
GPU-based Private Information Retrieval for
On-Device Machine Learning Inference

Maximilian Lam
‡
, Jeff Johnson

†
, Wenjie Xiong

§
, Kiwan Maeng

¶
, Udit Gupta

∗∗
, Yang Li

†
,

Liangzhen Lai
†
, Ilias Leontiadis

†
, Minsoo Rhu

†
, Hsien-Hsin S. Lee

∥
, Vijay Janapa Reddi

‡
,

Gu-Yeon Wei
‡
, David Brooks

‡
, G. Edward Suh

†∗∗

†
Meta AI,

‡
Harvard University,

§
Virginia Tech,

¶
Penn State,

∥
Intel,

∗∗
Cornell University

Abstract
On-device machine learning (ML) inference can enable the

use of private user data on user devices without revealing

them to remote servers. However, a pure on-device solution

to private ML inference is impractical for many applications

that rely on embedding tables that are too large to be stored

on-device. In particular, recommendation models typically

use multiple embedding tables each on the order of 1-10 GBs

of data, making them impractical to store on-device. To over-

come this barrier, we propose the use of private information

retrieval (PIR) to efficiently and privately retrieve embed-

dings from servers without sharing any private information.

As off-the-shelf PIR algorithms are usually too computation-

ally intensive to directly use for latency-sensitive inference

tasks, we 1) propose novel GPU-based acceleration of PIR,

and 2) co-design PIR with the downstream ML application

to obtain further speedup. Our GPU acceleration strategy

improves system throughput by more than 20× over an opti-

mized CPU PIR implementation, and our PIR-ML co-design

provides an over 5× additional throughput improvement at

fixed model quality. Together, for various on-device ML ap-

plications such as recommendation and language modeling,

our system on a single V100 GPU can serve up to 100, 000

queries per second—a > 100× throughput improvement over

a CPU-based baseline—while maintaining model accuracy.

CCS Concepts: • Security and privacy→ Cryptography;
• Hardware; • Computing methodologies → Parallel
computing methodologies; Machine learning;

Keywords: privacy, security, cryptography, machine learn-

ing, GPU, performance

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0372-0/24/04. . . $15.00

https://doi.org/10.1145/3617232.3624855

ACM Reference Format:
Maximilian Lam, Jeff Johnson, Wenjie Xiong, Kiwan Maeng, Udit

Gupta, Yang Li, Liangzhen Lai, Ilias Leontiadis, Minsoo Rhu, Hsien-

Hsin S. Lee, Vijay Janapa Reddi, Gu-Yeon Wei, David Brooks, G.

Edward Suh. 2024. GPU-based Private Information Retrieval for

On-Device Machine Learning Inference. In 29th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1 (ASPLOS ’24), April 27-May 1,
2024, La Jolla, CA, USA. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3617232.3624855

1 Introduction
Privacy is an important consideration for real-world machine

learning (ML) applications that use user data. For privacy-

sensitive ML applications, users’ demand for stronger pri-

vacy protection, as well as regulations [29, 15] and platform

policies [9, 37], all increasingly limit the use of private user

data. For example, recommendation models, which represent

a significant portion of today’s ML workloads in practice, in-

herently rely on individual user data in order to provide per-

sonalized recommendations. Ideally, recommendation sys-

tems should provide suggestions to users without revealing

private user features even to the service provider.

On-device ML inference is a promising solution to pro-

vide stronger privacy, as it enables model inference without

requiring clients to share private input features with the ser-

vice provider. Unfortunately, a pure on-device ML inference

solution is impractical for many applications such as recom-

mendation, as these applications often require access to an

embedding table that is too large to store on device. For ex-

ample, recommendation models access tables that often take

gigabytes or even terabytes of memory [40, 72, 22, 70, 97].

These embedding tables are accessed using user features

that are important inputs to the recommendation model, and

dropping them may negatively impact model quality. Large

embedding tables pose a dilemma: storing large embedding

tables on device is impractical given device limitations while

storing them in the cloud and directly accessing them in the

clear could leak private information.

To address this issue, we propose using private informa-

tion retrieval (PIR) to privately query large embedding ta-

bles stored on servers. In this work, we consider distributed

point function (DPF)-based PIR, in which private embedding

lookups are performed by constructing and evaluating DPFs

https://doi.org/10.1145/3617232.3624855
https://doi.org/10.1145/3617232.3624855
https://doi.org/10.1145/3617232.3624855

Figure 1. (a) The traditional non-private approach to ML in-

ference, and (b) the proposed approach for private on-device

ML inference. Using PIR, a CPU-based client privately ob-

tains embeddings from two GPU-accelerated non-colluding

servers; these embeddings are subsequently used as inputs

to the client’s on-device neural network.

on two non-colluding servers (Figures 1 and 2). A two-server

DPF-PIR scheme is attractive as it is much more efficient

in terms of computation and communication compared to

single-server PIR schemes [31, 61]. The two-server model is

also widely used in the previous work on secure multi-party

computation (MPC) for privacy-preserving machine learning

[89, 80, 57, 56] or private analytics [14, 50].

Despite their advantages, DPF-based PIR protocols still ex-

hibit massive computational overhead [32, 12], making them

difficult to deploy in large-scale applications that require

high throughput. The computational overhead stems from

evaluating the DPFs on the servers, which entails executing

a significant number of expensive cryptographic operations

[32, 12]. For example, expanding a typical DPF for a table

with one million entries requires performing at least one

million AES-128 encryption operations. The cost is amplified

during ML inference where a model may access multiple

embedding entries [40, 41]. The computation and communi-

cation requirements of DPF-based PIR make deploying it to

real-world ML applications a considerable challenge.

1.1 Our Contributions
We develop a system to efficiently and privately serve embed-

dings for on-device ML, with the primary focus on on-device

recommendation models that require privately accessing

large server-side embedding tables. Note that recommenda-

tion models represent an important application that account

for a significant portion of the computational resources for

ML in practice [41, 52]. While our work primarily targets

private on-device recommendation, the proposed PIR system

can also be applied to other on-device ML models that need

private access to server-side embedding tables.

Embedding accesses for on-device ML, particularly on-

device recommendation, have several unique properties and

requirements compared to other applications that might use

PIR: 1) embedding table entries are often short, between

64-1024 bytes, 2) multiple embedding table entries are often

accessed together in a batch as part of a single model infer-

ence, and 3) throughput, latency, and model quality are all

critical to an application’s success. We leverage these proper-

ties to design a novel GPU acceleration scheme for efficiently

performing PIR on GPUs, and, additionally, co-design PIR

with the ML application to facilitate better trade-offs be-

tween model quality and system performance. Similar to

other systems work in the PIR domain [61, 23, 30, 19], our

contributions focus on performance improvements.. Our spe-

cific contributions are listed below.

GPU-accelerated PIR We develop a set of novel opti-

mizations to efficiently perform PIR on GPUs. Our optimiza-

tions enable high-throughput, low-latency DPF execution,

allowing us to scale to tables with millions of entries. We

observe that DPF evaluation is compute-bound due to their

heavy cryptographic instruction mix, and leverage the fact

that GPUs are especially well suited to perform these com-

putationally heavy operations. Yet, performing PIR on a

GPU requires exploiting multiple types of parallelism in

PIR while carefully balancing computation, communication,

and memory usage. Our GPU acceleration, over an opti-

mized CPU baseline [38], obtains > 1, 000× speedup over

single-threaded CPU execution, and > 20× speedup over

multi-core execution. To the best of our knowledge, this

work represents the first to explore high-performance GPU

implementations of DPFs. We note that our GPU implemen-

tation accelerates the state-of-the-art DPF algorithm [32],

which exhibits an optimal communication cost of 𝑂 (log(𝑛))
and an optimal computation complexity of 𝑂 (𝑛). Beyond
private embedding table accesses for ML, our GPU PIR can

be used to accelerate any PIR applications such as check-

ing compromised passwords. Our code is open sourced at

https://github.com/facebookresearch/GPU-DPF.
ML + PIR Co-Optimization To further improve perfor-

mance, we develop strategies utilizing application-specific

data access patterns to co-optimize PIR with the ML applica-

tion. Traditional batch PIR algorithms [51, 44, 8], which allow

privately obtaining multiple entries together, may impact

ML inference quality because they only retrieve entries prob-

abilistically and may drop some queries. We co-design a new

batch PIR algorithm for ML tasks to obtain a better trade-off

between model quality and system performance. We compre-

hensively evaluate the resulting performance improvements

and model quality of the new batch PIR scheme on applica-

tions including WikiText2 language model [62], Movielens

recommendation [42], and Taobao recommendation [88].

The results show that the proposed optimizations utilizing

application-specific data access patterns can increase the ML

inference throughput by up to 100× over a straightforward

PIR system design on a multi-core CPU, while maintaining

the model quality and limiting inference communication and

latency within 300 KB and 300 ms, respectively.

2

https://github.com/facebookresearch/GPU-DPF

2 Private On-Device ML Inference
2.1 Threat Model
The goal of private on-device inference is to perform ML

inference using data on a user device without revealing them

to a server owned by a service/cloud provider. In the context

of recommendation systems, on-device inference can allow

private user data only available on a client device to be used

to provide more relevant recommendations, while ensuring

that no private data leaves the device. To reduce the burden

on user devices, a server-side recommendation model can

send a set of candidate recommendations based on less sen-

sitive user features available on the server, then a smaller

on-device model can more accurately rank the candidates

leveraging private on-device user data without revealing

them to the server. In our study of a real-world model, we

found that even a small (several MB) on-device MLP model

can noticeably improve recommendation accuracy when

combined with server-side embedding tables.

We assume that the computation part of the ML model

can run on the user device given the increasing trend of

hardware accelerators and optimizations for client SoCs,

but that embedding tables of categorical/sparse features (de-
scribed below) are too large to be placed on individual de-

vices and hence are accessed remotely (Figure 1). We further

assume that only a very small fraction of the table is used

per-inference.

As the indices to embedding tables represent private cat-

egorical feature values, private on-device inference must

ensure the confidentiality of table indices while allowing

the use of server-side embedding tables. For this purpose,

we leverage private information retrieval (PIR) protocols

under the honest-but-curious threat model. The user/client

device and its software are trusted. While remote servers

are untrusted, they are assumed to follow the protocol. The

honest-but-curious threat model is widely used in previous

private inference work [56, 57, 86, 30, 19, 67]. The model may

be extended to a malicious setting by using PIR protocols

that protect against a malicious server deviating from the

protocol and produce wrong answers (e.g. authentication

for PIR [18]). We also note that incorrect PIR responses only

lead to non-optimal suggestions in recommendation models;

selective failure attacks [48] are difficult to perform because

failures are not visible to attackers.

Like previous work on privacy preserving ML and analyt-

ics using multi-party computation (MPC) [30, 19, 23, 89, 80,

57, 56, 14, 50], we further assume a two-server model where

the two servers are non-colluding. This two-server setup can

be practically realised by having two different cloud vendors

host and manage the two servers or having another industry

actor host the second server. Forming such a privacy con-

sortium among companies is emerging in industry [69]. See

Section 6 for further discussions.

Table 1. Embedding table sizes for popular public datasets

and models spanning across language and recommendation.

