
Owl: Next Generation System Monitoring

Martin Schulz
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

schulzm@csl.cornell.edu

Brian S. White, Sally A. McKee
Computer Systems Lab

Cornell University

{bwhite,sam}@csl.cornell.edu

Hsien-Hsin S. Lee
School of Electrical and Computer Engineering

Georgia Institute of Technology

sean.lee@ece.gatech.edu

Jürgen Jeitner
Department of Informatics

Technische Universität München

jeitner@in.tum.de

ABSTRACT
As microarchitectural and system complexity grows, com-
prehending system behavior becomes increasingly difficult,
and often requires obtaining and sifting through volumi-
nous event traces or coordinating results from multiple, non-
localized sources. Owl is a proposed framework that over-
comes limitations faced by traditional performance coun-
ters and monitoring facilities in dealing with such complex-
ity by pervasively deploying programmable monitoring ele-
ments throughout a system. The design exploits reconfig-
urable or programmable logic to realize hardware monitors
located at event sources, such as memory buses. These mon-
itors run and writeback results autonomously with respect to
the CPU, mitigating the system impact of interrupt-driven
monitoring or the need to communicate irrelevant events to
higher levels of the system. The monitors are designed to
snoop any kind of system transaction, e.g., within the core,
on a bus, across the wire, or within I/O devices.

Categories and Subject Descriptors: C.4 [Performance
of Systems]: Measurement Techniques

General Terms: Performance, Measurement

Keywords: Autonomous Performance Monitoring, Recon-
figuration, Performance Analysis

1. INTRODUCTION
As microarchitectural and system complexity grows, com-

prehending system behavior becomes increasingly difficult.
Users nonetheless anticipate future autonomic systems that
adapt dynamically to provide greater performance, avoid or
repair transient faults, intercept adversarial attacks, and re-
duce system management costs. A substantial gap remains

Copyright 2005 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by a contractor or
affiliate of the U.S. Government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
CF’05, May 4–6, 2005, Ischia, Italy.
Copyright 2005 ACM 1-59593-018-3/05/0005 ...$5.00.

between what system designers can now provide—in terms
of introspective data itself and the means of processing, an-
alyzing, and visualizing it—and what users expect and will
soon demand.
A simple example of application memory performance

monitoring highlights the disparity between the current
state of the art, where probes report only symptoms of poor
performance, and the goal of a self-aware system that dis-
covers the cause. Rather than placing the burden on a user
to query hardware registers or instrument binaries, a con-
tinuously monitored [1] system might employ a unobtrusive
background monitor that detects spikes in some metric, e.g.,
cache miss rate. The monitor then instantiates additional
monitors on the L1-L2 and memory buses to capture in-
dividual L1 and L2 misses, which can be correlated. For
example, thrashing between the caches for specific data in-
dicates conflict misses. This more precise miss characteriza-
tion helps in selecting an appropriate optimization, such as
cache-conscious data placement [4].
Monitoring is most often applied for performance consid-

erations, but future systems will also demand it for security,
fault detection, and maintenance. Consider memory fault
isolation, where loads, stores, and jumps are guarded to en-
sure validity of the memory access or jump target. This
may be done by manual instrumentation [30] or by a log-
ically similar hardware method that “macro expands” in-
structions into guarded equivalents [6]. An active monitor
can provide this functionality with no overhead. When an
access check fails, the monitor signals the operating system,
which might either terminate the process or decide to enlist
more monitors to sandbox the potentially malicious code.
Current monitoring facilities are ill-equipped to handle

the above scenarios. Traditional hardware monitors are re-
stricted to a fixed set of events and cannot perform sophisti-
cated, online analysis. Their deferral to software for process-
ing comes at the expense of costly and frequent interrupts or
of loss of accuracy due to sampling. Further, they rely on a
proper handling of software events, which is clearly not ad-
equate for monitoring software and system faults. Software
solutions [13, 17, 20, 35] rely on sampling, offline traces, or
heavyweight instrumentation resulting in high system over-
head or loss in accuracy.
In order to provide the introspection necessary to un-

derstand and efficiently use future architectures, we need

new hardware solutions for system monitoring. In recent
years, several academic projects have focused on such hard-
ware (e.g., solutions by Prvulovic and Torrellas [22] or Xu
et al. [33]). However, each of these approaches provides
specialized monitoring capabilities for specific problems or
questions. No general framework has yet been proposed.
In this paper, we propose Owl, a generic and pro-

grammable monitoring framework. It consists of reconfig-
urable or programmable logic elements deployed through-
out the system. The user can program these monitors to
acquire performance data without system interference, per-
form application-specific data analysis, and write results di-
rectly into main memory without interrupting the proces-
sor. The latter is necessary to minimize system perturba-
tion. Owl’s programmability is flexible enough to encom-
pass existing performance counters and extant or proposed
monitoring techniques, as well as new, previously infeasible
monitoring applications. The latter include monitoring ad-
dresses on memory buses, collecting a complete history of
individual cache replacement decisions, snooping I/O bus
activity, or checking assertions on all memory accesses.
As its key design principle, Owl differentiates between

