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SUMMARY

In this thesis, we address the problem faced by modern operating systems due

to the exploitation of Hardware-Assisted Full-Virtualization technology by attackers.

Virtualization technology has been of growing importance these days. With the

help of such a technology, multiple operating systems can be run on a single piece

of hardware, with little or no modification to the operating system. Both Intel and

AMD have contributed to x86 full-virtualization through their respective instruction

set architectures. Hardware virtualization extensions can be found in almost all x86

processors these days.

Hardware virtualization technologies have opened a whole new frontier for a new

kind of attack. A system hacker can abuse hardware virualization technology to

gain control over an operating system on-the-fly (i.e., without a system restart) by

installing a thin Virtual Machine Monitor (VMM) below the native operating system.

Such a VMM based malware is termed a Hardware-Assisted Virtual Machine (HVM)

rootkit. We discuss the technique used by a rootkit named Blue Pill to subvert the

Windows Vista operating system by exploiting the AMD-V (codenamed “Pacifica”)

virtualization extensions. HVM rootkits do not hook any operating system code

or data regions; hence detecting the existence of such malware using conventional

techniques becomes extremely difficult. This thesis discusses existing methods to

detect such rootkits and their inefficiencies.

In this work, we implement a proof-of-concept HVM rootkit using Intel-VT hard-

ware virtualization technology and also discuss how such an attack can be defended

against by using an autonomic architecture called SHARK, which was proposed by

Vikas et al., in MICRO 2008.

ix



CHAPTER I

INTRODUCTION

Virtualization is a technique in which computer resources are abstracted. By virtu-

alizing the platform resources, multiple operating systems can be run concurrently

on the same hardware. Virtualization technology dates back to early 70’s when IBM

introduced their CP/CMS time sharing operating system. Virtualization provides us

with many benefits, a few of which are listed below:

1. Virtualization provides support for isolated execution of operating systems,

thereby providing a reliable and secure platform for the user.

2. Virtualization contributes to better power and resource management. Several

under utilized servers can be run as virtual machines on the same hardware.

The virtual machine monitor can power down servers when they are not utilized.

3. Virtualization leads to better system mobility as virtual machines can be mi-

grated across physical hosts. This also leads to better system resource utiliza-

tion.

4. Virtualization can improve productivity. New features added to operating sys-

tems can be debugged for correctness by implementing debugging tools in the

virtual machine monitor, without the need to setup a standalone debugger.

1.1 VMM Architectures

A Hypervisor or a Virtual Machine Monitor (VMM) is a layer of software which aids

in device abstraction and emulation. It runs at a higher privilege than the guest

operating system. Hypervisors can be categorized into two types, as illustrated in

1



VMM

VM1 VM2

Virtual Device Interface

Resource Manager

Device Drivers

HARDWARE

TYPE 1 VMM

VMM

VM1 VM2

HOST OS

Resource Manager

Virtual Device Interface

Device Abstraction Layer

Device Drivers

TYPE 2 VMM

HARDWARE

Figure 1: Hypervisor Architectures

Figure 1. Type 1 hypervisors run on bare hardware. They are also called bare

metal hypervisors. They have complete device driver support for disks, graphics

card, file I/O, network I/O, timers, etc. The devices are presented to the virtual

machines through a virtual device interface in order to facilitate virtualization. They

also own a resource manager to manage resource sharing among multiple virtual

machine domains. The resource manager is responsible for establishing an isolation

barrier between the different guest domains. Type 1 hypervisors can have either

a monolithic or a microkernel-like architecture. VMWare’s ESX has a monolithic

architecture, hence it contains the complete set of hardware device drivers, and thus

it has a large code size. Hypervisors like Xen, Microsoft Hyper-V, and Kernel Virtual

Machine (KVM) have a microkernel-like architecture; they typically maintain all the

driver support for hardware in a controlling domain called dom0 which runs as a

para-virtualized environment.

Type 2 hypervisors run on top of a host operating system. As with type 1 hy-

pervisors, type 2 hypervisors contain a virtual device interface layer and a resource

manager, but do not contain device driver support and thus depend on host OS for

2



device interactions. These hypervisors incur more overhead than bare metal hypervi-

sors. Hypervisors such as VirtualBox, VMWare Workstation 6, and Microsoft Virtual

PC 2007 belong to this category.

1.2 Virtualization Types

CPU Virtualization can be broadly classified into three categories:

(i) Full virtualization using binary translation : This type of virtualization,

as illustrated in Figure 2, uses both direct execution and binary translation tech-

niques. RING 3 software (i.e., the user level) executes directly on the hardware,

where as certain sensitive and unprivileged instructions (i.e., non-virtualizable

instructions) are translated on-the-fly by the virtual machine monitor to a new

set of instructions which have a similar effect on the virtualized hardware. The

virtual machine monitor occupies RING 0 privileges and the guest OS is exe-

cuted at RING 1. The guest operating system runs unmodified on the virtual

machine monitor. Virtual machine monitors like VirtualBox, Microsoft Vir-

tual PC 2007, and VMWare Workstation 6 use full virtualization with binary

translation.

RING 3  software executed
directly on hardware

HARDWARE

GUEST OS

VMM

APPS

RING 1

RING 3

  RING 0

OS requests are translated
on the fly

Figure 2: Full Virtualization – Binary Translation
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(ii) Para-virtualization : In this technique, the hypervisor presents a software

interface to the guest OS, that is similar but not identical to the underlying

hardware. The guest OS is “aware” that it is running in a virtualized envi-

ronment and is recompiled to replace all non-virtualizable instructions with

hypercalls. The guest OS also uses hypercalls to perform kernel tasks such as

memory management, interrupt handling, etc. Para-virtualization has less vir-

tualization overhead. Para-virtualized operating systems have poor compatility

and migratability. Para-virtualization is illustrated in Figure 3. Examples in-

clude Xen and VMWare ESX Server.

RING 3  software executed
directly on hardware

OS uses hypercalls for
kernel operations

PARAVIRTUALIZED 

GUEST OS

APPS

HYPERVISOR

HARDWARE

RING 0

RING 3

Figure 3: Para-virtualization

(iii) Full virtualization using hardware assisted virtualization : In this

type, as illustrated in Figure 4, virtualization support is provided by the hard-

ware. Complete hardware is virtualized by the VMM and an unmodified oper-

ating system can be run in isolation. Privileged and sensitive guest operations

are trapped by hardware and emulated by the VMM. Kernel Virtual Machine

(KVM), Microsoft Hyper-V , Microsoft Virtual PC, and Xen make use of hard-

ware assisted virtualization.

Both, Intel and AMD, have contributed to the growth of hardware assisted full-

virtualization with their respective hardware virtualization technologies (Intel-VT [4]
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RING 3  software executed
directly on hardware

 
  

     and emulated by VMM
OS requests are trapped 

HARDWARE

APPS

VMM

GUEST OS
RING 0

RING 3

ROOT

NON−ROOT

Figure 4: Full Virtualization – Hardware Assisted

and AMD-V [3]) in order to overcome the overhead associated with binary translation.

Both technologies are similar in concept but make use of different instruction sets to

achieve virtualization.

A computer hacker can exploit the virtualization instructions to subvert the na-

tive operating system by establishing a thin layer of control software (i.e., VMM),

which operates below Ring 0. He can potentially employ a malware at VMM level.

A malware at this level can be quite detrimental as it operates with the highest

privileges. It can potentially install keyloggers, search guest OS’s memory space for

potential passwords, or provide remote access to disks. A rootkit using hardware

assisted virtualization technology is termed as Hardware-Assisted Virtual Machine

(HVM) rootkit. Anyone who compromises the virtualization environment practically

controls the entire physical environment on which the system runs. Malware hiding

at this level is even more difficult to discover and to remove than malware in kernel

mode.

In this work, we address the problem of HVM rootkits. We implement a proof-of-

concept HVM rootkit using Intel-VT technology on Linux operating system to mimic

the attack model of the Blue Pill rootkit and prove that such attacks can be defended

if a SHARK-like autonomic architecture is used.
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The rest of the thesis is organized as follows. Chapter 2 talks about the cate-

gorization of different types of malwares. Chapter 3 describes the Blue Pill rootkit

and its attack model. Chapter 4 discusses the existing strategies to detect HVM

rootkits. Chapter 5 talks about Intel-VT technology. Chapter 6 describes our model

of a Blue Pill-like rootkit and describes the experiment we conducted with SHARK

architecture. Chapter 7 provides the conclusion.
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CHAPTER II

MALWARE CLASSIFICATION

Malware is defined as “A class of software designed to infiltrate or damage a com-

puter system without user’s authorization”. A malware can hook various parts of

the operating system to redirect control to its code or can also run as a standalone

application without changing any system resource. The following sections describe

different classes of malware based on thier OS hooking strategy. This classification

was suggested by Joanna Rutkowska in Black Hat 2006 [23], and is widely accepted.

