
COMPASS: A Programmable Data Prefetcher
Using Idle GPU Shaders

Dong Hyuk Woo Hsien-Hsin S. Lee
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332

dhwoo@ece.gatech.edu, leehs@gatech.edu

Abstract
A traditional fixed-function graphics accelerator has evolved into
a programmable general-purpose graphics processing unit over the
last few years. These powerful computing cores are mainly used for
accelerating graphics applications or enabling low-cost scientific
computing. To further reduce the cost and form factor, an emerg-
ing trend is to integrate GPU along with the memory controllers
onto the same die with the processor cores. However, given such
a system-on-chip, the GPU, while occupying a substantial part of
the silicon, will sit idle and contribute nothing to the overall sys-
tem performance when running non-graphics workloads or appli-
cations lack of data-level parallelism. In this paper, we propose
COMPASS, a compute shader-assisted data prefetching scheme,
to leverage the GPU resource for improving single-threaded per-
formance on an integrated system. By harnessing the GPU shader
cores with very lightweight architectural support, COMPASS can
emulate the functionality of a hardware-based prefetcher using the
idle GPU and successfully improve the memory performance of
single-thread applications. Moreover, thanks to its flexibility and
programmability, one can implement the best performing prefetch
scheme to improve each specific application as demonstrated in
this paper. With COMPASS, we envision that a future application
vendor can provide a custom-designed COMPASS shader bundled
with its software to be loaded at runtime to optimize the perfor-
mance. Our simulation results show that COMPASS can improve
the single-thread performance of memory-intensive applications by
68% on average.

Categories and Subject Descriptors I.3.1 [Computer Graphics]:
Hardware Architecture—Graphics processors; B.3.2 [Memory
Structures]: Design Styles—Cache memories

General Terms Design, Experimentation, Performance

Keywords GPU, Compute Shader, Prefetch

1. Introduction
To meet the modern needs of game developers, a traditional fixed-
function graphics accelerator has evolved into a programmable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’10, March 13–17, 2010, Pittsburgh, Pennsylvania, USA.
Copyright c© 2010 ACM 978-1-60558-839-1/10/03. . . $10.00

graphics processing unit (GPU), which allows game developers to
write their own shaders for specific special effects. For its vast com-
putational capability, a modern GPU is also designed to run non-
graphics, compute-intensive applications, referred to as general-
purpose GPU (GPGPU) [24]. Recently, Intel and AMD announced
their integrated solutions to encompass the GPU, the memory con-
troller, and the CPU onto a single die for netbook, laptop, and desk-
top products [28, 36]. Although the integrated chip is not likely to
be as powerful as a standalone CPU or GPU due to several rea-
sons such as power budget, it lowers the overall system cost and
reduces the form factor with reasonable performance for its particu-
larly aimed applications and market. Furthermore, the performance
can be compensated to some extent due to the substantially reduced
latency between the host CPU and the integrated GPU.

Unfortunately, while the host CPU executes the sequential part
of a parallelized application or an unparallelized legacy application,
the integrated GPU will sit idle contributing nothing to the single-
thread performance. Unlike symmetric multi-core processors in
which many sequential processes can concurrently run on multiple
cores, an idle GPU cannot run a conventional CPU process due
mainly to the heterogeneity between the ISAs. Moreover, an idle
GPU cannot take advantage of other types of techniques, such
as speculative multi-threading or helper threads [2, 6, 9, 14, 22,
25, 29, 37], to boost single-thread performance unless the GPU
is completely re-designed to support it, which could unnecessarily
complicate the entire design and lead to performance degradation
when running conventional graphics applications.

One way to improve the performance of a CPU while an on-chip
GPU is idle is to exploit the remaining power budget. Because an
idle GPU only consumes a small amount of idle power compared
to an active GPU, the CPU can then be given the unused power
by increasing its supply voltage and clock frequency, similar to the
Turbo mode employed in Intel’s Core i7 (Nehalem) processor [18].
Nonetheless, this method will not improve the performance of
memory-intensive, single-thread applications, which are typically
unscalable and insensitive to clock frequency.

Instead of letting the GPU sit idle, we envision that the OS
can utilize the idle GPU to run compute shaders to enhance the
memory performance for single-thread applications. In this paper,
we propose COMPASS, a compute shader-assisted prefetching
scheme, to achieve our goal. With very lightweight architectural
support, we demonstrate that COMPASS can enhance the single-
thread performance of an integrated CPU by emulating the function
of a hardware prefetcher using the programmable shader.

The rest of this paper is organized as follows: Section 2 de-
scribes the details of the GPU architecture used as the baseline of
this paper. Section 3 explains the general design of COMPASS,
and Section 4 details the design and trade-off of various COMPASS

Command ProcessorCommand Processor

Setup EngineSetup Engine

Ultra-Threaded Dispatch ProcessorUltra-Threaded Dispatch Processor

Inst. $Inst. $ Const. $Const. $

LDSLDS TEX
Unit
TEX
Unit

LDSLDS TEX
Unit
TEX
Unit

LDSLDS TEX
Unit
TEX
Unit

LDSLDS TEX
Unit
TEX
Unit

LDSLDS TEX
Unit
TEX
Unit

LDSLDS TEX
Unit
TEX
Unit

LDSLDS TEX
Unit
TEX
Unit

LDSLDS TEX
Unit
TEX
Unit

L1
TEX$
L1

TEX$

L1
TEX$
L1

TEX$

L1
TEX$
L1

TEX$

L1
TEX$
L1

TEX$

L2$
Bank0

Render Back-EndsRender Back-Ends

A SIMD Array (= 80 SPUs)

x-
bar

L2$
Bank1

L2$
Bank2

L2$
Bank3

A Streaming
Processing
Unit (SPU)

BrBr

Register FileRegister File

BrBr

Register FileRegister File

BrBr

Register FileRegister File

A Shader Core (= 5 SPUs)

(a)

W
av

ef
ro

nt
A,

 th
re

ad
 i

W
av

ef
ro

nt
A,

 th
re

ad
 1

6+
i

W
av

ef
ro

nt
A,

 th
re

ad
 3

2+
i

W
av

ef
ro

nt
A,

 th
re

ad
 4

8+
i

W
av

ef
ro

nt
B,

 th
re

ad
 i

W
av

ef
ro

nt
B,

 th
re

ad
 1

6+
i

W
av

ef
ro

nt
B,

 th
re

ad
 3

2+
i

W
av

ef
ro

nt
B,

 th
re

ad
 4

8+
i

W
av

ef
ro

nt
A,

 th
re

ad
 i

W
av

ef
ro

nt
A,

 th
re

ad
 1

6+
i

W
av

ef
ro

nt
A,

 th
re

ad
 i

W
av

ef
ro

nt
A,

 th
re

ad
 1

6+
i

W
av

ef
ro

nt
A,

 th
re

ad
 3

2+
i

W
av

ef
ro

nt
A,

 th
re

ad
 4

8+
i

W
av

ef
ro

nt
B,

 th
re

ad
 i

W
av

ef
ro

nt
B,

 th
re

ad
 1

6+
i

W
av

ef
ro

nt
B,

 th
re

ad
 3

2+
i

W
av

ef
ro

nt
B,

 th
re

ad
 4

8+
i

W
av

ef
ro

nt
A,

 th
re

ad
 i

W
av

ef
ro

nt
A,

 th
re

ad
 1

6+
i

time

(b)

Core 0Core 0 Core 1Core 1 GPUGPU

L2$
Bank 0
L2$

Bank 0
L2$

Bank 1
L2$

Bank 1
L2$

Bank 2
L2$

Bank 2
L2$

Bank 3
L2$

Bank 3

MC 0MC 0 MC 1MC 1 MC 2MC 2 MC 3MC 3

(c)

Figure 1. (a) Baseline GPU Architecture, (b) Thread Scheduling
in Shader Core i, (c) Integrated Platform

shaders. Section 5 evaluates COMPASS in improving single-thread
performance using SPEC2006. Section 6 discusses related work,
and Section 7 concludes.

2. Baseline GPU Architecture
Figure 1(a) illustrates the baseline GPU architecture used in this pa-
per. Because the details of modern GPU architectures are not com-
pletely open to the public, we employed a baseline architecture that
resembles an abstract GPU from several publicly available docu-
ments [1, 16, 26, 27, 34]. As shown in the figure, at the front-end
of a GPU pipeline, a programmable command processor interprets
command stream from a graphics driver. The command processor
executes a RISC-based microcode with its computation logic and
memory. Then, a setup engine prepares data for a different shader
(e.g., a vertex, a fragment, a geometry, and a compute shader) and
submits threads of each shader code to an ultra-threaded dispatch
processor (or a thread scheduler). The ultra-threaded dispatch pro-
cessor maintains separate command queues for different shader
codes. It also has two arbiters for 16 cores of each SIMD array
as well as an arbiter for each vertex/texture fetch unit. Further-
more, the ultra-threaded dispatch processor has a shader instruc-
tion cache and a shader constant cache to supply instructions and
constant values.

The next pipeline stage of the baseline GPU executes a given
shader code. As shown, the GPU consists of several SIMD arrays
(four SIMD arrays in the figure), each of which consists of 16
shader cores forming a 16-way SIMD array. Each shader core
is a five-way VLIW machine, each execution unit of which is
referred to as a streaming processing unit (SPU). An additional
branch execution unit of each shader core handles flow control and
conditional operations.