Application
of

Embedding
Entries

Entry Size
Embedding
Table Size

Criteo 1 TB
Rec. >100,000,000 ∼128B >90 GB

Criteo
Rec. ∼10,000,000 ∼128B ∼5 GB

FastText Emb.
(Language Model) ∼2,000,000 ∼1024B >1.9 GB

Taobao
Rec. ∼900,000 ∼128B ∼109 MB

WikiText2
(Language Model) ∼131,000 ∼512B ∼64 MB

Movielens-20M
Rec. ∼27,000 ∼128B ∼3 MB

2.2 Key Challenge: Large Embedding Tables
Unfortunately, the embedding tables in machine learning

models, especially for recommendation models, are often

too large for individual devices [40, 72, 22, 70, 97], making

a pure on-device inference solution impractical. An embed-

ding table is a large table that maps categorical features into

dense vectors that encode semantic information. For exam-

ple, categorical (sparse) features may include a user’s click or

search history. The value of a categorical feature is used as

an index to an embedding table where each row of the table

holds the vector corresponding to that categorical feature

value (Figure 1). Embedding tables can have as many rows

as the number of possible values in the categorical feature

space so their size can grow quickly.

Recommendation models use several user and product

input features to predict whether a user is likely to interact

(e.g., click or purchase) with the product [72, 97]. These

models may use user data such as the list of products the user

recently purchased [97]. As the number of products can be

on the order of millions, the corresponding embedding table

can reach several GB to TB in size [40, 70, 35]. Compressing

the table is difficult for many real-world models, as it leads

to significant accuracy drop [96]. Recommendation models

represent our primary target use case given their reliance

on large server-side tables.

Language models are another potential example of an

ML application that may require access to server-side embed-

ding tables. Language models empower applications such

as next-word prediction, language translation, and speech

recognition. Language models map words into a latent em-

bedding space using word embedding tables [62]. As there

may be hundreds of thousands of different words, with each

embedding vector being hundreds of bytes long, it quickly

becomes impractical to store the entire word embedding

table on-device, especially for natural language translation

models supporting multiple languages [24, 73]. Although

there are alternative techniques to compress the embeddings

3

Table 2. The embedding tables for a real-world recommen-

dation model, showing the number of entries, the table size,

and the average number of entries accessed per inference.

The numbers are shown for the top 5 device-only sparse

features with highest importance.

Entries

Avg Queries

Per Inference

Table Size

(# of entries * 144B)

7,614,589 13.9 1.02GB

20,000,000 47.3 2.68GB

20,000,000 25.7 2.68GB

2,989,943 3.2 400MB

20,000,000 14.9 2.68GB

(e.g., character embeddings, sentence level representations,

etc.), word embeddings are considered to be more efficient

to train in a regime with less training data [24]. We discuss

the language model as a potential example in our study to

show that our system can be adopted for multiple types of

on-device models that need large server-side embedding ta-

bles. However, we note that on-device inference for language

models is limited to smaller language models that can run

on a client device. Private inference for large language mod-

els need additional computation beyond embedding table

accesses to be securely offloaded to cloud servers. Also, the

embedding tables for language models are typically much

smaller compared to the tables for recommendation models.

Table 1 summarizes the size of the embedding tables of

some popular datasets/models. The size ranges from several

MBs to hundreds of GBs. On the other hand, the mobile

app size is on average 34MB, and seldom exceeds 200MB

even in extreme cases [68]. Embedding tables, especially for

recommendation models, can easily exceed this range, which

makes deploying them on-device impractical [35].

2.3 Example: Real-World Recommendation Model
As a concrete use case for private on-device ML inference

with sparse features, we studied a real-world recommenda-

tion model where some of its input (user) features can only

to be used on a client device for strong privacy protection.

For this model, such “device-only” sparse features represent

7 out of top 25 features when the input features are ranked by

their feature importance score
∗
. Removing the device-only

features significantly degrade the model’s utility (accuracy),

and a small (several MB) on-device model can provide good

accuracy if the embedding tables can be accessed privately.

Table 2 shows the embedding table size and the number

of accesses per inference for the top 5 sparse features that

are only accessible on-device. Similar to the public datasets,

the embedding tables are too large to be sent and stored

on a client device, and each table entry is relatively small

∗
This score measures the change in the accuracy when a particular

feature is changed to a random value.

(144 bytes) – on average only at most 1-10KB of entries are

fetched from the table for each inference.

Our study also found that the user features change rela-

tively slowly; the sparse user features mostly stay the same

for two consecutive recommendations for one user. If a client

device keeps recently fetched embedding table entries, only

2.44% of sparse features are new and need to access embed-

ding tables on a server. Even though Table 2 shows that

several tens of embedding table entries are used for each

inference, the temporal locality means that only a few new

entries need to be read from the server.

2.4 Our Approach: On-Device ML Inference with PIR
To enable private on-device ML applications that require

access to large embedding tables, we propose using private

information retrieval (PIR) [17, 23]. PIR allows a user to query

a table without revealing which index was accessed to the

table holder, i.e., the server that hosts the embedding table.

We propose to keep large embedding tables on the cloud

servers, and use PIR to query the table upon an embedding

table access by a client’s device (Figure 1).

We use a PIR protocol based on a distributed point func-

tion (DPF) [32, 12], which protects accesses using two non-

colluding servers. We choose PIR rather than oblivious RAM

(ORAM) [34, 84, 92, 85, 49, 7, 10, 27, 78, 90, 91, 76, 60, 75,

13, 94], another popular cryptographic technique to hide

an access pattern to memory, because ORAM is designed

to protect accesses from a single entity. In the on-device

ML scenario, multiple users simultaneously send query re-

quests. DPF-based PIR methods are more efficient in terms

of communication and computation compared to single-

server PIR schemes that employ homomorphic encryption

[61, 20, 31, 59]. A key challenge in employing DPF-based

PIR is its high computational intensity due to heavy cryp-

tographic operations. In the following section, we describe

how the DPF-based PIR can be efficiently accelerated on

GPUs.

3 Accelerating PIR using GPUs
Algorithms for PIR exhibit significant overhead due to their

heavy cryptographic operations and cannot be immediately

adopted for private on-device inference. Below, we 1) briefly

introduce PIR and DPF, 2) analyze their characteristics to

understand how GPUs may accelerate them, and 3) describe

our optimizations for GPU acceleration.

3.1 Fundamentals of PIR and DPF
Private information retrieval (PIR) based on distributed point

functions (DPF) allows a user to access an index in a table,

shared across two non-colluding servers, without leaking

the index to the table holders. In DPF-PIR, the client sends

a key that represents the index it wants to privately query.

4

Figure 2. DPF based PIR scheme. The client computes 𝐺𝑒𝑛

to obtain two keys (𝑘𝑎 , 𝑘𝑏) that represent a secret index and

sends them to the servers. The servers individually com-

pute 𝐸𝑣𝑎𝑙 to obtain secret shares of the answer, from which

the client can later retrieve the desired embedding. 𝐸𝑣𝑎𝑙 is

computationally expensive and is our main target for accel-

eration.

The server, upon receiving the key, performs expensive cryp-

tographic operations to service the user’s query (Figure 2).

Naive PIR Assume a client𝐶 seeks to privately access entry

𝑇 [𝑖] ∈ F𝐷𝑝 from a table 𝑇 ∈ F𝐿×𝐷𝑝 that is duplicated across

two non-colluding servers, 𝑆1 and 𝑆2. Here, 𝐿 is the number

of entries in the table, 𝐷 is the vector length of each entry,

and F𝑝 is an integer field with modulus 𝑝 . A simple but

highly inefficient approach is for the client 𝐶 to generate

and send a random vector 𝑟1 ∈ F1×𝐿𝑝 and a second vector

𝑟2 ∈ F1×𝐿𝑝 to 𝑆1 and 𝑆2, such that they add up to a one-hot

indicator vector 𝐼 (𝑖) whose entries are all 0’s except at the
𝑖𝑡ℎ position where it is 1 (𝑟1 + 𝑟2 = 𝐼 (𝑖)). Upon receiving the

vectors, the servers individually compute and return 𝑟1 ×𝑇
and 𝑟2 ×𝑇 to the client, from which the client can retrieve

𝑇 × (𝑟1 + 𝑟2) = 𝑇 × 𝐼 (𝑖) = 𝑇 [𝑖]. Information theoretic privacy

is ensured as 𝑟1 and 𝑟2 are secret shares of the indicator vector
that do not leak any information about 𝑖 individually [83].

This simple approach incurs large communication overhead

because the size of 𝑟1 and 𝑟2 is proportional to the size of

table 𝑇 , making the communication overhead 𝑂 (𝐿).
DPF-PIRThe generalization of the approach described above

is a cryptographic primitive known as a distributed point
function (DPF). DPF is an algorithmic construct that allows

a client to generate two compact keys 𝑘𝑎 , 𝑘𝑏 , such that when

the keys are expanded across a set of indices, they yield secret
shares of the indicator vector 𝐼 (𝑖).

Formally, a DPF consists of two algorithms,

• 𝐺𝑒𝑛(1𝜆, 𝑖 ∈ 0..𝐿 − 1) → (𝑘𝑎, 𝑘𝑏), which takes security

parameter 𝜆 and input 𝑖 , and generates two keys 𝑘𝑎 ,

𝑘𝑏 .

• 𝐸𝑣𝑎𝑙 (𝑘, 𝑗) → F𝑝 , which takes a key 𝑘 and an evalua-

tion index 𝑗 and outputs a field element.

such that, 𝐸𝑣𝑎𝑙 (𝑘𝑎, 𝑗) + 𝐸𝑣𝑎𝑙 (𝑘𝑏, 𝑗) =
{
1 𝑗 = 𝑖

0 𝑗 ≠ 𝑖
.

𝐺𝑒𝑛 is a key generation process where a client encrypts

the index it wishes to query into two keys 𝑘𝑎 and 𝑘𝑏 , which

are respectively sent to the two non-colluding servers. 𝐺𝑒𝑛

Figure 3. 𝐺𝑒𝑛 vs 𝐸𝑣𝑎𝑙 performance. 𝐺𝑒𝑛 is highly efficient

and is not our target for optimization.

is relatively lightweight compared to 𝐸𝑣𝑎𝑙 (𝑂 (𝑙𝑜𝑔(𝐿) com-

putation) [32, 12], and can be quickly computed even on

resource-constrained client devices as shown in Figure 3.

𝐸𝑣𝑎𝑙 is the key evaluation process that is performed on

the servers. Upon receiving 𝑘𝑎 or 𝑘𝑏 , the servers respectively

compute𝑇×𝐸𝑣𝑎𝑙 (𝑘𝑎, {0 . . . , 𝐿−1}) and𝑇×𝐸𝑣𝑎𝑙 (𝑘𝑏, {0 . . . , 𝐿−
1}) and return the result, from which the client can obtain

𝑇 × (𝐸𝑣𝑎𝑙 (𝑘𝑎, {0 . . . , 𝐿 − 1}) + 𝐸𝑣𝑎𝑙 (𝑘𝑏, {0 . . . , 𝐿 − 1})) = 𝑇 ×
𝐼 (𝑖) = 𝑇 [𝑖]. 𝐸𝑣𝑎𝑙 requires at least𝑂 (𝐿) computation [32, 12]

and is the major bottleneck (see Figure 3). Our work focuses

on accelerating the 𝐸𝑣𝑎𝑙 function. Figure 2 depicts the overall

DPF-PIR scheme.