user-defined analysis modules, which perform monitoring
and analysis such as data aggregation and compression, and
monitor capsules, which provide a standard interface be-
tween the module and the hardware. The programmabil-
ity and autonomy of the modules support event process-
ing close to the source, domain-specific monitoring, and the
ability to react or adapt to observed events or application
phases. Modules are implemented in reconfigurable or pro-
grammable logic, such as programmable microengines or
FPGAs, within capsules. This flexibility enables less in-
vasive hardware implementations of existing software tech-
niques and, ultimately, more sophisticated monitoring than
previously possible.
The pervasive deployment of capsules throughout the

system provides a user with alternate views of the same
event (e.g., following a page miss through caches to disk)
or simultaneous views of correlated events (e.g., declining
IPC and branch prediction accuracy). The capsules’ stan-
dardization allow the same analysis algorithm to examine
events throughout the system, despite potential dissimilar-
ity among monitored devices. Flexibility in deploying cap-
sules results from the simple assumption that they are only
able to observe system events in the form of transactions.
Thus, they may be attached to any transaction interface,
including memory buses, I/O buses, or network interfaces.
In Section 2 we describe existing hardware approaches for

system monitoring. In Section 3 we present requirements for
a next-generation monitoring facility and describe the design
of Owl, a framework leveraging autonomous, programmable
monitors to achieve those requirements. In Section 4 we
describe several sample applications for novel memory mon-
itoring capabilities, including efficient memory access log-
ging, memory access characterization, and dynamic pattern
recognition. In Section 5 we present results discussing the
small system perturbation caused by using Owl, and we
show the hardware complexity of a sample Owl module.

2. RELATED WORK
Most current architectures include at least rudimentary

hardware assists for system monitoring, usually in the
form of counter registers. The UltraSPARC IIi [27] is an

archetype of more advanced systems: it exports two per-
formance counters that can monitor any of 20 predefined
events. Counters may be programmed to raise an interrupt
upon overflow.
Counter-based techniques suffer common shortcom-

ings [25]: too few counters, sampling delay, and lack of
address profiling. Modern systems try to address these de-
ficiencies. For instance, the Pentium 4 [15, 26] comes with
18 performance counters. In addition, it tags µops when
they trigger certain performance events. These events are
not counted until the µops are retired, ensuring that spu-
rious events from speculative instructions do not pollute
samples. This microinstruction-targeted approach also over-
comes sampling delay.
However, these mechanisms can only be employed to col-

lect aggregate statistics using sampling. It is not possible to
react to single events or to collect additional data, e.g., load
target addresses of memory accesses. This prohibits a direct
correlation of observed events with the data structures caus-
ing the events. The Itanium Processor Family [14] and other
newer systems overcome this deficiency and allow the detec-
tion of such events, e.g., memory accesses or branch mispre-
dictions. The access mechanisms provide microarchitectural
event data, but these data are delivered to the consuming
software through an exception for each event. The process
using the information experiences frequent interrupts, and
system perturbation occurs at many levels. Overheads costs
of these mechanisms, particularly with respect to time, limit
the extent to which software can reasonably exploit them.
Many academic projects have focused on novel

performance monitors for interconnection systems.
Martonosi et al. [19] propose using the inherent co-
herence/communication system in the Stanford FLASH
multiprocessor as a performance monitoring tool. Flash-
Point is embedded in the software coherence protocol to
monitor and report memory behavior in cache miss counts
and latencies, inducing a 10% execution time overhead. In
the SHRIMP project [18], performance monitoring boards
allow each node to collect histograms of incoming packets
from the network interface. A threshold-based interrupt
is used to signal the application software and operating
system to take proper action in response to a specified
event. The SMiLE project [16] includes a SCI-based
hardware monitor to detect memory layout problems in
NUMA clusters; the monitored information helps to guide
data layout and transparent data migration.

3. Owl: PROGRAMMABLE, SYSTEM-
WIDE MONITORING

The research community’s shift from using simple aggre-
gate metrics characterizing entire applications, e.g., cache
miss rate, to more advanced statistics such as reuse dis-
tance [34], periodicity [13, 24], and correlating multi-layer
analysis [31], signals that traditional hardware monitors are
becoming insufficient. Further, new goals such as security
and system health maintenance require monitoring different
classes of events and eliciting varied responses, including the
recruitment of other monitors to focus on specific symptoms.
Discovering trends in system behavior requires monitors to
be long running, and therefore unobtrusive, as well as capa-
ble of correlating events. The monitors must produce results
judiciously to avoid overwhelming the system with inordi-

nate amounts of data. These considerations point to an
autonomous monitoring facility that is flexible enough to
handle varied and evolving system behavior, leading to the
following requirements:

• Coordinated, cooperative system-wide moni-

toring:

Observation of a single data source provides a myopic
view, which may be sufficient to establish the symptom
but not the cause of a problem. For example, if a mon-
itor detects declining IPC, it might spawn additional
monitors to examine branch prediction accuracy and
cache miss rates. Indication that the latter is a prob-
lem might lead to additional coordinated monitoring.

• Hardware assist for data aggregation:

Data probes have the potential to collect copious data,
especially when applied broadly to highly used re-
sources, such as monitoring all L1 accesses. To man-
age such data, the monitoring system must be capable
of performing at least preliminary analysis online in
hardware. This can reduce data by using compression,
aggregation, or statistical analysis. Data aggregation
need not entail a loss of information, but rather can
remove obfuscating data to bring a trend to light.