In the right-most column of the SIMD array, a specialized ver-
tex/texture unit (labeled as a TEX Unit in the figure) is connected
to a vertex and a texture cache, each of which supplies requested
memory values to the SIMD array. (In the figure, only the L1 tex-
ture cache is shown for brevity.) Furthermore, 16KB local data
share (LDS) is placed between the 16 shader cores and the ver-
tex/texture unit. LDS enables efficient data sharing between threads
mapped to the same SIMD array. In addition to LDS, another 16KB
global data share (not shown in the figure) is present to allow data
shared among different SIMD arrays, but we will not use it in this
paper. Additionally, the baseline GPU has other hardware units
such as a render back-end unit for color blending, alpha blending,
depth testing, and stencil testing, but we do not elaborate them here
as they are not essential to the main idea of this paper.

With these hardware resources, the baseline GPU is able to tol-
erate long cache miss latency (often in hundreds of cycles) by ex-
ecuting many threads alternately. Upon a cache miss of a thread,
the ultra-threaded dispatch processor suspends the execution of the
thread and schedules another thread to sustain the overall through-
put. To achieve this, the ultra-threaded dispatch processor forms a
group of 64 threads and uses this group as a thread scheduling unit.
It essentially dispatches a group of 64 threads to the SIMD array si-
multaneously and later dispatches another group of 64 threads upon
a cache miss of the previous group. This group is referred to as a
wavefront (or a warp in NVIDIA terminology [12]). A wavefront
(64 threads) executes one VLIW bundle on a 16-way SIMD array
over four cycles as shown in Figure 1(b). In other words, one VLIW
bundle of the first 16 threads is dispatched to the SIMD array at cy-
cle 4n, the same bundle of the next 16 threads is dispatched to the
SIMD array at cycle 4n + 1, and so on. As the ultra-threaded dis-
patch processor has two arbiters per SIMD array, two wavefronts
compete to dispatch their instructions to the SIMD array. In this
paper, we assume that the same wavefront can be dispatched only
after another wavefront is dispatched as shown in Figure 1(b).

To support such a large number of threads on four 16-way SIMD
arrays, the GPU requires large register files. Following a speech
from AMD [34], we assume that the capacity of the register file
of each SIMD array is split into 256 sets, each consisting of 64
128-bit registers. It amounts to a total of 256KB (256 × 64 ×

16) register space evenly split across 16 shader cores of each
SIMD array. The total capacity of register files can vary according
to target market or over different GPU generations. For different
market segments, the GPU industry used to design its products
with a different number of shader cores. For example, ATI Radeon
HD 4890 (for the most enthusiastic gamers’ market) consists of
ten 16-way SIMD arrays while ATI Radeon HD 4600 (for the
mainstream market) contains only four 16-way SIMD arrays. In
this paper, we employ a baseline GPU of four 16-way SIMD arrays
for the integrated chip. Considering the number of SIMD arrays
will continue to soar in the future GPU, our results based on this
assumption of four SIMD arrays can be considered conservative.

Such a large pool of registers is shared by threads executed
on the same SIMD array. It also implies that more registers each
thread uses, fewer threads can be simultaneously active. Such reg-
ister partitioning is managed by GPU itself using a relative indexing
scheme [1]. Because the details on register partitioning is not dis-
closed, we assume a simple indexing scheme— a global register

index is the sum of a base register of a thread and a relative regis-
ter index within the thread. For example, if we have a pool of 32
registers and if each thread uses four registers, only eight threads
can be active simultaneously. In this example, the global index of
a physical register is calculated by adding the register identifier to
the base register index of the thread, which can be calculated by
simply shifting the thread ID to the left by two.

Lastly, in this paper, we assume that the integrated CPU cores
and the GPU share a four-bank L2 cache as shown in Figure 1(c).
Such architecture proposals have been considered in an early,
scratched integrated solution, e.g., Intel’s Timna processor, and
the upcoming Intel’s Sandy Bridge microarchitecture (shared L3).
Such integrated chips, to our firm belief, will emerge and gain more
interests for the following reasons: (1) saving the overall cost, (2)
providing efficient and coherent communication between the host
and the accelerator, and (3) giving more flexibility in cache space
consumption, similar to the rationale of the Advanced Smart Cache
in Intel’s multi-core processors. Note that, although our baseline
architecture assumes a shared L2, COMPASS does not necessarily
need a shared L2. In the case of a private L2 cache, our proposed
mechanism can still be used if a very small design hook is imple-
mented to forward an L1 miss request of the GPU to the L2 of the
CPU when COMPASS is enabled. Using a private L2 (as employed
by the recent IBM Power7) should not affect the overall results at
all since COMPASS shaders do not generate any memory traffic
except prefetch requests (will be detailed later). In addition, we
also assume that memory controllers are integrated on-die as they
are already in a current discrete GPU product.

3. COMPASS
Although data prefetching techniques have been widely researched,
state-of-the-art commercial processors only either employ simple
schemes such as a next-line prefetcher [17] or a stride prefetcher [39],
or push it to the software side by providing prefetch instructions
and let the compilers or programmers insert them at appropriate
locations inside the code. Most of the advanced complex hardware
schemes remain in literature due to their prohibitively expensive
hardware cost [15, 19, 30, 38]. Furthermore, different applications
may favor different types of prefetchers. Thus, a one-size-fits-all
hardware-based prefetcher may not be in the best of interests of
all applications. More importantly, the GPU consumes enormous
memory bandwidth when active, which competes the same band-
width shared by a dedicated hardware prefetcher for the CPU. Such
scenarios, in effect, will deteriorate the performance of both the
CPU and the GPU, diminishing the purpose of GPU acceleration.

To ameliorate the shortcomings of prior art, in this paper,
we propose COMPASS, a compute shader-assisted prefetching
scheme, which uses the idle GPU to achieve the functionality of
hardware prefetchers for improving single-thread performance on
an integrated single-chip system. The rationale behind our design
is as follows: (1) An on-chip GPU has large register files and rich
computational logic, so it can emulate the behavior of hardware
prefetchers, (2) While a GPU is idle, much of memory bandwidth
originally designed to meet the requirement of a GPU, will be left
unused and can be re-harnessed to assist the CPU cores, in particu-
lar, for data prefetching, and (3) The tight coupling of the CPU and
the GPU on a single die facilitates efficient, prompt communication
leading to synergistic outcome.

Note that one of COMPASS design goals is to reuse existing
hardware as much as possible to minimize the overall hardware
cost. Also, the overheads incurred by COMPASS should not affect
and compromise the massive parallel computation capability in a
GPU originally designed for 3D rendering and high-performance
computing. Toward these objectives, we describe how to emulate
different types of data prefetchers in subsequent sections.

Core 0Core 0 Core 1Core 1 GPUGPU

L2$
Bank 0
L2$

Bank 0
L2$

Bank 1
L2$

Bank 1
L2$

Bank 2
L2$

Bank 2
L2$

Bank 3
L2$

Bank 3
L2$

Bank 0
L2$

Bank 0
L2$

Bank 1
L2$

Bank 1
L2$

Bank 2
L2$

Bank 2
L2$

Bank 3
L2$

Bank 3

Miss AddressMiss Address
Miss PCMiss PC

Shader pointerShader pointer

Command
Buffer

Command
Buffer

Miss AddressMiss Address
Miss PCMiss PC

Shader pointerShader pointer

Command
Buffer

Command
Buffer

Upon a miss or the first hit to a prefetched line
Upon context switching (or a program phase change)
Upon a miss or the first hit to a prefetched line
Upon context switching (or a program phase change)

MAP

Figure 2. Miss Address Provider

3.1 Miss Address Provider
Because COMPASS is based on a compute shader, which is pro-
grammable, it provides much more flexibility than conventional
hardware prefetchers. As such, instead of implementing COM-
PASS with a fully automatic hardware mechanism, we opted for an
OS or application vendors to offer and enable COMPASS prefetch
capabilities. In this respect, we propose to add the Miss Address
Provider (MAP), a hardware/software interface bridging the L2
cache, the GPU, and the OS. MAP is located between the L2 cache
and the GPU as shown in Figure 2.

The operation of MAP is described step-by-step in the follow-
ing. (1) Once the OS has no pending job to run on the GPU, the
OS provides MAP a pointer to a compute shader for prefetching,
referred to as a COMPASS shader. (2) Upon an L2 miss or the first
hit to a prefetched line,1 the program counter (PC) generating this
memory request and its physical address are forwarded to MAP
for prefetching. (3) Upon receiving these two values, MAP sends
a GPU command to trigger the execution of a COMPASS shader.
These two values, a PC and a physical address, are stored in the
constant cache and read by the COMPASS shader. Furthermore,
the command also indicates which value, the PC or the physical
address, should be used to index a thread. (More details will be ex-
plained in Section 3.2.) (4) The role of the COMPASS shader is
to read miss history from GPU’s register files to predict the subse-
quent miss addresses, to update history information, and to execute
prefetch instructions that bring data back to the L2. (5) Prior to a
new job to be scheduled onto the GPU by the OS, MAP will be
disabled. Note that the OS intervenes in COMPASS only when
it needs to enable or disable a COMPASS shader upon context
switching. The OS can change a COMPASS shader more often,
e.g., upon a program phase change, but such fine-grained execution
is outside the scope of this paper.

3.2 Threads and Register Files
A COMPASS shader triggered by MAP emulates a hardware
prefetcher in the following manner. Basically, we emulate each
entry of a prefetch table with one GPU thread (or with a set of
GPU threads when using a multi-threaded COMPASS shader.) For
example, as shown in Figure 3, GPU thread4 emulates the behavior
of a prefetch operation that accesses the 5th entry of the prefetch
table. In other words, the registers of a GPU thread (or a set of GPU

1 Here, as in many previous prefetch studies, we assume that an L2 cache
has a tag bit per cache line for prefetch. It is set when a line is prefetched in
but not consumed.