A DPF should be computationally secure, meaning that

given just one of the keys and no other information, it should

be difficult to recover the client-queried index 𝑖 without

doing computation proportional to 𝑂 (2𝜆). There are many

different implementations of DPFs, each with a different

computation/communication trade-off. We consider the DPF

construct described in [32], which provides optimal asymp-

totic communication complexity of𝑂 (𝜆 log(𝐿)) and optimal

evaluation computation complexity of 𝑂 (𝜆𝐿).
In this DPF algorithm, the evaluation of DPF involves ex-

panding a GGM-style [33] computation tree. Keys 𝑘𝑎 and

𝑘𝑏 each consists of two two-dimensional codewords, {𝐶0 ∈
F
2×(log(𝐿)+1)
2
𝜆

,𝐶1 ∈ F2×(log(𝐿)+1)
2
𝜆

}. The server uses the code-
words and expand them into a tree (Figure 4) to get the secret

shares of the indicator vector, using a recursively-defined

helper function 𝑃 :

𝐸𝑣𝑎𝑙 (𝑘, 𝑗) = 𝑃 (𝑑 = 𝑙𝑜𝑔(𝐿), 𝑗) (1)

𝑃 (0, 0) = 𝐶0 [0, 0] (2)

𝑃 (𝑑, 𝑗) = 𝑃𝑅𝐹
𝑃 (𝑑−1,⌊ 𝑗

2
⌋) (𝑗 mod 2)

+𝐶
𝑃 (𝑑−1,⌊ 𝑗

2
⌋) mod 2

[𝑗 mod 2, 𝑑] (3)

Here, 𝑑 is the depth of the node (0 for the root, 𝑙𝑜𝑔(𝐿)
for the leaves), 𝑗 is the index of the node within each depth

(0 being leftmost), and 𝑃𝑅𝐹𝑠 (𝑥) is a pseudorandom function
that encrypts a message 𝑥 with an encryption key 𝑠 , such as

AES-128.

Figure 4 illustrates how 𝐸𝑣𝑎𝑙 works with an example. As-

sume the client wants to query a table of 𝐿 = 4. The client

generates and sends a key to each server, where each key

consists of two 2×3 codewords, 𝐶0 and 𝐶1. Using the keys,

5

Figure 4. Example of the DPF computation using tree ex-

pansion. DPF expansion involves computing the leaves of a

binary computation tree which evaluate to a secret-share of

a one-hot vector. Computing each node requires evaluating

its parent node which involves calling a PRF and adding to

it a a codeword value indexed by the height and parity of

the node.

the server must calculate 𝐸𝑣𝑎𝑙 (𝑘, 0)..𝐸𝑣𝑎𝑙 (𝑘, 3) and multi-

ply them to the table. To calculate, e.g., 𝐸𝑣𝑎𝑙 (𝑘, 3) (which is

𝑃 (2, 3) from Equation 1), the server needs to calculate 𝑃 (1, 1),
calculating which in turns requires 𝑃 (0, 0) (Euqation 3). The

calculation can be seen as an evaluation of each node in a

binary tree from the root to the leaf; a child node is computed

using the result from the parent node and 𝐶0, 𝐶1.

Evaluating a single node requires a single 𝑃𝑅𝐹 call and

an addition, requiring𝑂 (𝜆𝐿) computation for the entire tree.

Communication overhead is proportional to the size of the

keys, resulting in 𝑂 (𝜆 log(𝐿)) total communication. In prac-

tice, 𝜆 is typically a 128-bit field integer to ensure sufficient

computational security. After computing all the leaf nodes of

the tree, the output is a vector of 𝜆-bit (128-bit) field values;

the final secret shares of the entry are obtained by perform-

ing an integer dot product between the computed 128-bit

field values and the table. Note that tables with arbitrary
sized entries (i.e: much greater than 128-bits) may be sup-

ported with no additional DPF evaluation, as we can view

these large-entried tables as a 2-D matrix, with the large en-

tries subdivided into groups of 128-bit values; we may then

perform a matrix-vector-multiplication with the prior DPF

output to obtain secret shares of the table lookup. This works

as performing a matrix-vector-multiplication between the

DPF vector and the 2-D table selects the entire set of entries

that corresponds to the selected index. In practice, the dot

products for multiple queries to a single table are batched

together as a single matrix-matrix multiplication to enhance

performance. We refer to [32] for details on key generation.

3.2 Accelerating PIR with GPU
3.2.1 Starting Point: Batched DPF Execution. We be-

gin by observing that parallelism in DPF computation can be

exposed in two dimensions: 1) parallelizing the evaluation of

a single DPF; and 2) evaluatingmultiple DPFs in parallel. The

latter, evaluating multiple DPFs in parallel, is understood as

standard batched execution and is an implicit starting point

Figure 5. Two naive approaches for parallelizing DPF com-

putation.

inherent to our proposed optimizations. At the GPU level,

parallelizing the evaluation of a single DPF is done via thread-

level parallelism, and batched-execution is performed by

evaluating multiple DPFs on multiple blocks via block-level

parallelism. Under this framework, approaches falling under

the two categories can be applied jointly with minimal inter-

action, and hence, unless otherwise noted, batched-execution

with batch-size 𝐵 is assumed in all subsequent parallelization

approaches. While batching itself is not a novel component

of our proposed approach, batching is indeed important for

high utilization of GPU resources (Figure 9a). We also found

that the batch size needs to be carefully selected based on

the size of the table and the DPF paralleization strategy to

balance latency, throughput, and memory requirement.

3.2.2 Tradeoffs between Branch-parallel and Level-
by-level DPF Parallelization Approaches. Two naive ap-

proaches to parallelizing the execution of individual DPFs are

branch-parallel and level-by-level approaches, shown in Fig-

ure 5. A branch-parallel approach has each thread indepen-

dently compute one branch/leaf (or a subset of branches/leaves)

of the DPF, while a level-by-level parallelization approach

has each thread evaluate the nodes of a single level of the

DPF tree in parallel, writing outputs to global memory to be

used for computing the next level.

Unfortunately, these two naive parallelization approaches

suffer from a major tradeoff between computational redun-

dancy and memory usage, making neither truly efficient nor

scalable. A branch-parallel approach suffers from computa-
tional redundancy. As computing each leaf node requires

evaluating all nodes up to the root, each thread in branch-

parallel execution re-computes intermediate nodes unneces-

sarily, as shown in Figure 5a. As a result, the overall amount

of work becomes 𝑂 (𝐿 · 𝑙𝑜𝑔(𝐿)), instead of the optimal 𝑂 (𝐿).
The level-by-level parallelization approach eliminates this

computational redundancy by storing and reusing interme-

diate node outputs. However, this approach suffers from

memory overhead as storing intermediate results consumes

significant amount of memory when the batch size and the

table size is large (𝑂 (𝐵𝐿) for a batch size 𝐵). Hence, there

is a fundamental tradeoff between these two approaches in

balancing computation and memory usage. Figure 6 shows

6

that the branch-parallel approach suffers from high number

of PRF calls, while the level-by-level approach suffers from

high peak memory usage.

3.2.3 Memory-bounded Tree Traversal. The tradeoff
between computation and memory usage in Section 3.2.2

motivates a different parallelization strategy. We emphasize

that memory usage is a critical factor in accelerating DPFs

on GPUs, as memory limitations bound the effective batch

size that may be used; consequently, reducing memory usage

allows for the use of larger batch sizes which significantly

increases throughput. In other words, reducing memory us-

age while ensuring efficient parallel execution is the key to

efficient DPF acceleration on a GPU. To this end, we develop

Memory-bounded tree traversal (Figure 7a), a parallelization
scheme that is: 1) optimal in terms of computation (𝑂 (𝐿)
work); and 2) exhibits memory overhead that scales logarith-
mically with the size of the table, instead of linearly as in

the level-by-level approach.

Memory-bounded tree traversal performs a depth-first

evaluation of the DPF tree, with chunks of𝐾 nodes evaluated

at once in parallel for each level (Figure 7a). Unlike the level-

by-level approach that computes and saves all nodes in each

level, the new approach only evaluates 𝐾 nodes per level,

then immediately re-uses these node outputs by recursively

computing the nodes at the next level that require these out-

puts, and subsequently discarding the previous node outputs.

Thus, at each level, only 𝐾 more nodes need to be cached to

memory. Hence, this approach reduces memory overhead

from 𝑂 (𝐵𝐿) to 𝑂 (𝐵𝐾𝑙𝑜𝑔(𝐿)), making the memory overhead

affordable even for large tables ((Figure 8a)).𝐾 , which is a hy-

perparameter that determines how many nodes to expand in

parallel, must be large enough to expose sufficient parallelism

but small enough to avoid out-of-memory complications. We

empirically set 𝐾 = 128, which balances compute utilization

and memory usage on a V100 GPU (Figure 8b). Memory-

bounded tree traversal achieves both optimal work and low

memory usage (Figure 6). As a result of achieving optimal

work, low memory usage, and maximizing parallelism, the

memory-bounded tree traversal method can scale to larger

batch sizes and hence increase throughput and utilization up

to an order of magnitude greater than a naive level-by-level

approach. The memory advantage of the memory-bounded

tree traversal approach is depicted in Figure 6, and achieves

utilization benefits of a considerably larger batch size as

depicted in Figure 9a.

3.2.4 DPF andMatrix-Multiplication Operator Fusion.
After evaluating the DPF, the server needs to perform a

matrix multiplication between the large table and the DPF

output (Section 3.1). If we naively compute the entire out-

put before performing a matrix multiplication, the memory

must hold the entire output of the DPF and requires 𝑂 (𝐵𝐿)
space. To keep the memory overhead to 𝑂 (𝐵𝐾𝑙𝑜𝑔(𝐿)), we

Figure 6. The number of PRFs evaluated (compute) and the

peak memory usage (memory) for different parallelization

strategies, across different table sizes (L). For both axes, lower

is better. The branch-parallel approach redundantly calcu-

lates extra PRFs, while the level-by-level approach suffers

from high memory usage. Our proposed approach, memory-

bounded tree traversal (MemBoundTree), simultaneously

performs less work while requiring much less memory –

MemBoundTree can significantly (i.e., up to 10x) improve

performance by reducing memory consumption and allow-

ing the use of larger batch sizes, which increases utilization.

Figure 7.Memory-bounded tree traversal and operator fu-

sion for reducing memory overhead.

fuse the DPF evaluation operator with the matrix multipli-

cation operator (Figure 7b). Upon reaching a leaf node, a

thread immediately performs a dot product between the ta-

ble entry and the corresponding leaf node output of size 𝐾 ,

accumulating the result in local memory. At the end, threads

in a single thread-block coordinate to perform a cross-thread

sum of the local registers to obtain the final result, using tree-

summation. Fusing DPF has additional performance benefits

as it reduces the number of accesses to global memory and

allows interleaving between matrix-multiplication and DPF

computation.

3.2.5 Batch andTable-Size Aware Scheduling. On large
tables (> 2

22
entries), we observe that a single DPF (batch size

of 1) may have enough parallelism to sufficiently saturate

GPU resources. Hence, for very-large tables, it is preferable

7

(a) Memory Usage (b) GPU Utilization vs K

Figure 8. The memory usage and the compute resource

utilization of the memory-bounded tree traversal.

(a) Batch size vs Util (b) Table size vs Util

Figure 9. Effect of batch size (a) and table size (b) on GPU

utilization. For figure (b), batch=1 utilizes cooperative groups

to coordinate all available GPU resources towards computing

a single DPF.

to use all GPU resources for the computation of a single

DPF at a time, which significantly reduces latency, rather

than perform batched-execution. We additionally develop

a parallelization strategy based on cooperative groups [74]

to coordinate all GPU blocks when computing a single DPF.