• Domain-specific monitoring through pro-

grammability:

One type of monitor cannot address all possible
scenarios: some kind of programmability or reconfig-
uration capabilities are thus required. These enable
the system to retarget monitors to perform new
tasks or to gear to a specific device, application, or
application phase. For example, a programmer may
wish to monitor accesses to a specific data structure
to determine if it exhibits poor locality so that it may
be targeted by future optimizations, such as data
regrouping [11]. Such fine-grained monitoring would
be greatly aided by compiler support [12].

• Data delivery without process interruption:

To minimize system perturbation, monitors must de-
liver their output asynchronously and deposit it into
main memory. This contrasts with most currently im-
plemented schemes, which either require a process in-
terruption and event handler invocation for each ob-
servable event or are limited to sampling. The amount
of monitoring data injected into the system, and hence
the amount of system perturbation, depends on the
semantics of the analysis module. Designing module-
embedded analytical techniques therefore requires an
estimation of system perturbation. We study data in-
jection rates to provide general overhead results in-
tended to guide future designs and to allow early de-
cisions regarding their feasibility.

3.1 Owl Architecture
The Owl monitoring framework is designed to fulfill these

requirements. As its key architectural principle, it splits the
monitoring functionality into two parts: programmable cap-
sules, which are attached to the actual data probes or sen-
sors; and analysis modules, which are loaded into the cap-
sules to perform data aggregation and preprocessing. The

DRAM/Cohereny
Controller

(Active)
Storage

Network
Interface

DRAM
Chips

Core
Possible Location
for a Hardware Monitor

���
���
���

���
���
���

��

CPU chip

On−chip bus

Core

L2/L3 cache

Off−chip bus

Crossbar

To other CPU chips

To other memory banks
I/O bridge

I/O bus

I/D Caches I/D Caches
M

M

M

M

M
M

M

M

M

M

M

M
M

M

M

M

M

M M

M

M
M

M

Figure 1: Possible monitor capsule locations for system-

wide monitoring

capsules may be included in any component providing inter-
esting data and hence can be located throughout the system,
as illustrated in Figure 1.
Each capsule is connected to one or more data probes

or sensors embedded within the monitored component (see
also Figure 2). These probes provide the respective data in
event form, e.g., memory bus transactions, coherence events,
disk accesses, accesses to the reorder buffer for out-of-order
microprocessors, updates to the branch predictor, or roll-
back events in case of misspeculation. The event, including
any relevant parameters such as addresses, values, or event
types, is received by the Architecture Hardware Interface and
translated to a standardized interface connecting the capsule
and the analysis modules, the Monitor Hardware Interface.
A module loaded into the programmable part of a capsule
uses this interface to receive monitored data. This use of
a system-wide, standardized interface allows the execution
of any analysis module in any capsule, independent of its
location and concrete data source, and thereby enables the
reuse of analysis and aggregation techniques.
Analysis modules are loaded and instantiated from a

system-wide library of modules. This library can be dynam-
ically extended and can contain application-specific mod-
ules. Library management and concrete module selection is
left to the system components or tools using Owl for their
monitoring purposes. Once loaded, a module may further
be customized through memory-mapped configuration reg-
isters in each capsule. When activated, the capsule directs
the probed data to the module, where it is preprocessed,
analyzed, aggregated, compressed, or even sampled, which
may be the desired functionality, rather than a limitation
imposed by the monitor framework. The results of this anal-
ysis step are forwarded to the capsule for storage.
Due to Owl’s programmability, each module contains

application-specific data aggregation and filtering tech-

#N−1
Module
Monitor

Upload

Configure

Writeback

���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������

Software Infrastructure
for Evaluation and Reconfiguration

Monitor
Module

#1

Monitor
Module

#2

Monitor
Module

#3

Monitor
Module

#N

Monitor
Module

...

Monitor
Module

...

Reconfigurable
Logic

Network Cache Bus TLB

C
ap

su
le

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���
���

Monitor Repository

M
on

ito
ri

ng

Architecture HW Interface

M
on

ito
r

H
W

 I
nt

er
fa

ce

Output Interface

Figure 2: Architecture of a monitoring capsule

niques that are uploaded directly to the location of the data
probes. This enables the modules to acquire and process ev-
ery individual event without system perturbation. Only the
results of the data aggregation are written to main mem-
ory, and the total size of these results is usually significantly
smaller than the total size of all observed events. Further,
the storage of the monitor results is initiated autonomously
by the monitor module: it hands any data packet containing
monitor data to the capsule through a standardized inter-
face. The capsule then generates a memory packet, injects
it into the memory system, and stores in a contiguous area
of main memory organized as a ring buffer. Consumers of
monitor data can then read the data from this memory re-
gion and process it asynchronously. The ring buffer itself is
reserved by the operating system, and its size depends on
both location of the capsule and the expected event rate. In
order to avoid buffer overruns, each capsule has the ability
to signal consumers using interrupts when a ring buffer is
about to become full.