Tag Last Address StrideTag Last Address Stride

PC

Prefetch Table

LDSLDS TEX
Unit
TEX
Unit

LDSLDS TEX
Unit
TEX
Unit

BrBr

Register FileRegister File

BrBr

Register FileRegister File

BrBr

Register FileRegister File

PC

TagTag LALA StrideStride tmp0tmp0

tmp1tmp1 tmp2tmp2 tmp3tmp3 tmp4tmp4
TagTag LALA StrideStride tmp0tmp0

tmp1tmp1 tmp2tmp2 tmp3tmp3 tmp4tmp4

TagTag LALA StrideStride tmp0tmp0

tmp1tmp1 tmp2tmp2 tmp3tmp3 tmp4tmp4
TagTag LALA StrideStride tmp0tmp0

tmp1tmp1 tmp2tmp2 tmp3tmp3 tmp4tmp4

TagTag LALA StrideStride tmp0tmp0

tmp1tmp1 tmp2tmp2 tmp3tmp3 tmp4tmp4
TagTag LALA StrideStride tmp0tmp0

tmp1tmp1 tmp2tmp2 tmp3tmp3 tmp4tmp4

TagTag LALA StrideStride tmp0tmp0

tmp1tmp1 tmp2tmp2 tmp3tmp3 tmp4tmp4
TagTag LALA StrideStride tmp0tmp0

tmp1tmp1 tmp2tmp2 tmp3tmp3 tmp4tmp4

TagTag LALA StrideStride tmp0tmp0

tmp1tmp1 tmp2tmp2 tmp3tmp3 tmp4tmp4
TagTag LALA StrideStride tmp0tmp0

tmp1tmp1 tmp2tmp2 tmp3tmp3 tmp4tmp4

TagTag LALA StrideStride tmp0tmp0

tmp1tmp1 tmp2tmp2 tmp3tmp3 tmp4tmp4
TagTag LALA StrideStride tmp0tmp0

tmp1tmp1 tmp2tmp2 tmp3tmp3 tmp4tmp4

TagTag LALA StrideStride tmp0tmp0

tmp1tmp1 tmp2tmp2 tmp3tmp3 tmp4tmp4
TagTag LALA StrideStride tmp0tmp0

tmp1tmp1 tmp2tmp2 tmp3tmp3 tmp4tmp4

TagTag LALA StrideStride tmp0tmp0

tmp1tmp1 tmp2tmp2 tmp3tmp3 tmp4tmp4
TagTag LALA StrideStride tmp0tmp0

tmp1tmp1 tmp2tmp2 tmp3tmp3 tmp4tmp4

HW thread 0

HW thread 1

HW thread 7

HW thread 2

HW thread 3

HW thread 4

HW thread 5

HW thread 6

Register file
Shader core

Figure 3. Hardware Prefetcher vs. COMPASS

threads) are used to record miss history information across the ap-
plication’s lifetime to emulate the same bookkeeping in a hardware
prefetch table.

To allow such mapping, the setup engine assigns a hardware
thread ID using the same index function as the index function of a
hardware prefetcher. Such thread mapping circuit is not currently
implemented in the setup engine of the GPU architecture. Clearly,
this is an additional hardware overhead but is rather insignificant
for the indexing requires only simple masking.

Because a typical hardware prefetcher table has a power-of-
two entries to facilitate PC indexing, we also force the number
of concurrently active hardware threads to be in power-of-two.
Also, we wrote our COMPASS shader to always use power-of-
two registers. With this simple trick, we do not need to modify
the register partitioning hardware of the baseline GPU, but the
requirement of using power-of-two registers is clearly a storage
constraint.

Those registers allocated to a thread (or a set of threads in a
multi-threaded COMPASS shader) are used for two different pur-
poses. One group of registers stores miss history information of
each table entry, and the others are used as temporary registers for
calculating the next prefetch addresses and for updating miss his-
tory. For example, to store miss history of a stride prefetcher, each
thread uses three registers to keep a tag value, a last address value,
and a stride value, corresponding to an entry of a conventional
stride prefetcher (Figure 3). To calculate future prefetch addresses
and update the emulated table, the thread needs several temporary
registers.

3.3 An Example of a COMPASS Shader
Figure 4 shows an example shader code for stride prefetching. This
shader code uses three general-purpose registers to store a tag, a last
miss address, and a stride value while using one more register as a
temporary register. Two other values, a current PC and a current
miss address, are provided by MAP in the form of constant values
stored in the constant cache.

As shown in the code, one run of a COMPASS shader emulates
one lookup of a conventional hardware prefetcher. Such design ne-
cessitates the registers keeping the miss history information to re-
main unmodified until the thread that emulates the same prefetch
table entry is dispatched. Such integrity of register files is enforced
by the setup engine, which uses the same index function of a hard-
ware prefetcher to allocate a hardware thread ID to each COM-
PASS lookup as we explained previously.

1: if tag == currentPC then
2: tmp← lastAddr + stride
3: if currentAddr == tmp then
4: tmp← currentAddr + stride
5: prefetch tmp
6: end if
7: end if
8: tag ← currentPC
9: stride← currentAddr − lastAddr

10: lastAddr ← currentAddr

Figure 4. Stride Prefetching

3.4 A Prefetch Instruction
To perform a prefetching operation, we can use a conventional
load instruction of a GPU. However, the load instruction requires a
destination register, which consumes one more register per prefetch
request. As explained previously, more registers each thread uses, a
smaller number of threads can be executed simultaneously. In other
words, using a load instruction reduces the capacity of a prefetch
table being emulated by a COMPASS shader. Hence, to reduce the
number of required registers in each thread, we propose to add
a prefetch instruction in the GPU. (Note that a GPU is unlikely
to support a prefetch instruction given cache misses can always
be hidden by the execution of a plethora of independent threads.)
Implementing a prefetch instruction does not incur much hardware
overhead because the prefetch instruction can be supported by
disabling the write-back path of a load instruction.

3.5 Usage Model
We design a COMPASS shader to be selected by an OS. Through
profiling, the OS can select the best matched COMPASS shader and
enables it by setting a pointer to the selected COMPASS shader. On
the other hand, the OS can also provide an API call to allow an indi-
vidual application to select an appropriate COMPASS shader from
a COMPASS library provided by the OS. Furthermore, an applica-
tion vendor can provide an application-specific COMPASS shader
through another API call. This API call provides the OS a pointer
to their custom COMPASS shader. When the OS schedules the tar-
get application, the OS can read this pointer value and store the
pointer in the shader pointer register of the MAP (Figure 2). This
execution model implies that even if the application has nothing to
do with graphics rendering, the application developers can still use
the GPU to enhance its performance by writing a prefetcher shader
code and having it loaded by the runtime system.

4. Different COMPASS Shader Designs
In this section, we describe different COMPASS shader designs and
analyze their design trade-offs. First of all, we evaluate three table-
based prefetchers: a PC-indexed stride prefetcher [4], a Markov
prefetcher [19], and a PC-indexed delta correlation prefetcher [20,
30]. On the other hand, we also evaluate a region prefetching tech-
nique [23]. In addition to these generic prefetchers, to demonstrate
the unique feature of COMPASS, we also design and evaluate a
custom-designed prefetcher for 429.mcf, which is known to be
memory-bound. As mentioned earlier, an application vendor can
write its own custom COMPASS prefetcher and pass it to the OS
via an API call.

One issue to be addressed is the long latency of instructions
in a GPU shader code. Notice that the design principle of GPUs
is to optimize for high throughput. They exploit a large amount
of thread-level parallelism to hide the instruction latency. As illus-
trated in Figure 1(b), if read-after-write dependency exists between
two successive instructions of a COMPASS shader, the dependent
instruction will be dispatched eight GPU cycles after its producer
instruction is dispatched. This is certainly not a performance bot-
tleneck for throughput-oriented graphics rendering algorithms, it is,
however, clearly a performance issue for a data prefetcher to bring
in missing cache lines in advance. On the other hand, a GPU clock
can be slower than a CPU clock (1

2
CPU frequency assumed in this

paper), albeit an integrated design could bring the GPU up to the
CPU’s speed. In our more pessimistic assumption, we could waste
16 CPU cycles between two successive VLIW bundles of a COM-
PASS shader.

On the other hand, one limitation of COMPASS is its through-
put. COMPASS is based on a compute-shader, which may need
tens of instructions to emulate a hardware prefetcher. Before a
shader code completes its execution, another run of the shader code
mapped to the same hardware thread ID cannot be dispatched. Fur-
thermore, a GPU may not have enough command queue to have
many different shaders. (Note that this is not a queue for threads
spawned from a single shader execution command, but a queue
for different shader execution commands.) The maximal number of
shader codes that can be queued in our baseline GPU is 16. Once
this queue is full, the shader execution command from MAP is ig-
nored until the queue releases a slot for a new shader execution.
These two issues, if left unaddressed, will make the idea of COM-
PASS less useful. We will focus on them in describing our COM-
PASS shaders.

4.1 Stride COMPASS
In the implementation of PC-indexed stride COMPASS, we use
three registers to keep a PC tag, its associated last miss address,
and stride. Upon a cache miss, the setup engine uses a PC given by
MAP to generate an index, which is used as a hardware thread ID
for our COMPASS shader. Once a thread is selected, it compares
whether a requested PC matches to the tag value and whether a
current miss address is equivalent to a previously predicted miss
address. If both conditions are met, the shader code generates next
d prefetch addresses where d is the prefetch depth.2 To avoid branch
instructions, we use predication for condition checking and unroll
the loop to generate d prefetch addresses.

