMP, while the external snoops are triggered and responded
to by different CMPs in a CMP-SMP system. Prior works have dealt
with the analysis and optimization of external snoops in an SMP
environment, but have limited analysis in internal snoop behav-
ior, which includes the self-modifying and cross-modifying code
snoops in a CMP. The snoop response time is becoming critical in
a CMP system for the following reasons: 1) increase in number of
cores per die, 2) continuous extension of the vertical cache hierar-
chy, and 3) increase in size of the cache and load/store buffers. It is
further exacerbated by the conservative nature of the cache coher-
ence protocol to send snoop probes for all variables in the program
without distinction. Additionally, the requirements to send snoop
probes differ based on the cache inclusion policies, leading to dif-
ferent response times.

Cache inclusion properties [7] provide design guidelines for
cache hierarchies and to facilitate cache coherence implementation.
Strongly inclusive caches are generally used in academic research,
while commercial processors implement both strongly inclusive
and weakly inclusive policies. For example, IBM’s Power5 uses
strongly inclusive caches [7], Intel Pentium Pro uses weakly inclu-
sive caches [23], and both Compaq Piranha [9] and AMD Athlon
use exclusive caches in their designs. All three cache policies have
pros and cons. In exclusive caches, data resides in only one of the
caches in the hierarchy to increase the effective cache capacity. In
both weakly inclusive and exclusive policies, all snoop requests
need to be propagated from the last level cache to all the cores’
lower level caches (i.e., caches nearer to the core) and other re-
lated memory buffers in a CMP. This snooping-all technique may
not scale well with an increasing number of cores as it increases
power and inter-core communication. In strongly inclusive cases,
snoops probe all the lower level caches only when a cache line is
present in the last level cache to obtain the most recent version
from the owner core. An alternative to avoid sending snoop probes
to all cores in inclusive caches is to add a shadow set of all lower
level cache tags alongside the shared last level cache to maintain
coherency. Unfortunately, the overheads to maintain these shadow
tags become higher as the number of cores, cache hierarchy, and
size of the lower level caches increases.

In general, cache coherence protocols are implemented in a con-
servative manner. They always assume that all variables used in a
program are shared with other concurrent threads or programs. To
maintain functional correctness, all reads and writes that reach the
last level cache must send snoop probes to the other cores or proces-
sors in the system. However, some cores do not need to be snooped
if we know in advance that certain variables based on their pro-
gram semantics will get a miss response. The user input, program-
ming languages used to design an application, and differentiation
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Figure 1. Various program categories.

between single and multi-threaded applications can play an impor-
tant role in determining the number of snoop probes generated. The
efficiency of the snoop probes can be highly improved by utilizing
the programming language constructs and improving the contract
between the user and the application. The two main reasons for
cache coherent protocol and its implementation to be conservative
are that: 1) cache coherence protocol does not distinguish between
the shared variables and the non-shared ones, and 2) when a thread
migrates from one core to another because of OS scheduling, it typ-
ically leaves behind its old work (e.g. modified variables) in the old
caches and is required to snoop all the cores to continue its work in
the new core. We try to address these drawbacks with support from
both the hardware and software. Our goal is to relax the conserva-
tive nature of cache coherency protocol and its implementation by
selectively sending snoop probes for only certain program variables
to reduce the excessive bandwidth and other resources they use.

The rest of this paper is organized as follows. Section 2 dis-
cusses program semantics. Section 3 describes different snoop
probes in a typical CMP system. Section 4 proposes Selective
Snoop Probe (SSP) and Section 5 proposes a method to handle
snoops in the event of thread migration. Section 6 details the Es-
sential Snoop Probe (ESP). We analyze our experimental results
in Section 8. Related work is discussed in Section 9. Finally, Sec-
tion 10 concludes.

2. Program Variables and Snoop Probes
Figure 1 illustrates four different program categories based on the
nature of data shared in the program. Programs P1 and P2 that con-
tain both the shared and private variables are similar. The differ-
ence between them is that while P1 is a single-threaded program
that shares its global variables with other programs in the system,
P2 is a multi-threaded program that shares its variables with other
threads and programs. The third category is represented by pro-
gram P3, where all variables are assumed to be shared with other
programs, which is normally the case assumed by a cache coher-
ence protocol implementation. The fourth category is represented
by P4, where all the variables are local to the process without any
sharing.

Figure 2 shows the organization of variables in a typical single
and multi-threaded application corresponding to programs P1 and
P2. In general, both code and data are assumed to be shared with
other programs in the system. This region is marked as shared
in Figure 1. On the other hand, registers and stack, which are not
globally visible to other programs or the outside world, are local to
each thread. The variables in this region are shown as private for
P1, P2, and P4 in Figure 1.

