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Abstract

Power consumption has been a major concern in designing
microprocessors for portable systems such as notebook com-
puters, hand-held computing and personal telecommunica-
tion devices. As these devices increase in popularity and are
used in a wider range of applications, a low power design be-
comes more critical. In this paper, we propose a new microar-
chitectural data cache design called region-based caching that
can reduce power consumption. Power savings is achieved
by re-organizing the the first level cache to more efficiently
exploit memory reference characteristics produced by pro-
gramming language semantics. These characteristics enable
the cache to be partitioned by memory region (stack, global,
heap), reducing power consumption, while retaining compa-
rable performance to a conventional cache design. Applica-
tions from the MediaBench benchmark suite indicate that a
design with two additional small region-based caches results
in 66% reduction in average in energy-delay product.

1. INTRODUCTION

As process technology continues to make progress follow-
ing Moore’s Law, manufacturing cost per transistor is de-
creasing dramatically. This enables more sophisticated mi-
croarchitectural features to be integrated into future gener-
ation high performance processors to improve performance.
power density (measured in capacitance per unit die area) is
therefore increasing, making it necessary to supply large am-
perage and making it more difficult to dissipate waste heat
from the chip [27]. Reducing power requirements has not
been the highest priority goal in developing microprocessors
targeted at desktop or high-end server market. However, as
notebook computers, hand-held computing, mobile and per-
sonal telecommunication devices are getting more popular,
power is no longer a secondary goal in the process of mi-
croprocessor design. Furthermore, as embedded processors
gain overall market share, processor designers are targeting
more resources to meet high performance requirements while
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simultaneously reducing power consumption. Researchers
from different disciplines including devices, circuits, logic,
architectures and even operating systems and compilers, are
investigating new low-power technologies.

Power dissipation in the memory subsystem constitutes
a major portion of the overall power dissipation in these
embedded processors [3][13][20][26]. Advances in instruction
compression algorithms [25] or compressed instruction coding
such as Thumb instruction set extensions [31] in the ARM
architecture have reduced the average power consumption
per instruction in the instruction cache, but these techniques
cannot reduce the power requirements in the data cache(s).

Several techniques have been proposed to reduce power
consumption in data caches [14][22][32][33]. Generally, these
techniques achieve power reduction by partitioning the data
cache into smaller, low-power components. This partitioning
can reduce the power required to perform a data access, but
the same partitioning often increases average access latency,
leading to longer execution time.

Most high-performance processors already employ a split
first-level cache structure to partition code and data into
distinct caches. In this research, we proposed a further par-
titioning of the data cache into stack, global and heap re-
gions. Region-based caching can effectively reduce power by
re-directing the stack and global data accesses into smaller
separate cache structures. Region-based caching can also
achieve this power reduction without increasing average mem-
ory latency and execution time. This is due to the high
temporal and spatial locality exhibited by stack and global
data references; smaller cache structures can reduce power
dissipation per access while retaining high cache hit rates for
stack and global references since their working sets are small.
In this paper, we examine several region-based cache designs
and quantify their performance and power efficiency. With
a 2KB stack cache and a 2KB global cache, our design re-
sults in a 66% reduction in energy-delay product for the data
cache compared with a conventional cache design.

This paper is organized as follows: Section 2 characterizes
reference behavior for each individual memory region. Sec-
tion 3 describes the region-based caching mechanism. Sec-
tion 4 describes our simulation infrastructure, power model
and evaluation metric used in the data analysis. Section 5
describes the MediaBench applications used to evaluate our
cache design. Results are presented in Section 6. Section 7
reviews related work. We conclude our work in Section 8.
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2. MEMORY REFERENCE REGIONS

2.1 Memory Reference Distribution

Defined by programming language semantics, run-time mem-
ory accesses can be categorized by the region of memory
they access and the index method used [1]. Figure 1 shows
the virtual memory partitioning used by the MIPS Architec-
ture [21]. A system-defined amount of space is allocated to
the stack, which grows from high memory addresses down as
automatic variables are created (e.g. stack activation records
are allocated during function calls). The top of stack dynam-
ically maintains the size of the stack, which forms a bound on
address references to the stack. The bottom address range,
allocated during compilation, includes read-only data (e.g.
literal pool), the instruction code region and the global data
region. Memory is dynamically allocated at run-time by the
program from the heap, which grows upwards from the mid-
dle address range.