2.1 Type 0 Malware

This type of malware operates as a standalone application, as illustrated in Figure 5,

and does not affect any operating system code or data. Also, this malware type does

not change the behaviour of any user level process nor inject its code into application

binaries. Malware belonging to this category often delete/change files belonging to the

user from the directory or modify registry keys. Malware of this type are considered

as a nuisance in general and are not regarded as a major threat from the system

compromise point of view. Spyware is one such example.

Type 0 malware can be detected by state-of-the-art anti-virus tools which use

signature scanning or intrusion detection mechanisms. An example is Tripwire [8],

which is a host-based intrusion detection system. Tripwire alerts the user when it

detects any change to the user level files on the system. It compares the cryptographic

hash of the files scanned with the hash value of a clean file system and reports

any mismatch to the system administrator. Other examples include AIDE [2] and

Samhain [5].
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Type 3VMM
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Figure 5: Malware Hooks

2.2 Type 1 Malware

Type 1 malware hook persistent regions of the system. Typically, malware belonging

to this category modify code sections of user processes or kernel, hook lookup tables in

user/kernel space or modify certain CPU registers in order to execute their trampoline

functions.

The hooking strategies used by type 1 malware are explained below:

(i) Hooking Lookup Tables: The function adresses in Import Address Table

(IAT), System Service Descriptor Table (SSDT) or Interrupt Descriptor Table

(IDT) are often modified to redirect control to the malware code.

An IAT is maintained for each application. It contains the addresses of all the

functions in other binaries used by an application. By replacing one of these

table entries with the address of the hook function, the malware can execute

its code whenever a call is made to the function corresponding to the entry

replaced. After executing its hook function, the malware jumps back to execute

the original function whose entry it replaced.

Hooking the SSDT is the kernel mode equivalent of hooking the IAT. The SSDT

contains pointers to all the system call services. The malware can hook to one

8



of these pointers and the user level program will never come to know about

the presence of a malware when it uses the system call. The malware uses a

loadable kernel module (LKM) or a driver module, in order to get access to

kernel space.

IDT contains the addresses of all the Interrupt Service Routines (ISRs) for all

the interrupts registered on the system. When the processor recieves an inter-

rupt, it looks up this table and jumps to the service routine corresponding to the

interrupt. Hooking this table is similar to hooking the SSDT. A potential ma-

licious application of IDT hooking is intercepting keystrokes to sniff passwords

by hooking the IDT entry for the keyboard.

(ii) Code Patching: This technique is also known as Inline Function Hooking.

This can be achieved at both user and kernel levels. Instead of patching the

function address in a lookup table, the target function is itself modified by

replacing the first few instructions (usually five bytes) with a jmp to the hook

function. The hook function can either reimplement the target function and

filter the results before returning execution to the source function or pass the

control back to the target function and allow it to execute its code and then get

the control back to itself to do postprocessing of results and return the control

to the source function. Inline function hooking is harder to detect than IDT or

IAT/SSDT hooking and is also harder to implement.

(iii) Hooking CPU Registers: Malware can hook registers such as Model Specific

Registers (MSRs) to execute its code. An example of MSR hooking is SYSEN-

TER hooking. In this attack, the malware hooks the IA32 SYSENTER EIP

register. The hook function gets called when the SYSENTER instruction is

executed, instead of a kernel module which handles a fast transition from user

to kernel space. The hooking code is shown in Listing 2.1.

9



mov ecx , 0x176 // 0x176 = IA32 SYSENTER EIP ID

mov eax , HookFunction // Address o f the Hook Function

wrmsr

s y s en t e r

Listing 2.1: Register Hooking

Hacker Defender [16], Shadow Walker [27], Adore [6], and Spam-Mailbot.c are

examples of type 1 malware. Tools like System Virginity Verifier [22], VICE [13], and

SDTRestore are used to detect malware belonging to this category. Type 1 malware

is illustrated in Figure 5.

2.3 Type 2 Malware

As opposed to type 1 malware, type 2 malware hook non-persistent regions in memory.

Typically, malware belonging to this category modify data (e.g., Kernel Objects) in

kernel data structures or data sections of processes, which are designed to be modified

anyway. The following are the techniques employed by malware belonging to this

category:

(i) Kernel Object Hooking: The kernel objects are maintained in the form of

data structures or arrays by the kernel. Many of these objects are involved

in control flow and contain pointers to functions. Examples include Deferred

Procedure Call (DPC) objects and driver objects which contain pointers to

driver unload routines. The malware can hook these objects by modifying the

function pointers to install its trampoline function, as shown in Listing 2.2. This

technique is quite similar to IAT/SSDT hooking except for the fact that the

kernel objects are dynamic in nature and a clean baseline to compare against

is tough to establish.

typedef struct {

SHORT Type ;

10



UCHAR Number ;

UCHAR Importance ;

LIST ENTRY DpcListEntry ;

PKDEFERRED ROUTINE DeferredRoutine ; // This func t ion poin t e r i s subver t ed

PVOID DeferredContext ;

PVOID SystemArgument1 ;

PVOID SystemArgument2 ;

PULONG Lock ;

} KDPC, *PKDPC

Listing 2.2: DPC Hook

(ii) Direct Kernel Object Manipulation: In this technique, the malware mod-

ifies the kernel data structure which contains a list of all active processes in the

system. The linked list entry corresponding to the malware’s process is removed

from this list. The task manager and other process viewing utilities are eluded

as they do not see the process entry while parsing through the list. Though its

entry is removed from the process list, the malware still executes its code as the

threads belonging to its process are maintained in another data structure called

the process thread list. The operating system consults this data structure to

schedule threads in the system.

Examples of type 2 malware include FUTo [26], Klog [7], He4Hook [7], Phide [6].

Tools like Klister [20], and Rootkit Revealer [14] are used to detect type 2 malware.

Type 2 malware is illustrated in Figure 5.

2.4 Type 3 Malware

This is a special type of malware which is designed specifically for virtualization

environments. The malware types described above are always involved in a battlefield

at the same level as the operating system , but type 3 malware moves the battlefield to

a level below the operating system, as illustrated in Figure 5. This malware achieves

stealth by not modifying the operating system at all (i.e., without hooking), but by

11



leveraging virtualization support in software as well as hardware. Type 3 malware

can be classified into 2 categories:

(i) Virtual Machine Based: This type of malware envelopes the native OS inside

a virtual machine without its knowledge. Existing virtualization software (i.e.,

hypervisors) such as Virtual PC or VMWare are used for this purpose. The

boot sequence of the target OS is changed to boot the hypervisor instead of the

target OS. The hypervisor is then made to boot the target OS on top of it.

(ii) Hardware Assisted Virtual Machine Based: Malware belonging to this

category leverage the hardware virtualization support to install a transparent

and super-thin virtual machine monitor layer beneath the native OS.

SubVirt [17] is an example of virtual machine based rootkit (VMBR). Blue Pill [1]

and Vitriol [15] are examples of HVM rootkits.1 VMBRs have a large code footprint

and are quite easy to detect. Tools such as RedPill [21], NoPill [19], and ScoopyNG

[18] detect VMBRs. To detect VMBRs, they make use of the inherent logical discrep-

ancies in the implementation of certain x86 instructions by virtualization software.

Detection of HVM rootkits is still a controversial issue with no generic solution avail-

able. Strategies to detect HVM rootkits are discussed later in this document.

1Vitriol’s source code is not open sourced.
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CHAPTER III

BLUE PILL–A HARDWARE VIRTUAL MACHINE

ROOTKIT

The Blue Pill rootkit was developed by Joanna Rutkowska in 2006 [24]. It makes use

of AMD64 Secure Virtual Machine (SVM) extensions to subvert the Windows Vista

kernel. The speciality of the Blue Pill rootkit is that it subverts the kernel on-the-fly;

hence it does not require any modifications to BIOS, boot sector files or system files.

It installs a thin transparent VMM beneath the OS to observe and control interesting

activities within the guest OS. Blue Pill is a memory based rootkit, so it does not

survive a system reboot. On the other hand, it doesn’t leave behind any traces that

could be discovered using forensic analysis.