This single-batch strategy is selectively applied only when

the table size is very large. Figure 9b shows that using co-

operative groups with a batch size of 1 can indeed achieve

high GPU utilization on extremely-large tables (with a lower

latency, which is not shown), while it suffers from low re-

source utilization if incorrectly applied to smaller tables. We

empirically use a threshold of 2
22
entries to choose between

batched execution and cooperative groups.

3.2.6 GPU-Aware PRF Selection. CPUs typically come

with built-in hardware for popular PRFs such as AES and

SHA-256 (e.g., AES-NI instructions). AES is a natural choice

for the PRF on a CPU given built-in CPU hardware primi-

tives. However, unlike CPUs, GPUs do not offer hardware

acceleration for cryptographic primitives. As a result, AES

computation on a GPU is far more computationally expen-

sive compared to a CPU. Hence, a more careful PRF selec-

tion has the potential to provide higher performance on a

GPU. In this context, we evaluate multiple PRFs including

block ciphers (AES), hash functions (SHA-256), stream ci-

phers (ChaCha20), and others. We mainly show results of

PIR performance based on AES-128 to match the standard

PRFs used in the CPU PIR baseline. However, we found that

PRF selection has a significant impact on GPU PIR perfor-

mance, and we report these results in the evaluation as well.

Particularly, Chacha20, which is a standard stream cipher

used in TLS [16], provides noticeable performance gains.

Other non-standard PRFs, such as SipHash, can provide even

more speed-up, but their security assurance may be weaker

as they are not yet widely analyzed or proven in practice.

One must consider the performance and security tradeoff

of a PRF to determine whether that PRF is suitable for the

application at hand.

3.2.7 Note on Scaling to Multiple GPUs. We note that

our DPF execution strategies may be applied to multiple

GPUs in the case where a single embedding table is too large

to fit in a single GPU’s memory. A single DPF can be com-

puted across multiple GPUs by having each of the 𝑁 GPUs

evaluate the DPF on a subset of the table indices, then sum-

ming the result across GPUs at the end. This approach works

because the final DPF reduction operation (a summation)

is linear. Hence, we can linearly scale our DPF execution

strategies across multiple GPUs by simply dividing the work

in an embarrassingly parallel approach. We note that, in this

scenario, each GPU effectively evaluates a DPF on a table

of size
𝐿
𝑁
, hence, performance is the same as if evaluating a

DPF on a smaller table size. Additionally, with more GPUs,

a larger batch size may be needed to fully utilize GPU com-

pute resources since the table sizes are proportionally smaller.

Thus, for multi-GPU execution, it becomes more important

to maximize batch size by using the memory-bounded tree

traversal execution strategy, and a cooperative-groups ap-

proach would be less effective.

4 Accelerating Batch-PIR with ML
Co-Design

Many recommendation/language models require multiple

lookups to the same embedding table. For example, recom-

mendation models may lookup the same table tens of times

to perform a single inference [40] (e.g., a user can have mul-

tiple clicked items, if the clicked-item history is used as a

feature). Multiple lookups linearly increase the cost of PIR

as simple DPF-PIR only retrieves one entry at a time.

To support multiple tabe lookups more efficiently, we

adopt partial batch retrieval (PBR) [82], an algorithm that

accelerates the retrieval of multiple entries. PBR comes at

a cost; with some probability (when multiple queries map

to the same internal bin), queries are dropped, which may

negatively affect model quality. Hence, we co-design PBR

with ML inference to improve system performance while

maintaining the model quality.

8

Figure 10. Techniques used to co-design PIR + ML. a) Partial

Batch Retrieval, b) splitting the table into a smaller hot table,

and c) co-locating frequently accessed entries.

4.1 Background: Batch Private Information Retrieval
Batch private information retrieval (batch-PIR) is a set of

techniques to retrieve multiple private entries from a single

table. In this work, we adopt the method proposed in [82],

partial batch retrieval (PBR), which operates by segmenting

table 𝑇 into
𝐿
𝐼
bins of size 𝐼 , and issuing individual DPF-

PIR queries to each bin (Figure 10a). This approach saves

computation by a factor of
𝐿
𝐼
in the best-case scenario where

the client retrieves
𝐿
𝐼
entries that are spread across different

bins. However, a single PBR can fetch only one query from

each bin. If more than one query index fall into the same bin,

the rest of the queries except for the one must be dropped.

This limitation leads to a complex tradeoff between the

communication efficiency and the accuracy of the retrieval.

A large 𝐼 can reduce the accuracy of the retrieval if mul-

tiple desired entries map to the same bin. Conversely, a

smaller 𝐼 yields fewer conflicts, but increases communica-

tion costs. This tradeoff naturally affects model quality as

dropped queries affect the model’s inference.

4.2 Co-Designing the ML Model and Batch-PIR
To improve batch-PIR efficiency while minimizing effect of

retrieval failures, we propose PIR-ML co-optimizations that

improve the tradeoff between model accuracy and perfor-

mance.

Frequency-Based Hot Table SplitMany ML applications

access embedding tables following a power-law distribution,

where a small number of hot indices account for the majority

of lookups [41, 99]. We leverage this observation and add

a small hot table that holds the top-𝐾 frequently accessed

indices in addition to the large full table that holds all the em-

bedding entries (Figure 10b). The hot table is constructed stat-

ically using the observed statistics from the training dataset

as part of a preprocessing phase ahead of model deployment,

and a small hash table is placed on a client device to provide

the hot table index for the categorical feature values that

are in the hot table; as this hot table is designed to be small,

this index mapping can reasonably reside on client devices.

At inference time, a client looks up whether the index they

wish to query is in the hot table, and issues two sets of keys:

one set that queries the hot table and the other for the full

table.

Simply using the hot table as a traditional cache is inse-

cure as it leaks the number of queries to the hot/full tables.

To avoid this information leakage, we predetermine a fixed

number of queries𝑄ℎ𝑜𝑡 and𝑄 𝑓 𝑢𝑙𝑙 to issue to the hot and full

tables, respectively, during preprocessing. These parameters

are chosen based on the historical query request patterns for

the training data, balancing the impact of dropped requests /

model accuracy and performance costs. The queries issued to

the hot table benefit from the lower PIR cost for accessing the

small table rather than a large full table. We emphasize that

this design is necessary to eliminate data leakage through

the number of queries that a user issues to each table. For

example, the number of queries to the hot table can reveal

whether the user accesses the indices that are in the hot table.

The total number of table entries that a user accesses in both

hot and full tables may also leak private information such

as the number of items purchased, the number of websites

visited, etc. To remove such information leakage through

the number of accesses to each table, for each inference, we

require a user to issue exactly 𝑄ℎ𝑜𝑡 and 𝑄 𝑓 𝑢𝑙𝑙 queries to the

tables. If the user needs to read more table entries than the

allocated budget, these requests are dropped; the dropped

requests may impact model accuracy. If the user has fewer

queries, then dummy queries are added to ensure that the

user makes the fixed number of PIR requests.

Access Pattern-Aware Embedding Co-location Embed-

ding table access patterns in ML applications tend to exhibit

co-occurrence [58, 21] as some indices are often accessed

together in a single ML inference. We co-locate the entries

that are frequently accessed together in the same row of the

table so that a single query can retrieve multiple embeddings

that might be accessed together (Figure 10c). Co-location is

done by profiling the training dataset and co-locating the

top-𝐶 embeddings that are most frequently retrieved with

each embedding. 𝐶 is empirically selected. In the best-case

scenario, co-location can reduce the number of queries by

𝐶 + 1.

Co-design Parameter Selection The parameters involv-

ing these two co-design techniques (frequency-based hot

table splitting and embedding co-location), which involve

parameters such as 𝑄ℎ𝑜𝑡 , 𝑄 𝑓 𝑢𝑙𝑙 , 𝐶 , and bin-size, as well as

kernel parameters such as DPF execution batch size and DPF

execution strategy are selected after sweeping the parameter

space using grid search and evaluating the corresponding

performance (i.e: communication and computational costs,

as well as accuracy) for the target application. Note we sepa-

rate training and test datasets, selecting parameters based on

the training dataset, and showing results on the test dataset.

Broadly, our experimental results show the pareto frontier

of the performance achieved across a complete sweep of the

parameter space. Generally, across applications, we found

that a good choice of 𝑄ℎ𝑜𝑡 is typically 10%-20% of the size of

the full embedding table. On the other hand, a good choice

of 𝐶 , the number of entries to collocate, depended on the

9

application: a higher 𝐶 at around 4-5 (i.e: more collocation)

was more beneficial for the language model task, as words

in a sentence have natural associations, whereas a lower

𝐶 at 1-3 was better for the recommendation application. A

good choice of bin size and other parameters such as DPF

execution batch size and strategy, generally vary and depend

on performance or accuracy constraints which may be im-

posed by service expectations. In summary, our co-design

and kernel parameters are determined by performing a grid

search across the space of possible parameters in order to

find parameters that balance computation, communication

and model accuracy.

Changes to Embedding Table Updates to the embed-

ding table (i.e., updates/insertions/deletions) may occur over

time as embedding tables can change when the model is

re-trained. Note that updates to table entries without chang-

ing indexing (no insertion/deletion) can be done under the

hood (transparent to the clients) by updating the table entries

on both servers. From the client perspective, the tables are

read-only. Full updates of embedding tables that include dele-

tions and insertions, on the other hand, require the indexing

functions on the client to be also updated. An updated hash

table for the hot table needs to be sent to the client. If the

full table size is changed, the hash function for indexing the

full embedding table is also updated on the client. However,

this cost of a full update is only incurred when the model

itself is changed or fully re-trained, which is infrequent for

typical recommendation models or language models. In this

paper, we study the overhead of our system assuming that

full embedding table updates are infrequent enough. More

efficient handling of table updates for other use cases that

require frequent updates is left as future work.

5 Evaluation
5.1 Evaluation Setup
Platforms. We evaluate our GPU-based DPF-PIR and

compare it with a state-of-the-art CPU implementation [38].

We run all GPU experiments on an NVIDIA V100 GPU, and

all CPU experiments on an Intel(R) Xeon(R) Gold 6230 CPU

@ 2.10GHz with 28 cores. The CPU baseline is an optimized

DPF-PIR implementation from Google Research [38], which

uses AES-NI CPU hardware acceleration.

Datasets and Models. We evaluate our system and the

baseline by running a couple of recommendation models

and a language model on open-source datasets. We run

(1) a 2-layer MLP-based recommendation model [43] with

MovieLens-20M dataset [42], (2) a 2-layer MLP-based rec-

ommendation model [43] with Taobao Ads click/display

dataset [88], and (3) an LSTM model with Wikitext2 cor-

pus [62]. We protect the user history table [97] for recom-

mendation models and the word embedding for the LSTM

using PIR. The baseline model quality of the models we study

are as follows. For recommendation models, we use area un-
der the receiver operating characteristic curve (ROC-AUC or

AUC) metric, where a higher AUC means better quality. Our

model achieves AUC=0.7845 for MovieLens and AUC=0.58

for Taobao, similar to prior works [97, 43]. For LSTM, we

use perplexity (ppl), a measure of surprise, to measure the

model quality. Following the training setup of [62], ourmodel

achieves ppl=92.

System Parameters. For application-independent experi-
ments (Figures 13–15, Tables 4–5), unless otherwise stated,

we default to an entry size of 2048 bits. Most recommenda-

tion models use entries similar or smaller than this [97, 72].

Also, by default, we use a security parameter of 128 bits as

standard (AES-128), and apply all proposed GPU acceleration

optimizations, with a memory optimization factor 𝐾 = 128.