The majority of data memory references fall into the stack,
global data and heap regions. To understand the memory
reference behavior by regions, the distributions of run-time
data memory accesses are profiled using the MediaBench ap-
plications [23] compiled with the GCC compiler in PISA for-
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Figure 3: Average Life Span of Cache Lines by Regions

mat'. The data shown in Figure 2 are normalized to the total
number of memory instructions. Unlike the SPEC CPU2000
benchmark [24] that shows 56% of instructions access mem-
ory, the MediaBench benchmarks contain an average of 24%
of instructions accessing memory. Stack references average
40% of all memory references, while global data references
and heap references average about 30% each of the total
memory references. The remaining data references (less than
1%) access read-only data memory (e.g. string literals), iden-
tified as rdata in the figure. Djpeg, mpeg2encode, epic and
unepic skew these averages with an extraordinarily large por-
tion of heap accesses.

2.2 Locality of Data Cache Regions

To understand the access locality of a cache line brought
into the L1 cache, we calculated the number of cache line
hits prior to a line eviction. We refer to the total number
of access hits prior to cache line eviction as the life span of
a cache line. Figure 3 illustrates the average life span of a
cache line in each data region. In this experiment, all the
data regions compete in a single L1 data cache. Simulations
were performed for cache sizes from 256B to 64KB with fully
associative cache (represented by FA with dashed lines) and
direct-mapped (represented by DM with solid lines) cache.
The y-axis plots the cache line life span on a log scale. For
most cache configurations and applications, the stack cache
lines show the greatest life span, the heap cache lines has the
shortest lifespan, and the global cache lines fall between. For
example, for a fully associative 4KB L1 cache, stack cache
lines has an average life span of 166 — i.e., each line was
re-accessed an average of 165 times prior to eviction. In
contrast, heap cache lines show an average life span of only
9.5.

Figure 4 shows the miss ratios for a spectrum of cache
sizes, again, from 256B to 64KB when a dedicated cache
is allocated for each individual memory region. These data
show that the stack data consistently demonstrate the best
cache locality for a given cache size. Furthermore, the hit
rate approaches 99% for a very small (2KB) stack-cache.
The heap data show the worst locality with a hit rate in-
creasing linearly as the cache size doubles, reaching 95% at
a 64KB heap-cache. As expected, the hit rate of global ref-

!See Section 4 and Section 5 for a more detailed description
of the simulation models and benchmark specifications.
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Figure 4: Average Miss Rates for Segregated Caches

erences falls between the stack and heap approaching a 99%
hit rate at a relatively small (4KB) global-cache configura-
tion. These experiments show that by partitioning the cache
structure into three components — a small stack-cache, a
small global-cache and a larger cache for heap and others —
a majority of memory references access small cache struc-
tures (40% stack-cache, 30% global-cache) while retaining a
high hit rate; since the caches are small, they consume less
power; since the hit rates are high, they provide good per-
formance with low access latency.

3. REGION-BASED CACHING

Recent energy reduction techniques proposed in architec-
tural level cache designs can be classified into two primary
schemes, vertical partitioning and horizontal partitioning.
The basic idea of these partitioning techniques is to reduce
power dissipation by referencing a smaller storage structure.
For the vertical partitioning, i.e. employing a multi-level
cache hierarchy, an extra level of caching is added nearest to
the processor (e.g., a line buffer [14][32] or a filter cache [22]).
These extended structures capture short-term locality and
consume much less power when the requested data are found
in the small buffer or cache. However, according to the prior
studies, the hit rate for these small structure is relatively low
and each miss requires an L1 access after this miss is deter-
mined; this increases the effective latency of an L1 access
since the L1 access request is delayed.

An alternative to vertical partitioning is to perform a hor-
izontal cache partitioning. Horizontal partitioning involves
slicing each cache line into smaller segments (e.g., cache sub-
banking [14][33]). The processor accesses (and powers) only
the line segment that is referenced (requiring additional early
address decode circuitry), saving power by not driving data
paths in the cache that are not referenced. This approach is
orthogonal to vertical partitioning.