The knowledge about the semantics of variables in a program
provides an opportunity to optimize snoops in a shared memory

Thread 0

Stack
and not shared)(Local to each thread

Registers Registers
Stack Stack

(Local to each thread
and not shared)

Registers Stack Registers Stack
(Local to each
and not shared)

Registers Stack
(Local to each
and not shared)

threadthread

StackRegisters
(Local to each program and not shared)

Thread 0
Thread 2_0 Thread 2_1

Thread 2

Multi−threaded programSingle−threaded program

Data
(May be shared with other programs)(May be shared with other programs)

Code Code Data

Thread 1

Registers

Figure 2. Thread stack in single- and multi-threaded programs.

environment. Current cache coherence implementations do not dif-
ferentiate between single and multi-threaded programs that can co-
exist in a CMP. Sometimes a single-threaded program may not use
any shared memory constructs. In this case, the program might be
“self-sufficient” in a cache coherent sense, where reads and writes
need not probe other cores or processors in the system. This infor-
mation can potentially be identified during program compilation.
Also, programmers can give their input or can be identified dur-
ing compilation that the program does not contain self-modifying
code. These inputs are valuable to the underlying processor for
minimizing those ineffectual snoops generated by the snoop con-
troller, thereby achieving an overall improvement in system power
and performance.

We first propose a hardware-only technique called Selective
Snoop Probe that exploits the properties of stack variables to
filter out unnecessary snoops. Then we propose a hybrid hard-
ware/software technique called Essential Snoop Probe that pro-
vides the necessary architectural support to reduce the number of
snoop probes based on the programming language and compiler
hints for all types of program variables. Both techniques can be
adopted by all types of inclusive/exclusive cache policies.

3. Snoop Classification
The internal snoops to lower level caches are inevitable in a CMP
system, where several cores are on the same die. They are not only
necessary to maintain cache coherency but are also required to sup-
port self-modified code (SMC) and cross-modified code (XMC). In
this section, snoops resulting from SMC/XMC, snoop flows, snoop
probes, and triggers in a typical CMP are described.

3.1 Snoops due to self/cross-modifying code

Self-modifying code (SMC) changes its own instructions by rewrit-
ing to them. Many commercial processors including IA-32, Itanium
and IBM POWER support self/cross-modifying code. There are
many applications that use this feature; one example is the Just-
In-Time compilers that use SMC to generate optimized codes at
runtime. To provide this support, on every write to a memory lo-
cation in a code segment that is currently cached or prefetched,
the processor should invalidate the associated cache line in the in-
struction cache and prefetch buffers. For example, in the Pentium
4 processor, when a write to a code segment matches the target in-
struction that is already decoded and resident in the trace cache,
the entire trace cache is invalidated. To detect such behavior, each
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Figure 3. Snoop flows in a Quad-core CMP system.

store address needs to send a snoop probe to the instruction cache.
When the snoop probe address matches a cache line in the instruc-
tion cache or prefetch buffer, the instruction cache invalidates the
corresponding cache line. In addition, upon every instruction ac-
cess to the last level cache, snoop probes to the same core’s data
cache and store buffers are sent to support the correct behavior of
the SMC. Similarly, snoop probes to the other cores in CMPs are
sent to support cross-modified code (XMC).

3.2 Snoop flows

Figure 3 shows the flow of internal and external snoops in a
typical quad-core CMP. Each core has private L1 instruction (IL1)
and data caches (DL1), and all four cores share one unified last
level L2 cache. The L2 is accessed on any IL1 or DL1 miss, L1
and L2 prefetchers, and external snoops in an MP system. The
CMP interconnect that connects all lower level cores can be a
bus, ring, or arbiter-based interconnect. The requests that need to
access the pipelined L2 cache are queued in a common hardware
structure called the L2 queue. The internal and external snoop
requests are queued in another hardware structure called the snoop
queue [24, 13]. A snoop queue entry is allocated during an access
to the last level cache or whenever an external snoop request is
received. Each entry in the snoop queue spawns snoop probes
to all the cores’ IL1 and DL1, load/store buffers, and MSHRs,
based on the type of each memory request. Note that each snoop
request allocated in the snoop queue spawns multiple snoop probes
to different hardware structures of all cores. The snoop response,
and data if necessary, are propagated to the requesting core. It is
also necessary to perform a snoop queue match before sending
responses to the external bus and before writing a cache line to the
last level cache for requests reaching it to maintain cache coherency
and memory consistency. Thus, it becomes crucial to reduce the
occupancy of the snoop queue for performance considerations.

Snoop flows differ based on the type of CMP interconnect archi-
tecture used. In a ring interconnect, snoops are sent across the ring
and all requests to the cores are queued and processed. The cores
return a snoop response, and data if applicable, over the ring. The
snoops can consume a large amount of bandwidth if not properly
handled or optimized. Regardless of the type of implementation,
it is important to complete snoop probes and return responses to
the requesting core as quickly as possible or to avoid snoop probes
completely whenever possible to improve the overall system per-
formance.
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Figure 4. Snoop probes in different benchmark suites.
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3.3 Snoop triggers and snoop probes

Table 1 based on [4] shows internal snoop trigger points and hard-
ware structures that need to be snooped to support cache coherency
and S/XMC snoops. The first column shows incoming requests
to the last level cache (LLC), in this case the L2. The next two
columns correspond to hardware structures of the core that trig-
gers the event and the rest of the columns correspond to the rest of
the CMP cores that respond to these snoop probes. The entries in
the last row show that on every store address, the instruction cache
of the corresponding core in the front-end needs to be snooped to
support self-modified code. The reads and Requests For Ownership
(RFO) need to probe at least three to four (this equals the number
of relevant hardware structures) times the number of cores in the
CMP to maintain cache coherency. A code fetch reaching the LLC
can be much more expensive than a data read or RFO as it sends
snoops to all modules, shown in the snoop table, but is mitigated by
lower instruction cache miss rates. This table clearly shows that as
the number of cores per die and vertical cache hierarchy increases,
these internal snoops will likely become the bottleneck in perfor-
mance and power consumption.