3.1 Blue Pill Attack Model

The Blue Pill attack model is illustrated in Figure 6 (source [25]). Blue Pill gets

loaded into the kernel as a driver module. It then executes the following steps to

launch the virtual machine:

1. It enables the SVM extensions by setting the Secure Virtual Machine Enable

(SVME) bit of the Extended Feature Enable Register (EFER).

2. Blue Pill then initializes the Virtual Machine Control Block (VMCB). In AMD64

SVM technology VMCB is a data structure which specifies the state of the guest

OS and also specifies the events/instructions to be intercepted by the VMM.

3. Blue Pill allocates private page tables for its VMM.

13
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Figure 6: Blue Pill Attack Model

4. After setting up the VMCB, Blue Pill executes the VMRUN instruction to launch

the virtual machine (i.e., the guest OS). The guest OS does not realize that it

is under the control of a VMM. Any attempt to execute a privileged intruction

by the guest OS will be trapped by the VMM, leading to a VM Exit event.

5. The Blue Pill VMM checks the VMCB.exitcode member of the VMCB data

structure to find out the information regarding the event which caused the exit.

It then emulates the intercepted event/instruction and resumes the guest OS

by executing the VMRUN instruction.
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The usage of VMRUN is illustrated in Figure 7. Since Blue Pill uses a VMM

which has a very small code footprint, it is very hard to detect. Also, Blue Pill

does not virtualize I/O, so it cannot be detected using direct hardware fingerprinting.

The Blue Pill VMM can also execute malicious code along with the emulation of the

intercepted event. As this operates below the guest OS, all the malicious contexts

launched by the Blue Pill VMM will be completely invisible to the guest OS.

VMRUN

1

4

2

3
3. Guest OS intercepted by Blue Pill VMM. 

1. Blue Pill rootkit executes VMRUN to launch virtual machine.
2. Virtual Machine(guest OS) execution.

4. Blue Pill VMM executes VMRUN to resume virtual machine.

Blue Pill VMM

Figure 7: VMRUN Instruction Usage

3.2 Memory Hiding

GUEST
OS

BLUEPILL 
VMM

PRIVATE PAGE TABLE

BLUEPILL
CR3

VMM CODE PAGES

PATCHED GUEST OS PAGE TABLE

GUEST OS
CR3

Figure 8: Private Page Table

Blue Pill uses private page tables to hide its VMM code pages from the guest OS.

Blue Pill VMM has its own private CR3; the processor loads this CR3 value directly

into the CR3 register when there is a VM exit event. Blue Pill uses the support of

the guest OS to set up its VMM pages. Blue Pill allocates page tables on its own and

copies all the page table entries belonging to the Blue Pill VMM. It then patches these
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entries in the guest allocated page tables to “garbage” values. This way, Blue Pill is

able to hide its VMM code pages from the guest OS. This is illustrated in Figure 8

(source [25]). Another conceptual rootkit by the name Vitriol [15] was developed to

subvert Mac OS using Intel-VT hardware virtualization technology, though its source

code is not open sourced like that of Blue Pill.
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CHAPTER IV

HARDWARE ASSISTED VIRTUAL MACHINE ROOTKIT

DETECTION

The following are some of the techniques that were proposed to detect the presence

of a HVM rootkit:

4.1 Timing Analysis

4.1.1 Using RDTSC Instruction

In AMD-V technology, the rootkit (e.g., Blue Pill) needs to set the SVME bit in the

EFER register. This bit is usually turned off by the OS. If the guest OS finds out that

this bit has been set, then it can conclude that a VMM might exist in the system. The

guest OS can execute the RDMSR instruction in order to check the value of SVME bit

in the EFER register. Blue Pill VMM needs to intercept this instruction and cheat

the guest by returning a wrong value of the Model Specific Register (MSR). Hence

the actual time to execute the RDMSR instruction, as shown in Figure 9, can be very

long since there is a transition to the VMM and then back to the guest OS.

Figure 9: Time Difference Due To VMM Interception

The guest OS can measure the time taken to execute the RDMSR instruction to
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detect the existence of a VMM. The guest can use the RDTSC instruction to measure

the time in terms of CPU clock ticks. The rootkit can cheat the usage of the RDTSC

instruction by using the signed TSC OFFSET field in the Virtual Machine Control

Block (VMCB), during a VM Entry.1 Hence the execution of the RDTSC instruction

will result in a wrong timing value as it will be subjected to a negative offset.

In the case of Intel-VT, the Virtual Machine Extensions Enable (VMXE) control

bit has to be enabled in the CR4 register in order to launch a virtual machine. When

the guest OS tries to read the value of CR4 register, the rootkit can intercept this and

return a fake value from the CR4 read shadow field of the Virtual Machine Control

Structure (VMCS).

emulated_cycles += f(Inst 1);
Tracing−−;

Tracing −−;
emulated_cycles += f(Inst m);

If (Tracing > 0)
{
  [edx : eax] = emulated_cycles + last_TSC ;
  TSC = [edx : eax ];
}  
last_TSC = TSC;
emulated_cycles = 0 ; 
Tracing = n;

If (Tracing > 0)
{
  [edx : eax] = emulated_cycles + last_TSC ;
  TSC = [edx : eax ];
}  
last_TSC = TSC;
emulated_cycles = 0 ; 
Tracing = n;

Inst 2RDTSC Inst 1 Inst 3 Inst m Inst 1RDTSC

Trace max n instrcutions

Tracing −−;
emulated_cycles += f(Inst 2);

Start new Trace

Figure 10: Anti RDTSC

The VMM/guest transitions do not always take the same amount of time and

hence it becomes hard to calculate the TSC OFFSET value accurately. Hence, Joanna

Rutkowska suggested another way to cheat RDTSC instruction using “instruction

tracing”, thus eliminating the need to determine TSC OFFSET. This technique is

illustrated in Figure 10 (source [25]). Prior to the execution of the RDTSC instruction,

the instruction stream between two RDTSC instructions is traced and the number of

clock cycles to execute this instruction stream is calculated. During the execution of

the second RDTSC instruction, the guest OS is intercepted and the [edx:eax] registers

1Virtual Machine Control Structure (VMCS) is VMCB’s equivalent in Intel-VT.
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are replaced by a fake value (i.e., the calculated number of cycles of the instruction

stream) during VM Entry. Hence the guest will observe only a small number of

cycles between two RDTSCs even if the instruction stream between them contains

instructions which cause VM Exits.

func_0()
{
  call func_1();
  ret;
}

func_1()
{
  call func_2();
  ret;
}

func_2()
{
  call func_3();
  ret;
}

func_15()
{
 cpuid;  /* #causes VMEXIT   */
 rdtsc;   /* start measurement */

}

main()
{
  cli;
  call func_0();
  rdtsc;  /* end measurement */
  sti;
}

 ret;      /* start 16 returns     */   

RETURN STACK BUFFER

ret; func_15

ret; func_14
ret; func_13

ret; func_12

ret; func_11

ret; func_10

ret; func_9
ret; func_8

ret; func_7

ret; func_6

ret; func_5

ret; func_4

ret; func_3

ret; func_2

ret; func_1

ret; func_0

rdtsc;

rdtsc;

RSB Miss
caused by
#VMEXIT

Figure 11: Return Stack Buffer

Intel proposed a detection technique using the Return Stack Buffer [12]. The

Return stack buffer is an internal “hardware” stack with around 16 entries. The

return address of a function is predicted and stored in this buffer, which is circular in

nature. A µArch side channel is created using this buffer. This technique is illustrated

in Figure 11. The “main()” function populates the return stack buffer by making 16

nested calls. The last function executes a sensitive instruction (CPUID in this case)

and starts to measure time. The VM Exit handler will remove certain entries in the

return stack buffer and they will be replaced by entries belonging to the VM Exit
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handler subroutines, leading to RSB misses. The time taken to return to the main

function from the nested function calls is calculated. If this time is greater than a

predefined threshold then one can conclude that a VMM layer exists. Again, the

drawback of this technique is the use of the RDTSC instruction to measure time.

Although it is very difficult to calculate the correct value of TSC OFFSET in this

case, a sophisticated VMM malware has a chance of fooling the guest OS.

In another technique, the TLB is initially flushed and later completely filled by

accessing a set of memory pages, and the time taken to do this is calculated. After

this, a VM Exit is made to happen forcefully by executing a sensitive instruction.

