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ABSTRACT
The Translation Look-aside Buffer (TLB), a content ad-
dressable memory, consumes significant power due to the
associative search mechanism it uses in the virtual to phys-
ical address translation. Based on our analysis of the TLB
accesses, we make two observations. First, the entropy
or information content of the stack virtual page numbers
is low due to high spatial locality of stack memory refer-
ences. Second, the entropy of the higher order bits of global
memory references is low since the size of the global data
is determined and fixed during compilation of a program.
Based on these two characteristics, we propose two tech-
niques: an entropy-based speculative stack address TLB
and a deterministic global address TLB to achieve energy
reducing. Our results show an average of 47% energy sav-
ings in the data TLB with less than 1% overall performance
impact.

Categories and Subject Descriptors
B.3.2 [Low-Power Architectures]: Virtual memory, TLB,
Associative memory

General Terms
Design, Experimentation, Performance

Keywords
Entropy, Low-power TLB, Spatial and temporal locality

1. INTRODUCTION
Power and thermal control is a first class priority in de-

signing the next generation embedded and high perfor-
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mance microprocessors [13]. Among the microprocessor
components, the ever-increasing on-chip memory and the
memory sub-system have been a primary focus for archi-
tects to explore energy reduction opportunities. As most
processors support virtual memory, the Translation Looka-
side Buffer (TLB) is an indispensable component in the
processor design. The TLB, a content addressable mem-
ory to expedite address translation, provides virtual-to-
physical address translation for each virtual address ac-
cessed. The TLB can draw a considerable amount of power
as it is typically organized as fully or highly associative
structure and is accessed upon every instruction and data
fetch. Ekman et al. in [4] reported the TLB power con-
sumption to be 20-25% of the total cache power consump-
tion, and Fan et al. [5] reported 13% of the total processor
power consumption for a unified TLB. In modern embed-
ded and high-performance processor design, it may be in-
feasible to increase the size of TLB due to power and ther-
mal constraints. The TLB power consumption increases
further as we move from 32-bit processors to 64-bit pro-
cessors since the TLB will have to compare and match
almost twice the number of bits.

The virtual page numbers (VPNs) typically exhibit a
large degree of spatial and temporal locality. Due to the
spatial and temporal locality of the data accesses, a given
sequence of data accesses may all map to the same physical
page as a page size is typically much larger than a normal
cache line. Therefore, very little information is conveyed
by consecutive virtual page number lookups in the TLB.
Also, many applications do not utilize the entire address
space, resulting in rather stable higher order bits or low
entropy in the VPN. In this paper, we analyze the entropy
of the VPNs exhibited in the memory reference stream and
exploit their characteristics for energy reduction opportu-
nities. Each memory access by a running program carries a
certain amount of information. The entropy or information
rate is a measure of unexpectedness and varies with the
program behavior. In particular, we find that the stack ref-
erences contain the least information content, and are thus
highly predictable. As the number of the pages are fixed
during compile time for the global static data, most of the
higher order bits in the global data memory references do
not change (zero entropy) during the program execution.



Thus, a small number of VPN bits is sufficient for address
translation. To exploit these properties, we propose a novel
Entropy based SPeculative - Translation Lookaside Buffer
(ESP-TLB) mechanism for stack references, and an En-
tropy based DeTerministic - Translation Lookaside Buffer
(EDT-TLB) mechanism for global static references to re-
duce the overall data TLB energy. These mechanisms are
complexity-effective and power-efficient, with minimal im-
pact on the performance and low hardware overhead. The
contributions of this paper are:

• We quantify the entropy content of the VPNs for data
TLB lookups.

• We propose two novel entropy-based schemes: a spec-
ulative address translation for stack addresses, and a
deterministic address translation for global static ad-
dresses that exploit the low entropy in the respective
VPNs. We show that our techniques provide an aver-
age of 47% energy savings with less than 1% overall
performance impact.

The rest of this paper is organized as follows: Section 2
provides an overview of entropy and its measurement. Sec-
tion 3 motivates our work by characterizing the entropy
content of the VPNs. Section 4 presents entropy based ad-
dress translation mechanism. Section 5 presents our simu-
lation results. Section 6 discusses related work. Section 7
concludes the paper.