Figure 4 and Figure 5 show the number of snoop probes re-
ceived by each hardware structure for various benchmark cate-
gories with different processor configurations. The graph shows the
results collected from around 200 traces for 6M instructions each
based on the simulation methodology described in Section 8. Each
core in all configurations has split IL1 and DL1. All cores in one
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Table 1. Snoop triggers and snooped units in a quad-core system.

processor share the same L2. Also note that L2 employs a weakly-
inclusive policy, where a cache line in L1 may not be present in
L2. Figure 4 shows the number of snoops to three microarchitec-
ture modules, namely, Load-Store Buffer (LSB), DL1, and IL1. The
figure illustrates that the number of snoops to the IL1 (to icache)
to support self-modifying code is dominant, followed by those to
the data cache and those to the LSB.

Figure 5 shows the aggregate number of snoops for 6 different
configurations for the same benchmark in Figure 4. The 2C, 4C,
and 8C configurations represent two, four, and eight-core CMP
systems, respectively, on which two, four, and eight copies of a
single-threaded program are run. The 2Px4C configuration is a
system with two processors, where each processor has four cores.
Each core runs one copy of a single-thread application. The 2Px4C-
MT contains two quad-core processors running an 8-way multi-
threaded application while 8C-MT is simply an 8-core system
running the same multi-threaded application. Figure 5 shows that
the number of snoops steadily increases with the number of cores.
The multi-threaded (8C-MT) workload incurs a slightly higher
number of snoops than its single-threaded counterpart as the shared
variables between threads increase snoop probes. Also, there is
a slight increase in the snoop traffic as a result of the external
snoops in a dual-processor configuration 2Px4C compared to the
uni-processor configuration 4C. Also, there is a high increase in the
number of snoops when a multi-threaded workload is run on a dual-
processor (2Px4C-MT) configuration because of shared variables
and external snoops. The secondary axis of Figure 5 shows the
percentage snoop increase with respect to the 2C configuration as
the baseline. Although both Figure 4 and Figure 5 show that the
number of snoops to the IL1 is high, the rate of data snoop increase
is much higher compared to the instruction cache, as shown by
the secondary axis of Figure 5. As the number of cores increases
beyond 8 or 16 cores, snoop probes to the data cache and LSB
will limit the performance. The number of snoops tends to increase
in multi-threaded applications and is further aggravated in an MP,
limiting the performance improvement gained by parallelizing the
applications. We also observed that many of these snoop probes
get clean responses from the cores. The main reason is that the
knowledge about shared variables and the nature of the application
is not conveyed to the processor. To address these shortcomings,
we proposed a hardware technique called Selective Snoop Probe
(SSP) and a compiler-based hardware supported technique called
Essential Snoop Probe (ESP) that use the properties of variables
used in the program. These two techniques relax the conservative
nature of the cache coherency protocol and snoop selectively to
achieve better power and performance.

4. Selective Snoop Probes (SSP)
In this section, we describe and discuss our hardware solution,
which selectively filters snoop probes for requests reaching the last
level cache (LLC). Each access to the LLC spawns snoop probes,
as described in Table 1, to keep the data coherent in all the cores.
The requests that reach the last level cache can be divided into two
types based on the region of memory accessed: stack accesses and
non-stack accesses. The reason we partition accesses into these two
types is based on a simple observation that snoop probes generated
as a result of stack access requests should always receive a clean
response from other cores as stack memory is considered private
to its own thread. The snoop probes generated by non-stack ac-
cesses can be further divided into two types: those receiving a hit
or modified response, and those receiving a clean response. The
snoop probes caused by requests that access the stack and those
that receive a clean response by non-stack accesses are candidates
that can be eliminated. We observed that for all benchmarks that the
number of positive (hit or modified) responses from the cores that
respond is, in fact, is much fewer than the number of snoop probes
sent. The two main reasons for receiving clean responses are: 1)
the snoop probes to local thread stack variables are clean, and 2)
programs typically do not contain self-modifying code. Unfortu-
nately, modern day architectures do not differentiate these types
of variables, resulting in a large number of unnecessary snoops.
These snoops and their clean responses consume power to commu-
nicate the transactions and to probe the hardware structures. It can
also affect performance when a dedicated snoop port is not imple-
mented in the core for area reasons. To address these wasted snoop
probes, we propose a simple hardware technique called Selective
Snoop Probe (SSP). It uses a stack-bit (S-bit) annotation to elim-
inate snoop probes caused by stack accesses. Meanwhile, MESI-
state-based counting Bloom filters are proposed to eliminate snoop
probes caused by non-stack accesses that give clean responses.