After the guest resumes, the same set of memory pages are accessed again and the

time taken to do this is calculated. If there is significant difference between the time

calculated before and after the instruction causing the VM Exit, then the guest OS

can determine that a VMM exists. The time difference can be attributed to the

fact that some TLB entries get replaced by the entries belonging to the VMM. The

algorithm is shown in Listing 4.1. Again the time reported can be modified using the

TSC OFFSET mechanism as described above.

for ( i =0; i<max number ; i++)

{

p [ i ] = a l l o c 4 k pag e ( ) ;

}

Flush TLB ( ) ;

Flush DataCache ( ) ;

for ( i =0; i<max number ; i++) // F i l l TLB and f in d acces s time

{ // max number = number o f e n t r i e s f o r

x = p [ i ] [ 0 ] ; t1 = rdt s c ; // 4KB pages in L1 d−TLB

x = p [ i ] [ 0 ] ; t2 = rdt s c ;

a c c e s s t ime 1 [ i ] = t2 − t1 ;

}

RDMSR(EFER) ; // Cause #VMEXIT
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for ( i =0; i<max number ; i++) // Find acces s time again

{

t1 = rdt s c ;

x = p [ i ] [ 0 ] ; t2 = rdt s c ;

a c c e s s t ime 2 [ i ] = t2 − t1 ;

}

for ( i =0; i<max number ; i++)

{

i f ( a c c e s s t ime 2 [ i ] − a c c e s s t ime 1 [ i ] > th r e sho ld )

{

p r i n t f ( ”VMM Exi s t s \n” ) ;

}

}

Listing 4.1: TLB Time Profiling

4.1.2 Using External Timing

The guest OS can use an external timer such as High Precison Event Timer (HPET)

or NTP (Network Time Protocol) to measure the execution time of the RDMSR

instruction. The Blue Pill VMM can cheat the usage of HPET by intercepting the

interrupts generated by the offchip timer. The NTP time has very low resolution (of

the order of milliseconds) compared to that of HPET or RDTSC techniques. Hence

the RDMSR instruction needs to be executed many times to observe a significant

difference between two NTP time values. If this difference is greater than a threshold,

then one can conclude that a VMM layer exists. This is illustrated in Listing 4.2.

T1 = GetTimeViaNTP ( ) ;

for ( i =0; i<max counter ; i++)

{

RDMSR(EFER) ; // Cause #VMEXIT a number o f t imes

}

T2 = GetTimeViaNTP ( ) ;
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i f ( T2 − T1 > th r e sho ld )

{

p r i n t f ( ”VMM Exi s t s ” ) ;

}

Listing 4.2: External Timing Via NTP

Blue Pill adopts an escape strategy: when it detects that an intercepted instruction

(e.g., RDMSR) is being executed too many times in a time slice, it automatically

unloads itself to prevent detection. Before unloading itself, it analyzes the guest OS

state on the last VM Exit, fills all the registers of the guest with the values stored in

the VMCB, and clears the SVME bit in EFER.

4.2 Counter Based

TIME

CORE 1

CORE 0

~1000s of cycles before
VMM starts executing

THIN VMM

COUNTER INCREMENTS

THREAD 1

THREAD 0

#V
M

E
X

IT

Thread 0 notifies thread 1
to stop counting

Thread 0 notifies thread 1
to start counting

Figure 12: Counter Based Detection

Instead of measuring CPU in terms of clock cycles as described above, the guest OS

can make use of a simple counter. It can schedule a thread having RDMSR instruction

on one core and thread having a simple counter on another core. The first thread

can notify the counter thread to start counting just before the execution of RDMSR

and ask it to stop counting after RDMSR finished execution. If the counter value is
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a large value, the guest OS can determine that a VMM layer exists underneath it.

However, this technique requires a multi-core processor. This technique was proposed

by Edgar Barbosa [10] and is illustrated in Figure 12. Joanna Rutkowska admitted

that this technique would detect the presence of a VMM layer and had no solution

to counter this detection strategy.

4.3 TLB Profiling

This is another technique proposed to detect HVM rootkits by using TLB profiling

but without making use of time information. This mechanism was proposed by Keith

Adams [9]. Listing 4.3 describes the algorithm used.

for ( i =0; i<max number ; i++) // max number = number o f e n t r i e s f o r

{ // 4KB pages in L1 d−TLB

page [ i ] = a l l o c 4K page ( ) ; // A l l o ca t e a s e t o f pages

}

page new = a l l o c 4K page ( ) ; // A l l o ca t e a new page

for ( i =0; i<max number ; i++)

{

memset ( page [ i ] , 0 x44 ,PAGE SIZE ) ; // F i l l a l l t he pages wi th a data va lu e

}

memset ( page new , 0 x55 ,PAGE SIZE ) ; // F i l l t he new page with another data va lu e

for ( i =0; i<max number ; i++)

{

x = page [ i ] [ 0 ] ; // F i l l up the TLB comple t e l y

}

for ( i =0; i<max number ; i++) // Remap PTEs to phy s i c a l address o f page new

{

Patch PTE( page [ i ] , phy s i c a l a dd r e s s ( page new ) ) ;

}

RDMSR(EFER) ; // Cause #VMEXIT

for ( i =0; i<max number ; i++)

{
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i f ( page [ i ] [ 0 ] == 0x55 )

break ; // No mapping in TLB, so page walk done

}

i f ( i < max number )

p r i n t f ( ”VMM ex i s t s \n” ) ;

Listing 4.3: TLB Profiling

Initially, max number of 4KB pages are allocated and initialized to a data value,

for e.g., 0x44. Here max number is equal to the number of entries alloted to store

mappings of 4KB pages in L1 data TLB. A new 4KB page page new is allocated

and initialized to another data value, for e.g., 0x55. The TLB is intentionally filled

completely by accessing max number pages containing the data value 0x44. Then

the page table entries corresponding to these pages are patched to point to page new,

which contains the data value 0x55. At this point, a VM Exit is caused, which will

either flush the entire TLB (in the case of Intel-VT) or replace few entries (in the

case of AMD-V). Now, the max number pages originally accessed are accessed again

and the data value is read out. If the data value is found to be 0x55, that means

there was a page walk done due to a TLB miss. Thus, one can conclude that a VMM

layer exists in the system.

The above detection mechanism can be defeated using shadow page tables. Any

attempt to change the page table entry (PTE) by the guest will be trapped by the

VMM and PTE patching can be avoided. 2

4.4 Signature Analysis

In this technique, the physical memory is scanned for a VMM footprint, which could

be a set of instructions the VMM executes after a VM Exit. To access a page in phys-

ical memory, the detector allocates itself a memory page and modifies (i.e., patches)

2In the case of Blue Pill, it was proposed that it can use the escape strategy by unloading itself
as soon as it finds out that a number of page table entries are being patched.
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the Page Table Entry (PTE) corresponding to the memory page to access the entire

physical space. With the help of shadow page tables (SPT), the VMM can avoid

PTE modification by the guest OS as it can trap such an event and even replace the

guest PTE with a garbage value, thus fooling the scanner.

The detector could also scan the PTEs of all the page tables of the guest OS to

find the existence of a page containing the VMM signature as the VMM’s pages are

assigned by the guest OS during its installation. As explained in Chapter 3, Blue

Pill avoids detection by using private page tables and patching its entries in the guest

page tables to garbage values. Hence Blue Pill’s pages are completely hidden from

the guest OS.

00000000 <_VmmExitHandler@0>:

4:   81 ec 84 00 00 00 
a:   89 45 b4                          mov %eax,0xffffffb4(%ebp)

2:   8b ec                                mov %exp,%ebp          

0:   fa                                      cli

19: 89 7d d0                          mov %edi,0xffffffd0(%ebp)
1c: 0f 20 d0                           mov %cr2,%eax

1:   55                                     push %ebp

d:   89 5d b8                          mov %ebx,0xffffffb8(%ebp)

          sub $0x84,%esp

13: 89 55 c0                           mov %edx,0xffffffc0(%ebp) 

FSB

HYPERVISOR OS

DRAM

SRAM

CORE

ROM

DMA

CTRL

EMBEDDED CONTROLLER

MEMORY CONTROLLER

  (ICH)
BRIDGE
SOUTH

SPI
BUS

DeepWatch

(DeepWatch)

(MCH)
BRIDGE
NORTH

FLASH
(BIOS)

CPU WITH
INTEL−VT

(VMX−root(kit))

16: 89 75 cc                           mov %esi,0xffffffcc(%ebp)                           

10: 89 4d bc                          mov %ecx,0xffffffbc(%ebp)                        VM exit handler opcodes

VT  rootkit "signature"  = 

Figure 13: Intel’s DeepWatch Technology

Intel has come up with a detection strategy called DeepWatch [11] to detect their
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version of Intel-VT based HVM rootkit.3 The physical memory scanner runs on

an embedded µcontroller located in the northbridge (MCH). The scanner has more

control over the VMM as it runs “underneath” it. It is claimed that such targeted

detection techniques can easily be defeated by obfuscating the VMM’s code.