3.2 Providing Programmability
The programmable nature of the modules is the key to

their flexibility and filtering capabilities. Several means of
achieving programmability exist, e.g., dynamic selection of
predefined components, use of microprogrammable process-
ing cores, or use of reconfigurable logic in the form of FP-
GAs. We consider the first option too restrictive, since only
a predefined set of monitoring modules would exist. The
latter two options provide similar capabilities, and we will
explore both avenues. Here we focus on FPGA-based solu-
tions, since they provide a low-level and direct interface to
the hardware. Furthermore, any concurrency expressible in
hardware designs is directly exposed to the analysis modules
and thereby permits an easy and efficient use of pipelining.
This can be used to ensure a high event handling rate despite
complex analysis operations for each event.
Reconfigurable hardware is increasingly used in modern

architectures to complement general-purpose processors. An
industry trend towards hybrid-reconfigurable systems indi-
cates the potential and viability for architectures like Owl.

For example, SRC Computer platforms are architected with
Direct Execution Logic (DEL), comprised of dynamically
reconfigurable functional elements (Multi-Adaptive Proces-
sors) intended to maximize parallelism of a given applica-
tion code. OctigaBay Systems (now part of Cray, Inc.) uses
one Xilinx Virtex-II Pro FPGA per node as an application-
specific accelerator to perform vector operations. In the em-
bedded market, several chip manufacturers provide single-
chip solutions combining processor cores, such as PowerPC
or ARM, with FPGAs enabling easy and efficient customiza-
tion of processors [2]. In general, we see a trend towards
faster and more efficient FPGAs, and recent studies have
shown that some FPGAs can compete with the clock fre-
quencies of most modern microprocessors [28].

3.3 Design Considerations for Modules
Monitoring efficiency depends on a module’s ability to in-

telligently preprocess and “semantically” reduce data traffic,
i.e., to extract the essential information before injecting the
result into the memory system. Further, hardware complex-
ity limitations restrict the nature of the analysis techniques
that are loaded into reconfigurable logic. The design of each
module must reflect this balance between traffic reduction
and hardware complexity.
In general, modules are not intended as full-featured an-

alytical engines, but as semantic preprocessors and partial
data analyzers. As a result, the data stream will be re-
duced by filtering interesting events and aggregating data
as needed by the consumer. This contrasts with traditional
compression techniques or static aggregation steps, which
do not make use of semantic information. As a consequence,
they either push the processing completely into software or
potentially lose interesting events. Recognizing the power
and flexibility inherent in preprocessing data close to the
source within the computational and memory constraints of
the capsule are, as yet, a subtle art. Future work must sys-
tematically address the division of labor between an analysis
module and high-level software analysis tools.

3.4 Programming Monitoring Modules
Programming FPGAs using low-level hardware descrip-

tion languages is a complex task often only accessible to the
advanced hardware designer. In order to make Owl acces-
sible to a wider range of users, we must take further steps.
While not part of the initial design, we present a few direc-
tions we are pursuing in ongoing work.
For the common user, we will provide a comprehensive

module library containing common analysis modules. Users
can extend this library at any time with new modules de-
veloped by any programmer. The result is similar to kernel
modules, which can be loaded into the kernel at runtime
to extend the system’s capabilities without the user having
to know details about the kernel itself or implementation
details of such modules.
In addition, we will work on high-level abstractions to de-

sign or compose monitoring modules. As a first step, we
are developing a toolset that enables users to combine mon-
itor submodules (e.g., histogram generators, counters, com-
pression algorithms, or pattern detectors) into new modules.
Once composed, the toolset generates and compiles the new
hardware design as specified by the user and adds it to the
module library. As a next step, we will investigate high-
level programming approaches, such as C to HDL compilers,

Cross Capsule
Analysis

Memory

L2 Cache

L1 Cache

CPU

Monitor

Monitor

Monitor

Figure 3: Multi-level Monitoring in the Memory Hier-

archy: Location of Monitoring Capsules

to make Owl’s full flexibility available to the user. Several
projects and products already address such compilation ap-
proaches, and we plan to build on top of them. So far,
these approaches have had limited success when applied in
a general scenario due to inefficiencies when compiling ar-
bitrary algorithms into hardware. In Owl, however, we are
faced with a less complex problem, since all modules will
naturally follow a given pattern—they target online event
processing. We expect such compiler solutions to be more
efficient when used to generate Owl modules.

4. USAGE SCENARIOS FOR Owl
Owl provides a versatile and highly flexible monitoring

infrastructure that can be used for a variety of scenarios.
It can be used to implement existing hardware counters as
well as most hardware monitors currently proposed in the
literature. Owl is therefore downward compatible, providing
a true superset of extant monitoring functionality. Further,
Owl allows users to transfer hybrid hardware/software solu-
tions into a single hardware module, eliminating the often
costly software component. For instance, sampling and pro-
filing based on performance counters can be implemented
inside the capsule connected to the associated data probe.
In addition, Owl can be used to implement previously

infeasible or overly expensive analysis techniques. In the
following we describe three such examples that aggregate
and pre-analyze memory traffic: the creation of memory
access traces for logging and debugging, the generation of
memory access and cache miss histograms for memory per-
formance tuning, and data structure access monitoring and
pattern recognition. These represent three typical classes
of algorithms, namely classic filtering and compression; par-
tial, custom aggregation for the creation of histograms; and
pattern detection and extraction.
For these examples, we assume Owl capsules are dis-

tributed in the memory system. More specifically, we as-
sume a three-level memory hierarchy and attach a capsule
between each level, as illustrated in Figure 3. We focus on
monitoring the memory system initially, since it remains one
of the most significant performance bottlenecks in modern
architectures. The overall Owl architecture, however, can
be deployed system-wide, and modules similar to those de-
scribed below can be used in other system components.