Region-based Caching, is another horizontal partitioning
design method that can reduce power dissipation of data
caches more effectively by exploiting the nature of memory
allocation conventions. As discussed earlier, the basic idea of
this approach is to partition data references based on seman-
tically defined memory regions into distinct caches. Data ex-
hibiting high degree of utilization and locality, e.g. stack data
or global data as discussed in Section 2, can be filtered out
from the regular cache. Figure 5 sketches one implementation
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Figure 5: Region-Based Caching

of a region-based caching design in block diagram. In this ex-
ample, two horizontally partitioned region-based caches are
added to the regular L1 cache — one for stack data and one
for global data. All heap and other memory references are
sent to the L1 cache as normal. All cache miss fill requests
and evictions are directed to the next-level caches or DRAM
memory. The region cache is activated (drawing power) only
when a memory reference is made to its respective memory
region. Note that the stack and global region caches, based
on the requirements of target applications in the embedded
processor, can be built much smaller than the L1 cache.

The region-based cache design provides several benefits.
First, line conflicts are eliminated between regions since dif-
ferent regions are routed to different structures. This makes
it more feasible to implement each cache with lower asso-
ciativity; particularly the stack-cache since the active region
of the stack is generally a single contiguous section at the
top of stack. A direct mapped stack-cache generally has no
more conflict misses than a fully associative stack cache [24].
Lower associativity can reduce the cache design complexity
and lead to a faster cache access logic. Second, building
smaller separate caches provides more flexibility in increas-
ing overall data storage than enlarging a single cache. For
instance, to enlarge a 32KB direct-mapped cache, one needs
to either double the cache size to 64KB or opt for a possibly
higher latency multi-way cache, e.g. a 5-way 40KB cache.
Finally, as mentioned earlier, a smaller cache dissipates less
power when accessed. Since about 70% of the references hit
in the stack and global data region, the overall data cache
power consumption can be significantly reduced when the
sizes of those caches are made small (but large enough to
retain a high hit rate). We will quantify the performance
impact in our analysis in Section 6.

4. SIMULATION MODEL

4.1 Machine Models and Simulators

The infrastructure of our experiments is based on Wattch
toolset [7] developed at Princeton University. Wattch, an ex-
tension of the Simplescalar tool suite [8], generates both per-
formance data and power estimation using execution-driven
simulation. We use Wattch to evaluate relative performance
and power dissipation for different processor design config-
urations by integrating the region-based caching mechanism



into Wattch. The power modeling of this study is described
in Section 4.2.

Our baseline machine model resembles the Intel Stron-
gARM SA-110 microprocessor [26]. The Intel StrongARM
SA series have been widely adopted in set-top boxes, Inter-
net terminals and PDA devices such as the Compaq iPAQ
Pocket PC [11]. The microarchitecture of our baseline ma-
chine model is a single-issue in-order processor with a conven-
tional five-stage pipeline. The processor contains a unified
32KB on-chip level-one cache. The size and associativity of
the L1 cache and its corresponding access latency were var-
ied according to the access timing information gathered from
CACTI 2.0 [29]. In order to perform a fair comparison in
both performance and power dissipation, a four-way 512KB
level-2 cache is incorporated as a common backup storage
for both the baseline machine and the region-based caching
machine®. The caches are blocking caches that will stall in-
struction execution followed by cache misses. The line size
of each cache is 32 bytes. All the caches are single-ported.

4.2 Power Models

Total power consumption of CMOS circuits primarily con-
sists of the following three components: static leakage dissi-
pation, dynamic short-circuit dissipation and dynamic switch-
ing dissipation [9] as summarized in the equations below.

P :F’leakage + P + Pswitching

n
P = ZIleak,i * Vg + Lsc * Vag + aos1CLVigfour

i=1

The leakage current is due to the reverse-biased leakage
between the substrate and the diffusions of a CMOS gate.
Short-circuit power dissipation occurs in the brief period
when both n-transistor and p-transistor are simultaneously
active, generating a current pulse from Vy; to Vis. The
switching power is required to change capacitor state —
charging or discharging capacitors when state changes from
logical 0 to 1 or vice versa.