2. OVERVIEW OF ENTROPY AND ITS MEA-
SUREMENT

The entropy or information content is a measure of “un-
certainty” or “unpredictability” of a random variable X [16].
In other words, simple repetitive patterns contain low en-
tropy. If X is a random variable that represents the VPN
during the program execution, then the average amount of
information or the zeroth order Markov source entropy is
given by

H0 = −

N
X

i=1

p(xi) log2 p(xi) ... (1)

where p(xi) is the probability of occurrence of VPN xi,
−log2 p(xi) is called self information, and H0 is called the
average self information. The entropy has the dimension
of bits per VPN reference.

For example in a virtual memory model, if the virtual
address is 32-bits and the page size is 4KB (12-bit index),
the VPN size will be 20 bits. It means the program can
access any of the 220 virtual pages during the dynamic
program execution.

First, let’s assume all the virtual addresses refer to the
same page. The average information for this type of VPN
accesses is zero by applying Eq.(1). Because there is only
one xi, and the probability of occurrence of this xi is 1,
and log 1 is equal to zero. This means that there was no
useful information in this type of repetitive behavior.

Now assume each of the virtual address refers to a unique
page. Since there are 220 references, the average informa-
tion is 20 bits/VPN reference by applying Eq.(1). This is
the maximum amount of information that can be obtained.
Here xi varies from 0 to 220-1.

The first order Markov source entropy is a measure of
the unpredictability of the next VPN given the knowledge
of the previous VPN. The weighted average first order en-
tropy is given by

H1 = −

N
X

i=1

p(xi)

N
X

j=1

p(xj/xi) log2 p(xj/xi) ... (2)

In general, an nth order Markov source entropy is a mea-
sure of the unpredictability given the knowledge of the pre-
vious n-1 references. The entropy is zero when the VPNs
generated by the processor is deterministic or can be pre-
dicted correctly, and it is maximum when the probabilities
are equal for all the VPNs.

2.1 VPN entropy measurement
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Figure 1: Entropy content of virtual page numbers

Figure 1 shows the measured zeroth order Markov source
entropy of virtual page numbers for heap, global and stack
regions of patricia from MiBench [6] and perlbmk from the
SPEC benchmark using Eq.(1). Each point on the x-axis
contains 10,000 VPNs, and the corresponding y-axis value
is the average entropy for those 10,000 VPNs. The VPNs
in the x-axis were plotted by their access order in time.

The entropy of the stack VPNs (the bottom dashed line)
for these two benchmark programs is negligible. This means
that there is very little or no change in the stack VPNs.
The stack region shows low entropy as the memory accesses
to this region happen in an orderly fashion. An example



of this behavior is function calls, where the stack frame in-
creases and decreases linearly and the memory references
to the stack are all close to each other (e.g. within a mem-
ory page) during the execution lifetime of that function.
The size of the stack frame depends on the function’s ac-
tivation record.

The middle curves in both Figure 1(a) and Figure 1(b)
show the entropy for the global VPNs. The global data
size is fixed based on the global variables declared in the
program. For example, 16KB of global data corresponds
to four pages based on a 4KB page size. The 20-bit global
VPN activity in the plot comes from the accesses within
this global data size. The accesses to the global variables
by a program is more random compared to the stack re-
gion accesses, showing that they are a bit more difficult to
predict than the stack region. Note that, out of the 20-bit
global VPN, only few least significant bits vary during the
entire program’s execution. The remaining higher order
bits do not vary. For the above example, only two least
significant bits (for four pages) of the VPN changed and
the remaining higher order 18-bits did not change. Based
on this fact, the entropy of the higher order global VPN
bits is zero, meaning that it is deterministic throughout
the program execution. As the sizes of various sections
are clearly defined in the section headers as part of the
executable file, the global data size is determined during
the program compilation. Therefore, the number of pages
occupied by the global data can be determined prior to a
program’s execution.

The top-most curves in both Figure 1(a) and Figure 1(b)
show the entropy for the heap region. It exhibit the highest
variation among all regions indicating that it is the most
difficult of all to predict, as each VPN contains more in-
formation. Since accesses to dynamically allocated objects
(through function calls such as malloc) cannot be easily
tracked, the entropy of these VPNs is much higher than
those of the stack and global regions. The global and
heap entropy plot is shorter for the Mibench patricia bench-
mark because it has fewer memory references compared to
perlbmk. Also, patricia benchmark has more global refer-
ences compared to heap, since the global plot is longer than
the heap plot.