Another interesting behavior exhibited by programs is that stack
accesses typically account for a considerable portion of all memory
references [22, 20, 21]. We profiled several benchmark suites to de-
termine the distribution of memory accesses that reach the LLC. As
Figure 6 shows, about 30% of memory references go to stack us-
ing the stack or frame pointer as the source or destination register
which is the dominant method to access the stack in IA-32 codes.
By decoding the source or destination register identifier, a proces-
sor can isolate memory instructions that go to the stack. To enable
this isolation in hardware, we propose to annotate load and store in-
structions with a single bit in the decode stage to indicate whether
an access is going to stack. Each request reaching the LLC carries
this annotation as part of the operation.

Figure 7 shows the details of internal and external snoop filter-
ing mechanisms based on the program semantics of the variables.
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The SSP technique uses stack-bit (S-bit) annotation for stack ac-
cesses and counting Bloom filters for non-stack accesses to selec-
tively filter out snoop probes that are not needed. Recently, Bloom
filters [10] have been widely used in various microarchitecture op-
timizations for performance and power [26, 31, 17, 29]. A Bloom
filter is a probabilistic data structure used to indicate if an element is
a member of a set. Since it guarantees no false-negatives, it is used
as an efficient structure to represent a large data set in a compressed
signature form. In our SSP implementation, two distinct counting
Bloom filters labeled 1© and 2© in Figure 7 are added to each core.
The first one tracks the valid cache lines in the instruction cache
to eliminate unnecessary SMC snoops. The second one tracks the
data cache lines to eliminate the snoops that receive clean responses
from non-stack accesses. The updates to counting Bloom filters are
denoted by lines marked u1 and u2, and reads are denoted by lines
marked r1 and r2 in Figure 7. The operation of SSP is divided into
three main parts: SSP for SMC, SSP for stack accesses, and SSP
for non-stack accesses.
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Figure 7. Selective Snoop Probes (SSP).

4.1 Selective snoop probe for SMC (SSP-SMC)

The counting Bloom filter inside the box labeled 1© in Figure 7
tracks all valid lines in the I-cache. Whenever an I-cache line
becomes invalid, it is removed from this Bloom filter. The insertion

if  bit−10  is  1   HASH3  =  (A ^ 0x22) ^ B ^ C

47 1024 15

if M / E state if S state

47 6

HASH 3

633

Tag + Index bits [6 − 32]

if  bit−10  is  0   HASH3  =  A ^ B ^ C

C

cntrcntr cntr

ABUnused bits

Tag + Index
bits

DataCache Line
state

cntr

(physical address)
(48−bits)

MESI

HASH 3

cntr

HASH 3

Figure 8. Hash functions used in counting Bloom filters.

and removal of addresses in the Bloom filter is denoted by line u1.
The data cache control unit first looks up this Bloom filter (denoted
by line r1) on a store address dispatch by the Reservation Station
(RS) or Load-Store Buffer (LSB). The SMC snoop probe to the
instruction cache is sent only when a lookup to the Bloom filter
generates a hit. Thus, unnecessary SMC snoop probes to the I-
cache are eliminated.

4.2 Selective snoop probe for stack region

The requests that reach the LLC carry stack-bit (S-bit) annotation
as part of the operation. As described earlier, the S-bit annotation is
set in the decode stage based on the source and destination register
identifiers. The snoop controller checks the S-bit before spawning
snoop probes to determine if it is necessary to do so. If the S-bit is
set, the snoop controller do not send any snoop probes. The stack
access requests do not use any Bloom filter and use only the S-bit
annotation for their operation. The stack access requests constitute
30% of the LLC accesses (Figure 6), for which snoop probes are
eliminated by checking the S-bit.

4.3 Selective snoop probe for non-stack region

On average 70% of requests reaching the LLC go to the non-stack
region. The counting Bloom filter inside the box labeled 2© in Fig-
ure 7 tracks all non-stack accesses that look up data cache and
MSHR, denoted by lines marked u2. The snoop controller looks
up the counting Bloom filters in all the other cores based on Ta-
ble 1 and gathers information before spawning snoop probes (de-
noted by lines r2 and r1/r2). This information is obtained only for
non-stack accesses. The snoop probes to the instruction and data
caches are spawned only for those accesses that are needed based
on the information gathered earlier. The snoop controller may still
send some snoop probes that are unnecessary as Bloom filters can
miss those lines due to aliases, resulting in false-positives. As the
Bloom filter only maintains information for non-stack addresses,
this inaccuracy caused by aliasing has been largely reduced. The
design of counting Bloom filters, the effectiveness of hash func-
tions, and the advantages of using the SSP technique are discussed
in the following sections.

4.4 Bloom filter and hash function

The counting Bloom filter inside box 2© in Figure 7 records non-
stack accesses based on the state transition of the MESI protocol.
The invalidation-based MESI cache coherence protocol is used in
this work. The Bloom filter for the data cache is divided into two
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sets. One tracks the M(odified) / E(xclusive) states together, and
the other tracks S(hared) state. The ME-Bloom filter records the
signature when the MESI state of a cache line is transitioned to the
M/E state. Similarly, when the cache line state is transitioned to S, it
is recorded in the S-Bloom filter, as shown in Figure 8. The reason
for segregating Bloom filters is to reduce aliases and decrease the
number of false-positives. This is based on the observation from all
benchmarks that more snoops take cache lines to S states than to M
or E states, as load instructions are executed more frequently than
stores.

The hash functions for counting Bloom filters in boxes 1© and
2© use cache line address bits to index the Bloom filter arrays.