We assume that 0.35um process technology parameters are
used in this study. Under this assumption the leakage cur-
rent power can be ignored [27]. The P,. component is typi-
cally small and there exists design and fabrication technolo-
gies [9] to eliminate the short-circuit current, I,.. The dom-
inant component of the total power dissipation is Pswitching,
i.e., transitions that charge or precharge the load capaci-
tance [18][28]. This is also the major power dissipation com-
ponent that has been focused on in the past for reducing
power of CMOS circuits. In this component, a1 is defined
as the average number of times in each clock cycle a node
with capacitance Cr, will make a transition. fex is the clock
frequency. Power generally can be reduced by reducing the
supply voltage, load capacitance or switching frequency.

The Wattch tool estimates power at the architectural level
by storing the event occurrences of each functional unit dur-
ing simulations. We assume that a simple clock gating [13]
technique is applied to each cache module; therefore, each
cache is activated only when an access is requested — zero
power dissipation otherwise. The device capacitances used

2DRAM memory power is not modeled in the Wattch toolset,
an L2 is simulated as a common backing storage for all ma-
chine models.

in Wattch are similar to those published in [34]. The power
consumption models of each cache consider typical compo-
nents of a cache array structure including tag arrays, address
decoder, wordline drive, bitline drive, and sense amplifiers.
More details are documented in [7].

4.3 Energy-Delay Product Metric

In [15], Gonzales and Horowitz argue that the widely used
metric, energy, measured in Watt/MIPS or Watt/SPEC,
is not an ideal metric for evaluating the efficiency of a ma-
chine design. By simply reducing supply voltage or load ca-
pacitance, energy can be reduced at the expense of increas-
ing circuit delay. For such a design, a lower energy processor
would also have lower performance. Instead of using the en-
ergy metric, they propose to use the energy-delay (ED)
product in Watt/SPEC? as the metric for an energy effi-
cient design. The ED product considers both performance
and energy simultaneously in a design. For an energy ef-
ficient design without compromising performance, a design
should attempt to minimize the ED product. If a processor
trades off performance for energy, then its ED product will
be unlikely to decrease.

For the results presented in Section 6, we show the ED
product of a given machine relative to that of the baseline
machine model as the comparison metric (in addition to per-
formance and power). The following equations describe how
we compare the ED products of two machines. For a target
machine A, a better design will reduce its ED product ratio
with respect to that of a base machine. In other words, the
goal of an energy-delay efficient systen; }glesign should mini-

A

mize the ED Product Ratio, i.e. FDPBuseling”

_ Watt
T MIPS

= W * Delay

ED Product = E * D = W * (Delay)®

EDPy _ Wa* (DelayA)2 _ Wa 1

EDPg ~ Wp * (Delays)>? Wp * (Speedup a)>

DPs Power Reduction%

ED Product Ratio = L

EDPg — (Speedup% )?

5. BENCHMARK

We use the MediaBench benchmark suite [23] in this study.
The programs from MediaBench represent the workloads for
a variety of emerging multimedia and communication appli-
cations. These applications are commonly seen in personal
telecommunication and PDA devices. Table 1 describes the
algorithm for each application. The binaries were compiled
using SimpleScalar GCC compiler that generates code in the
portable ISA (PISA) format. The PISA encoding and ad-
dressing modes are almost identical to the MIPS ISA for-
mat. All the simulations were run to completion except for
mpeg2decode and gs that exit after 600 million instructions
to reduce simulation time.

6. SIMULATION RESULTS AND ANALYSIS

We present our simulation results and analyze them in this
section. First we evaluate one region-based configuration,
comparing that configuration with alternative conventional



Benchmark [ Application

cjpeg Discrete Cosine Transform Image Compression
djpeg Discrete Cosine Transform Image Decompression
mpeg2encode | MPEG2 video encoder
mpeg2decode | MPEG2 video decoder
rawcaudio speech compression using ADPCM standard
rawdaudio speech decompression using ADPCM standard
g72lencode Voice compression using G.721 standard
g721decode Voice decompression using G.721 standard
pgpencode Data encryption and signing using RSA, IDEA and MD5
pgpdecode PGP decoding exercising RSA, IDEA and MD5

pegwitencode

Public key encryption and authentication

pegwitdecode

Public key decryption and authentication

gs Ghostscript

mesa.texgen

Mesa 3D OpenGL library (Textured Teapot)

mesa.osdemo

Mesa 3D OpenGL library (Draw Polygons with Z-buffering)

mesa.mipmap

Mesa 3D OpenGL library (Texture mapping)

rasta

A speech recognition algorithm

epic Data compression using wavelet decomposition and Hoffman coding

unepic

Epic decoding wavelets and Huffman coding

Table 1: MediaBench benchmark
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Figure 6: Speedup of Region-based Caching over Base-
line Machine

cache configurations. Then we more fully explore the design
space for different region-based caches configurations.