Batch size is tuned for each experiment separately to maxi-

mize throughput while meeting latency and communication

budgets (300ms and 300KB, unless stated otherwise).

5.2 End-to-End System Throughput on Applications
First, we show that our proposed design significantly im-
proves system throughput on various applications, compared

to the baseline CPU system [38]. We evaluate key portions of

our proposed design separately: 1) Applying all GPU accel-

eration techniques (GPU (Ours)), 2) Adding ML co-design

(GPU + Co-design (Ours)), and 3) Using Chacha20 instead

of AES-128 (GPU + Co-design + Chacha20 (Ours)). For
each design, we conducted an extensive parameter sweep

across kernel hyperparameters like batch size and 𝐾 , and

across co-design hyperparameters like hot table and cold

table sizes, the number of entries co-located, and the number

of queries issued to each table. We first show throughput

achieved requiring a fixed model quality. Then, we addition-

ally show throughput improvement tolerating some model

quality degradation. We set the tolerated degradation to

<0.5% for MovieLens and Taobao and <5% for Wikitext2.

Figure 11 shows that the throughput improves by 5–39×
while maintaining the model quality (Acc-eco), and the im-

provement becomes 40–124× when small quality degrada-

tion is tolerated (Acc-relaxed). GPU optimizations account

for 10–20× performance improvement, and PIR-ML co-design

can additionally obtain up to 2–5× improvement. These cu-

mulative improvements result in significant overall gains.

Co-design does not show improvement for MovieLens for

this particular setup; however, the co-design is more effec-

tive for the cases with a tighter communication budget. We

discuss this later in Figure 19.

Table 3 additionally shows the unnormalized numbers for

some representative points. Our proposed design improves

performance from an impractical throughput (e.g., 5 QPS) to

an acceptable range of hundreds of QPS. Taobao has much

higher QPS in general, because each user queries much fewer

entries per inference (2.68 on average), compared to other

10

Figure 11. Throughput improvement of our proposed system over the CPU baseline [38]. While preserving accuracy (Acc-eco),

our system can improve the throughput on average by 5–39×. When some amount of accuracy degradation is tolerated

(Acc-relaxed), the average improvement reaches 40–124×. All configurations searched within the latency (< 300ms) and

communication requirement (< 300KB). QPS normalized by the CPU Acc-eco for each benchmark.

Table 3. Unnormalized QPS from Figure 11. Among our

proposed design, we only show the best one (GPU + Co-

design + Chacha20). Acc-eco specifies that each approach

must reach the full-precision accuracy; Acc-relaxed indicates

the approaches must reach within some range of full preci-

sion accuracy; see Section 5.2

Dataset CPU

Ours

Acc-eco Acc-relaxed

Wikitext2 5 577 2,306

MovieLens 44 2,821 5,476

Taobao 8k 64k 256k

Figure 12. End-to-end latency breakdown of an inference

query (i.e: time from client request to receiving and comput-

ing the result). Our proposed system makes the PIR latency

much lower (Wikitext2) or comparable (MovieLens, Taobao)

to the latency of other components. We are able to keep

end-to-end latency within a reasonable 500 ms per inference

which is acceptable in standard SLAs [41]

benchmarks (e.g., MovieLens queries 72 entries per inference

on average).

5.3 End-to-End System Latency
We subsequently show the impact of our system on end-to-

end inference latency to show that the latency overhead of

our GPU-PIR results in acceptable standards for real-world

applications. Four components that affect inference latency

include: (1) client-side key generation (𝐺𝑒𝑛), (2) PIR (𝐸𝑣𝑎𝑙 ;

Figure 13. Throughput vs latency for different GPU op-

timizations: branch-parallel (red), level-by-level (green),

memory-bounded tree traversal and operator fusion (or-

ange), and batch/table-size aware scheduling with coopera-

tive groups (blue).

our paper’s main focus), (3) client-server network communi-

cation (4) client on-device DNN inference. We measure the

latency of key generation and DNN inference directly on a

single Intel Core i3 CPU. We estimate the network latency

assuming 60 Mbit/s bandwidth as in 4G networks [1].

Figure 12 shows that PIR is not the sole dominating latency

bottleneck anymore, costing comparable or less latency com-

pared to other sources. While the overall end-to-end latency

is much larger than a no-privacy system, the end-to-end

latency still falls under the typical service level requirement

(SLA) of many real-world applications [41].

5.4 Detailed Analysis of System Optimizations
Here, we evaluate and isolate the effects of our proposed sys-

tem optimizations, starting with GPU kernel optimizations,

and concluding with ML co-design optimizations.

Performance Impact of Each GPU Optimization Fig-

ure 13 plots the latency-throughput tradeoff for each GPU

optimization. As shown, our proposed optimizations increase

the latency-throughput pareto frontier significantly. As dis-

cussed in Section 3.2.2, branch-parallel (red) cannot achieve

high QPS. Level-by-level (green) is much better, but still

11

(a) Latency (b) Throughput

Figure 14. Performance impact of table entry size on PIR

performance, with and without operator fusion.

limited, as it is bottlenecked by the memory capacity. The

proposed memory-bounded tree traversal and operator fu-

sion (orange) is able to increase the throughput further when

some latency degradation is tolerated, by using less memory

and allowing additional batching. For very large tables (Fig-

ure 13 (right)), table-size aware scheduling with cooperative

groups (blue) obtains significantly better latency without

harming throughput.

Performance Impact of Operator Fusion Figure 14 shows

the performance benefits of fusing the subsequent matrix

multiplication with DPF evaluation, across different table en-

try sizes. Generally, fusing and interleaving the two kernels

offer significant (> 1.5×) improvements in both throughput

and latency. Figure 14 was obtained with a table with 1M

entries; however, the improvement is similar across other

table sizes.

Performance Impact of Embedding Entry Size Figure 14
also shows the impact of different table entry sizes on la-

tency and throughput. Tables with entry sizes of <512 bytes

do not significantly degrade performance, especially with

operator fusion. This is because the memory operations are

tightly interwoven with the subsequent matrix operations

with operator fusion. As the latency and throughput does

not linearly degrade with increasing entry size, co-locating

and retrieving multiple entries at once becomes efficient

(Section 4.2).

Detailed Comparison with CPUWe compare our GPU-

PIR implementation against an optimized CPU implementa-

tion fromGoogle Research [38]. Note that, Google Research’s

CPU implementation of DPFs uses AES-128 for its PRF, and

utilizes AES-NI hardware intrinsics to accelerate PRF com-

putation. Figure 15 compares the throughput attained by the

memory-efficient GPU DPF acceleration strategy against a

1-threaded and 32-threaded (fully-utilized) CPU version on

different table sizes. Using AES-128 as in the CPU DPF, our

GPU implementation consistently achieves > 17× speedup

over the 32-threaded CPU implementation. We show the

same data in Table 4.

Performance Impact of PRF Table 5 shows the perfor-

mance of using different PRF functions on a table with 1M

Figure 15. Comparison of throughput performance attained

by GPU DPF acceleration compared to an optimized CPU

baseline. 1 kq/s = 1,000 queries per second. All methods use

the AES-128 PRF.

Table 4. Throughput / latency comparison of our GPU ac-

celeration (all optimizations) vs single and multi-threaded

CPU implementations, on tables with an entry size of 2048

bits. Both use AES-128 as their PRF. The CPU DPF baseline

is taken from [38] and is an optimized CPU implementation

that uses AES-NI hardware intrinsics. Bytes indicates the

size of the DPF key that is transferred between client and

server for that table size.

Entries Bytes Strategy QPS Latency (ms)

16K 896

GPU 60,347 3.2

CPU 1-thread 22 9

CPU 32-thread 2,810 .71

1M 1280

GPU 1,358 1.4

CPU 1-thread 1.3 638

CPU 32-thread 21.2 36

4M 1408

GPU 468 4.18

CPU 1-thread 0.78 2579.8

CPU 32-thread 12 160.1

Table 5. Performance evaluation of memory-efficient GPU

DPF with different PRF functions, on a table of size 1,048,576,

with batch size 512, and a security parameter of 128 bits.

PRF Type Latency (ms) QPS

AES-128 Block Cipher (Ctr Mode) 591 965

SHA-256 Hash (HMAC) 659 921

Chacha20 Stream Cipher 174 3,640

SipHash PRF 82.3 7,447

HighwayHash PRF 320 1,973

entries, a batch size of 512, and a security parameter of 128-

bits. Lightweight PRFs can significantly improve the GPU-

PIR performance over AES-128. In particular, Chacha20, a

well-accepted PRF that is used in high-security applications

including TLS 1.3 [16], improves the latency and throughput

significantly compared to AES-128. Other lightweight PRFs

can improve the throughput even more if their security is

acceptable for the target use case.

12

(a) Computation overhead (b) Communication overhead

Figure 16. Computation (a) and communication (b) needed

to achieve a target model accuracy (Acc-relaxed from Fig-

ure 11), with and without ML co-design. Co-design improves

computation overhead by 1.9–7.4× and communication over-

head by 1–2.6×.

Figure 17. Pareto curve of tradeoff between computation

and communication with model accuracy fixed to be within

2% of the baseline.

5.5 PIR + ML Co-Design
Private on-device ML inference often requires the private

retrieval of a batch of embeddings from the same table. We

evaluate our techniques that co-design ML inference and

batch PIR, and demonstrate how our co-design techniques

significantly improve model quality vs system performance

tradeoffs.

Computation Savings Figure 16a shows the computation

needed to reach a target accuracy with and without ML co-

design.We fixed the communication below 300KB, and target

Acc-relaxed from Figure 11. Figure 16a shows that co-design

reduces the computation significantly, by 1.9×–7.4×.
Communication Savings Figure 16b shows the communi-

cation needed to reach a target accuracy (Acc-relaxed) with

and without ML co-design. We fixed the computation to be

less than 100K PRFs per batched inference for Wikitext2 and

MovieLens, and 5M PRFs for Taobao. With a fixed compu-

tation budget, the result shows that co-design improves the

communication overhead by 1.7× and 2.6× for Wikitext2

and MovieLens, respectively. Taobao’s communication over-

head was already too small (<3KB) and did not improve.

Co-design can be especially useful when the communication

is expensive, e.g., when using 3G/4G network.

Communication vs ComputationWe show the tradeoff

between computation and communication with the fixed

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1000 QPS

 (comm=100KB,lat=50ms)

100

110

120

pp
l

1 2 3 4 5
1000 QPS

 (comm=300KB,lat=200ms)

100

110

120

pp
l

batch-pir batch-pir w/ co-design

Figure 18. System throughput vs model quality with and

without co-design for language model across different bud-

gets.

0 10 20 30 40
1000 QPS

 (comm=100KB,lat=50ms)

0.765
0.770
0.775
0.780
0.785

au
c

0 10 20 30 40
1000 QPS

 (comm=300KB,lat=200ms)

0.765
0.770
0.775
0.780
0.785

au
c

batch-pir batch-pir w/ co-design

Figure 19. System throughput vs model quality with and

without co-design for MovieLens rec across different bud-

gets.

model quality. Figure 17 shows this tradeoff across various

applications, with model quality fixed to be within 2% of

the full precision baseline. Co-design optimizations obtain

significantly better tradeoffs than plain batch-PIR.