2.2 Alternative VPN entropy measurement
using GZIP

Another way to measure the entropy is to measure the
compression ratio of the VPNs of the stack, global and
heap memory accesses, using a standard compression pro-
gram such as gzip program. The gzip utility uses Lempel-
Ziv-Welch (LZW) algorithm [17], a universal algorithm for
sequential data compression. A universal algorithm is a
coding scheme where the coding process is interleaved with
a learning process for varying source characteristics. One
of the main advantages of this algorithm is that it does
not need any knowledge of the probability for the source
symbols a priori, in our case the VPNs, unlike Huffman
encoding [8]. The LZW algorithm relies on the recurrence
of strings in its input. Instead of assigning codewords to
the symbols in advance, the algorithm assigns codewords
to repeating source words, or patterns in the text. This
algorithm is still the basis of most lossless modern data
compression techniques today. Hence, the size of the com-
pressed trace file compared to the original one gives a very
good indication of the entropy contained in the VPNs.

3. MOTIVATION
Figure 2 shows the uncompressed VPN trace file size

for each of the stack, global and heap regions in megabytes
(MB). Each trace file is an ASCII text file that contains the
20-bit VPNs1 of memory references that occurred during
the dynamic program execution of the respective programs.
The empty bars such as global references in blowfish indi-
cate that the file size is very small. Also, Figure 2 shows
that many benchmark programs have more stack references
followed by global references, and then heap references.
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Figure 2: VPN file size before compression

Figure 3 shows the percentage ratio of the compressed
VPN trace file size to the original file size for Mibench and
SPEC2000 benchmark programs. The standard gzip util-
ity that uses the LZW algorithm [17] is used to compress
the trace file. For example, the compressed stack VPN file
size for blowfish is only 0.3% of the original VPN file size.
The stack VPN has the highest compression (lowest com-
pression ratio) of all the three regions, indicating that the
gzip algorithm was able to find repeating sequences much
more often in the stack VPNs than in the global and heap
VPNs.
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Figure 3: Percentage compression ratio of VPNs

From the above three figures, we deduce that the stack
VPNs contain the lowest entropy in spite of the total num-
ber of memory references to the stack being much higher
than the global and heap memory references for most of
the benchmark programs. One outstanding example of
this behavior is shown by gcc in Figure 2 and Figure 3.

1A 4KB page size is used in the simulations for a 32-bit
processor, thus the VPN has 20 bits.



Though the stack accesses dominate the gcc program as
shown in Figure 2, its compression ratio is only 0.5% as
shown in Figure 3 indicating very low information content.
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Figure 4 shows the number of pages covered by the
program from its respective base during the program exe-
cution. Sometimes the program may dynamically allocate
memory (through function calls such as malloc) in the heap
region, but may not utilize all the pages. In such cases,
though the virtual page is covered by the program, it may
not have accessed any memory location in that non-utilized
page. This is particularly observable for heap references
since the memory locations are not sequentially accessed.
For example, a program may allocate ten-thousand quad
words (∼156 pages) using the malloc function expecting
this amount of memory to be used during run-time. But
all of the allocated pages may not be accessed by the pro-
gram. For example, only some pages in the middle or top
may be accessed based on some condition checks. In Fig-
ure 4 patricia covered 151 pages and most of the SPEC
benchmark programs covered thousands of unique pages
during the program execution. This random access behav-
ior of heap references makes it difficult to predict as shown
by the high entropy value for heap references in Figure 1.

Figure 5 shows the maximum number of bits needed for
the entropy-based address translation based on the num-
ber of pages covered. As the number of accessed pages
increases, more TLB bits are needed for entropy-based ad-
dress translation. The small bars for the stack and global
regions in Figure 5 suggest that lesser number of bits are
sufficient for TLB tag match instead of the complete 20-bit
VPN during address translation, as the number of pages

covered by them is less than that of the heap region. For
example, if the stack region covers eight pages from its
base, it requires three bits for the tag match to translate
the address correctly. For most of the SPEC benchmark
programs, all 20-bits of VPN are required to translate the
heap address correctly. An important characteristic of the
global region is that its data size (the total number of pages
shown) can be determined at compile-time. So, unlike
the heap and stack regions, the global data size is fixed
throughout the program execution and does not change.

In summary, we observe the following characteristics dur-
ing program execution.