6.1 Comparisons with Baseline Design

In this set of experiments, we will compare the power dis-
sipation and performance of region based cache with a 4KB
direct-mapped stack-cache, a 4KB direct-mapped global-cache
and a direct-mapped 32KB conventional L1 cache. Each
cache has a single cycle access latency. This design is com-
pared to three machine designs in these experiments. The
first cache uses a 32KB direct-mapped L1 cache with single
cycle access latency. The second cache has a 4-way 32KB
L1 cache. The third cache expands the cache size to 40KB
by increasing the associativity to five ways. Both multi-way
caches have a two-cycle latency. As mentioned earlier, we
used the timing information gathered from CACTI 2.0 [29]
to determine cache access time for each cache configuration.
Both 4-way and 5-way 32KB caches had access timing ex-
ceeding the 7ns target necessary to achieve single cycle access
on our target architecture (they were 11ns and 12ns respec-
tively). The purpose of using a 40KB cache is to match up
the cache capacity of our region-based caches. As mentioned

Figure 7: Power Reduction of Region-based Caching
over Baseline Machine

in Section 4.1, we add a 512KB level-two cache for all con-
figurations as the backing storage in order to perform a fair
comparison.

Figure 6 shows the performance comparison of our region-
based caching design with regular cache designs. For the Me-
diaBench applications, the region-based caches design per-
forms almost on par or slightly faster than the regular cache
designs. It reduces performance between 4% to 7% in mesa
and rasta when compared to the 4-way and 5-way cache
designs. For the same L1 size, it is simply because stack
and global data increase much locality moving from the 4KB
cache to the 32KB cache. Performance increases relative to
all baseline cache design for cjpeg, djpeg and epic. For the
32KB configurations this can be due to the increased overall
cache size. There is a relative performance improvement of
about 3% for these applications with respect to the 40KB
cache as well. This speed-up primarily comes from reducing
the access time to one cycle and secondarily from reducing
set conflicts between different data regions.

Figure 7 demonstrates the power dissipation of data refer-
ences in the caches. The average relative power dissipation of
the region based cache is significantly reduced to 56%, 45%,
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and 37% of the 32KB DM, 32KB 4-way and 40KB 5-way
designs respectively. The major power reduction occurs for
stack and global references that were re-routed to the smaller
stack and global caches. Power savings are significantly lower
for unepic, epic, mpeg2encode and djpeg. This is due to the
unusually high occurrences of heap accesses shown earlier
in Figure 2.

Combining the results in Figure 6 and Figure 7, the Energy-
Delay Product Ratios of the region-based caching design ver-
sus the baseline machines are plotted in Figure 8. This plot is
normalized to the ED products of the baseline designs; Lower
ED product ratio occurs when the region-based cache is the
better cache design — the lower the ED product, the better
the design. The average ED product ratio of the region-based
cache is 0.54 compared to a 32KB direct mapped baseline
cache, 0.45 compared to a 32KB 4-way baseline cache, and
0.37 compared to the alternate 40KB 5-way cache design.

These experiments indicate that a region-based cache con-
sisting of a 4KB stack cache, a 4KB global cache and a 32KB
L1 cache will achieve the same execution performance as a
40KB, 5-way cache while achieving a much more energy effi-
cient implementation.