Three counting Bloom filter arrays of 512 entries each are used
as illustrated in Figure 8. Note that the hash functions are fixed.
We did not use different hashes for different benchmark programs.
The first array is indexed directly by lower-order bits [14:6]. The
second array is indexed by bits [23:15] of the physical address.
The third array is indexed by XOR-ing bits [14:6], bits [23:15],
and bits [32:24] if bit 10 is 0. Otherwise, bits [14:6] are XOR-
ed with 0x22 instead of directly using the bits [14:6], as shown
in Figure 8. This combination of hashing is done to distribute the
indexing of addresses to all entries for alias reduction. The Bloom
filter has 10-bit counters, as there are 64 sets and eight ways in the
32KB cache. The 10-bit counters will ensure that even if the hash
function mapped all lines in the cache to the same Bloom filter
entry, there would still be no overflow. In reality, our hash function
is good enough to uniformly spread the cache lines over large sets
in most cases. The Bloom filter counters are cleared and reset when
modified lines are written back to the last level cache, as all lines in
the L1 will become invalid after eager writeback.

The number of snoop probes eliminated by the SSP technique is
sensitive to the size of the Bloom filter array. The false-positive rate
decreases as array size increases. The average false-positive rate we
accrued using 512 entries varied from 14% to 35% for different ap-
plications. Note that these statistics do not faithfully represent the
exact false-positives in reality; in fact, they are overly pessimistic.
The false-positives progressively increased as the program contin-
ued execution. Nonetheless, in real scenarios, the Bloom filter will
be cleared upon context switches, alleviating the false-positives.

In summary, there are several advantages of using the SSP tech-
nique. First, stack accesses from each local core do not snoop
other cores. Second, non-stack access induced snoops are selec-
tively propagated when identified as necessary by counting Bloom
filters. Third, the front-end of the core that includes the instruc-
tion cache and prefetch buffers is snooped only when necessary.
The SSP technique thus eliminated many of the unnecessary snoop
probes for non-stack addresses and all snoop probes for stack ac-
cesses, reducing power and improving performance. The external
snoop requests also go through snoop queue allocation and the
same procedure described above is followed.

5. Eager Writeback to Last Level Cache
The two main reasons to send snoop probes for requests reaching
the last level cache to all cores are: 1) the cache coherence proto-
col is conservative as it assumes all variables in the program are
shared, and the underlying processor follows this conservative im-
plementation to broadcast snoop probes, and 2) when a thread mi-
grates from one core to another because of OS scheduling, it typi-
cally leaves behind its modified variables and requires to snoop all
cores/processors later to obtain correct data in a physically indexed
and tagged cache implementation. The SSP technique described
previously addresses the first condition by relaxing the conserva-
tive snoop probe approach based on the nature of shared variables
in the program. The eager writeback hardware technique proposed

here will address the second condition and avoid the need to send
snoop probes to all cores in the event of thread migration.

The OS may schedule threads to run on different cores across
context switches to maximize resource utilization. However, one
disadvantage of thread migration is that while moving to a new core
the thread leaves behind information such as cache footprint, his-
tory in memory disambiguators, prefetchers, branch predictors, etc.
Sometimes performance may be better off if core affinity [5, 33]
is maintained as much as possible without conflicting with overall
CPU utilization. The core affinity is not always possible, though.
Therefore, it is necessary to snoop potentially modified lines when
the OS migrates threads for the next time slice. This is one of the
conditions that makes a snoopy-based cache coherence protocol to
send snoop probes to all cores inevitable upon each access. To ad-
dress this condition, we evict the modified contents from the lower
level cache to the LLC just after the context switch. Normally, the
context switch can be identified when important control registers
representing the current process in the processor change. The same
thread, while running on another core during the next time slice,
will retrieve correct data from the last level cache without send-
ing snoop probes to all the cores. The mechanism to flush modified
lines to the last level cache is used in the modern processors while
taking the cores to sleep state for saving power [6]. We expect the
performance impact will be minimal, as many of these lines that
belong to an old-time slice may get evicted after all because of
conflict misses after the context switch. The performance impact
resulting from eager writeback will be quantified later.

6. Essential Snoop Probe (ESP)
Although the SSP technique reduced the number of snoops, it
did not completely eliminate the unnecessary snoop probes that
returned clean responses because of aliases in the Bloom filters.
We now present a compiler-assisted hardware technique called
Essential Snoop Probe (ESP), a simple and complexity-effective
mechanism that exploits the non-shared information in all types of
the variables (stack, global, and heap) to reduce snoop probes down
to the essential ones.

The ESP technique requires synergy between compiler and
hardware to work effectively. The compiler, through various tech-
niques explained further below, annotates the stack, global, and
heap memory reference instructions with a Snoop-Me-Not (SMN)
bit. This bit, when turned on, indicates that the accessed variables
are not shared and snoops need not be sent to the other cores when
processing this memory request. The hardware requires a small
amount of logic to check the SMN bit annotation. Figure 9 shows
the implementation of the ESP technique. As shown in Figure 9,
when the SMN bit is set, a load access that reaches the LLC does
not snoop the lower level caches of other cores, because the com-
piler explicitly indicated that this variable is not shared. On the
other hand, if the SMN is not set, the hardware performs as usual
(lines denoted by esp).