4.1 Memory Access Logging
Software-based memory trace facilities [10, 21, 29] are

heavily used for workload characterization and simulation.
In most cases, however, they are implemented based on ar-
chitectural simulation and hence are limited by high sim-
ulation overhead and by the fact that they fail to capture
complete system-level behavior.
These limitations can be overcome using a monitoring

module designed for trace generation. To avoid excessive
memory traffic induced by full logging, monitoring modules
can perform loss-less compression, ranging from well estab-
lished schemes, such as run-length encoding, to more sophis-
ticated approaches including semantic trace compression [7]
or load-value predictor-based compression [3]. All these can
be implemented in hardware to reduce traffic significantly.
The modules can also be used to perform aggressive filter-

ing, logging only accesses corresponding to particular code
or address regions or occurring within a given time window.
In the extreme case, a module only maintains a short time
access log in the form of a ring buffer. Triggered by certain
events, e.g., illegal accesses, this log is written to memory
and delivered to a corresponding tool for further analysis.
This mechanism provides new means for debugging at all
system levels, e.g., through transparent assertion testing or
value inspection. It can also be applied for security tests,
e.g., detection of buffer overruns. In the latter case, the
monitoring module is provided by the operating system as
a system component to transparently and non-intrusively
control any running application.

4.2 Memory Access Histograms
The ability to monitor addresses of memory accesses al-

lows the creation of memory access histograms, as depicted
in Figure 4 (left) for a sort algorithm (RADIX of SPLASH-
2 [32]). These histograms show the number of accesses per
address or cache block to each level of the memory hierar-
chy over a period of time and thereby enable observations
on individual data structures. In the example, the different
access behavior for the two main arrays (cache block 200-
8500 and 8500-16500), as well as to the global configuration
data (cache blocks 16500-17300), are clearly distinguishable.
Furthermore, the availability of histograms for each level of
the memory hierarchy enables the computation of cache miss
rates on a per address basis, as shown in Figure 4 (right).
The example shows that both arrays are faced with high
L1 cache miss rates of around 30% interleaved with regu-
lar spikes to particular blocks with almost 100% miss rate.
Through reverse mappings of addresses to data structures,
this information is used to identify data structures with poor
cache behavior and hence focus performance analysis and
optimizations.

4.3 Dynamic Pattern Recognition and Reduc-
tion

Periodic program behavior presents a rich opportunity for
program characterization and optimization [13, 24]. Loops
involving non-affine iterative steps or indirect accesses are a
barrier to static periodicity detection, and long-range corre-
lations may be obscured by procedure boundaries. Online
approaches are attractive in combating these limitations and
can be implemented within the proposed framework in the
form of analysis modules. They are capable of detecting
periodic behavior and delivering these observations for con-

0
5

10
15
20
25
30
35
40
45
50

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

17
00

0

Number of cache block

N
um

be
r

of
 a

cc
es

se
s L1

L2
MM

0%

20%

40%

60%

80%

100%

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

11
00

0
12

00
0

13
00

0
14

00
0

15
00

0
16

00
0

17
00

0

Number of cache block

L1 MR
L2 MR

Figure 4: Memory access histogram (left) and cache miss rate diagram (right) for sort algorithm (radix sort)

sequent system optimization, such as prefetching. At the
same time, the repeating character of detected patterns can
be used for “semantic” data reduction, since each pattern,
once recognized, can be represented by a single data point.
Such aggregation is significant, as it reduces the amount of
data that need be communicated by the monitor, visualized
by the user, stored on disk or memory, or analyzed by a tool
or algorithm.
A pattern detection module first recognizes arbitrary, re-

peating memory patterns and then performs a semantic data
reduction, representing each complex pattern as a single
point. We apply this technique to an off-line Alpha 21264
trace of ammp, an n-body molecular dynamics code from the
SPEC 2000 suite. More specifically, our study focuses on
the mm fv update nonbon function, which dominates compu-
tation time for many inputs, including the SPEC reference
input set used here.
A monitoring module first extracts repeating subse-

quences from a stream of load target addresses by applying
a standard longest common subsequence algorithm. Assum-
ing generous 32-bit table entries to record distances between
load addresses, a module implementing such a pattern de-
tection algorithm would require a pattern match table with
200×100 entries (approximately 80KB in raw form). The
elimination of dead table entries, the application of partial
evictions, and the use of width-adaptive registers will de-
crease this space requirement.
The results of pattern detection and aggregation of

ammp are shown in Figure 5. The top pane of the fig-
ure shows a trace of addresses from the execution of
mm fv update nonbon. Applied to this data, the monitor-
ing module captures a number of recurring patterns. The
most interesting one is shown highlighted in the middle pane,
which is a blown up section of the top band in the original
trace. These patterns iterate over a larger address space,
interrupted by gaps. These observations can be related to
dynamic control flow such as if statements (i.e., the gap in
addresses) and loops (i.e., the repetition of the pattern).
Having recognized the pattern, little additional informa-

tion is gained by the inclusion of every one of its constituent
accesses in a trace. Rather, the aggregation of the entire pat-
tern to a single point reveals the underlying periodicity (as
shown in the bottom pane of Figure 5) and at the same time
significantly reduces the amount of data transfered from the
monitor to the ring buffer. In this example, the 72 individ-
ual accesses comprising the pattern are reduced to a single