Co-Design Throughput ImprovementWe show overall

co-design throughput improvement over standard batch-PIR

across all applications on select budgets in Figures 18, 19,

and 20. As shown, the PIR-ML co-design can result in signif-

icant improvements to the tradeoffs between model-quality

and system throughput. Co-design is most effective when

a) the budget is small enough to be sufficiently restrictive,

and b) the impact of dropping queries has a significant im-

pact on model quality. To expand on a), the budget plays a

major role in the relative improvement that co-design sees

as shown in Figures 18 and 19; there is increasingly smaller

difference between batch-PIR and batch-PIR with co-design

when the budgets are large enough. This makes intuitive

sense as with a larger budget both batch-PIR schemes with

13

0 22
1000 QPS

 (comm=100KB,lat=50ms)

0.59475
0.59480
0.59485
0.59490

au
c

0 177 354
1000 QPS

 (comm=300KB,lat=200ms)

0.59475
0.59480
0.59485
0.59490

au
c

batch-pir batch-pir w/ co-design

Figure 20. System throughput vs model quality with and

without co-design for Taobao rec across different budgets.

and without co-design converge on the optimal pareto curve.

Expanding on b), co-design is less helpful for applications

where dropping the sparse features does not impact model

quality – this is natural since co-design optimizes for model

quality and if the sparse features has less impact, the relative

gains of co-design would also be less. This phenomenon is

best demonstrated by the observation that language model

(Figure 18) and MovieLens (Figure 19), whose model inputs

are entirely sparse features that require embedding table

lookups, see much greater improvement with co-design com-

pared to Taobao (Figure 20), whose sparse categorical fea-

tures are only a fraction of model inputs. Overall, the results

show that PIR-ML co-design can significantly improve the

system throughput beyond what just batch-PIR can support,

especially under tight computation and/or communication

budgets.

6 Related Work
Privacy-preservingComputationTechniques Priorwork
on privacy-preserving ML investigated techniques such as

fully-homomorphic encryption (FHE) [53, 67], secure multi-

party computation (MPC) [56, 57, 89, 80], and trusted exe-

cution environments (TEEs) [46, 47, 93]. Unlike these prior

studies, which primarily focus on protecting dense compu-

tation in neural networks, we investigate how to privately

access large embedding tables in recommendation and lan-

guage models.

Recent work on FHE acceleration [2, 79, 26, 55, 98, 25, 95,

63, 54, 77, 81] suggests that FHE-based CNN models can run

with low latency. Yet, they still suffer from low throughput.

Due to the high computation demand of FHE, FHE accel-

erators typically use the entire chip (ASIC/FPGA/GPU) to

run one inference at a time. While FHE has the potential to

enable private inference for any model in the cloud, it is not

yet efficient enough for high-throughput use cases.

Private Information Retrieval PIR can be categorized into

single-server protocols based on homomorphic encryption

(HE) [61, 31, 20, 59] and n-server (n ≥ 2) protocols based on

DPFs [30, 19, 23]. We focus on two-server DPF-based PIR

protocols, as they are significantly more computation- and

communication-efficient than single-server schemes [59, 77,

55, 30, 19, 23]. For example, querying a 1B entry table with

a two-server protocol is over 1000× more communication-

efficient (2KB vs 3.6MB) [59] and multiple orders of mag-

nitude more computationally-efficient than single-server

protocols [45, 8, 4, 3, 71, 61]. For a 1M-entry table, state-

of-the-art HE PIR [61] requires 14KB-60MB communication

whereas our DPF-based system requires only 1.25 KB. HE

PIR’s advantage over a DPF-based PIR system is that it only

requires one server, rather than two non-colluding servers,

enabling PIR under a stronger threat model. Compared to

n>2 DPF approaches, two-server DPF-based PIR protocols

are more communication-efficient: 2-server DPF exhibits

𝑂 (𝑙𝑜𝑔(𝑛)) communication [32, 12] while n>2-server DPF

exhibits 𝑂 (
√
𝑛) communication [11].

The two-server PIR protocols require the two participating

servers hosting the (embedding) tables to be non-colluding.

This threatmodel with two (ormore) non-colluding servers is

commonly used in a large body of work on securemulti-party

computation (MPC) [56, 57, 89, 80, 30, 19, 23]. Different from

other computation with MPC, in DPF, no communication

is required between the servers, and thus, the two servers

can be hosted by different cloud providers with minimal

performance overhead. Further, recent advances in MPC

platforms make such a system increasingly realistic [69, 64,

66, 5, 28, 39]. One realistic scenario is for the companies

that want to provide strong privacy standards to form a

consortium to act as each others’ non-colluding second party;

these efforts [69, 65] are seeing increasing adoption. Remote

attestation capabilities in public cloud TEEs [5, 66, 36, 93] can

also be used to further ensure the integrity of two parties.

Batch Private Information Retrieval Various approaches
for batch PIR [82, 8, 51, 8, 44] have been proposed. We show

that noise tolerance of ML allows the use probabilistic PIR

protocols like [82] with minimal accuracy loss.

On-device ML On-device ML has been studied for recom-

mendation [43, 35], speech recognition [6], translation [87],

etc. Our work uses on-device ML for privacy, and enables

the private use of large server-side embedding tables.

7 Conclusion
We present a system for efficiently and privately serving em-

beddings for on-device ML application. Our system on a sin-

gle V100 GPU can serve up to 100, 000 queries per second—a

>100× speedup over naive system, enabling practical deploy-

ment for privacy-sensitive applications.

References
[1] 4G network throughput. https://en.wikipedia.org/wiki/4G.
[2] Agrawal, R., de Castro, L., Yang, G., Juvekar, C., Yazicigil, R.,

Chandrakasan, A., Vaikuntanathan, V., and Joshi, A. FAB: An

14

https://en.wikipedia.org/wiki/4G

FPGA-based accelerator for bootstrappable fully homomorphic en-

cryption. In 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA) (2023).

[3] Ahmad, I., Yang, Y., Agrawal, D., Abbadi, A. E., and Gupta, T. Addra:

Metadata-private voice communication over fully untrusted infras-

tructure. In 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21) (2021).

[4] Ali, A., Lepoint, T., Patel, S., Raykova, M., Schoppmann, P., Seth,

K., and Yeo, K. Communication–Computation trade-offs in PIR. In

30th USENIX Security Symposium (USENIX Security 21) (2021).
[5] Amazon MPC using enclaves. https://d1.awsstatic.com/events/

Summits/reinvent2022/CMP403_Enabling-multi-party-analysis-of-
sensitive-data-using-AWS-Nitro-Enclaves-.pdf.

[6] Amazon on device speech recognition. https://www.amazon.science/
blog/how-to-make-on-device-speech-recognition-practical.

[7] AMD SEV. https://developer.amd.com/sev/.
[8] Angel, S., Chen, H., Laine, K., and Setty, S. PIR with compressed

queries and amortized query processing. In 2018 IEEE Symposium on
Security and Privacy (2018).

[9] Apple app tracking transparency. https://developer.apple.com/
documentation/apptrackingtransparency.

[10] ARM trustzone. https://www.arm.com/technologies/trustzone-for-
cortex-a.

[11] Boyle, E., Gilboa, N., and Ishai, Y. Function secret sharing. In Inter-
national Conference on the Theory and Application of Cryptographic
Techniques (2015).

[12] Boyle, E., Gilboa, N., and Ishai, Y. Secure computation with prepro-

cessing via function secret sharing. Cryptology ePrint Archive, Paper

2019/1095, 2019.

[13] Cao, D., Zhang, M., Lu, H., Ye, X., Fan, D., Che, Y., and Wang, R.

Streamline ring ORAM accesses through spatial and temporal opti-

mization. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA) (2021).

[14] Case, B., Jain, R., Koshelev, A., Leiserson, A., Masny, D., Sandberg,

T., Savage, B., Taubeneck, E., Thomson, M., and Yamaguchi, T. Inter-

operable private attribution: A distributed attribution and aggregation

protocol. Cryptology ePrint Archive, Paper 2023/437, 2023.

[15] CCPA. https://www.oag.ca.gov/privacy/ccpa.
[16] Chacha20 in TLS. https://www.rfc-editor.org/rfc/rfc7905.
[17] Chor, B., Goldreich, O., Kushilevitz, E., and Sudan, M. Private

information retrieval. In Proceedings of IEEE 36th Annual Foundations
of Computer Science (1995).

[18] Colombo, S., Nikitin, K., Corrigan-Gibbs, H., Wu, D. J., and Ford,

B. Authenticated private information retrieval. Cryptology ePrint

Archive, Paper 2023/297, 2023.

[19] Corrigan-Gibbs, H., Boneh, D., and Mazières, D. Riposte: An anony-

mous messaging system handling millions of users. In 2015 IEEE Sym-
posium on Security and Privacy (2015).

[20] Corrigan-Gibbs, H., Henzinger, A., and Kogan, D. Single-server pri-

vate information retrieval with sublinear amortized time. In Advances
in Cryptology - EUROCRYPT 2022 (2022).

[21] Dagan, I., Pereira, F., and Lee, L. Similarity-based estimation of word

cooccurrence probabilities. In Proceedings of the 32nd Annual Meeting
on Association for Computational Linguistics (1994).

[22] Deep learning recommendation model. https://www.adityaagrawal.
net/blog/dnn/dlrm.

[23] Doerner, J., and Shelat, A. Scaling ORAM for secure computation.

In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (2017).

[24] Dufter, P., Zhao, M., Schmitt, M., Fraser, A., and Schütze, H.

Embedding learning through multilingual concept induction, 2018.

arXiv:1801.06807.

[25] Fan, S., Wang, Z., Xu, W., Hou, R., Meng, D., and Zhang, M. Ten-

sorFHE: Achieving practical computation on encrypted data using

GPGPU, 2022. arXiv:2212.14191.

[26] Feldmann, A., Samardzic, N., Krastev, A., Devadas, S., Dreslinski,

R., Eldefrawy, K., Genise, N., Peikert, C., and Sanchez, D. F1: A

fast and programmable accelerator for fully homomorphic encryption

(extended version), 2021. arXiv:2109.05371.

[27] Fletcher, C. W., Ren, L., Kwon, A., Van Dijk, M., and Devadas, S.

Freecursive ORAM: [nearly] free recursion and integrity verification

for position-based oblivious RAM. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems (2015).

[28] Forbes multiparty computation adoption. https://www.forbes.
com/sites/forbestechcouncil/2021/10/26/multi-party-computation-
private-inputs-public-outputs/?sh=2e2abccd1bb0.

[29] GDPR. https://gdpr.eu/what-is-gdpr/.
[30] Gentry, C. Fully homomorphic encryption using ideal lattices. In

Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing (2009).

[31] Gentry, C., and Halevi, S. Compressible FHE with applications to

PIR. IACR Cryptol. ePrint Arch. (2019).
[32] Gilboa, N., and Ishai, Y. Distributed point functions and their appli-

cations. In EUROCRYPT (2014).

[33] Goldreich, O., Goldwasser, S., and Micali, S. How to construct

random functions. J. ACM (1986).

[34] Goldreich, O., andOstrovsky, R. Software protection and simulation

on oblivious RAMs. J. ACM (1996).

[35] Gong, Y., Jiang, Z., Zhao, K., Liu, Q., and Ou, W. EdgeRec: Recom-

mender system on edge in mobile taobao. Proceedings of the 29th ACM
International Conference on Information & Knowledge Management
(2020).

[36] Google confidential computing. https://cloud.google.com/confidential-
computing.

[37] Google cross to restrict cross app tracking. https://www.pcmag.com/
news/google-to-restrict-cross-app-tracking-of-users-on-android.

[38] Google research distributed point function. https://github.com/google/
distributed_point_functions.

[39] Google secure multiparty computation. https://security.googleblog.
com/2019/06/helping-organizations-do-more-without-collecting-
more-data.html.