6.2 Exploiting Design Space of Region-based
Caching

In this section, a spectrum of region-based caching design
choices is investigated. In all comparisons, we use the 40KB,
5-way cache presented in Section 6.1 as the baseline for com-
parison. We examine seven different region-based cache con-
figurations in Figure 9, varying the sizes of the stack and
global regions. Each cache configuration uses a 32KB, direct-
mapped L1 cache (represented as dm), except for the leftmost
bar which uses a 32KB, 4-way conventional L1 cache (repre-
sented as 4w in the symbol). We use the following naming
conventions in the figure. The SmGn symbols show the size of
region caches: a mKB Stack cache and an nKB Global cache;
when G is absent, there is no global-region cache and global
data are stored in the L1 cache. For example, the rightmost
configuration S2G2-dmL1 consists of a 2KB stack-cache and
a 2KB global-cache and a 32KB, direct mapped L1 cache.

Figure 9 shows the average performance speedup, power

Figure 9: Average Performance, Power and E-D Product
of Various Region-based Caching Machines

reduction and energy-delay product ratio for MediaBench
benchmark. Table 2 describes the energy-delay product ratio
for each application in the benchmark (used to calculate the
average). The 2KB stack cache and 2KB global cache (S2G2-
dmL1) demonstrates the best design in ED product ratio. It
consumes only one third of the power in a 5-way 40KB coun-
terpart while achieving 99% of the execution performance.
All but three of the applications have ED ratios above 0.50
while 7 of the 19 applications have ED ratios of less than 0.20.
This shows that the overall performance (power and execu-
tion) of a region-based cache is significantly better than the
design alternatives studied. Region-base caching reduces the
power dissipation by routing data references to small, spe-
cial purpose cache structures. High hit rates are maintained
because the routing algorithm exploits known characteristics
of high-level language programs. These hit rates translate
into high performance execution, while retaining the power
dissipation advantage.

7. RELATED WORK

Low-power IC design techniques can be classified into sev-
eral levels of design space from system level, architecture,
logic, to transistor level. Frenkil in [13] presented an overview
of research activities at each level. We will briefly overview
the techniques proposed in architecture domain for low-power
cache design.

Power dissipation is generally proportional to the size of
the SRAM array structure. Researchers and embedded pro-
cessor architects have been studying designs employing smaller
structures for the majority of the cache accesses to reduce
power dissipation. Line buffers (or block buffering) and sub-
banking [14][32] have been proposed to reduce power. To
exploit spatial locality and reduce power, line buffers hold
most recently accessed cache lines for potential hits by sub-
sequent accesses. The cache is not exercised when a cache
access hits in the line buffers. Kin et al. in [22] described
a similar technique by inserting a very small filter cache as
the first-level (LO) cache to the CPU. The filter cache de-
sign approach sacrifices cache performance in exchange of
power-saving as the filter cache has poorer data locality. In
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[ S8-4w-L1 | S8-dmL1 | S4-dmL1 | S2-dmL1 | S4G4-dmL1 | S2G4-dmL1 | 52G2-dmL1 |

cjpeg 0.553 0.448 0.381 0.337 0.348 0.304 0.298
djpeg 0.717 0.530 0.517 0.483 0.495 0.477 0.475
mpeg2encode 0.738 0.583 0.561 0.548 0.538 0.526 0.523
mpeg2decode 0.661 0.509 0.467 0.443 0.262 0.237 0.188
rawcaudio 0.815 0.570 0.570 0.569 0.213 0.212 0.143
rawdaudio 0.815 0.580 0.580 0.579 0.235 0.235 0.165
g72lencode 0.551 0.611 0.523 0.470 0.214 0.167 0.129
g721decode 0.550 0.508 0.426 0.376 0.223 0.176 0.139
pgpencode 0.702 0.512 0.482 0.471 0.223 0.205 0.150
pgpdecode 0.674 0.499 0.462 0.441 0.186 0.165 0.105
pegwitencode 0.564 0.501 0.420 0.348 0.391 0.331 0.388
pegwitdecode 0.549 0.471 0.390 0.344 0.352 0.305 0.415
gs 0.484 0.484 0.384 0.316 0.299 0.233 0.237
mesa.texgen 0.547 0.681 0.599 0.588 0.575 0.564 0.559
mesa.osdemo 0.582 0.645 0.553 0.500 0.507 0.455 0.446
mesa.mipmap 0.499 0.444 0.432 0.454 0.358 0.376 0.365
rasta 0.611 0.700 0.612 0.571 0.519 0.478 0.470
epic 0.774 0.576 0.561 0.552 0.560 0.551 0.551
unepic 0.809 0.707 0.697 0.692 0.693 0.687 0.653
Average 0.642 0.552 0.504 0.476 0.374 0.347 0.332

Table 2: Energy-Delay Product for Various Region-based Cache Designs

Kin’s study, by employing direct-mapped 256-byte filter I-
cache and filter D-cache, the power consumption is reduced
by 58% while losing performance by 21%.