4800000000

4900000000

5000000000

5100000000

5200000000

5300000000

5400000000

0 100 200 300 400

ad
dr

es
s

(b
yt

es
)

time (instructions)

5396410600

5396410800

5396411000

5396411200

5396411400

5396411600

5396411800

5396412000

5396412200

0 100 200 300 400

ad
dr

es
s

(b
yt

es
)

time (instructions)

5396410000

5396420000

5396430000

5396440000

5396450000

5396460000

5396470000

5396480000

5396490000

0 20000 40000 60000 80000 100000

ad
dr

es
s

(b
yt

es
)

time (instructions)

Figure 5: ammp substructure: trace of mm fv update nonbon

(top), trace restricted to address range of top band with

repeating access pattern highlighted (middle), extended

trace with access pattern aggregated to a single point

(bottom)

representative access to the base address of the pattern, re-
sulting in an injection rate of 1/72.
The behavior so exposed indicates that a second round

of pattern matching should be applied, which would distill
the entire loop body to only a few points. Applying this
multi-resolution approach recursively allows users to expose
higher-level program structure and periodicity without the
usual attendant increase in data.

5. EXPERIMENTS AND RESULTS
In order to be successful, a reconfigurable monitoring in-

frastructure, like Owl, must facilitate the implementation
of monitoring modules with low hardware complexity and
guarantee low system perturbation. In the following, we
present experimental results showing that Owl satisfies these
conditions.

5.1 Hardware Complexity
To study the complexity of monitoring models, we imple-

mented a VHDL version of the histogram module described
above. Memory histogram generation conceptually requires
an individual counter for each memory location. We use
an associative counter array to avoid maintaining a large
number of counters. The module contains a small set of
counters that are dynamically associated with observed ad-
dresses. When the number of observed addresses exceeds
the number of available counters, the module frees the least
recently used counter, writes its contents to main memory as
a partial result, and reuses the freed counter for new events.
This drastically reduces the required frequency of writebacks
to memory, and ensures low system perturbation. The con-
crete number of counters used within the module depends
on the capsule location and the observed traffic patterns.
Across a range of applications, our experiments show that
32 to 128 counters are sufficient to achieve an injection rate
of less than 1/8 [23].
Using a Xilinx XC4085XLA with 40K gates, the analy-

sis logic in its current version consumes about 66% of the
available resources. Considering that modern FPGA chips
contain up to 8M gates, this monitor can be realized with a
modest chip real estate budget. Furthermore, aggressively
pipelining the design of the analysis module enables the
monitor to execute at the maximum frequency of the FPGA.

5.2 System Perturbation
To characterize perturbation of monitored applications we

implemented the Owl framework within the memory system
of SimpleScalar (SimAlpha version 4.0) [9] and varied injec-
tion rates to simulate different monitoring modules. We im-
plement capsules at each level of the memory hierarchy using
two different techniques for injecting the recorded data into
the memory stream: the first simply injects the traffic into
the memory system at the location of the capsule as reg-
ular memory packets, while the second ensures that mon-
itor packets bypass all on-chip caches and uses a separate
off-chip memory controller to store the monitor data. The
former minimizes the architectural impact when introducing
Owl, and hence is a suitable solution for commodity systems,
while the second results in less perturbation, but comes at a
significantly higher implementation cost, and hence is only
an option in specialized high performance systems.
Our simulator is configured as closely as possible to the

validated model of a Compaq DS-10L Alpha Server, as de-

Benchmark Type Input #Instr.

164.gzip SPECint ref/program 256B
171.swim SPECfp ref 1563B
175.vpr SPECint ref/route 240B
176.gcc SPECint ref/expr 15.2B
177.mesa SPECfp ref 492.2B
179.art SPECfp ref/470 198.9B
186.crafty SPECint ref 264B
188.ammp SPECfp ref 1924B
254.gap SPECint ref 473B
256.bzip2 SPECint ref/program 58B

Table 1: SPEC benchmark parameters

baseline: no monitoring activated

1/1 injection rate; naive injection (naive)
1/8 injection rate; naive injection (naive)
1/64 injection rate; naive injection (naive)

1/1 injection rate; separate off-chip memory (sepmem)
1/8 injection rate; separate off-chip memory (sepmem)
1/64 injection rate; separate off-chip memory (sepmem)