We have two different types of stride COMPASS shaders to trig-
ger d prefetches. One is a single-threaded stride COMPASS, which

2 In this paper, we follow the prefetching terminology used in [30]. For
example, a prefetcher with a prefetch depth of four prefetches four cache
lines that will likely be requested by four consecutive misses in the future.
On the other hand, a prefetcher with a prefetch width of four prefetches
four potential cache line candidates that will likely be requested by the next
miss.

activates only one thread upon a miss. In this case, each entry of the
prefetch table is modeled with one thread. This thread consumes
three registers to maintain miss history and generates d prefetches
itself. The utilization of the GPU that runs this shader code is very
low since we only enable one out of 64 threads in a wavefront.
The second design is a multi-threaded stride COMPASS, which
activates d threads within a wavefront. Although these d threads
emulate just one prefetch table entry, the same miss history (e.g.,
tag, last miss address and stride stored in three registers) needs
to be duplicated for each thread. Since each thread only generates
one prefetch request, it requires only one temporary register for
the prefetch address of the thread compared to d temporary regis-
ters of a single-threaded stride COMPASS shader. Thus, the num-
ber of temporary registers required per thread is smaller, and the
multi-threaded stride COMPASS shader can be completed sooner,
thereby reducing the latency and increasing the throughput. When
d is not in power-of-two, we made a group of D threads to emulate
a prefetch table entry where D is the smallest number in power-
of-two greater than d. For example, to emulate a stride prefetcher
with a prefetch depth of five, we group eight threads into one group
so that this group can emulate a prefetch table entry. In this case,
three remaining threads are never activated. Such inactive threads
are found to be another source of storage inefficiency.

4.2 Markov COMPASS
In contrast to a PC-indexed stride prefetcher, a Markov prefetcher [19]
uses a miss address to index a prefetch table. Thus, the setup en-
gine uses a current miss address to index a thread (for prefetching)
and the last miss address to index another thread (for updating the
table) (Figure 5). Here, the command processor stores the miss ad-
dress of the last execution and provide it as the last miss address to
the setup engine for updating the table upon receiving a new miss
address from the MAP. Each thread of our Markov COMPASS
shader maintains w next addresses, where w denotes the prefetch
width. Our Markov COMPASS maintains these w next addresses
in a FIFO manner. One advantage of Markov COMPASS over a
hardware Markov prefetcher is its programmability for using dif-
ferent prefetch width. For example, an application that heavily uses
a binary tree favors a Markov prefetcher with a prefetch width of
two (or three if a pointer to a parent node is required). On the other
hand, another application that heavily uses a singly-linked list fa-
vors a Markov prefetcher with a prefetch width of one because
reducing the size of each entry allows more entries to be emulated.
Therefore, an application vendor can configure (dynamically) the
appropriate prefetch width of their own COMPASS shader accord-
ing to program behavior.

1: if tag == currentAddr then . Prefetch shader
2: prefetch nextAddr0
3: prefetch nextAddr1
4: prefetch nextAddr2
5: end if
6: tag ← currentAddr

1: nextAddr2← nextAddr1 . State update shader
2: nextAddr1← nextAddr0
3: nextAddr0← currentAddr

Figure 5. Markov Prefetching (Prefetch Width: 3) (The prefetch
shader is indexed with a current miss address while the state update
shader is indexed with the last miss address.)

4.3 Delta COMPASS
The third prefetcher we evaluated is a PC-indexed delta prefetcher [20,
30]. The pseudo code is depicted in Figure 6. As shown, imple-
menting delta COMPASS is found to be more challenging because
the process of delta correlation matching is complicated, and we

thread 0 thread 1 thread 2 thread 3 thread 4 thread 5 thread 6 thread 7
Delta (δj) 1 2 1 2 1 2 3 4

Delta Sum (
Pj−1

n=0
δn) 0 1 3 4 6 7 9 12

Match? O X O X O (i = 4) X X X
Pi−1

n=j
δn 6 5 3 2 disabled disabled disabled disabled

Prefetch Address 1030 1029 1027 1026 disabled disabled disabled disabled

Table 1. A Modified Delta Prefetch Address Calculation Algorithm (Miss Address = 1024)

have to accumulate delta values to calculate prefetch addresses.
Considering that a minimum interval for dispatching two succes-
sive VLIW bundles of a thread is eight GPU clock cycles, the
latency of delta COMPASS implemented with a single thread will
be very high.

1: for i← depth− 1 to 1 do . State update
2: δi ← δi−1

3: end for
4: δ0 ← currentAddr − lastAddr
5: lastAddr ← currentAddr
6:
7: for i← depth− 1 to 2 do . Delta correlation matching
8: if (δ0 == δi)&&(δ1 == δi+1) then
9: break

10: end if
11: end for
12:
13: prefAddr ← currentAddr . Prefetch address calculation
14: for j ← i− 1 to 0 do
15: prefAddr ← prefAddr + δj

16: prefetch prefAddr
17: end for

Figure 6. Delta Prefetching (δi: ith entry of a delta buffer)

To improve its efficiency, we implemented multi-threaded delta
COMPASS. For example, to emulate a delta prefetcher with eight
delta buffers, we use eight threads; each has a part of the delta
buffer and performs delta correlation matching in parallel. In par-
ticular, thread i (0 ≤ i ≤ 7) keeps δ0, δ1, δi, and δi+1 where δn is
the nth entry of the delta buffer. To update the state, thread i passes
δi+1 to thread (i + 1) through LDS (Figure 1(a)), so that the delta
buffer can be synchronized globally. To perform correlation match-
ing, thread i compares a pair of δ0 and δ1 against a pair of δi and
δi+1. Once a thread finds a match, it broadcasts its thread ID3.

However, calculating a prefetch address in each thread is still
challenging because thread j (j < i) requires the shader code to
perform a reduction of

Pi−1

n=j
δn, which should be accumulated af-

ter finding a match. This accumulation requires sequential scanning
among threads, leading to elongated latency and lowered through-
put. To avoid this loop, we contrive the delta COMPASS shader so
that thread j also maintains another value,

Pj−1

n=0
δn, which we

call delta sum. Basically, delta sum is a sum of the last j delta
values. Thread j can easily maintain this value by accumulating
(δ0 − δj) upon a miss or upon the first hit to the prefetched line.
Once thread i finds a correlation match, this thread broadcasts its
own delta sum,

Pi−1

n=0
δn, along with its thread ID. Once thread

j receives this value, it can calculate
Pi−1

n=j
δn by subtracting its

own delta sum,
Pj−1

n=0
δn, from broadcast thread i’s delta sum,

Pi−1

n=0
δn. With this modified algorithm, we can eliminate the it-

erative accumulation process from each shader execution.
A detailed example is shown in Table 1. If we use the original

algorithm (Figure 6), thread4 finds a match and broadcasts its

3 Multiple threads may find a match when the length of a correlation se-
quence is short, but here we use a special broadcast instruction that broad-
casts a value from the first valid thread in a wavefront to all threads of the
wavefront [1].

thread ID to all other threads. After receiving the thread ID of
four, thread1, for example, needs to accumulate the delta value of
thread3 (= 2), that of thread2 (= 1), and that of thread1 (= 2). The
sum of these values, 5 (= 2 + 1 + 2), are added to a current miss
address, 1024, to calculate a prefetch address, 1029. On the other
hand, in our modified algorithm, each thread keeps updating the
delta sum when it updates its local delta values. When thread4 finds
a match, it broadcasts its thread ID and its own delta sum (= 6) to
all other threads. Upon receiving this value, thread1 subtracts its
own delta sum (= 1) from the receive delta sum (= 6) and adds this
difference (= 5) to the miss address, 1024, to calculate the prefetch
address, 1029.

4.4 A Simplified Region Prefetcher
Additionally, we also evaluated a simplified version of a region
prefetcher [23]. Although the original region prefetching technique
monitors the utilization of a memory channel and prefetches an
entire page while the channel is idle, we cannot perform such fine-
grained monitoring and prefetching because we do not want to
heavily modify the GPU design. Thus, in this paper, we simplified
the design by fetching a page upon the first touch of a certain page.
Basically, the setup engine uses a miss address to index a group
of 64 threads or a wavefront. In particular, as shown in Figure 7,
thread i of a wavefront prefetches P + 64× i where P denotes the
base address of a page to which a requested miss belongs. In other
words, 64 threads of the wavefront prefetches 64 cache lines that
belongs to the same page. (In this paper, the L2 cache line size is
64B, and a page size is 4KB.) Such a brute-force, non-controlled
prefetching technique cannot be used in a conventional prefetcher,
which will affect the performance of all applications. However, due
to its flexibility, a COMPASS shader enables such an aggressive
technique whenever an algorithm has a demand for.

1: pageAddr ← currentAddr & 0xfffff000
2: for i← 0 to 63 do
3: prefAddr ← pageAddr + 64× i
4: prefetch prefAddr
5: end for

Figure 7. Region Prefetching

4.5 Custom COMPASS Design for 429.mcf
To demonstrate and evaluate a custom COMPASS shader, we se-
lected 429.mcf from SPEC2006 for our case study. It is known that
429.mcf demonstrated a peculiar memory access pattern [8, 35].
The address strides of several PCs missing the L2 are increased
exponentially as shown in Table 2 making them hard to be rec-
ognized by most hardware prefetchers. To capture the exponential
stride pattern, we designed a COMPASS shader that performs ex-
ponential stride prefetching. The pseudo code is given in Figure 8.
Our exponential stride prefetcher maintains the last miss address
and the last stride value. If a current stride value meets the con-
dition shown in line 1 of the figure, we prefetches multiple cache
lines using exponential strides. We multi-threaded this COMPASS
shader so that thread i can fetch three lines that are fetched by it-
eration i of a loop shown in Figure 8. To reduce the latency of this

Miss Address 0x4b19ba40 0x4b19e080 0x4b1a2d40 0x4b1ac680 0x4b1bf900 0x4b1e5e40 0x4b2328c0 0x4b2cbd80
Stride (δj) 9792 19648 39232 78464 156992 313984 627904

δj − 2× δj−1 64 -64 0 64 0 -64

Table 2. A Sample Stride Pattern of 429.mcf (Cache Line Size: 64B)

computation, we avoid the accumulation process in this loop by
designing thread i to compute the accumulated sum of exponential
strides by itself. Basically, instead of calculating Σi

n=12
nδ0, each

thread calculates 2× (2i
−1)δ0 which is equivalent to the previous

equation, where δ0 is a current stride value.
Note that, prior research [35] had attempted to capture such

access patterns in a hardware prefetcher, yet often resulting in
prohibitively large hardware structure, thus is impractical. Again,
the programmable COMPASS shader will enable such prefetching
in an economical manner.