To address the self-modifying code condition, compiler needs
to pass information if the program contains self-modified code to
the microarchitecture. It is identified either from data flow analysis
or from user defined pragmas. One approach is to use the compiler
tool chain assign a non-zero value to a predefined reserved mem-
ory location. The predefined memory location can be in one of the
sections that is part of the executable to indicate if the program
contains self-modified code. The loader while loading the program
reads this predefined memory location and sets the SMC control
register (SMC-CR) bit during the program initialization phase be-
fore the program starts its execution. The microarchitecture checks
this SMC-CR bit and prevents sending snoop probes to the I-cache
when it is set. When the SMC-CR bit is set to zero to indicate that
it is indeed executing a self-modified code, the microarchitecture
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sends snoop probes to the I-cache. While executing self-modifying
code, the SMC snoop probes (line denoted by esp-smc) to the I-
cache are sent. The lines esp and esp-smc indicate the essential
snoop probes.
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Figure 9. Essential Snoop Probe (ESP).

Compilers can use multitude of techniques to generate the
SMN bit. Using the data flow analysis and algorithms, inter-
procedure optimization, and other techniques, compilers can deter-
mine whether variables in a program are shared with other threads
or programs. For example, variables explicitly declared as shared,
or private in the OpenMP construct are supported by many compil-
ers [35, 27]. To support parallel programming, the POSIX thread
interface provides a better way of dealing with thread local stor-
age (TLS) [2] using thread C/C++ keyword. This new keyword
allows thread-specific variables to be easily distinguished from
others. In addition to compiler techniques, programming languages
also provide scope for variables. The Java language has global
scope for classes, package scope for fields and methods within a
package, and procedure scope for local variables. Similarly, C/C++
language also provides storage scope. This scope information can
also be used by the compilers to determine whether a variable is
shared or not. Also, each thread has its own private stack to work
with that is not visible to the outside world. Using a combination
of techniques described above, compilers can determine if a vari-
able in the program is shared or not. This gives the possibility of
minimizing the number of snoop probes by not sending them to all
the cores for reads and writes that reach the LLC. Whenever the
compiler cannot determine for sure if a variable is shared or not, it
leaves the SMN bit off. Also, the hardware will always send snoops
when running the legacy code or when running the code generated
by a compiler that does not support SMN bits.

7. Applicability of SSP and ESP Techniques to
Large-Scale CMP (LCMP)

Large-scale system topologies like mesh, torus, and trees are built
that involve tens or hundreds of processors using nodes and routers
as a basis. Each node ranges from a single core to a multicore pro-
cessor. The directory-based protocol is widely used for large-scale
system design. We believe a hierarchical cache coherence protocol
combined with hierarchical ring interconnects [3, 28] or concen-
trated mesh [8] design will be efficient for future large-scale CMP
systems. In the hierarchical cache coherence protocol design, the
snoopy-based cache coherence protocol that is suitable for fewer
systems, can be used in an inner ring to connect a small group

of neighboring cores together. The directory-based protocol can be
used in the outer ring to connect inner rings together. In this kind
of organization, the outer ring directory needs to keep track of in-
ner rings that have the copy of data instead of individual cores in
all rings, which gives better scalability at lower hardware directory
cost. Our proposed Selective Snoop Probe (SSP) scheme can be
used in the inner ring of large-scale CMP systems. On the other
hand, the compiler-based Essential Snoop Probe (ESP) scheme is
applicable to both small- and large-scale systems and is indepen-
dent of the cache coherence protocol used. Also, snoop probe elim-
ination resulting from self-modified code (SMC) is independent of
the cache coherence protocol used, as the probes are within the core
between data and instruction caches.

8. Experimental Results
We modified an x86 platform simulation infrastructure to evaluate
the SSP and ESP techniques. The detailed cycle accurate simula-
tor models a hypothetical future CMP system. The simulator exe-
cutes the traces [11] collected from real-world applications includ-
ing the external events such as DMA and interrupts. The traces are

Benchmark class Example applications
Server SpecJBB, TPCC

SPEC FP 2006 wrf, namd, lbm, soplex
SPEC INT 2006 hmmer, gobmk, omnetpp, gcc

Games and multi-media shooters, realtime strategy, raytracer
multi-threaded applications raytracer, cinebench

Table 2. Benchmark programs.

gathered for various categories: SPEC INT 2006, SPEC FP 2006,
server, games and multimedia, and multi-threaded applications. In
the multicore configuration, multiple copies of the same applica-
tion are executed on each core, except for the multi-threaded cate-
gory. The example applications in each category are shown in Ta-
ble 2. Each category has ten applications, and each application has
multiple traces that represent different characteristic portion of the
application similar to the SimPoint [19] methodology. The traces
are executed for 100 million instructions that cover many charac-
teristic portions of the application after warming up all the caches,
the TLBs, and the other hardware structures. The simulated con-

64-bit Processor Parameters Values
Execution Engine 4-wide out-of-order

Reorder Buffer 256 entries
Load queue 96 entries
Store queue 64 entries

L1 TLB entries 128, 4 way
L1I cache 32KB, 8 way, 64B line, 4 cycles
L1D cache 32KB, 8 way, 64B line, 4 cycles
L2 cache 4MB, 16 way, 64B line, 8 cycles
Memory 2GB, DDR2 timings

Table 3. Processor model parameters.

figurations are two-core, four-core, eight-core, and 2x4-core (two
processors, four-cores per processor). A total of 500 traces were
executed and the simulated processor configuration is shown in Ta-
ble 3. We used the CACTI 4.2 [1] 70nm model to determine the
energy consumed by the data cache, instruction cache tag, and the
hash arrays to evaluate the energy savings. The energy consumed
by the 32KB cache is 0.4673 nJ, and the three 512-entry 10-bit
Bloom filter is 0.0096 nJ. The leakage energy for 32KB cache is
0.1037 nJ, around 22.3% of the active energy.