• The entropy is very low for stack VPNs and therefore
can be predicted accurately.

• The global data size is determined at compile-time.
The number of bits actually needed for the global
TLB tag match is proportional to the number of
global data pages.

• As a result, the number of bits needed for the stack
and global address translation is much less than the
complete VPN (20-bits each in our example).

We exploit these memory reference characteristics and
propose a complexity-effective, entropy-based, low-power
data TLB.

4. ENTROPY BASED DATA TLB
Based on the above discussion it is clear that a few lower

order VPN bits are sufficient instead of the full 20-bit VPN
tag match during the TLB lookup for the stack and global
memory references. Figure 6 shows a semantic-aware mem-
ory (SAM) architecture [11] enhanced with Entropy-based
SPeculative (ESP-TLB) and Entropy-based DeTerminis-
tic (EDT-TLB) mechanisms. The Entropy-based SAM
(ESAM) architecture exploits the characteristics demon-
strated in each semantic region by reorganizing the first-
level TLB structure into two small structures — stack and
global static micro-TLBs, while leaving the second level
TLB for all the data accesses.
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Figure 6: Entropy-based SAM microarchitecture
(ESAM)

The virtual address (32-bits) from the address genera-
tion unit (AGU) is written to the the memory order buffer



(MOB), which consists of the load and store buffers. In
the same cycle the virtual address from the AGU also en-
ters the Data Address Router (DAR). The DAR writes
3 bits (100 for stack, 010 for heap, 001 for global) to
the corresponding load/store buffer based on the ranges
derived from the control registers (ld data base register,
ld environ base register, ld data bound register) initialized
by the system loader2. The MOB uses these three bits
(100-stack, 010-heap, 001-global) during the virtual ad-
dress dispatch and clock gates the other two semantic TLBs
that do not participate in the address translation as shown
in Figure 6 to reduce dynamic power consumption. The
addition of four bits (3-bits – one each for stack, heap and
global, and 1-bit for mis-speculation) to the MOB is not a
significant overhead as it already contains many bits such
as page fault information, data size of the load/store, and
load/store color ids. Since these four bits do not partic-
ipate in associative search, the power consumed by these
bits is very less. Though it is not a significant overhead, we
account for the power consumed by these four bits in our
power estimation. The ESAM speculatively translates the
stack addresses using the ESP-TLB structure, and deter-
ministically translates the global static address using the
EDT-TLB structure. The functional and implementation
details of these two structures are described in the follow-
ing sections.

4.1 Entropy-Based SPeculative TLB
As we have discussed previously, the stack addresses con-

tain low entropy and are highly predictable. To utilize
this characteristic, stack addresses are speculatively trans-
lated. Figure 7 shows the block diagram of the ESP-TLB.
ESP-TLB first speculatively precharges the same number
of bits that was used in the previous VPN translation
for the current VPN translation and evaluates its correct-
ness. If it finds that it is incorrect, the logic block does
two things: (1) corrects itself by increasing the number of
precharge bits and (2) squashes the incorrect translation
by invalidating the cache tag match, and finds the correct
translation in the subsequent cycle. The main functional-
ity of this logic block is to enable and precharge the min-
imum required number of bits for the stack TLB (sTLB)
address translation in order to save energy. The small-
est sTLB VPN accessed register denoted “p” is initialized
to 0xffffffff.3 During the program execution, this register
will hold the smallest VPN that was accessed by the stack
pointer ($sp).4 The counter bits, mis-speculation bit (MS-
BIT) in the MOB, and the TLB valid bits (V) for each en-
try are initialized to zero. The MS-BIT is set/reset based
on the correctness of the speculatively translated VPN.
Figure 7(a) shows the stack growth in the ARM memory
model. As visually represented in Figure 7(a), when the
stack grows, the VPN decreases.

2Alternatively, a compiler can annotate loads and stores
with semantic region information. The MOB can use this
information during the virtual address dispatch to the se-
mantic TLBs and eliminate the DAR logic by using com-
piler support.
3In our simulation model based on ARM, the stack region
begins from higher memory address and grows downward.
4Following software convention, the smallest VPN should
represent the memory page pointed by the current $sp.
Any memory access beyond the current $sp (i.e. addresses
lower than $sp) is considered a violation of the software
convention.
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Figure 7: Entropy based speculative stack TLB

The memory order buffer (MOB) dispatches the virtual
address that needs to be translated to semantic TLBs. But
only one TLB will be enabled based on the three bits stored
as part of the MOB. If the stack TLB (sTLB) is enabled,
the sTLB is precharged only for the bits that are high at
the output of the VPN bit enable register, a bit mask. The
VPN bits sent from the MOB to the sTLB represent the
common case for stack address translation. This common
case path is shown as a bold line from the MOB to the
sTLB in Figure 7(b).