1: δ1 ← δ0

2: δ0 ← currentAddr − lastAddr
3: lastAddr ← currentAddr
4:
5: if (δ0 ≥ 2δ1 − 64)&&(δ0 ≤ 2δ1 + 64) then
6: stride← δ0

7: prefAddr ← currentAddr
8: for i← 0 to depth− 1 do
9: stride← stride× 2

10: prefAddr ← prefAddr + stride
11:
12: prefetch prefAddr
13: prefetch prefAddr + 64
14: prefetch prefAddr − 64
15: end for
16: end if

Figure 8. Exponential Stride Prefetching (δ0: a Current Stride, δ1:
the Last Stride)

5. Experimental Results
In this section, we will first describe our simulation framework and
evaluate each COMPASS design. For each design, we will employ
one or two applications that clearly reveals the difference (or the
design trade-off) between different COMPASS shaders. After that,
we will show overall results with our benchmark applications.
Lastly, we will discuss hardware, software, and power overhead of
COMPASS.

5.1 Simulation Framework
We evaluate COMPASS by extending the SESC simulator [33].
In particular, we use an existing CPU model of SESC as well as
its memory back-end. In addition, we integrated a GPU pipeline
to perform cycle-level simulation. Our GPU simulation model in-
cludes the latency model of GPU front-end, the FIFO scheduling
policy and the limited queue entries of the ultra-threaded dispatch
processor, the latency and throughput model of VLIW execution
inside each shader core, and the latency and throughput model of
L1 TEX caches that are connected to the shared L2 cache. Fig-
ure 1(c) illustrates the overall system architecture of our CPU-GPU
integrated platform, and its details are listed in Table 3.

To quantify the performance advantage of COMPASS, we
use memory-intensive applications from SPEC2006. We define
a memory-intensive application as an application whose speedup
with a perfect L2 cache is greater than 1.1x compared to a base-
line CPU with a next-line prefetcher. For computation-intensive
applications, as COMPASS is fully programmable, an OS can opt
for not using it. As such, COMPASS will not adversely affect the
performance for these applications. We also excluded 434.zeusmp,

465.tonto, and 470.lbm due to cross-compilation issues or unsup-
ported syscalls in SESC. For each experiment, we fast-forwarded
the first 10 billion instructions and measured the performance for
the next billion instructions unless otherwise mentioned. Through-
out this paper, the baseline has a next-line prefetcher associated
with its L2 cache.

5.2 Evaluation of Stride COMPASS
To evaluate the stride COMPASS, we performed a vast number
of simulations with different types of shader codes and different
prefetch depth. First of all, Figure 9(a) and Figure 9(b) show the
number of required registers per thread and the number of threads
required for simulating one prefetch table entry, respectively. As
shown, as the prefetching depth increases, a single-threaded (ST)
stride COMPASS shader requires more registers per thread. On
the other hand, a multi-threaded (MT) stride COMPASS shader
requires more threads to emulate one entry while the number of
required registers per thread remains constant. This trade-off results
in different numbers of table entries that can be emulated with
COMPASS as shown in Figure 9(c). The figure suggests that, in
general, an ST stride COMPASS shader can emulate more table
entries than an MT stride COMPASS shader. Note that both stride
COMPASS shaders can emulate at least 4096 entries. Assuming
that an entry of a hardware-based stride prefetcher table is 12B
wide (including a tag, a last address, and a stride value), our stride
COMPASS with four SIMD arrays can emulate the behavior of a
48KB hardware stride prefetch table.

Although both of stride COMPASS shaders, ST and MT, emu-
late a larger stride prefetcher than a typical hardware-based coun-
terpart, their performance may not be as high due to the longer
latency and lower throughput. To observe this effect, we performed
another set of simulations with a zero-latency, infinite-throughput
(ZI) model that has the same number of table entries as the MT
stride COMPASS. Figure 9(d) shows the speedup of these three
models that run 459.GemsFDTD. As can be seen, both ST and
MT models underperform slightly but will catch up with the ZI
model if their prefetching depth is deep enough. This can be ex-
plained by analyzing Figure 9(e), which shows the average laten-
cies of ST and MT models, and Figure 9(f), which shows the num-
ber of discarded requests due to queue overflow (explained in Sec-
tion 4). We do not show the latency and the number of discarded
requests for the ZI model since both are zero by their definition. As
shown in these figures, when a GPU emulates a stride prefetcher
for 459.GemsFDTD, the latency of the COMPASS shader is low
enough to make both ST and MT models to catch up with the ZI
model when they prefetches more deeply. Besides, the queue oc-
cupied by pending miss requests hardly overflows, thus lost miss
history due to discarded requests does not affect the overall perfor-
mance of 459.GemsFDTD significantly.

In contrast, when running 462.libquantum, we found that the
ST and the MT stride COMPASS shader cannot achieve the perfor-
mance of the ZI model as illustrated in Figure 9(g). Moreover, the
ST stride COMPASS shader performs worse than the MT because
of its longer latency as shown in Figure 9(h) even though there
is no hurdle for ST to emulate a large prefetch table. Also shown
in Figure 9(g), once the prefetch depth of the MT stride COM-
PASS exceeds nine, its improvement levels off with a increasing
higher latency shown in Figure 9(h) due to a longer queuing de-

CPUs

Processor model
Two 3.0GHz, 14-stage, out-of-order, 4-wide fetch/issue/retire superscalar processors

192 ROB entries, 128 (INT) + 128 (FP) physical register file
Branch predictor Hybrid branch predictor (16K global / local / meta tables), 2K BTB, 32-entry RAS

L1 instruction cache
dual-port 2-way set-associative, 64B-line, 32KB cache,

LRU policy, 1 cycle latency, 1 cycle throughput, 8-entry MSHR

L1 data cache
dual-port 4-way set-associative, 64B-line, 32KB write-back cache,

LRU policy, 2 cycle latency, 1 cycle throughput, 8-entry MSHR

GPU

Clock frequency 1.5 GHz
Front-End Command Processor (4 GPU cycle latency) + Setup Engine (3 GPU cycle latency)

Ultra-Threaded Dispatch Processor 2 arbiters per SIMD array, 1 arbiter per TEX unit, minimum 1 GPU cycle latency, FIFO scheduling policy
Array Size 4 SIMD arrays, 16 shader cores per SIMD array, 5 SPUs per shader core

Register file 4-banked, 16KB per shader core (or 256KB per SIMD array)
TEX unit One per SIMD array, 4 address processors per TEX unit

TEX L1 Cache 1 cycle latency, 4-way set-associative, 64B-line 32KB (tightly coupled with a TEX unit)

Memory Back-End
Shared L2 cache

dual-port, 4-banked, 8-way set-associative, 64B-line, 2MB inclusive write-back cache,
LRU policy, 6 cycle latency, 1 cycle throughput, 8-entry MSHR per bank

Baseline prefetcher Next-line prefetcher in the L2 cache
Memory 350-cycle minimum latency, four 8B-wide buses, 800 MHz clock, double-data-rate

Table 3. Platform Configurations

 0

 5

 10

 15

 20

 25

 30

 35

 16 8 4 2 1
Prefetch depth

of registers per thread

ST
MT

(a)

 0
 2
 4
 6
 8

 10
 12
 14
 16

 16 8 4 2 1
Prefetch depth

of threads per entry

ST
MT

(b)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 16 8 4 2 1
Prefetch depth

Total # of entries emulated

ST
MT

(c)

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 16 8 4 2 1
Prefetch depth

Speedup
(459.GemsFDTD)

ZI
ST

MT

(d)

 60

 80

 100

 120

 140

 160

 180

 16 8 4 2 1
Prefetch depth

Average latency (in CPU cycle)
(459.GemsFDTD)

ST
MT

(e)

 0

 2

 4

 6

 8

 10

 16 8 4 2 1
Prefetch depth

% of discarded requests due to overflow
(459.GemsFDTD)

ST
MT

(f)

 4

 3

 2

 1

 16 8 4 2 1
Prefetch depth

Speedup
(462.libquantum)

ZI
ST

MT
ZI4

 MT4

(g)

 0

 200

 400

 600

 800

 1000

 1200

 16 8 4 2 1
Prefetch depth

Average latency (in CPU cycle)
(462.libquantum)

ST
MT

MT4

(h)

Figure 9. Evaluation of Stride COMPASS (ST: single-threaded, MT: multi-threaded, ZI: zero-latency, infinite-throughput)

lay within the GPU. After analyzing the simulation trace, we found
that a single PC of 462.libquantum constantly generates a cache
miss. Consequently, our PC-indexed stride COMPASS shader is
serialized, failing to use four SIMD arrays or other threads avail-
able in the same SIMD array. The following analysis quantitatively
explains this phenomenon well. First of all, we found that the satu-
rated IPC is 1.05, and the corresponding L2 misses per kilo instruc-
tions (MPKI) is 19.77. In other words, it takes 952.38 cycles to exe-

cute 1000 instructions that generate 19.77 misses. Thus, the average
time interval between two successive misses is 48.17 cycles while it
takes 48 cycles to execute three VLIW bundles for our stride COM-
PASS shader. In short, our COMPASS shader cannot prefetch cache
lines in a timely manner once the IPC of 462.libquantum reaches
1.05.