Faced with the difficulty in identifying HVM rootkit once it has been installed,

the need to safegaurd the OS becomes crucial. Hence, we need a general strategy to

solve the problem of HVM rootkits once and for all. SHARK architecture is shown

to be highly effective againt rootkits belonging to Type I and Type II categories. We

explore the possibility of SHARK in defending against even Type III malware (e.g.,

Blue Pill).

SHARK is a Linux based infrastructure. Hence, the objective was to mimic the

Blue Pill attack on Linux (as Blue Pill is a Windows based rootkit and cannot be

installed on SHARK). Moreover, SHARK architecture is built using BOCHS x86

emulator and BOCHS supports Intel-VT virtualization instructions. Hence, a Blue

Pill-like rootkit needs to implemented using Intel-VT technology (as opposed to AMD-

V technology used by Blue Pill) to test it on SHARK.

3Intel’s version of HVM rootkit is not open-sourced.
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CHAPTER V

INTEL-VT TECHNOLOGY

The terms “guest OS/virtual machine/VM” and “virtual machine monitor/hypervi-

sor/VMM” have already been used in this document. These two categories of software

are supported by virtual machine ISA. As explained earlier, the virtual machine mon-

itor is the controlling software which presents an abstraction of computer resources.

This software runs at the highest privilege and has complete control over I/O man-

agement, memory management, etc. The guest OS is the layer of software which

operates above the virtual machine monitor. In Intel-VT technology, there is no bit

in the control registers which indicate the presence of a virtual machine monitor layer

and hence the guest OS is given the illusion of complete control. Two modes of

operation are supported by the processor, “VMX root” and “VMX non-root”. The

VMM layer operates in the VMX root mode and the guest OS operates in the VMX

non-root mode. The guest OS operation in VMX non-root mode is similar to that

of its operation in a non-virtualized system except for the fact that certain sensitive

instructions cause an exit to the virtual machine monitor. The VMX mode of the

processor is enabled by setting the VMXE bit in the CR4 register.

5.1 VMX ISA and VMX Transitions

The transition from VMX non-root to VMX root is termed as “VM Exit”, which

triggers the execution of VMM code, and the transition from VMX root to VMX non-

root is termed as “VM Entry”. Figure 14 illustrates the VMX transitions involved

during the execution of a virtualized software. The software executes the VMXON

instruction to start VMX operation and then executes the VMLAUNCH instruction to

enter VMX non-root mode. After a VM Exit, the processor enters VMX root mode
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Figure 14: VMM Life Cycle

Table 1: VMX Management Instructions

Instruction Description

VMCALL This instruction is used by the guest OS to call the VMM directly.
The execution of this instruction results in a VM Exit to the VMM.

VMLAUNCH This instruction is used to launch the virtual machine at an
entry point defined in the VMCS.

VMRESUME This instruction is used by the VMM to resume the execution of
the virtual machine. A VM Entry occurs in the process.

VMXOFF This instruction causes the processor to exit VMX operation.

VMXON This instruction causes the processor to start VMX operation.
A 64-bit source operand in memory containing the physical address of the
memory allocated for VMX operation is used along with this instruction.

and the virtual machine monitor executes its code. Later, the VMM resumes the

execution of the guest software after defining its entry point, by using the VMRESUME

instruction. The VMM may even decide to turn “off” the VMX operation by executing

the VMXOFF instruction. These instructions are explained in Table 1 and Table 2.

These instructions cannot be executed if the software is operating at a privilege

level greater than zero and are undefined outside VMX mode. Also, VMCALL and

VMXOFF cannot be executed at VMX non-root level. The processor performs few

checks after the execution of every VMX instruction and sets certain bits in the FLAG

register to indicate success or failure. In some cases, the VM-Exit information field
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Table 2: VMCS Management Instructions

Instruction Description

VMPTRLD This instruction makes the VMCS active/current. A 64-bit source
operand in memory containing the physical address of the region allocated

for VMCS data is used along with this instruction.

VMPTRST This instruction stores the current VMCS pointer in the location.
specified as a 64 bit destination operand.

VMCLEAR This instruction takes the VMCS pointer as operand as sets the launch
state of VMCS to “clear” and renders the VMCS inactive. The VMCS data is

written back to the VMCS-data area in memory.

VMREAD This instruction reads the value of the VMCS field identified by an
encoding, and stores it in the destination operand.

VMWRITE This instruction is used to load a value from the source operand
into the VMCS field identified by an encoding.

is also updated with the error information.

5.2 Virtual Machine Control Structure

The virtual machine control structure specifies processor behaviour. It controls the

transitions between the guest OS and the virtual machine monitor i.e., VMX non-

root state and the VMX root state, and its configuration specifies the guest OS’s

behaviour. The guest OS’s data is stored in the VMCS during a VM Exit and loaded

from the VMCS to appropriate registers during a VM Entry. The VMCS data is

maintained in a 4K-Byte aligned writeback cacheable memory. The processor can

use more than one VMCS to support multiple virtual machines. The exact amount

of memory to be allocated to each VMCS region and the memory type can be found

out by consulting the VMX capability model specific register (MSR 0x3A). Software

should use the VMX instructions VMPTRLD, and VMCLEAR in order to activate and

de-activate the VMCS, and should use VMWRITE and VMREAD to manipulate and

access the VMCS data fields. Not all fields of VMCS can be modified as some are
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Figure 15: VMCS States

The VMCS can be in many operating states during its existence in memory. Figure

15 illustrates the relationship between the VMCS operating states. A VMCS’s state

is “current” when software executes the VMPTRLD instruction with the physical

address of the memory allocated to VMCS as its operand. The VMCS’s state changes

to “active” when the current-vmcs pointer is loaded with another address using the

VMPTRLD instruction again or after a VM Exit. Figure 15 depicts this scenario

when VMPTRLD B is executed after VMPTRLD A; hence VMCS A’s state changes to

“active” from “current”. The VMCS’s state changes from “current” to “controlling”

when the software executes a VMLAUNCH or a VMRESUME instruction. When the

software executes the VMCLEAR instruction, the VMCS is “inactive”. Finally, if

the VMXOFF instruction is executed, all VMCSs in memory are deemed invalid, as

processor exits VMX operation. The VMCS data is categorized into six different

groups, which are listed in the Table 3.

1The complete list of VMCS field encodings used to access/modify VMCS data is listed in ap-
pendix H of Intel(R) 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.
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Table 3: VMCS Components

Component Description

Guest-state Area The guest-state area consists of the processor’s
state while running the guest OS. The processor’s state is saved
in this area during a VM Exit and loaded during a VM Entry.

Host-state Area The processor’s state is loaded from this area
after a VM Exit. It defines the processor’s state during

the execution of VMM.

VM-exit control fields These fields control VM Exits.

VM-entry control fields These fields control VM Entries.

VM-exit information fields These fields contain information about
the event which caused a VM Exit.

Only a careful and proper setting of VMCS data fields will enable one to launch

the virtual machine. The execution of the VMLAUNCH instruction with a wrong

setting of VMCS data fields will result in error information being recorded in the exit

reason field of VMCS.2

2The complete set of exit reasons is listed in appendix I of Intel(R) 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B.
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CHAPTER VI

IMPLEMENTATION

The implementation consists of two parts. The first part consists of the simulation of

a proof-of-concept HVM rootkit on Linux OS using Intel-VT technology. The second

part consists of the integration of SHARK architecture into the Linux OS to prevent

the rootkit attack.

6.1 SHARK–An Autonomic Architecture

SHARK architecture, shown in Figure 16 (source [28]), was proposed by Vasisht et

al. in the International Symposium of Microarchitecture, 2008. SHARK can prevent

rootkit exploits by autonomically detecting the existence of stealth malware by direct

feedback from hardware. SHARK consists of a secure component called SHARK

Security Manager (SSM) which is built into the hardware, page tables of a process

(when created) are encrypted (using AES-128) with the help of the SSM using a

secret key and a hardware generated Process ID (HPID). Specifically, the Valid-bit

array of the first level page table (i.e., PDE) and the Valid-bit array and the page

table entries of the last level page table (i.e., PTE) are encrypted. More details about

page table encryption/decryption can be found in [28]. For a process to execute its

code correctly, the OS has to reveal the HPID of the process to the SSM for correct

decryption of valid-bit array and page table entries. With all the hardware generated

PIDs logged, one can compare this list with the PID list generated using utilities like

“ps” and “top”. A system administrator can determine that there is a security breach

in his system if there is any mismatch in the number of PIDs in the lists.
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Figure 16: SHARK Architecture

6.2 Proof-Of-Concept HVM Rootkit

This section describes the Linux based Blue Pill-like rootkit design. The rootkit was

implemented as a Loadable Kernel Module (LKM). From now on we use the term

“Rootkit VT-x” for our Linux based rootkit.