[40] Gupta, U., Hsia, S., Saraph, V., Wang, X., Reagen, B., Wei, G.-Y.,

Lee, H.-H. S., Brooks, D., and Wu, C.-J. DeepRecSys: A system for

optimizing end-to-end at-scale neural recommendation inference. In

Proceedings of the ACM/IEEE 47th Annual International Symposium on
Computer Architecture (2020).

[41] Gupta, U., Wu, C., Wang, X., Naumov, M., Reagen, B., Brooks, D.,

Cottel, B., Hazelwood, K. M., Hempstead, M., Jia, B., Lee, H. S.,

Malevich, A., Mudigere, D., Smelyanskiy, M., Xiong, L., and Zhang,

X. The architectural implications of Facebook’s DNN-based personal-

ized recommendation. In 2020 IEEE International Symposium on High-
Performance Computer Architecture (HPCA) (2020).

[42] Harper, F. M., and Konstan, J. A. The MovieLens datasets: History

and context. ACM Trans. Interact. Intell. Syst. (2015).
[43] Hejazinia, M., Huba, D., Leontiadis, I., Maeng, K., Malek, M., Melis,

L., Mironov, I., Nasr, M., Wang, K., and Wu, C.-J. Fel: High capacity

learning for recommendation and ranking via federated ensemble

learning, 2022. arXiv:2206.03852.

[44] Henry, R. Polynomial batch codes for efficient IT-PIR. Proceedings on
Privacy Enhancing Technologies (2016).

[45] Henzinger, A., Hong, M. M., Corrigan-Gibbs, H., Meiklejohn, S.,

and Vaikuntanathan, V. One server for the price of two: Simple

and fast single-server private information retrieval. In 32nd USENIX
Security Symposium (USENIX Security 23) (2023).

15

https://d1.awsstatic.com/events/Summits/reinvent2022/CMP403_Enabling-multi-party-analysis-of-sensitive-data-using-AWS-Nitro-Enclaves-.pdf
https://d1.awsstatic.com/events/Summits/reinvent2022/CMP403_Enabling-multi-party-analysis-of-sensitive-data-using-AWS-Nitro-Enclaves-.pdf
https://d1.awsstatic.com/events/Summits/reinvent2022/CMP403_Enabling-multi-party-analysis-of-sensitive-data-using-AWS-Nitro-Enclaves-.pdf
https://www.amazon.science/blog/how-to-make-on-device-speech-recognition-practical
https://www.amazon.science/blog/how-to-make-on-device-speech-recognition-practical
https://developer.amd.com/sev/
https://developer.apple.com/documentation/apptrackingtransparency
https://developer.apple.com/documentation/apptrackingtransparency
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.oag.ca.gov/privacy/ccpa
https://www.rfc-editor.org/rfc/rfc7905
 https://www.adityaagrawal.net/blog/dnn/dlrm
 https://www.adityaagrawal.net/blog/dnn/dlrm
https://www.forbes.com/sites/forbestechcouncil/2021/10/26/multi-party-computation-private-inputs-public-outputs/?sh=2e2abccd1bb0
https://www.forbes.com/sites/forbestechcouncil/2021/10/26/multi-party-computation-private-inputs-public-outputs/?sh=2e2abccd1bb0
https://www.forbes.com/sites/forbestechcouncil/2021/10/26/multi-party-computation-private-inputs-public-outputs/?sh=2e2abccd1bb0
https://gdpr.eu/what-is-gdpr/
https://cloud.google.com/confidential-computing
https://cloud.google.com/confidential-computing
https://www.pcmag.com/news/google-to-restrict-cross-app-tracking-of-users-on-android
https://www.pcmag.com/news/google-to-restrict-cross-app-tracking-of-users-on-android
https://github.com/google/distributed_point_functions
https://github.com/google/distributed_point_functions
https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html
https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html
https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html

[46] Hua, W., Umar, M., Zhang, Z., and Suh, G. E. GuardNN: Secure accel-

erator architecture for privacy-preserving deep learning. In Proceedings
of the 59th ACM/IEEE Design Automation Conference (2022).

[47] Hua, W., Umar, M., Zhang, Z., and Suh, G. E. MGX: Near-zero over-

head memory protection for data-intensive accelerators. In Proceedings
of the 49th Annual International Symposium on Computer Architecture
(2022).

[48] Huang, Y., Katz, J., and Evans, D. Efficient secure two-party compu-

tation using symmetric cut-and-choose. Cryptology ePrint Archive,

Paper 2013/081, 2013.

[49] Intel SGX. https://www.intel.com/content/www/us/en/developer/
tools/software-guard-extensions/overview.html.

[50] Interoperable private attribution. https://github.com/patcg-individual-
drafts/ipa/.

[51] Ishai, Y., Kushilevitz, E., Ostrovsky, R., and Sahai, A. Batch codes

and their applications. In Proceedings of the Thirty-Sixth Annual ACM
Symposium on Theory of Computing (2004).

[52] Jouppi, N., Kurian, G., Li, S., Ma, P., Nagarajan, R., Nai, L., Patil,

N., Subramanian, S., Swing, A., Towles, B., Young, C., Zhou, X.,

Zhou, Z., and Patterson, D. A. TPU v4: An optically reconfigurable

supercomputer for machine learning with hardware support for em-

beddings. In Proceedings of the 50th Annual International Symposium
on Computer Architecture (2023).

[53] Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A.

GAZELLE: A low latency framework for secure neural network infer-

ence. In 27th USENIX Security Symposium (USENIX Security 18) (2018).
[54] Kim, J., Kim, S., Choi, J., Park, J., Kim, D., and Ahn, J. H. SHARP: A

short-word hierarchical accelerator for robust and practical fully ho-

momorphic encryption. In Proceedings of the 50th Annual International
Symposium on Computer Architecture (2023).

[55] Kim, S., Kim, J., Kim, M. J., Jung, W., Kim, J., Rhu, M., and Ahn, J. H.

BTS: An accelerator for bootstrappable fully homomorphic encryption.

In Proceedings of the 49th Annual International Symposium on Computer
Architecture (2022).

[56] Knott, B., Venkataraman, S., Hannun, A. Y., Sengupta, S., Ibrahim,

M., and van der Maaten, L. CrypTen: Secure multi-party computa-

tion meets machine learning. In Neural Information Processing Systems
(2021).

[57] Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A., and

Sharma, R. CrypTFlow: Secure tensorflow inference. In 2020 IEEE
Symposium on Security and Privacy (2020).

[58] Lee, Y., Seo, S. H., Choi, H., Sul, H. U., Kim, S., Lee, J. W., and Ham, T. J.

MERCI: Efficient embedding reduction on commodity hardware via

sub-query memoization. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (2021).

[59] Lin, J., Liang, L., Qu, Z., Ahmad, I., Liu, L., Tu, F., Gupta, T., Ding,

Y., and Xie, Y. INSPIRE: In-storage private information retrieval via

protocol and architecture co-design. In Proceedings of the 49th Annual
International Symposium on Computer Architecture (2022).

[60] Liu, G., Li, K., Xiao, Z., and Wang, R. PS-ORAM: Efficient crash

consistency support for oblivious RAM on NVM. In Proceedings of the
49th Annual International Symposium on Computer Architecture (2022).

[61] Menon, S. J., and Wu, D. J. Spiral: Fast, high-rate single-server PIR via

FHE composition. Cryptology ePrint Archive, Paper 2022/368, 2022.

[62] Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer sentinel

mixture models. In International Conference on Learning Representa-
tions (2017).

[63] Mert, A. C., Aikata, Kwon, S., Shin, Y., Yoo, D., Lee, Y., and Roy, S. S.

Medha: Microcoded hardware accelerator for computing on encrypted

data. Cryptology ePrint Archive, Paper 2022/480, 2022.

[64] Meta multi-party computation. https://privacytech.fb.com/multi-
party-computation/.

[65] Meta privacy enhancing technologies. https://www.facebook.com/
business/news/our-progress-on-developing-and-incorporating-
privacy-enhancing-technologies.

[66] Microsoft Azure confidential computing. https://learn.microsoft.com/
en-us/azure/architecture/example-scenario/confidential/healthcare-
inference.

[67] Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., and Popa, R. A.

Delphi: A cryptographic inference service for neural networks. In 29th
USENIX Security Symposium (USENIX Security 20) (2020).

[68] Mobile application average file size. https://sweetpricing.com/blog/
index.html%3Fp=4250.html#:~:text=Average%20Android%20and%
20iOS%20file%20size&text=And%20the%20average%20iOS%20app%
20file%20size%20is%2034.3MB.

[69] MPC alliance. https://www.mpcalliance.org/.
[70] Mudigere, D., Hao, Y., Huang, J., Jia, Z., Tulloch, A., Sridharan,

S., Liu, X., Ozdal, M., Nie, J., Park, J., Luo, L., Yang, J. A., Gao, L.,

Ivchenko, D., Basant, A., Hu, Y., Yang, J., Ardestani, E. K., Wang,

X., Komuravelli, R., Chu, C.-H., Yilmaz, S., Li, H., Qian, J., Feng,

Z., Ma, Y., Yang, J., Wen, E., Li, H., Yang, L., Sun, C., Zhao, W.,

Melts, D., Dhulipala, K., Kishore, K., Graf, T., Eisenman, A., Matam,

K. K., Gangidi, A., Chen, G. J., Krishnan, M., Nayak, A., Nair, K.,

Muthiah, B., khorashadi, M., Bhattacharya, P., Lapukhov, P.,

Naumov, M., Mathews, A., Qiao, L., Smelyanskiy, M., Jia, B., and

Rao, V. Software-hardware co-design for fast and scalable training

of deep learning recommendation models. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (2022).

[71] Mughees, M. H., Chen, H., and Ren, L. OnionPIR: Response efficient

single-server PIR. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (2021).

[72] Naumov, M., Mudigere, D., Shi, H. M., Huang, J., Sundaraman, N.,

Park, J., Wang, X., Gupta, U., Wu, C., Azzolini, A. G., Dzhulgakov,

D., Mallevich, A., Cherniavskii, I., Lu, Y., Krishnamoorthi, R., Yu,

A., Kondratenko, V., Pereira, S., Chen, X., Chen, W., Rao, V., Jia, B.,

Xiong, L., and Smelyanskiy,M.Deep learning recommendationmodel

for personalization and recommendation systems. arXiv:1906.00091.

[73] NLLB Team, Costa-jussà, M. R., Cross, J., Çelebi, O., Elbayad, M.,

Heafield, K., Heffernan, K., Kalbassi, E., Lam, J., Licht, D., Mail-

lard, J., Sun, A., Wang, S., Wenzek, G., Youngblood, A., Akula,

B., Barrault, L., Gonzalez, G. M., Hansanti, P., Hoffman, J., Jar-

rett, S., Sadagopan, K. R., Rowe, D., Spruit, S., Tran, C., Andrews,

P., Ayan, N. F., Bhosale, S., Edunov, S., Fan, A., Gao, C., Goswami,

V., Guzmán, F., Koehn, P., Mourachko, A., Ropers, C., Saleem, S.,

Schwenk, H., and Wang, J. No language left behind: Scaling human-

centered machine translation, 2022. arXiv:2207.04672.

[74] NVIDIA cooperative groups. https://developer.nvidia.com/blog/
cooperative-groups/.

[75] Rajat, R., Wang, Y., and Annavaram, M. LAORAM: A look ahead

ORAM architecture for training large embedding tables. In Proceedings
of the 50th Annual International Symposium on Computer Architecture
(2023).