To mitigate this problem due to address aliasing, we also eval-
uated a different index function that concatenates the PC with two

 0
 1
 2
 3
 4
 5
 6
 7
 8

 4 3 2 1
Prefetch width

of registers per thread

ST

(a)

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 4 3 2 1
Prefetch width

Total # of entries emulated

ST

(b)

 1.3

 1.2

 1.1

 1
 4 3 2 1

Prefetch width

Speedup
(471.omnetpp)

ZI
ST

(c)

 30

 32

 34

 36

 38

 40

 4 3 2 1
Prefetch width

Average latency (in CPU cycle)
(471.omnetpp)

ST

(d)

Figure 10. Evaluation of Markov COMPASS (ST: single-threaded, ZI: zero-latency, infinite-throughput)

bits from a cache miss address (bit 7 and bit 6 of the miss address).
As we use four different entries for a single PC, the stride of each
entry will be 256 while the commonly observed stride of a stride
prefetcher with the conventional index function was 64. Figure 9(g)
also shows the speedup of a zero-latency, infinite-throughput (ZI4)
and MT stride COMPASS shader (MT4) that use this new index-
ing method. As shown, the speedup has been largely improved
compared to our previous design. The reason why the speedup of
ZI4 with a prefetch depth of four approaching that of ZI with a
prefetch depth of 16 is due to their functional equivalence, i.e., ZI4
prefetches a line 4 (depth) × 256 (stride) byte away from the cur-
rent miss address while ZI prefetches a line 16 (depth) × 64 (stride)
byte away.

Another noteworthy function is that an L1 TEX cache attached
to each SIMD array can combine redundant prefetch requests is-
sued by COMPASS. For the MT stride COMPASS with a prefetch
depth of 16 for 462.libquantum, the total number of L1 TEX
cache accesses is 316.3 million while the total number of actual
prefetches reaching the L2 is 19.8 million. Note that all these mem-
ory accesses are prefetch requests because our COMPASS shader
code relies only on its own registers for other computation such as
recording prefetch history and computing next prefetch addresses.

5.3 Evaluation of Markov COMPASS
In contrast to the stride COMPASS for which we varied the prefetch
depth, we evaluate the Markov COMPASS shaders by varying their
prefetching width. Because a Markov COMPASS shader is very
simple, we only evaluate a single-threaded Markov prefetcher. The
cost of emulating those different Markov prefetchers are shown
in Figure 10(a) and Figure 10(b), in which the number of required
registers and the capacity of the emulated Markov prefetch table
are plotted with the prefetch width. Due to the fact that the number
of registers or the number of entries must be in power-of-two for
indexibility, a Markov prefetcher with a prefetch width of two will
contain unused resources while consuming the same resources with
the one with a prefetch width of three as shown in Figure 10(b). In
our experiments, a Markov prefetcher with a prefetch width of three
turns out to be the most effective for two applications: 471.om-
netpp and 483.xalacbmk that benefit from a Markov prefetcher.
The speedup of these two applications are found to be 1.22 and
1.18, respectively while the performance of the other applications
are degraded. For 471.omnetpp shown in Figure 10(c), a Markov
COMPASS shader with a prefetch width of one did not outperform
the cases with wider prefetch width although it can emulate more
table entries. On the other hand, a Markov COMPASS shader with

a prefetch width of four reduces the speedup since the number of
table entries that can be emulated has significantly dropped. The av-
erage latencies of these Markov COMPASS with different prefetch
width are found to be similar as shown in Figure 10(d).

When comparing the capability of our Markov COMPASS to a
conventional hardware-based prefetcher, our scheme has a huge ad-
vantage. For example, a Markov COMPASS with a prefetch width
of three emulates 65,536 table entries, each containing 16B (a tag
plus three next miss addresses). That amounts to a prohibitively
expensive 1MB hardware prefetch table.

5.4 Evaluation of Delta COMPASS
As explained in Section 4.3, we evaluate only a multi-threaded
delta COMPASS shader due to the computation complexity of
a delta prefetcher. In our delta COMPASS implementation, each
thread uses 16 registers. As shown in Figure 11(a), the capacity
of emulated prefetch tables is much larger (at least 1024 entries)
than that of a conventional hardware delta prefetcher. Figure 11(b)
shows the speedup of 450.soplex using delta COMPASS shaders
with varying prefetch depth. Like a stride COMPASS shader, as
the prefetch depth increases, the MT delta COMPASS shader can
catch up with the ZI delta COMPASS in spite of increasing latency
(Figure 11(c)). Meanwhile, because a delta COMPASS shader ex-
ecutes a rather large shader code, its throughput is low. Thus, due
to overflow, more miss requests are discarded as the prefetch depth
gets larger as shown in Figure 11(d). Notwithstanding the discarded
misses, Figure 11(b) shows that a delta prefetcher trains itself pretty
rapidly resulting in high performance.

5.5 Evaluation of Region COMPASS
Unlike previous COMPASS designs, a simplified version of a
region prefetcher requires a small number of registers with a
lightweight COMPASS shader code. To fetch 64 cache lines
mapped to the same page, our region COMPASS uses 64 threads of
a wavefront, each of which calculates a corresponding cache line
using its own thread ID. This computation is extremely simple and
requires only four registers per thread. Similar to Markov COM-
PASS, we use the miss address to index a thread. This decision is
to efficiently prefetch cache lines even if a single PC constantly
generates cache misses very frequently. Because there is not much
trade-off in this design, we do not show further in-depth sensitivity
study for it. Its overall benefit will be discussed in Section 5.7.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 16 8 4
Prefetch depth

Total # of entries emulated

MT

(a)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 16 8 4
Prefetch depth

Speedup
(450.soplex)

ZI
MT

(b)

 400
 420
 440
 460
 480
 500
 520
 540
 560
 580
 600

 16 8 4
Prefetch depth

Average latency (in CPU cycle)
(459.soplex)

MT

(c)

 11
 12
 13
 14
 15
 16
 17
 18
 19

 16 8 4
Prefetch depth

% of discarded requests due to overflow
(450.soplex)

MT

(d)

Figure 11. Evaluation of Delta COMPASS (MT: multi-threaded, ZI: zero-latency, infinite-throughput)

 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 8 4 2 1
Prefetch depth

Total # of entries emulated

MT

(a)

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 8 4 2 1
Prefetch depth

Speedup
(429.mcf)

ZI
MT

(b)

 100

 105

 110

 115

 120

 125

 130

 135

 8 4 2 1
Prefetch depth

Average latency (in CPU cycle)
(429.mcf)

MT

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 8 4 2 1
Prefetch depth

% of discarded requests due to overflow
(429.mcf)

MT

(d)

Figure 12. Evaluation of Custom COMPASS for 429.mcf (MT: multi-threaded, ZI: zero-latency, infinite-throughput)

5.6 Evaluation of Custom COMPASS
We also evaluated a custom COMPASS shader for 429.mcf. This
shader code is PC-indexed and uses 16 registers per thread. We var-
ied the prefetch depth for this multi-threaded COMPASS shader.
The number of table entries that can be emulated is shown in Fig-
ure 12(a). With such a custom COMPASS shader, the performance
of 429.mcf is improved by 61% when the prefetching depth of
this custom COMPASS shader is four (Figure 12(b)). On the other
hands, as shown in Figure 12(c) and Figure 12(d), the latency of
this COMPASS shader is around 130 cycles, and the number of
discarded requests accounts for around 2% of L2 cache misses.

5.7 COMPASS vs. GHB Stride Prefetchers
Table 4 summarizes our simulation results. Instead of showing all
results with different prefetching depth or width, we selected the
best performing COMPASS shader in each type of COMPASS.
Here, we also show the performance of a conventional hardware-
based stride global history buffer (GHB) prefetcher (denoted as
HW GHB) that has a 256-entry global history buffer, the same
size used in the original paper [30]. We use three stride GHB
prefetchers with prefetch depth of 4, 8, and 16. Note that a stride
GHB prefetcher was found to be the most efficient prefetcher in a
previous study [31].

As shown in the table, the stride GHB prefetchers work pretty
well with 462.libquantum and 410.bwaves, however, they may

also degrade performance, e.g., 429.mcf. This is where the strength
comes from by employing our programmable COMPASS. As men-
tioned earlier, COMPASS allows an application vendor or the OS
to select the best performing prefetcher by customizing a GPU
prefetch shader code according to the peculiar behavior of an ap-
plication. Even with the small benchmark program sample shown
in Table 4, there exists no one-size-fits-all best prefetcher for them.
Flexibility of a programmable COMPASS facilitates the choice of
the best prefetching strategy. As shown in the table, for the ma-
jority of the benchmark applications, flexibility allows COMPASS
to perform better than a GHB prefetcher. Three exceptions are
462.libquantum, 410.bwaves, and 437.leslie3d, all of which are
in favor of a stride prefetching technique. As explained in Sec-
tion 5.2, for 462.libquantum, a stride COMPASS fails to catch up
with a stride GHB prefetcher with prefetching depth 16 due to its
low throughput. (Note that this stride COMPASS design is based
on the PC-only indexing scheme. As mentioned in Section 5.2, the
stride COMPASS shader with a different index function (MT4) can
improve the performance as much as the GHB prefetcher does.) For
410.bwaves and 437.leslie3d, the performance difference is neg-
ligible. On the other hand, our custom COMPASS shader based
on exponential increased stride for 429.mcf outperforms all other
table-based prefetchers, although a brute-force, region COMPASS
is found to perform even better than the custom COMPASS shader.