Rootkit VT-x consists of two parts: (1) Initializer ; (2) VMM (a thin Virtual

Machine Monitor). The responsibility of Rootkit VT-x Initializer is to set up the

Virtual Machine Control Structure (VMCS) appropriately. Since Blue Pill uses a

thin VMM and does not virtualize I/O, we limit the capability of Rootkit VT-x

VMM to intercepting and emulating certain sensitive guest OS instructions. The

VMM is implemented as a small global function “vm exit handler()” along with the

Initializer in the LKM.

The functionalities of Initializer and VMM are explained next:

6.2.1 Initializer

The job of the Initializer is to initiliaze the VMCS and set up private page tables

for the VMM code to run on a VM exit event. The following are the steps taken by

the Initializer to set up an environment to launch a virtual machine after the LKM

is inserted into the kernel:
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1. Enable Virtual Machine Extensions (VMX) by setting VMXE bit in CR4 reg-

ister to 1.

2. Allocate non-pageable memory of size specified by IA32 VMX BASIC MSR to

VMXON region.

3. Execute the VMXON instruction with the physical address of VMXON region

as the operand.

4. Allocate non-pageable memory of size specified by IA32 VMX BASIC MSR to

VMCS region.

5. Set up the VMX and VMCS revision identifiers as specified by IA32 VMX BASIC

MSR.

6. Execute the VMCLEAR instruction with the physical address of VMCS region

as the operand to reset the state of VMCS to “clear”.

7. Execute the VMPTRLD instruction with the physical address of VMCS region

as the operand.

8. Set up Private Page Tables for the VMM.

9. Set the Guest-state fields, Host-state fields, VM-execution control fields, VM-

entry control fields, and VM-exit control fields in the VMCS data structure by

appropriately using the VMWRITE instruction.

10. Clear the VMX abort error code in the VMCS region.

11. Allocate stack space to the VMM.

12. Execute the VMLAUNCH instruction to launch the virtual machine.

Private Page Table Setup: The Initialzer of Rootkit VT-x allocates memory pages

by itself in the kernel space using the Linux API kmalloc() for use as private page
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Table 4: Instructions intercepted by Rootkit VT-x VMM
Instruction VCMS setting for interception

INVD Unconditional

RDMSR “Use MSR bitmaps” bit is set to 0 in VM-execution control field

WRMSR “Use MSR bitmaps” bit is set to 0 in VM-execution control field

CPUID Unconditional

MOV from CR3 “CR3-store exiting” bit is set in VM-execution control field

MOV to CR3 “CR3-load exiting” bit is set in VM-execution control field
or “CR3-target count” is 0

HLT “HLT exiting” bit is set in VM-execution control field

tables. It then copies the content from the page table entries relevant to the VMM

from the guest OS allocated page tables into the newly allocated page tables. It then

patches the original entries in the guest OS page tables.

6.2.2 VMM

The VMM (i.e., VMX root) intercepts certain sensitive guest instructions and emu-

lates them after a VM exit event. These instructions are tabulated in Table 4 with

the respective VMCS setting required for interception by the VMM. After each VM

exit event, the corresponding error code will be recorded in the VMCS data struc-

ture. The VMM can read the VM-exit information field of the VMCS using VMREAD

instruction to find the cause of the VM exit. After emulation of the exiting instruc-

tion, the VMM executes the VMRESUME instruction to start the guest OS (i.e., VM)

again.1 VM execution starts from the instruction succeeding the one causing the VM

exit event. Instructions like INVEPT, INVVPID, VMCALL, VMCLEAR, VMLAUNCH,

VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, and VMXON

cause unconditional VM exit when executed by the guest OS. They were made to fail

silently in the VMM. The VMM was designed to use private page tables. This was

achieved by storing the pointer to the first level page table into the HOST CR3 field

1Note that the Rootkit VT-x VMM is very thin and is not a full fledged virtual machine monitor
and should be considered as a proof of concept. All the exceptions and I/O are handled by the guest
OS and do not cause a VM exit event.
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in the VMCS data structure. Whenever there is a VM exit to the VMM, the CR3 of

the processor is automatically loaded with the HOST CR3 value and thus the VMM

gets to execute its code. Note that the HOST CR3 field will not contain a pointer to

the VMM page tables set up by the guest OS when the LKM was loaded, but instead

contains a pointer to the private page tables set up by the Initializer. The size of the

VMM was around two pages (i.e., 8 KB). Hence, it occupied two entries in the last

level page table.

The algorithm shown in Figure 19 depicts a high level view of a framework that

can be used to exploit Intel-VT instructions and establish a thin layer of control

software beneath the operating system.

6.3 Defeating Blue Pill-like attack with SHARK

We were able to successfully emulate a Blue Pill attack on Ubuntu 6.10 running

on BOCHS x86 PC emulator. We later integrated our SHARK infrastructure into

BOCHS and recompiled the Ubuntu’s kernel 2.6.17.10 to support SHARK Security

Manager. The Rootkit VT-x failed to execute its VMM code as SHARK Security

Manager did not authenticate its execution. The reason for failure is explained below.

When the LKM gets loaded into SHARK infrastructure, the Initializer executes

the steps described in Section 6.2.1 and sets up private page tables for the VMM as

illustrated in Figure 17. Note that the entries belonging to VMM which are being

copied have been originally encrypted by the SHARK Security Manager.

After the launch of the virtual machine by the Initializer, the guest OS may try

to schedule a process or start a new process, the former loading its HPID into the

HPID register and the latter using the GENPID instruction supported by SHARK to

register itself with the SHARK Security Manager.2 After the guest OS’s process has

been registered with the SHARK Security Manager, the guest OS will try to load

2GENPID instruction encrypts the initial Valid-bit array and PTE and returns a hardware gen-
erated PID.

36



�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�����������
�����������
�����������
�����������

������������
������������
������������
������������

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

Pages

Hypervisor

Code

Pages

Hypervisor

Code

EV      PDE  PMD  Encrypted PTEEV

INITIALIZER ALLOCATED PAGE TABLES

Hypervisor Linear Address

1st Level Page Table     Middle Level Page Table Last Level Page Table

PMD  Offset PTE Offset Page  OffsetPDE Offset

ORIGINAL PAGE TABLE POINTERS POINTERS CHANGED TO POINT TO NEWLY ALLOCATED TABLES

PATCHED PTEs AFTER COPY
ORIGINAL ENCRYPTED PTEs WHICH HAVE BEEN COPIED 

EV      PDE  PMD  Encrypted PTEEV

Hypervisor Linear Address

1st Level Page Table     Middle Level Page Table Last Level Page Table

GUEST OS  ALLOCATED PAGE TABLES

PDE Offset PMD  Offset PTE Offset Page  Offset

LEGEND :

COPYING OF ALL PAGE TABLE ENTIES INTO NEWLY ALLOCATED PAGE TABLES

Figure 17: Private Page Table Setup

the CR3 register with the pointer to the page tables belonging to the corresponding

process. At this stage, the VMM intercepts and tries to execute its code in order

to emulate the intercepted instruction (i.e., MOV to CR3). On a VM exit, the

CR3 register of the processor is loaded with the HOST CR3 field of the VMCS data

structure. Since, the TLB is flushed on a VM exit, the processor needs to do a page

walk in hardware to find out the correct physical address mapping of the VMM. At

this point, the HPID register in SHARK Security Manager contains the HPID of the

process which was intercepted. Since the VMM’s context does not contain a PID, it

fails to reveal its identity to the SHARK Security Manager, although its page table

entries are encrypted initally during its creation. This results in a wrong decryption
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of the Valid-bit array in the first-level page table, as illustrated in Figure 18, leading

to a page fault and finally a system crash.