At the same time the address reaches the sTLB, the
current sTLB VPN denoted “c” that contains the current
VPN is compared with the smallest sTLB VPN accessed
during the high phase of a clock cycle. If the current stack
reference did not cross the page boundary, the comparator
output will be FALSE. If the comparator output is FALSE
(c ≥ p), the speculative translation was indeed correct and
no further correction is needed. The counter value stays
the same and is not decremented. Note that the compar-
ison is not on the critical path of the stack address trans-
lation.

When the stack region grows (downward) as shown in Fig-
ure 7(a) and crosses the page boundary, the comparator
output will be TRUE (c < p) indicating that the specula-
tively translated address was incorrect, and a mis-speculation



recovery is required as follows: (1) set the mis-speculation
bit (MS-BIT) in the MOB for this virtual address entry, (2)
update the smallest sTLB VPN accessed register with the
current sTLB VPN value, (3) increment the counter, and
(4) invalidate the output of the cache tag match hit/miss
signal by qualifying it with the comparator output signal;
all four events happen on the negative edge of the same
clock cycle since there are no dependencies among them.

The counter keeps track of the number of pages the stack
region has covered until now, starting from the stack base.
We use a modified binary prefix sum logic to determine the
minimum number of the sTLB precharge bits to be enabled
based on the counter value. The VPN bit enable register
stores the output of the modified binary prefix sum logic
and is ready for correct address translation in the subse-
quent cycle in case of a mis-speculation. The comparator
(that writes the MS-BIT) squashes the incorrectly trans-
lated address by invalidating the tag match for the cache
data. The instruction scheduler cancels and reschedules
the instructions dependent on this cache data. The num-
ber of mis-speculations for the sTLB is very low and is
analyzed in detail in Section 5. The corresponding mem-
ory reference is re-issued by the MOB, and the MS-BIT
is reset after the re-issue. The re-issued memory reference
will now succeed through the common case path, as both
the current sTLB VPN and smallest sTLB VPN accessed
contain the same value. The instructions dependent on
the memory reference get scheduled to execute on their re-
spective execution units. The power consumption of all the
components in Figure 7 and the performance issues on the
mis-speculation path are further discussed in Section 5.

The MOB is extended by the addition of the MS-BIT
to each entry as shown in Figure 7. During normal oper-
ation, the MOB captures events such as TLB page-faults
and memory-access-violations, and reschedules the affected
memory operations after a TLB page walk. This existing
MOB mechanism can be extended to set and reset the MS-
BIT, and no further logic is required.

The modified binary prefix sum logic is a combinational
circuit that determines the minimum number of the sTLB
precharge bits to be enabled based on the counter value.
For example, if the program has covered twelve pages from
the stack base, the counter value will be 12 (binary 1100).
The 20-bit VPNs of these twelve pages can be uniquely
identified using the four lower order bits [3:0] as the stack
frame grows sequentially. When a new VPN looks up the
sTLB for an address translation, these four bits are enough
to resolve the twelve pages unambiguously for the VPN tag
match. Therefore, the sTLB needs to be precharged with
only four least significant bits enabled, which is [000....1111].
The circuit that accepts the binary value from the 20-bit
counter as input (say, [000...01100]) and provides a 20-bit
binary [000...1111] as output is implemented using a mod-
ified binary prefix sum logic. In general, given an n-bit
binary input sequence,

bn−1, bn−2, .....b2, b1, b0

the binary prefix sum logic provides a n-bit binary out-
put sequence,

pn−1, pn−2, .....p2, p1, p0

where pi = (bn−1 + bn−2 + ...... + bi+1 + bi)mod2 is called
the ith binary prefix sum [12].