On average (geometric mean), the stride GHB prefetchers with
the prefetching depth of 4, 8, and 16 improve performance by 15%,

Speedup
SPECint06 SPECfp06

Geomean429. 462. 471. 473. 483. 410. 433. 437. 450. 454. 459.
mcf libquantum omnetpp astar xalancbmk bwaves milc leslie3d soplex calculix GemsFDTD

HW GHB
Stride (d=4) 0.89 1.44 1.15 1.00 0.96 1.80 1.11 1.27 1.06 1.11 1.05 1.15
Stride (d=8) 0.89 2.85 1.17 1.04 0.93 1.89 1.11 1.28 1.11 1.11 1.10 1.24
Stride (d=16) 0.89 4.79 1.15 1.05 0.93 1.80 1.09 1.27 1.14 1.11 1.10 1.29

COMPASS

Stride (d=16) 1.06 2.69 1.15 1.07 0.93 1.84 1.15 1.27 1.34 1.12 1.11 1.28
Markov (w=3) 0.97 0.74 1.22 0.82 1.18 0.73 0.87 0.69 0.86 0.91 0.60 0.85
Delta (d=16) 1.33 1.13 1.15 1.05 0.93 1.61 4.22 1.26 1.31 1.10 1.70 1.38

Region 2.00 3.49 0.25 1.09 0.82 1.46 1.59 1.23 1.47 1.12 0.30 1.07
Custom (429.mcf) (d=4) 1.61 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Perfect Perfect L2 2.56 4.82 1.72 1.52 4.07 1.93 4.61 1.30 2.08 1.12 2.08 2.25
COMPASS Geomean (when properly selected) 1.68

Table 4. Overall Results (d: prefetch depth, w: prefetch width)

24%, and 29%, respectively. In contrast, if an application vendor or
an OS chooses the application-specific COMPASS shader, we can
improve performance by 68% on average.

5.8 Multi-Core Effects
The majority of data prefetching techniques have been focused on
improving the performance of single programs. It is not well un-
derstood whether we need to partition a prefetch table into several
sub-tables or we should allow different processes to share one ta-
ble but potentially interfere the miss history of each other. Clearly,
this study is a separate piece of work. Thus, in this section, we
only briefly discuss how the OS can use COMPASS in a platform
with two CPU cores and a GPU. For this platform, obviously, the
best way to handle this problem is to co-schedule a computation-
intensive application and a memory-intensive application [40]. This
is not only good for reducing pollution in a prefetch table but also
good for reducing contention in the L2. Several shared cache-aware
scheduling methods have been investigated [10, 11, 21, 32]. An-
other way to address this problem is to prioritize one application.
In this case, the highest priority application will run COMPASS
alone while other concurrent applications will not benefit.

On the other hand, we can schedule two memory-intensive ap-
plications that benefit from the same type of COMPASS. For ex-
ample, we can schedule 433.milc and 459.GemsFDTD, the per-
formance of which is significantly improved by delta COMPASS.
Even though these two applications share COMPASS, their per-
formance can still be improved because the capacity of a prefetch
table that delta COMPASS emulates is a lot larger than that of
a conventional delta prefetcher. Table 5 shows results using this
policy. Here, the baseline is again a system without COMPASS
support (but with a next-line prefetcher as shown in Table 3). For
these simulations, we fast-forwarded the first 20 billion instructions
and measured the performance of the next two billion instructions.
Here again, we also show simulation results with the hardware-
based stride GHB prefetchers for comparison. The first set of ap-
plications, 410.bwaves and 462.libquantum, in the table repre-
sents two applications that benefit a lot from a stride COMPASS
shader. As shown in the table, a stride COMPASS shader can im-
prove performance significantly. As explained previously, because
a PC of 462.libquantum constantly generates cache misses very
frequently, the speedup of COMPASS is not as high as that of the
GHB prefetchers. However, when we simulate another two appli-
cations, 410.bwaves and 450.soplex, the performance of a stride
COMPASS is as good as that of GHB prefetchers. In contrast, when
we schedule two applications, 433.milc and 459.GemsFDTD, that
benefit from a delta COMPASS, our COMPASS clearly outper-
forms GHB prefetchers by simply programming the GPU.

On the other hand, when 471.omnetpp and 483.xalancbmk,
which benefit from the Markov COMPASS, are scheduled together,

Speedup
Benchmark pair

Geomean410 410 433 471 410
462 450 459 483 433

HW GHB
Stride (d=4) 1.69 1.54 0.94 1.00 1.48 1.30
Stride (d=8) 2.00 1.63 0.98 1.01 1.57 1.38
Stride (d=16) 2.30 1.59 0.94 1.00 1.53 1.39

COMPASS
1.86 1.64 2.01 1.05 2.09

1.68(stride) (stride) (delta) (markov) (delta)
(d=16) (d=16) (d=16) (w=3) (d=16)

Perfect L2 2.81 2.22 2.82 2.44 2.88 2.62

Table 5. Dual-Core Simulation Results

the Markov COMPASS outperforms the GHB prefetchers. How-
ever, the speedup of these two applications are actually lower than
the speedup of each application measured in a single-core simula-
tion. This outcome is not surprising because a Markov prefetcher
usually requires a large table and because these applications share
the same capacity as the previous single-core simulations. Lastly,
when 410.bwaves and 433.milc, which benefit most from the stride
COMPASS and delta COMPASS, respectively, are scheduled to-
gether, the delta COMPASS can still improve performance signif-
icantly. This is because a typical delta prefetcher can do the same
job as a stride prefetcher by simply consuming larger table space.

In summary, COMPASS has potentials to improve the perfor-
mance of multiple cores if the OS schedules applications wisely.
As mentioned, an OS-level scheduling policy is out of scope of this
paper, and it remains as our future work. Note that as the number
of CPU cores scales in the future, the number of SIMD arrays will
scale as well, thus a GPU will be able to provide enough throughput
for prefetching and to emulate a larger prefetch table.

5.9 Hardware, Software, and Power Overhead
The hardware overhead of COMPASS includes the following. (1)
The MAP requires three registers to temporarily store a shader
pointer, a miss PC, and a miss address. (2) It needs a command
buffer, which stores the GPU execution command. Note that the
command buffer stores the command itself, not the code for COM-
PASS shader. Thus, this buffer is extremely small. (3) The com-
mand processor of a GPU needs to be modified to understand the
new GPU execution command. This overhead is basically a mi-
crocode patch because the command processor is a programmable
processor. (4) The setup engine should be able to index a thread
based on a value retrieved from the command. The overhead of this
index function is minimal because it is basically a simple masking
operation. (5) Each TEX unit should support a prefetching opera-
tion. This is also a negligible change because we just need to dis-
able the write-back path of a conventional GPU load operation. (6)
The address translation process through a GPU’s TLB should be

disabled because MAP is forwarding a physical address from the
L2 cache and we can simply use it without address translation.

On the other hand, to provide a COMPASS shader to MAP,
an OS needs to have one or multiple COMPASS shaders built-
in so that it can use one of these COMPASS shaders along with
CPU processes. Optionally, the OS can provide an API function
that allows an individual application vendor to provide its custom-
designed COMPASS shaders. Second, the task scheduler of the OS
should be able to enable the MAP.

Because we are largely reusing existing GPU hardware for
COMPASS and the TDP (thermal design power) of our integrated
chip already considers fully active GPU and CPU cores, the use of
COMPASS should not aggravate the thermal and power dissipation.
The additional power consumed by our lightweight supporting
hardware described above will be negligible. Furthermore, in most
cases, our COMPASS does not fully utilize the GPU, e.g., using
16 threads out of 64 threads of a wavefront. Lastly, our COMPASS
shader is executed only upon an L2 cache miss, which does not
occur frequently in common cases.

However, compared to the case that the idle GPU is completely
power-gated, performance-per-joule can be degraded (when the
additional energy consumption of COMPASS outweighs its corre-
sponding speedup) or improved (when its corresponding speedup
outweighs its additional energy consumption). However, note that
COMPASS is an optional, programmable feature. For example,
when the system is battery-powered, the OS can turn off the func-
tionality of COMPASS if COMPASS degrades the performance-
per-joule of an application. However, once the system is AC-
powered, the OS can turn on COMPASS accelerating sequential
performance.

6. Related Work
Hardware prefetching is widely investigated by prior studies [4,
7, 19, 20, 23, 30, 30]. These hardware prefetchers use dedicated
hardware blocks to predict and bring in the cache lines in advance
whereas COMPASS is designed to reuse the existing GPU hard-
ware and leverage their programmability and flexibility so that one
(e.g., software vendors) can write or select the most appropriate
COMPASS shader to improve the performance of their applica-
tions. On the other hand, software prefetching was also investigated
by prior studies [3, 5], and various data prefetch instructions were
added in almost every commercial microprocessor. These tech-
niques basically insert software instructions into a code so that a
future memory fetch can be initiated in advance. COMPASS is dif-
ferent from a conventional software prefetching technique because
of the following. First, COMPASS does not consume any compute
bandwidth of the main processor, rather, it leverages the idle GPU
to perform the task. Second, it emulates a hardware prefetcher and
its associated hardware (e.g., prefetch table). As we demonstrated,
the emulated table oftentimes is much larger than the practical size
of a real hardware table. Third, COMPASS does not require re-
compilation of a code.