Since the code size of Blue Pill is around sixteen pages [25], it will need just one

entry in the first-level page table (i.e., PDE). There is a great chance that the incorrect

decryption of the Valid-bit array will still result in correct valid bit corresponding to

the PDE and the page walk can reach the last-level page table. The attack will still

fail as it cannot go through two levels of authentication (i.e., decryption of Valid-bit

array and PTEs) at the last level page table.
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Figure 18: Failure of Blue Pill-like attack

The failure of a Blue Pill-like attack on SHARK demonstrates the strength of

SHARK in combating Virtual Machine rookit exploits. Hence, even though a rootkit

might use different strategies to hide its VMM memory pages, its VMM code can only

be executed by registering its identity with the SHARK Security Manager. The same

applies to the rootkit Subvirt. It can only execute its software context by registering

itself with the SHARK Security Manager.
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Figure 19: Virtual Machine On-the-fly launch using Intel-VT
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CHAPTER VII

CONCLUSION

Virtualization is increasingly making inroads into daily server operations. The vir-

tual environment offers many security benefits through isolation, but virtualization

also introduces new vectors for malware. Virtual Machine based rootkits are highly

detrimental in nature as they operate in a control layer below the operating system,

with highest privileges. Protecting the OS against such attacks is a critical issue and

calls for an effective solution.

A proof-of-concept HVM rootkit was implemented using Intel-VT technology and

successfully installed on Linux OS running on top of BOCHS emulator. The rootkit

was given the capability to intercept sensitive guest instructions and emulate them at

the Virtual Machine Monitor layer. Later the same rootkit was installed on SHARK

infrastructure to test SHARK’s effectiveness. SHARK succeeded in preventing sub-

version as it did not authenticate the execution of the rootkit’s stealth hypervisor

context as the hypervisor could not reveal its identity to the security manager.

In conclusion, a SHARK like architecture can protect the system from attacks by

rootkits which exploit hardware virtual machine technology to stealthily control the

operating system.
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APPENDIX A

ROOTKIT VT-X CODE SNIPPETS

A.1 Allocating VMXON and VMCS Memory Regions

// MSR IA32 VMX BASIC de t e rm ines t he s i z e o f VMCS and VMXON re g i on

pVMCSRegion =( int *) kmalloc (4096 , GFP KERNEL| GFP COLD ) ; //VMCS re g i on s i z e = 4KB

memset ( pVMCSRegion , 0 , 4096 ) ; // Clear t he r eg i on

PhysicalVMCSRegionPtr = pa ( pVMCSRegion ) ; // Obtain t he p h y s i c a l addre s s

pVMXONRegion =( int *) kmalloc (4096 ,GFP KERNEL| GFP COLD ) ; //VMXON re g i on s i z e = 4KB

memset (pVMXONRegion, 0 , 4096 ) ; // Clear t he r e g i o n

PhysicalVMXONRegionPtr = pa ( pVMXONRegion ) ; // Obtain t he p h y s i c a l addre s s

A.2 VMX Instruction Usage

//VMXON

asm vo lat i l e ( ” push $0x0 \n ) ;

asm v o l a t i l e ( ” push PhysicalVMXONRegionPtr \n” ) ;

asm v o l a t i l e ( ” vmxon %esp \n” ) ; //Operand should be 64 b i t phys i c a l address

asm v o l a t i l e ( ” pushf \n” ) ;

asm v o l a t i l e ( ” pop eFlags \n” ) ;

i f ( eFlags .CF )

{

pr in tk (KERN INFO ”ERROR : VMXON operat i on f a i l e d \n” ) ;

r e tu rn ;

}

//VMCLEAR

asm vo l a t i l e ( ” push $0x0 \n” ) ;

asm v o l a t i l e ( ” push PhysicalVMCSRegionPtr \n” ) ;

asm v o l a t i l e ( ” vmclear %esp \n” ) ; //Operand should be 64 b i t phys i c a l address

asm v o l a t i l e ( ” pushf \n” ) ;

asm v o l a t i l e ( ” pop eFlags \n” ) ;

i f ( eFlags .CF | | eFlags .ZF )

{

pr in tk (KERN INFO ”ERROR : VMCLEAR operat i on f a i l e d \n” ) ;

r e tu rn ;

}

//VMPTRLD
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asm v o l a t i l e ( ” push $0x0 \n” ) ;

asm v o l a t i l e ( ” push PhysicalVMCSRegionPtr \n” ) ;

asm v o l a t i l e ( ” vmclear %esp \n” ) ; //Operand should be 64 b i t phys i c a l address

asm v o l a t i l e ( ” pushf \n” ) ;

asm v o l a t i l e ( ” pop eFlags \n” ) ;

i f ( eFlags .CF | | eFlags .ZF )

{

pr in tk (KERN INFO ”ERROR : VMPTRLD operat i on f a i l e d \n” ) ;

r e tu rn ;

}

A.3 Private Page Table Setup

// Code shown f o r two l e v e l page t a b l e h i e r a r c h y

// A l l o c a t e Memory f o r Page Tab le ( Leaf Node )

pT v i r t ua l addre s s = kmalloc (4096 , GFP KERNEL| GFP COLD ) ;

pT phys i ca l addre s s = pa ( pT v i r tua l addr e s s ) ;

// A l l o c a t e Memory f o r Page Di r e c t o ry (Home Node )

pD vi r tua l addre s s = kmalloc (4096 , GFP KERNEL| GFP COLD ) ;

pD phys i ca l addre s s = pa ( pD v i r tua l addre s s ) ;

h y pe r v i s o r v i r t u a l a dd r e s s = hype r v i s o r e x i t h and l i n g ;

k pgd = pgd o f f s e t ( current−>mm, ( unsigned long ) h yp e r v i s o r v i r t u a l add r e s s ) ;

k pmd = pmd offset ( k pgd , ( unsigned long ) h y p e r v i s o r v i r t u a l a dd r e s s ) ;

// update PTEs

for ( i =0; i <1024; i++)

{

add r e s s i n pu t f o r p t e = ( i << 12 ) ;

k pte = p t e o f f s e t k e r n e l (k pmd , (unsigned long ) add r e s s i n pu t f o r p t e ) ;

h ype r v i s o r phy s i c a l a dd r e s s = ( int ) p te va l (* k pte ) ;

( ( int *) pT v i r tua l addr e s s ) [ i ] = ( ( int ) hyp e r v i s o r phy s i c a l add re s s ) ;

}

// update PGDs

for ( i =0; i <1024; i++)

{

addr e s s i n put f o r pgd = ( i << 22) ;

k pgd = pgd o f f s e t ( current−>mm, ( unsigned long ) add re s s i npu t f o r pgd ) ;

( ( int *) pD v i r tua l addre s s ) [ i ] = ( int ) pgd val (* k pgd ) ;

}

// change t he PGD en t ry cor r e spond ing t o Actua l Hyperv i so r Address

pD of f s e t = ( ( ( int ) h yp e r v i s o r v i r t u a l a ddr e s s ) >> 22) & 0x3FF ;

( ( int *) pD v i r tua l addre s s ) [ pD o f f s e t ] = ( ( int ) pT phys i ca l addre s s & 0 x f f f f f 0 0 0 ) | 0x067 ;

CR3 value = ( int ) pD phys i ca l addre s s ; // VMM CR3 ( Pr i v a t e CR3)

HOST EIP Value = hype r v i s o r v i r t u a l a dd r e s s ; // VMM I n s t r u c t i o n Po in t e r
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A.4 VMCS Setup Framework

void WriteVMCS( void )

{

asm vo lat i l e ( ” mov encoding ,%eax \n” ) ;

asm vo lat i l e ( ” vmwrite %ecx ,%eax \n” ) ;

return ;

}

void ReadMSR( void )

{

asm vo lat i l e ( ” mov msrEncoding , %ecx \n” ) ;

asm vo lat i l e ( ” rdmsr \n” ) ;

asm vo lat i l e ( ” mov %edx , msr h i \n” ) ;

asm vo lat i l e ( ” mov %eax , msr lo \n” ) ;

msr . Hi = msr h i ;

msr . Lo = msr lo ;

}

//16−Bi t Guest−S ta t e F i e l d s

// Guest ES s e l e c t o r = 00000800H (VMCS Encoding )

asm vo lat i l e ( ” mov %es , s e g s e l e c t o r \n” ) ;

asm vo lat i l e ( ” pusha \n” ) ;

encoding = 0x00000800 ;

value = s e g s e l e c t o r ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

// Guest CS s e l e c t o r = 00000802H (VMCS Encoding )

asm vo lat i l e ( ” mov %cs , s e g s e l e c t o r \n” ) ;

asm vo lat i l e ( ” pusha \n” ) ;

encoding = 0x00000802 ;

value = s e g s e l e c t o r ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

.