Table 2: Test cases

scribed in previous studies [8, 9]. The memory system is
a 64KB, two-way associative L1 cache with 64B lines and
three-cycle latency followed by a 2MB direct-mapped L2
cache with a 13-cycle latency. The benchmarks are selected
from the SPEC 2000 benchmarks to achieve a broad cov-
erage of behaviors and they use the SPEC reference input
sets. In order to achieve reasonable simulation times we
rely on SimPoint [24]. More specifically, we use SimPoint
in the original version with multiple simpoints per code [5]
to guarantee the highest possible accuracy. The complete
configuration of the benchmarks along with the input sets
for the cycle-accurate simulation are shown in Table 1. In
case of multiple possible input sets, we choose the one with
the lowest error rate under SimPoint execution.
The discussion of modules in Section 4 reflects the de-

pendence of traffic injection rates on the analysis technique
employed by the module: 1/1 for full address logging, 1/8
as an upper bound for the memory access histogram gen-
eration, and 1/64 for pattern matching. The configuration
space is shown in Table 2 and the results in Figure 6.
Most codes are capable of hiding injection rates of 1/8

and less without system perturbation, while some of the
more memory intensive codes require rates as low as 1/64.
However, these codes can be executed at higher injection
rates if the user can tolerate higher system perturbation.
Similar to the selected results above, introducing a separate
monitoring memory could eliminate most perturbation for
higher injection rates.
This overhead is still orders of magnitude lower than any

software scheme. In addition, as described in Section 4, most
applications of logging schemes do not require full logs over
the application runtime, but rather concentrate on specified
subregions. This will reduce the amount of traffic the system
has to deal with, enabling full access logging in these cases.

6. CONCLUSIONS AND FUTURE WORK
Researchers have proposed myriad analysis techniques,

and practitioners have made efficient use of these for sys-

164.gzip

171.sw
im

175.vp
r

176.gcc

177.m
esa

179.art

186.cr
afty

188.ammp

197.gap

254.bzip
2

arith
metic

mean

0.0

0.5

1.0

1.5

IP
C

no monitoring
ir=1/1, L1-L2, naive
ir=1/8, all, naive
ir=1/64, all, naive
ir=1/1, L1-L2, sepmem
ir=1/8, all, sepmem
ir=1/64, all, sepmem

Figure 6: IPC across several SPEC benchmarks and with varying configurations

tem adaptation and optimization. Nonetheless, the capa-
bilities of current systems fall far short of what is needed
and expected for reliable, efficient, complex computing sys-
tems. Most existing approaches suffer from the inflexibility
and limitations of the monitoring hardware or rely on purely
software implementations with extreme overhead costs. All
of these techniques would benefit from the existence of a uni-
fying, general-purpose monitoring architecture that allows a
better balance of functionality between hardware and soft-
ware, and even allows the user to configure each technique
to the scenario at hand, to be activated on demand.
In this paper, we propose such a flexible, general infras-

tructure for reconfigurable monitoring, and we illustrate how
it can be used for understanding memory behavior to op-
timize access patterns and data placement. Further, we
show that such monitoring can be implemented with very
low overhead, causing little or no system perturbation, and
thus minimal observable performance penalties.
The framework itself is novel: it separates system probes

from data analysis functionality, allowing the latter to be
dynamically controlled by the user in the form of analy-
sis modules. For instance, in the memory monitoring ex-
amples, these modules perform online preprocessing of the
observed memory addresses, and deliver results to the con-
sumer for post-processing—without necessitating any pro-
cess interruptions. Our results show that a monitoring sys-
tem with autonomous data delivery has a relatively small
impact on system performance and that with lower injec-
tion rates the overhead becomes negligible.
The feasibility study performed in the course of this work

demonstrates the viability of the general approach. As the
framework was designed as a general monitoring facility, we
believe its success in the specific context of memory analysis
will extend to more pervasive system-wide monitoring—and
towards better understanding of system behavior in general.

7. ACKNOWLEDGMENTS
This work was supported by the National Science Founda-

tion under award ITR/NGS-O325536 and by a DOE fellow-
ship, provided under grant number DE-FG02-97ER25308.
Part of this work was performed under the auspices of
the U.S. Department of Energy by University of Califor-
nia Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48 (UCRL-CONF-209855).

8. REFERENCES

[1] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat,
M. R. Henzinger, S.-T. A. Leung, R. L. Sites, M. T.
Vandevoorde, C. A. Waldspurger, and W. E. Weihl.
Continuous profiling: Where have all the cycles gone?
In Proceedings of the 16th ACM Symposium on
Operating Systems Principles, pages 357–390, Oct.
1997.

[2] D. Andrews, D. Niehaus, and P. Ashenden.
Programming models for hybrid CPU/FPGA chips.
IEEE Computer, 37(1):118–120, Jan. 2004.

[3] M. Burtscher and M. Jeeradit. Compressing extended
program traces using value predictors. In Proceedings
of the 2003 International Conference on Parallel
Architectures and Compilation Techniques, pages
159–169, Oct. 2003.

[4] B. Calder, C. Krintz, S. John, and T. Austin.
Cache-conscious data placement. In Proceedings of the
8th Symposium on Architectural Support for
Programming Languages and Operating Systems,
pages 139–149, Oct. 1998.

[5] B. Calder, T. Sherwood, E. Perelman, and
G. Hamerley. Simpoint.
http://www.cs.ucsd.edu/˜calder/simpoint/, 2003.

[6] M. L. Corliss, E. C. Lewis, and A. Roth. DISE: A
programmable macro engine for customizing
applications. In Proceedings of the 30th Annual
International Symposium on Computer Architecture,
pages 362–373, June 2003.

[7] L. DeRose, K. Ekanadham, J. Hollingsworth, and
S. Sbaraglia. SIGMA: A simulator infrastructure to
guide memory analysis. In Proceedings of IEEE/ACM
Supercomputing ’02, Nov. 2002.