Helper thread techniques [2, 6, 9, 22, 25, 29] were proposed to
prefetch cache lines by precomputing load addresses. They often
relied on another thread running on the same processor (e.g., SMT
or Multicore) to achieve their goal. As such, they could diminish
the return if they compete the same resources needed by their mas-
ter thread. Similar to software prefetching, these techniques usually
run a stripped-down slice of the original program to precompute
miss addresses and bring in those data in time. In contrast, COM-
PASS emulates the behavior of a hardware prefetcher, and it can be
enabled at runtime through the OS. The closest work is an event-
driven helper thread [13] that emulates a hardware prefetcher on
an idle CPU. COMPASS is the first approach to use an idle on-
chip GPU and implement shader codes to enable a programmable

prefetching scheme. As explained previously, emulating prefetch-
ers on a GPU is far more challenging because a conventional GPU
is optimized for throughput sacrificing the latency of a thread and
because a GPU runs at lower clock frequency than a CPU. This
paper investigates such challenges regarding the latency and the
throughput of emulating a hardware prefetcher on a GPU by par-
allelizing our shader code, by adopting a large prefetch depth, and
by adopting a different hashing function. On the other hand, un-
like the event-driven helper thread, COMPASS uses a large register
file as a prefetch table instead of using a dedicated virtual memory
space. Consequently, our prefetch table does not pollute the shared
L2 cache resulting in less contention in the L2 cache in terms of
capacity and bandwidth.

7. Conclusion
In this paper, we proposed COMPASS, a compute shader-assisted
prefetching scheme, to improve the memory performance of an in-
tegrated chip while the on-chip GPU is idle. With very lightweight
architectural support, COMPASS shaders can emulate various
hardware prefetchers for improving performance of single-thread
applications. Moreover, due to its programmability and flexibility,
one can implement or select the best performing prefetching al-
gorithm specially tailored for a specific application to exploit its
particular memory access behavior. We designed, evaluated, and
analyzed different COMPASS shaders and also performed a case
study to demonstrate a custom-designed COMPASS shader. Our
simulation results showed that COMPASS can improve the single-
thread performance of memory-intensive applications by 68% on
average. With COMPASS, we envision that application vendors
can supply an application-specific COMPASS shader bundled with
their software in the future and have it loaded at runtime to improve
memory performance.

Acknowledgments
This research is supported in part by an NSF grant CCF-0811738
and the NSF CAREER Award CNS-0644096. The authors would
also like to thank Ahmad Sharif for his constructive comments on
the early version of this paper. We also thank Hironori Kasahara
of Waseda University and anonymous reviewers for their valuable
feedback to this work.

References
[1] Advanced Micro Devices Inc. R700-Family Instruction Set Archi-

tecture, March 2009. http://developer.amd.com/gpu assets/R700-
Family Instruction Set Architecture.pdf.

[2] M. Annavaram, J. Patel, and E. Davidson. Data Prefetching
by Dependence Graph Precomputation. In Proceedings of the
International Symposium on Computer Architecture, 2001.

[3] D. Callahan, K. Kennedy, and A. Porterfield. Software Prefetching. In
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems, 1991.

[4] T.-F. Chen and J.-L. Baer. Reducing Memory Latency via Non-
blocking and Prefetching Caches. In Proceedings of the International
Conference on Architectural Support for Programming Languages
and Operating Systems, 1992.

[5] W. Y. Chen, S. A. Mahlke, P. P. Chang, and W.-m. W. Hwu. Data
Access Microarchitectures for Superscalar Processors with Compiler-
Assisted Data Prefetching. In Proceedings of the International
Symposium on Microarchitecture, 1991.

[6] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery, and
J. Shen. Speculative Precomputation: Long-range Prefetching of
Delinquent Loads. In Proceedings of the International Symposium on
Computer Architecture, 2001.

[7] R. Cooksey, S. Jourdan, and D. Grunwald. A Stateless, Content-
Directed Data Prefetching Mechanism. In Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2002.

[8] M. Dimitrov and H. Zhou. Combining Local and Global History for
High Performance Data Prefetching. In The Journal of Instruction-
Level Parallelism Data Prefetching Championship, 2009.

[9] J. Dundas and T. Mudge. Improving Data Cache Performance by
Pre-executing Instructions Under a Cache Miss. In Proceedings of the
International Conference on Supercomputing, 1997.

[10] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. Performance of
Multithreaded Chip Multiprocessors and Implications for Operating
System Design. In Proceedings of the annual conference on USENIX
Annual Technical Conference, 2005.

[11] A. Fedorova, M. Seltzer, and M. Smith. Improving Performance Iso-
lation on Chip Multiprocessors via an Operating System Scheduler. In
Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques, 2007.

[12] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic
Warp Formation and Scheduling for Efficient GPU Control Flow. In
Proceedings of the International Symposium on Microarchitecture,
2007.

[13] I. Ganusov and M. Burtscher. Efficient Emulation of Hardware
Prefetchers via Event-Driven Helper Threading. In Proceedings of the
International Conference on Parallel Architectures and Compilation
Techniques, 2006.

[14] L. Hammond, M. Willey, and K. Olukotun. Data Speculation Support
for a Chip Multiprocessor. In Proceedings of the International
Conference on Architectural Support for Programming Languages
and Operating Systems, 1998.

[15] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the Memory
System: Predicting and Optimizing Memory Behavior. In Proceedings
of the International Symposium on Computer Architecture, 2002.

[16] R. Huddy. ATI RadeondTM HD 2000 SeriesTechnology Overview. In
AMD Technical Day, The Develop Conference & Expo, 2007.

[17] Intel Corporation. Optimizing Application Performance on
Intel R© CoreTM Microarchitecture Using Hardware-Implemented
Prefetchers, http://software.intel.com/en-us/articles/optimizing-
application-performance-on-intel-coret-microarchitecture-using-
hardware-implemented-prefetchers, September 2008.

[18] Intel Corporation. Intel R© CoreTM i7-900 Desktop Processor Extreme
Edition Series and Intel R© CoreTM i7-900 Desktop Processor Series,
October 2009.

[19] D. Joseph and D. Grunwald. Prefetching using Markov Predictors.
In Proceedings of the International Symposium on Computer
Architecture, 1997.

[20] G. B. Kandiraju and A. Sivasubramaniam. Going the Distance for
TLB Prefetching: An Application-driven Study. In Proceedings of the
International Symposium on Computer Architecture, 2002.

[21] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using OS
Observations to Improve Performance in Multicore Systems. IEEE
Micro, 28(3):54–66, 2008.

[22] S. S. Liao, P. H. Wang, H. Wang, G. Hoflehner, D. Lavery, and J. P.
Shen. Post-Pass Binary Adaptation for Software-Based Speculative
Precomputation. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2002.

[23] W. Lin, S. Reinhardt, and D. Burger. Reducing DRAM Latencies
with an Integrated Memory Hierarchy Design. In Proceedings
of the International Symposium on High Performance Computer
Architecture, 2001.

[24] D. Luebke, M. Harris, J. Krüger, T. Purcell, N. Govindaraju, I. Buck,
C. Woolley, and A. Lefohn. GPGPU: General Purpose Computation
on Graphics Hardware. In Proceedings of the conference on
SIGGRAPH 2004 course notes, 2004.

[25] C.-K. Luk. Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors. In Pro-
ceedings of the International Symposium on Computer Architecture,
2001.

[26] M. Mantor. Radeon R600, a 2nd Generation Unified Shader
Architecture. In Proceedings of the 19th Hot Chips Conference,
August, 2007.

[27] M. Mantor. Entering the Golden Age of Heterogeneous Computing.
In Performance Enhancement on Emerging Parallel Processing
Platforms, 2008.

[28] C. Moore. The Role of Accelerated Computing in the Multi-core Era.
In Workshop on Manycore and Multicore Computing: Architectures,
Applications And Directions, 2007.

[29] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt. Runahead Execution:
An Alternative to Very Large Instruction Windows for Out-of-order
Processors. In Proceedings of the International Symposium on High
Performance Computer Architecture, 2003.

[30] K. Nesbit and J. Smith. Data Cache Prefetching Using a Global
History Buffer. In Proceedings of the International Symposium on
High Performance Computer Architecture, 2004.

[31] D. G. Perez, G. Mouchard, and O. Temam. MicroLib: A Case for
the Quantitative Comparison of Micro-Architecture Mechanisms. In
Proceedings of the International Symposium on Microarchitecture,
2004.

[32] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural Support for
Operating System-Driven CMP Cache Management. In Proceedings
of the International Conference on Parallel Architectures and
Compilation Techniques, 2006.

[33] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos. SESC simulator,
January 2005. http://sesc.sourceforge.net.

[34] N. Rubin. Issues And Challenges In Compiling for Graphics
Processors (Keynote speech). In Proceedings of the International
Symposium on Code Generation and Optimization, 2008.

[35] A. Sharif and H.-H. S. Lee. Data Prefetching Mechanism by
Exploiting Global and Local Access Patterns. In The Journal of
Instruction-Level Parallelism Data Prefetching Championship, 2009.

[36] S. L. Smith. Intel Roadmap Overview. In Intel Developer Forum,
2008.

[37] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
Processors. In Proceedings of the International Symposium on
Computer Architecture, 1995.

[38] Y. Solihin, J. Lee, and J. Torrellas. Using a User-Level Memory
Thread for Correlation Prefetching. In Proceedings of the Interna-
tional Symposium on Computer Architecture, 2002.

[39] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4
System Microarchitecture. IBM Technical White Paper, October
2001.

[40] N. Tuck and D. Tullsen. Initial Observations of the Simultaneous Mul-
tithreading Pentium 4 Processor. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques,
2003.