We need to take care of an additional case when the
counter value is a power of 2. For example, when the
counter value is 4 (binary 100) indicating four stack pages

are now covered by the program, the output should be
binary 011, as two bits are enough to uniquely identify
these four VPNs. But the output of the binary prefix sum
logic will be 111. This precharges one extra bit that is
not needed for address resolution, consuming more energy
during every stack TLB lookup. Therefore, whenever the
counter value is a power of 2, the MSB of the binary pre-
fix sum logic output must be changed to zero instead of
one. We modified the truth table to accommodate this
case, and implemented the logic using CMOS gates. This
modified prefix sum logic enables pre-charging and com-
paring only the few least significant bits of the stack TLB,
thus saving energy by avoiding the complete 20-bit VPN
precharge. The power consumption and the delay for this
logic is detailed in Section 5.

The following things are to be noted during the stack
address translation mechanism:

1. The stack address is translated speculatively through
the common-case (highlighted) path shown in Figure 7.

2. Since the stack address translation is speculative, the
comparator, the modified binary prefix sum logic, and MS-
BIT update in the MOB do not affect the critical path of
the TLB lookup.

3. The modified binary prefix sum logic becomes active
and consumes power only during mis-speculation.

4.2 Entropy-Based DeTerministic TLB
The compiler, assembler, and linker tool chain creates a

widely used ELF or COFF file format that is loadable, relo-
catable, and executable. As part of the process, the global
variables in the program become part of the global static
data in the executable. The size of the various sections such
as .text, .init, .data, .rodata, and .bss sections are clearly
defined as part of the executable file format. Therefore, the
number of pages occupied by the global static data can be
determined after the program compilation from the differ-
ence between the loader variables ld data start (the address
where the global static data starts) and ld data bound (the
address where the global static data ends). Once the global
data size is known, the maximum number of pages occu-
pied by the global data is obtained by dividing the global
data size by 4096 (the page size). The minimum number
of bits required to address these global pages, and the bit
sequence sent to the precharge logic to enable the global
TLB is calculated by the loader as shown below. By going
through a few lines of code once, the loader can determin-
istically find the bits that need to be precharged and stores
it in the Deterministic fixed bits register.

global data size = ld data bound - ld data base;
number of pages = global data size / 4096;
number of bits needed = log2(number of pages);
Deterministic fixed bits = mod binary prefix sum(number

of bits needed);
The last line is a software equivalent of finding the mod-

ified binary prefix sum bit sequence that was described
in Section 4.1.

The global entropy activity comes from the memory ref-
erences between the defined boundaries of the global data
size. As the activity is confined to these few pages occu-
pied by the global data, only a few lower order bits change
between memory references and most of the higher order
bits of VPN remain unchanged. This provides an oppor-
tunity to enable and precharge only the few lower-order
bits for global TLB (gTLB) lookup in order to save energy.
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32-bit Processor Parameters Values

Execution Engine 4-wide out-of-order
Number of data TLB entries 32

Page size 4 KB
L1/L2 cache hit latency 1 / 6 cycle

Memory latency 150 cycles
TLB hit/miss latency 1 / 30 cycles

L1 Cache baseline DM, 32KB, 32B line
L2 Cache 4-way 512KB, 32B line

Number of TLB ports used 1
20-bit comparator power 300µW

Modified prefix sum logic delay 160 ps
Modified prefix sum logic power 668 µW

Dynamic power for counter 956 µW

Table 1: Processor configuration

In Figure 8, the Deterministic fixed bits is derived from the
loader variables and stored in the register. The gTLB is
precharged and compared only for the bits that are high in
this register to save energy. Since the precharged bits are
deterministically found before program execution, there is
no performance penalty involved.

5. EXPERIMENTAL RESULTS
Our performance evaluation infrastructure is based on

Simplescalar for the ARM ISA. We integrated Wattch [2]
into the Simplescalar ARM model for energy simulation
and modified Simplescalar to model the ESP-TLB and
EDT-TLB. We use 100nm technology in our simulations.
We simulated the Mibench benchmark programs to com-
pletion. For the SPEC2000 benchmark suite, we first fast
forwarded by one billion instructions and simulated the
next 300 million instructions. Table 1 describes our ma-
chine configuration and power data.