Figure 10 shows the percentage of data cache energy savings
per core using the SSP technique. It shows that in each core 5% to
10% of data cache energy savings in the 2C configuration and 30%
to 65% in the 8C configuration are achieved. It also shows that the
data cache energy savings increases with the number of cores on
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Figure 10. Energy savings in data cache per core using SSP.

the die, as the number of snoops to all the cores increases. The data
cache energy savings in the 2Px4C dual-processor configuration is
a little bit higher than the 4C configuration, because of the external
snoop (snoop probes between CMP processors) filtering in the 2P
case.

Figure 11 shows the percentage of tag energy savings in the in-
struction cache using the SSP technique. It shows that 50% to 70%
of energy savings on average was achieved in the instruction cache
tag across all processor configurations. The number of snoops to
the instruction cache is determined by the number of writes and
the RFOs as shown in Table 1. The major contributing factor to
the instruction cache snoops are the store addresses in the program.
As the percentage of store addresses across different programs do
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Figure 11. Energy savings in the instruction cache tag per core
using SSP.

not vary much, the percentage of energy savings in the instruction
cache tag also do not vary widely.

Figure 12 shows the performance impact using the SSP tech-
nique. It shows that on average there is nearly 1% to 2% perfor-
mance improvement across various benchmark categories and dif-
ferent processor configurations. In one case, a performance im-
provement of 12% is achieved, as the reduced number of snoops
to the lower level instruction and data caches provide more oppor-
tunities to service the regular instruction fetch, loads, and stores.
Figure 13 shows the number of modified lines after the simulation
completed. These modified lines are the ones that need to be flushed
to the last level cache in order for the SSP technique to support the
thread migration. We also consider the number of cycles required
to flush these modified lines to the last level cache to support the
eager writeback.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

SPEC INT
2006

SPEC FP
2006

games/multi-
media

server multi-
threaded

application

Harmean
across

benchmarks

min
performance

observed

max
performance

observed

2C 4C 2Px4C 8C

Figure 12. Performance impact using SSP.

0

20

40

60

80

100

120

140

160

180

200

220

SPEC INT
2006

SPEC FP 2006 games/multi-
media

server multi-threaded
application

Average
across

benchmarks

N
um

be
r 

of
 m

od
ifi

ed
 li

ne
s 

at
 c

om
pl

et
io

n

2C
4C
2Px4C
8C

Figure 13. Number of modified lines after the program comple-
tion.

We implemented the RegionScout [25] technique proposed ear-
lier by Moshovos et al. to compare with our SSP technique. We
use a 64-entry fully-associative NSRT (Not Shared Region Table)
cache, and a 512-entry CRH (Cached Region Hash) to record the
regions that are locally cached with an 8KB region size. On aver-
age the SSP technique sends only 30-35% of snoop probes sent by
RegionScout. We observed the following reasons for RegionScout
to send more snoop probes than SSP technique: 1) the number of
unique 8K regions are higher than the NSRT cache size creating
many NSRT evictions 2) the SSP technique operates at the cache
line granularity compared to the 8KB region granularity 3) all stack
based accesses are eliminated in SSP unlike RegionScout where all
the stack, global, and heap memory references are taken into ac-
count. Figure 14 compares the energy savings achieved using SSP
and RegionScout techniques.

To evaluate the ESP technique, we show the potential energy
savings that can be achieved using the hardware support that lever-
ages the information generated by the compiler. The compiler can
implement a variety of techniques to detect the sharing of the vari-
ables used in the program. Figure 15 shows the percentage of
cache energy spent on the non-essential snoops. It shows that 5%
(games category in dual-core configuration) to a maximum of 82%
(SPEC FP 2006 in the 8-core configuration) were spent on the non-
essential snoops that can be eliminated using the Essential Snoop
Probe (ESP) technique. It also shows that the energy savings po-
tential increases with the number of cores in the CMP, because of
the increase in the number of non-essential snoop probes. Figure 15
shows that on average, 85% of instruction cache tag energy is spent
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Figure 14. Energy savings comparison in data cache using SSP
and RegionScout.
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Figure 15. Energy savings in data cache and instruction cache tag
per core using ESP.

on the non-essential SMC snoop probes. This percentage of savings
does not vary much across benchmark suites and processor configu-
rations. The ESP technique uses the synergy between the processor
and the compiler to achieve higher energy savings compared to the
SSP.