. //More F i e l d s

.

//16−Bi t Host−S t a t e F i e l d s

// Host CS s e l e c t o r = 00000C02H (VMCS Encoding )

asm vo lat i l e ( ”mov %cs , s e g s e l e c t o r \n” ) ;

s e g s e l e c t o r &= 0xF8 ;

encoding = 0x00000C02 ;

value = s e g s e l e c t o r ;

asm vo lat i l e ( ”pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

// Host SS s e l e c t o r = 00000C04H (VMCS Encoding )

asm vo lat i l e ( ”mov %ss , s e g s e l e c t o r \n” ) ;

s e g s e l e c t o r &= 0xF8 ;
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encoding = 0x00000C04 ;

value = s e g s e l e c t o r ;

asm vo lat i l e ( ”pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

.

. //More F i e l d s

.

//32−Bi t Guest−S ta t e F i e l d s

// Guest CS l i m i t = 00004802H (VMCS Encoding )

asm vo lat i l e ( ”mov %cs , s e g s e l e c t o r \n” ) ;

temp32 = 0 ;

temp32 = GetSegmentDescriptorLimit ( ) ;

temp32 = ( temp32 << 12) + 0 x f f f ;

value = temp32 ;

encoding = 0x00004802 ;

asm vo lat i l e ( ” pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ”popa \n” ) ;

// Guest GDTR l i m i t = 00004810H (VMCS Encoding )

value = gdt reg . Limit ;

encoding = 0x00004810 ;

asm vo lat i l e ( ” pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

.

. //More F i e l d s

.

//CS Segment Access Righ t s = 00004816H (VMCS Encoding )

asm vo lat i l e ( ” mov %cs , s e g s e l e c t o r \n” ) ;

temp32 = s e g s e l e c t o r ;

temp32 >>= 3 ;

temp32 *= 8 ;

temp32 += ( gdt base + 5 ) ;

asm vo lat i l e ( ” pusha \n” ) ;

asm vo lat i l e ( ” mov temp32 , %eax \n” ) ;

asm vo lat i l e ( ” mov (%eax ) ,%ebx \n” ) ;

asm vo lat i l e ( ” mov %ebx , temp32 \n” ) ;

asm vo lat i l e ( ” popa \n” ) ;

temp32 &= 0x0000F0FF ;

value = temp32 ;

encoding = 0x00004816 ;

asm vo lat i l e ( ” pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

//DS Segment Access Righ t s = 0000481AH (VMCS Encoding )

asm vo lat i l e ( ” mov %ds , s e g s e l e c t o r \n” ) ;

temp32 = s e g s e l e c t o r ;

temp32 >>= 3 ;

temp32 *= 8 ;

temp32 += ( gdt base + 5 ) ;
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asm vo lat i l e ( ” pusha \n” ) ;

asm vo lat i l e ( ” mov temp32 , %eax \n” ) ;

asm vo lat i l e ( ” mov (%eax ) ,%ebx \n” ) ;

asm vo lat i l e ( ” mov %ebx , temp32 \n” ) ;

asm vo lat i l e ( ” popa \n” ) ;

temp32 &= 0x0000F0FF ;

value = temp32 ;

encoding = 0x0000481A ;

asm vo lat i l e ( ” pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

.

. //More F i e l d s

.

//32−Bi t Host−S t a t e F i e l d s

// Host IA32 SYSENTER CS = 00004C00H (VMCS Encoding )

msrEncoding = 0x174 ;

asm vo lat i l e ( ”pusha \n” ) ;

ReadMSR( ) ;

asm vo lat i l e ( ”popa \n” ) ;

value = ( u32 t )msr . Lo ;

encoding = 0x00004C00 ;

asm vo lat i l e ( ” pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

.

. //More F i e l d s

.

//64−Bi t Guest−S ta t e F i e l d s

//VMCS Link Po in t e r ( f u l l ) = 00002800H (VMCS Encoding )

temp32 = 0xFFFFFFFF ;

value = temp32 ;

encoding = 0x00002800 ;

asm vo lat i l e ( ” pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

//VMCS l i n k p o i n t e r ( h i gh ) = 00002801H (VMCS Encoding )

temp32 = 0xFFFFFFFF ;

value = temp32 ;

encoding = 0x00002801 ;

asm vo lat i l e ( ” pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

.

. //More F i e l d s

.

//32−Bi t Con t ro l F i e l d s
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//Pin−based VM−e xe c u t i o n c o n t r o l s = 00004000H (VMCS Encoding )

//IA32 VMX PINBASED CTLS MSR ( index 481H)

msrEncoding = 0x481 ;

asm vo lat i l e ( ” pusha \n” ) ;

ReadMSR( ) ;

asm vo lat i l e ( ” popa \n” ) ;

temp32 = 0 ;

temp32 |= msr . Lo ;

temp32 &= msr . Hi ;

value = temp32 ;

encoding = 0x00004000 ;

asm vo lat i l e ( ” pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

//Primary proce s so r−based VM−e x e c u t i on c o n t r o l s = 00004002H (VMCS Encoding )

//IA32 VMX PROCBASED CTLS MSR ( index 482H)

msrEncoding = 0x482 ;

asm vo lat i l e ( ” pusha \n” ) ;

ReadMSR( ) ;

asm vo lat i l e ( ” popa \n” ) ;

temp32 = 0 ;

temp32 |= msr . Lo ;

temp32 &= msr . Hi ;

value = temp32 ;

encoding = 0x00004002 ;

asm vo lat i l e ( ” pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

.

. //More F i e l d s

.

//64−Bi t Con t ro l F i e l d s

// Every t h ing i n i t i a l i z e d t o ze ro

// Natura l−Width Guest−S t a t e F i e l d s

// Guest CR4 = 00006804H (VMCS Encoding )

asm vo lat i l e ( ” push %eax \n” ) ;

asm vo lat i l e ( ” mov cr4 ,%eax \n” ) ;

asm vo lat i l e ( ” mov %eax , temp32 \n” ) ;

asm vo lat i l e ( ” pop %eax \n” ) ;

temp32 = temp32 | ( 1 << 13 ) ;

value = temp32 ;

encoding = 0x06804 ;

asm vo lat i l e ( ” pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

// Guest ES base = 00006806H (VMCS Encoding )

asm vo lat i l e ( ” mov %es , s e g s e l e c t o r \n” ) ;

temp32 = 0 ;

temp32 = GetSegmentDescriptorBase ( ) ;

value = temp32 ;
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encoding = 0x06806 ;

asm vo lat i l e ( ” pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

.

. //More F i e l d s

.

// Natura l−Width Host−S ta t e F i e l d s

// Host CR0 = 00006C00H (VMCS Encoding )

asm vo lat i l e ( ” push %eax \n” ) ;

asm vo lat i l e ( ” mov %cr0 ,%eax \n” ) ;

asm vo lat i l e ( ” mov %eax , temp32 \n” ) ;

asm vo lat i l e ( ” pop %eax \n” ) ;

temp32 = temp32 | ( 1 << 5 ) ; // Set NE Bi t

value = temp32 ;

encoding = 0x06C00 ;

asm vo lat i l e ( ” pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

// Host CR3 = 00006C02H (VMCS Encoding )

#i f d e f PRIVATE PAGE TABLES

value = CR3 value ;

encoding = 0x06C02 ;

asm vo lat i l e ( ” pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

#else

asm vo lat i l e ( ” push %eax \n” ) ;

asm vo lat i l e ( ” mov cr3 ,%eax \n” ) ;

asm vo lat i l e ( ” mov %eax , temp32 \n” ) ;

asm vo lat i l e ( ” pop %eax \n” ) ;

value = temp32 ;

encoding = 0x06C02 ;

asm vo lat i l e ( ” pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

.

. // More F i e l d s

// Host FS base = 00006C06H (VMCS Encoding )

asm vo lat i l e ( ” mov %f s , s e g s e l e c t o r \n” ) ;

temp32 = 0 ;

temp32 = GetSegmentDescriptorBase ( ) ;

value = temp32 ;

encoding = 0x06C06 ;

asm vo lat i l e ( ” pusha \n” ) ;

WriteVMCS ( ) ;

asm vo lat i l e ( ” popa \n” ) ;

.

. // More F i e l d s

.

// Also se tup GuestEIP , Gues tS t ackPo in te r , Hos tS t ackPo in t e r , and HostEIP f i e l d s
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APPENDIX B

SCREENSHOTS

B.1 Sensitive Instruction Interception Example

Figure 20: MOV to CR3 interception by Rootkit VT-x VMM
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