To evaluate the energy savings using the ESP-TLB and
EDT-TLB mechanisms, the power consumption of the 20-
bit comparator, modified binary prefix sum logic, and the
counter are taken into account in the Wattch simulation.
We simulated these logic components using HSPICE. For
our HSPICE simulations, we use BSIM transistor mod-
els [3]. The energy consumed by the comparators, and
counter are added every cycle, and the modified binary
prefix sum logic power on mis-speculation. We charge
two extra cycles on each stack address translation mis-
speculation. In the first cycle, during the positive edge, the
VPNs are compared; during the negative edge, if the spec-
ulative stack address translation is incorrect the counter
is incremented and the modified binary prefix sum logic

changes its output. In the second cycle, the MOB resched-
ules the virtual address for sTLB lookup. We add an extra
10% [15] of the dynamic power to account for the leakage
power when there is no TLB access activity. Sery et al. [15]
report 15% of dynamic power as leakage power in the 65nm
technology, and 10% in the 90nm technology.

Figure 9 presents the energy savings and overall perfor-
mance after applying the ESP-TLB and EDT-TLB mech-
anisms. The baseline in this figure is a conventional 32-
entry d-TLB. The total energy savings is 47% compared
to the baseline d-TLB with an overall performance penalty
of less than 1%. The penalty from the stack address trans-
lation mis-speculation is negligible as the number of mis-
speculations are very few. In some cases there is a perfor-
mance improvement as the ESAM architecture reduces the
number of expensive TLB misses.
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Figure 9: Energy savings and performance using
ESP-TLB and EDT-TLB

Figure 10 shows the effectiveness of the ESP-TLB. The
maximum number of bits precharged for the stack address
translation is less than or equal to three bits, as the stack
region has not crossed more than eight page boundaries.
The maximum number of mis-speculations is three; when
the counter increments from 0 to 1, 1 to 2, and finally from
2 to 3. The first bar in this figure shows the number of
accesses when the sTLB lookup needed only one bit to be
precharged, and the second and third bar when the sTLB
lookup needed only two and three bits to be precharged,
respectively. The experimental results confirm the graphs
in Section 3; the stack addresses have very low entropy and
can be predicted with high accuracy to save energy.
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Figure 10: Effectiveness of the ESP-TLB



6. RELATED WORK
Hammerstrom et al. [7] proposed a method to estimate

the information content of memory references and the ad-
dress generation overhead. They proposed a few optimiza-
tion techniques to reduce the address calculation overhead
based on the measured entropy. Becker et al. [1] proposed
a scheme to dynamically encode a typical 32-bit address
into four to seven bits using Huffman coding. Their exper-
iments show that 83% of address bits in the traces contain
redundant information.

Kandemir et al. [10] proposed a compiler-based data lay-
out restructuring combined with smaller translation regis-
ters, to reduce the d-TLB energy. Petrov et al. [14] pro-
posed a software-controlled reduced virtual page number
mechanism to reduce the TLB energy. Their method con-
sists of two phases, an off-line and an on-line phase. In the
off-line phase, a special algorithm code is inserted prior to
entering and after exiting the hot-spot with reduced tag in-
formation. Additionally, the compiler also attaches special
tables with information about the hot-spots. During the
on-line phase, the OS provides information regarding the
libraries. Our technique requires some hardware changes,
but does not require any profile feedback support.

Juan et al. [9] proposed a circuit design to modify the
CAM cell by adding another transistor in the discharge
path. With the modified cell, the control line can be used
to precharge the match line without resetting the bit lines.
Now, the bit lines toggle due to changes in the virtual ad-
dresses of consecutive accesses. As the unified TLB is ac-
cessed by all the memory references from different seman-
tic regions, the entropy is higher leading to their measured
change of four bits per access, unlike our semantic-aware
technique where the addresses are segregated based on dif-
ferent memory regions.

7. CONCLUSION
In this paper, we proposed two architectural techniques

to reduce the data TLB energy. By exploiting the low en-
tropy of stack and global data, energy savings are achieved
via (1) a speculative but highly accurate stack address
translation, and (2) a deterministic global static address
translation. In both schemes, we enable and precharge
only the minimal required number of least significant ad-
dress bits to reduce the data TLB energy. We show that
the TLB energy consumption is reduced by 47% with less
than 1% overall performance overhead. As shown in our re-
sults, the performance degradation due to mis-speculation
is negligible for the stack TLB, and there is no performance
penalty for the global TLB translation as it is determin-
istic. Our techniques incur very little hardware overhead.
As the TLB power continues to rise and as we migrate from
32-bit to 64-bit architectures supporting large page sizes,
our techniques will become more significant in reducing the
data TLB energy.
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