9. Related Work
It has been shown in prior work that many snoop requests miss
all the remote caches in a shared-memory system [26, 16, 30, 12].
But there was not much insight given for these large misses. We
found that one reason is that the stack accesses do not have global
visibility and snoop probes will simply miss in remote nodes.
Another reason is that many programs do not share any variable
with the others running on the system. None of the earlier proposed
hardware or software solutions were cognizant of the semantics of
the variables used in the program. A key difference between our
ESP technique and the techniques proposed by others is that the
ESP reduces the number of snoop probes to the essential ones to
maintain cache coherency for the entire execution of the program
rather than depend on the spatial or temporal locality of memory
references. Also, both our SSP/ESP techniques take self-modifying
and cross-modifying code into account.

Previous work on snoop energy reduction relied on blocks of
memory to optimize the snoops. For example, Ekaman et al. [16]
proposed a page sharing table that uses vectors to identify the shar-
ing at page level. Saldanha and Lipasti [30] proposed serial snoop-

ing to reduce the energy in shared-memory multiprocessors. In In-
clude Jetty [26], each node avoids the snoop accessing the L2 cache
by first checking the Jetty structure. One variant (Exclude Jetty)
used the temporal and spatial locality of shared data by caching
the recently missed snoops. The Jetty techniques, in their original
form, were designed to handle external snoops in SMPs. As shown
in [15], they do not work as effectively when applied to CMPs: In-
clude Jetty does not prevent a majority of unnecessary snoops and
Exclude Jetty requires prohibitively large hardware. Our SSP and
ESP techniques work well in a CMP as they selectively send snoop
probes where needed.

Moshovos proposed RegionScout [25] where each node can
determine in advance if a request would miss in all other nodes
based on region sharing information. When a node requests a block
in a region marked non-shared, there is no need to probe any other
node. The key difference of RegionScout from ours is that both
the SSP and ESP techniques selectively send the snoop probes or
completely eliminate them if possible, whereas RegionScout has to
broadcast the initial request to identify Region Hit information. The
RegionScout technique requires bus interconnect architectures as a
wired-OR signal is needed to notify a region hit. In contrast, our
techniques are not limited by the choice of interconnect architecture
used in a CMP system.

Cantin et al. [12] proposed a technique to reduce the number of
broadcast snoops required to maintain coherency in an SMP sys-
tem. Their idea is similar to RegionScout, and requires a hardware
structure called Region Coherency Array as well as extra bits in
the processor interconnect. Our SSP technique is different because
it completely eliminates snoops for stack accesses and selectively
dispatches snoops for non-stack accesses. Our ESP differs from Re-
gionScout and Region Coherency Array as it uses compiler’s sup-
port to reduce snoop probes to the essential ones based on the se-
mantics and sharing properties of the variables used in the program
without any storage based hardware structures.

Recently, Dash et al. [14] proposed an application-driven snoop
filtering mechanism for the embedded systems. In their technique,
the information regarding the shared array is made available to the
OS. The OS tags the TLB entries with a region id that denotes if
the page is shared or not. On a last-level cache miss, the address on
the shared bus is tagged with a three bit region id. This region id is
used by the snoop controller in each processor to filter the snoops
to the lower level caches.

10. Conclusion
In this paper, we proposed and evaluated two novel snoop filtering
mechanisms based on the access semantics of the variables used
in programs. Given the fact that the stack variables are all pri-
vate, we modified the existing snooping coherence protocol with
minimal hardware support to relax the generic and conservative
implementation which indiscriminately broadcast snoop probes to
all cores. First, we proposed a hardware-only technique called Se-
lective Snoop Probe (SSP) to eliminate all the snoop probes for
stack accesses. In addition, counting Bloom filters were employed
based on MESI state transitions to further reduce the number of
snoop probes caused by non-shared and non-stack accesses. This
hardware-only technique reduced the number of snoops substan-
tially, however, not all the unnecessary snoops can be eliminated at
runtime due to the aliasing effects of Bloom filters. To address this
limitation, a compiler-assisted technique called Essential Snoop
Probe (ESP) was proposed to include all variables in the program
by annotating the instructions with a Snoop-Me-Not (SMN) bit set
by the compilers representing the need to snoop during execution.

The advantage of using the SSP is that all the functionality is
implemented in the hardware and transparent to the programmers.
In addition, previously compiled binaries can benefit from this tech-
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nique without recompilation. However, as there is no information
provided by the software, the energy savings achieved is limited
using the SSP technique. On the other hand, the ESP technique lets
the compiler take full advantage of the hardware support to achieve
higher energy savings. We showed that the SSP technique saved 5%
to 65% of data cache energy, and 50% to 70% of instruction cache
tag energy per core across different processor configurations with
1% to 2% performance improvement. We also showed that nearly
5% to 82% of data cache energy and 85% of instruction cache tag
energy in each core was spent on the non-essential snoop probes
that can potentially be saved using the compiler guided ESP tech-
nique.

Our techniques can easily be extended to optimize future inte-
grated platforms such as AMD Fusion. In such systems, we expect
that the number of snoops initiated from the graphics core to the
rest of the cores on-die will be much higher given the nature of
graphics workloads. Our proposed techniques when used by CUDA
compilers can provide effective guidance to the hardware to min-
imize snoop traffic, substantially reducing the requirement of bus
bandwidth and improving the overall power and performance of
such heterogeneous systems.
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