Sub-banking is similar to column multiplexing [35] known
to RAM designers for reducing the number of sense amps.
Only the sub-banks contain the data requested are accessed.
As a result, power is reduced by eliminating unnecessary
accesses. The first microprocessor in the StrongARM fam-
ily [26], the SA-110, employs a sub-banking mechanism by
enabling only 4 ways out of its 32-way cache for each cache
access. The processor also incorporates a cache sub-block
castout mechanism to minimize data going out to memory,
thereby reduce unnecessary power consumption.

Intel’s StrongARM SA-1110 processor [17], based on the
SA-110 core, implements a mini-cache in addition to the main
data cache for storing streaming data which demonstrate lit-
tle or no temporal locality. Data cacheability is controlled
through control registers. This design is a multi-lateral cache
design approach [16][19][30], but it does not save power, in-
stead, it increases power dissipation since both mini-cache
and main cache are probed in parallel.

Albonesi in [2] proposed a horizontally partitioned cache
design that can disable a subset of cache set lines in a set-
associative cache via ISA and microarchitectural support when
a full cache is not critical to overall performance. Compiler
and profiling tools can be used to determine when and how
many set items can be disabled for power-savings.

Bellas et al. proposed a dynamic instruction caching scheme
in [4] to determining what to be cached inside a mini LO-cache
as an extension to the idea of instruction filter cache. By re-
stricting the use of the mini-cache to only most frequently
executed blocks, the total number of mini-cache accesses is
reduced at the same time the mini-cache hits are increased.

The HP3000 Series II [6] has an integrated stack cache
as an extension to main memory. Since the machine does
not have a data cache, the stack cache functions as a tiny
direct-mapped cache with FIFO replacement policy for stack
references. The CRISP processor [5][12] developed at Bell
Labs adopted a complete memory-to-memory instruction set
architecture and simple addressing modes to avoid the over-
heads of procedure calls. The design offloads the burden of
register allocation on the top of the stack from the compiler
to the hardware by incorporating a 32-entry stack cache. The

stack cache is the processor’s only data cache. Finally, more
recently, researchers [10][24] have proposed methods that in-
corporate a large stack-cache memory structure to alleviate
the cost of multi-ported cache designs. Their goal was to
improve performance of wide issue superscalar processors —
not to reduce power dissipation.

8. CONCLUSIONS

In this paper, we have proposed a new Region-based caching
design that can effectively reduce power dissipation of data
caches while retaining the execution performance of a con-
ventional cache. This is accomplished by partitioning data
references based on semantically defined memory regions into
distinct caches. Stack references and global references, which
exhibit a high degree of temporal and spatial locality, are
routed to specialized (and small) cache structures. Since 70%
of the references hit in the stack and global data region, the
overall data cache power consumption can be significantly re-
duced. Since 4KB stack and global caches achieve a 99% hit
rate, execution performance is not degraded. Additionally,
by partitioning the cache into regions, conflicts are elimi-
nated between regions making it more feasible to implement
each cache with lower associativity. Building smaller sepa-
rate caches also provides more flexibility in increasing overall
data storage than enlarging a single cache since cache designs
do not need to double in size of increase associativity to grow.
Our results show that a region-based cache can reach an av-
erage power dissipation reduction of between 50% and 70%
compared with more traditional designs.

The power can be further reduced if smaller line sizes of
the region-based caches are used. The quantitative analysis
of the line size impact will be in our future investigation.
In addition, existing techniques such as filter cache and sub-
banking can be applied on top of the region-based caching
design as a trade-off between performance and power dissi-
pation.

The region-based caching design also has the potential to
reduce power in multi-ported caches for high performance
microprocessors. For a multiple issue processor that issues
multiple memory instructions at the same cycle, region cache
design offers an alternative to build smaller power-economic
region caches in lieu of a monolithic (power-hungry) multi-
ported cache.
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