[76] Raoufi, M., Zhang, Y., and Yang, J. IR-ORAM: Path access type based

memory intensity reduction for Path-ORAM. In 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA) (2022).

[77] Reagen, B., Choi, W.-S., Ko, Y., Lee, V. T., Lee, H.-H. S., Wei, G.-Y.,

and Brooks, D. Cheetah: Optimizing and accelerating homomorphic

encryption for private inference. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA) (2021).

[78] Ren, L., Yu, X., Fletcher, C. W., Van Dijk, M., and Devadas, S.Design

space exploration and optimization of path oblivious RAM in secure

processors. In Proceedings of the 40th Annual International Symposium
on Computer Architecture (2013).

[79] Riazi, M. S., Laine, K., Pelton, B., and Dai, W.HEAX: An architecture

for computing on encrypted data. In Proceedings of the Twenty-Fifth

16

https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://github.com/patcg-individual-drafts/ipa/
https://github.com/patcg-individual-drafts/ipa/
https://privacytech.fb.com/multi-party-computation/
https://privacytech.fb.com/multi-party-computation/
https://www.facebook.com/business/news/our-progress-on-developing-and-incorporating-privacy-enhancing-technologies
https://www.facebook.com/business/news/our-progress-on-developing-and-incorporating-privacy-enhancing-technologies
https://www.facebook.com/business/news/our-progress-on-developing-and-incorporating-privacy-enhancing-technologies
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/confidential/healthcare-inference
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/confidential/healthcare-inference
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/confidential/healthcare-inference
https://sweetpricing.com/blog/index.html%3Fp=4250.html#:~:text=Average%20Android%20and%20iOS%20file%20size&text=And%20the%20average%20iOS%20app%20file%20size%20is%2034.3MB.
https://sweetpricing.com/blog/index.html%3Fp=4250.html#:~:text=Average%20Android%20and%20iOS%20file%20size&text=And%20the%20average%20iOS%20app%20file%20size%20is%2034.3MB.
https://sweetpricing.com/blog/index.html%3Fp=4250.html#:~:text=Average%20Android%20and%20iOS%20file%20size&text=And%20the%20average%20iOS%20app%20file%20size%20is%2034.3MB.
https://sweetpricing.com/blog/index.html%3Fp=4250.html#:~:text=Average%20Android%20and%20iOS%20file%20size&text=And%20the%20average%20iOS%20app%20file%20size%20is%2034.3MB.
https://www.mpcalliance.org/
https://developer.nvidia.com/blog/cooperative-groups/
https://developer.nvidia.com/blog/cooperative-groups/

International Conference on Architectural Support for Programming
Languages and Operating Systems (2020).

[80] Ryffel, T., Tholoniat, P., Pointcheval, D., and Bach, F. R. AriaNN:

Low-interaction privacy-preserving deep learning via function secret

sharing. Proceedings on Privacy Enhancing Technologies (2020).
[81] Samardzic, N., Feldmann, A., Krastev, A., Manohar, N., Genise,

N., Devadas, S., Eldefrawy, K., Peikert, C., and Sanchez, D. Crater-

Lake: A hardware accelerator for efficient unbounded computation

on encrypted data. In Proceedings of the 49th Annual International
Symposium on Computer Architecture (2022).

[82] Servan-Schreiber, S., Langowski, S., and Devadas, S. Private ap-

proximate nearest neighbor search with sublinear communication. In

2022 IEEE Symposium on Security and Privacy (2022).

[83] Shamir, A. How to share a secret. Commun. ACM (1979).

[84] Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., and

Devadas, S. Path oram: An extremely simple oblivious ram protocol.

In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security (2013).

[85] Suh, G. E., Clarke, D., Gassend, B., van Dijk, M., and Devadas,

S. AEGIS: Architecture for tamper-evident and tamper-resistant pro-

cessing. In Proceedings of the 17th Annual International Conference on
Supercomputing (2003).

[86] Tan, S., Knott, B., Tian, Y., and Wu, D. J. CryptGPU: Fast privacy-

preserving machine learning on the GPU. In 2021 IEEE Symposium on
Security and Privacy (SP) (2021).

[87] Tan, Z., Yang, Z., Zhang, M., Liu, Q., Sun, M., and Liu, Y. Dy-

namic multi-branch layers for on-device neural machine translation.

IEEE/ACM Transactions on Audio, Speech, and Language Processing
(2022).

[88] Taobao ad dataset. https://www.kaggle.com/datasets/
pavansanagapati/ad-displayclick-data-on-taobaocom.

[89] Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal, P., and

Rabin, T. FALCON: Honest-majority maliciously secure framework

for private deep learning, 2020. arXiv:2004.02229.

[90] Wang, R., Zhang, Y., and Yang, J. Cooperative Path-ORAM for ef-

fective memory bandwidth sharing in server settings. In 2017 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA) (2017).

[91] Wang, R., Zhang, Y., and Yang, J. D-ORAM: Path-ORAM delega-

tion for low execution interference on cloud servers with untrusted

memory. In 2018 IEEE International Symposium on High-Performance
Computer Architecture (HPCA) (2018).

[92] Wang, X., Chan, H., and Shi, E. Circuit ORAM: On tightness of the

goldreich-ostrovsky lower bound. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (2015).

[93] Xiong, W., Ke, L., Jankov, D., Kounavis, M., Wang, X., Northup, E.,

Yang, J. A., Acun, B., Wu, C.-J., Peter Tang, P. T., Edward Suh, G.,

Zhang, X., and Lee, H.-H. S. SecNDP: Secure near-data processing

with untrusted memory. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA) (2022).

[94] Xiong, W., Ke, L., Jankov, D., Kounavis, M., Wang, X., Northup,

E., Yang, J. A., Acun, B., Wu, C.-J., Tang, P. T. P., et al. SecNDP:

Secure near-data processing with untrusted memory. In 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA) (2022).

[95] Yang, Y., Zhang, H., Fan, S., Lu, H., Zhang, M., and Li, X. Poseidon:

Practical homomorphic encryption accelerator. In 2023 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA)
(2023).

[96] Zhao, W., Xie, D., Jia, R., Qian, Y., Ding, R., Sun, M., and Li, P.

Distributed hierarchical GPU parameter server for massive scale deep

learning ads systems. In Proceedings of Machine Learning and Systems
2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020 (2020).

[97] Zhou, G., Zhu, X., Song, C., Fan, Y., Zhu, H., Ma, X., Yan, Y., Jin, J., Li,

H., andGai, K.Deep interest network for click-through rate prediction.

In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery Data Mining (2018).

[98] Zhu, Y., Wang, X., Ju, L., and Guo, S. FxHENN: Fpga-based accel-

eration framework for homomorphic encrypted CNN inference. In

2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA) (2023).

[99] Zipf’s law. https://en.wikipedia.org/wiki/Zipf%27s_law.

A Artifact Appendix
A.1 Abstract
This is the artifact appendix for the "GPU-DPF" paper, and

our code is publicly available at https://github.com/facebookresearch/
GPU-DPF/tree/main. We release code containing optimized

GPU kernels that implement distributed point functions

(DPF), as presented in our paper. The codebase primarily

exposes a PyTorch interface for evaluating DPFs and doing

private table lookups. The code demonstrates the kernel is

correct (i.e: computes a DPF correctly) and reproduces the

main performance results of the GPU kernels that is the

core contribution of the paper. Our code is also available at

Zenodo: https://zenodo.org/records/10049254.

A.2 Artifact check-list (meta-information)
• Algorithm: DPF
• Program: Kernel
• Compilation: bash install.sh (runs python setup.py
that compiles using nvcc)

• Transformations: N/A
• Binary: N/A
• Model: N/A
• Data set: N/A
• Run-time environment: python, pytorch, CUDA
• Hardware: V100
• Run-time state: N/A
• Execution: N/A
• Metrics: correctness and QPS performance
• Output: QPS performance
• Experiments: QPS performance
• How much disk space required (approximately)?: not
much

• How much time is needed to prepare workflow (ap-
proximately)?: 10 mins

• How much time is needed to complete experiments
(approximately)?: 5 mins

• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache
• Data licenses (if publicly available)?: N/A
• Workflow framework used?: N/A
• Archived (provide DOI)?: N/A

A.3 Description
A.3.1 How to access. https://github.com/facebookresearch/
GPU-DPF/

17

https://www.kaggle.com/datasets/pavansanagapati/ad-displayclick-data-on-taobaocom
https://www.kaggle.com/datasets/pavansanagapati/ad-displayclick-data-on-taobaocom
https://en.wikipedia.org/wiki/Zipf%27s_law
https://github.com/facebookresearch/GPU-DPF/tree/main
https://github.com/facebookresearch/GPU-DPF/tree/main
https://zenodo.org/records/10049254
https://github.com/facebookresearch/GPU-DPF/
https://github.com/facebookresearch/GPU-DPF/

A.3.2 Hardware dependencies. Please use Linux with
V100 GPU.

A.3.3 Software dependencies. python, pytorch, numpy

CUDA GPU (tested on cuda > 11.4)

A.3.4 Data sets. N/A

A.3.5 Models. N/A

A.4 Installation
bash install.sh

A.5 Experiment workflow
python benchmark.py outputs performance of DPF across

different numbers of table entries across different PRFs, out-

putting the QPS achieved.

A.6 Evaluation and expected results
Our open-source repo contains installation instructions and

tests for reproducing the main result of our paper, which

validates the high performance of our GPU DPF kernel. Note

1) we do not include the co-design algorithms (these require

downloading large datasets and training that is cumbersome),

2) we do not include Google’s CPU DPF implementation

which requires custom installation for machines and 3) we

only expose the "memory-bounded-tree-traversal" kernel

approach (though the code for the other approaches like co-

operative groups are still released, just not exposed through

PyTorch). The repository primarily reproduces the numbers

for Table 4: with 16K entries, we obtain around 50K-60K

QPS; with 1M entries, we obtain around 900-1.2K QPS; these

numbers amount to a >15× speedup over CPU. Note that

there are some differences between the released code and

Table 4 of the paper, particularly, in the paper we used a

different AES kernel than the one released on Github due to

licensing issues (the Github one uses OpenSSL’s implemen-

tation) – this accounted for a 10% performance difference

on the 16K table; additionally Table 4 1M entries used co-

operative groups approach which was 30% faster than the

memory-bounded-tree-traversal approach as presented in

the code. Finally, our code reproduces Table 5 QPS numbers

for the Chacha PRF at around 4K QPS. Overall these num-

bers represent a > 15× speedup over CPU, and constitute

the main results of the paper.

A.7 Experiment customization
N/A

A.8 Notes
N/A

A.9 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

18

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Private On-Device ML Inference
	2.1 Threat Model
	2.2 Key Challenge: Large Embedding Tables
	2.3 Example: Real-World Recommendation Model
	2.4 Our Approach: On-Device ML Inference with PIR

	3 Accelerating PIR using GPUs
	3.1 Fundamentals of PIR and DPF
	3.2 Accelerating PIR with GPU

	4 Accelerating Batch-PIR with ML Co-Design
	4.1 Background: Batch Private Information Retrieval
	4.2 Co-Designing the ML Model and Batch-PIR

	5 Evaluation
	5.1 Evaluation Setup
	5.2 End-to-End System Throughput on Applications
	5.3 End-to-End System Latency
	5.4 Detailed Analysis of System Optimizations
	5.5 PIR + ML Co-Design

	6 Related Work
	7 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Notes
	A.9 Methodology