[8] R. Desikan, D. Burger, and S. Keckler. Measuring
experimental error in multiprocessor simulation. In
Proceedings of the 28th Annual International
Symposium on Computer Architecture, pages 266–277,
June 2001.

[9] R. Desikan, D. Burger, S. Keckler, and T. Austin.
Sim-alpha: a validated, execution-driven Alpha 21264
simulator. Technical Report TR-01-23, Department of
Computer Sciences, The University of Texas at
Austin, 2001.

[10] Digital Equipment Corporation. ATOM User Manual,
Mar. 1994.

[11] C. Ding and K. Kennedy. Improving cache
performance in dynamic applications through data
and computation reorganization at run time. In
Proceedings of the 1999 ACM SIGPLAN Conference

on Programming Language Design and
Implementation, pages 229–241, May 1999.

[12] C. Ding and Y. Zhong. Compiler-directed run-time
monitoring of program data access. In First ACM
SIGPLAN Workshop on Memory System Performance
(MSP), pages 1–12, June 2002.

[13] E. Duesterwald, C. Cascaval, and S. Dwarkadas.
Characterizing and predicting program behavior and
its variability. In Proceedings of the 2003 International
Conference on Parallel Architectures and Compilation
Techniques, pages 220–231, Sept. 2003.

[14] Intel. Intel Itanium Architecture Software Developer’s
Manual, 2000.

[15] Intel. Intel Architecture Software Developer’s Manual
Volume 3: System Programming Guide, 2002.

[16] W. Karl, M. Leberecht, and M. Schulz. Optimizing
data locality for SCI-based PC-clusters with the
SMiLE monitoring approach. In Proceedings of
International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 169–176, Oct.
1999.

[17] J. Marathe, F. Mueller, T. Mohan, B. de Supinski,
S. McKee, and A. Yoo. METRIC: Tracking down
inefficiencies in the memory hierarchy via binary
rewriting. In Proceedings of the First Annual
Symposium on Code Generation and Optimization,
pages 289–300, Mar. 2003.

[18] M. Martonosi, D. W. Clark, and M. Mesarina. The
SHRIMP performance monitor: Design and
applications. In Proceedings of the International
Conference on Measurement and Modeling of
Computer Systems (Sigmetrics ’96), pages 61–69, May
1996.

[19] M. Martonosi, D. Ofelt, and M. Heinrich. Integrating
performance monitoring and communication in
parallel computers. In Proceedings of the International
Conference on Measurement and Modeling of
Computer Systems (Sigmetrics ’96), pages 138–147,
May 1996.

[20] T. Mohan, B. de Supinski, S. McKee, F. Mueller,
A. Yoo, and M. Schulz. Identifying and exploiting
spatial regularity in data memory references. In
Proceedings of IEEE/ACM Supercomputing ’03, Nov.
2003.

[21] A.-T. Nguyen, M. Michael, A. Sharma, and
J. Torrellas. The augmint multiprocessor simulation
toolkit for intel x86 architectures. In Proceedings of
1996 International Conference on Computer Design,
October 1996.

[22] M. Prvulovic and J. Torrellas. Reenact: Using
thread-level speculation mechanisms to debug data
races in multithreaded codes. In Proceedings of the
30th Annual International Symposium on Computer
Architecture, pages 110–121, June 2003.

[23] M. Schulz, J. Tao, J. Jeitner, and W. Karl. A proposal
for a new hardware cache monitoring architecture. In
Proceedings of the Workshop on Memory Systems
Performance (MSP 2002), June 2002.

[24] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically characterizing large scale
program behavior. In Proceedings of the 10th
Symposium on Architectural Support for Programming

Languages and Operating Systems, pages 45–57, Oct.
2002.

[25] B. Sprunt. The basics of performance-monitoring
hardware. IEEE Micro, pages 64–71, July/August
2002.

[26] B. Sprunt. Pentium 4 performance-monitoring
features. IEEE Micro, pages 72–82, July/August 2002.

[27] Sun Microsystems. Ultra-SPARC-IIi User’s Manual,
1997.

[28] J. Teifel and R. Manohar. Highly Pipelined
Asynchronous FPGAs. In Proceedings of the ACM
International Symposium on Field-Programmable Gate
Arrays, pages 133–142, Feb. 2004.

[29] J. Veenstra and R. Fowler. MINT: A front end for
efficient simulation of shared-memory multiprocessors.
In Proceedings of the 2nd International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, pages 201–207, Jan.
1994.

[30] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham. Efficient software-based fault isolation. In
Proceedings of the 14th ACM Symposium on Operating
Systems Principles, pages 203–216, Dec. 1993.

[31] R. Wisniewski, P. Sweeney, K. Sudeep, M. Hauswirth,
E. Duesterwald, C. Cascaval, and R. Azimi.
Performance and environment monitoring for
whole-system characterization and optimization. In
P = AC [2] Conference on Power/Performance
Interaction with Architecture, Circuits, and Compilers,
pages 1–10, Oct. 2004.

[32] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. In Proceedings of the
22nd Annual International Symposium on Computer
Architecture, pages 24–36, June 1995.

[33] M. Xu, R. Bodik, and M. Hill. A flight data recorder
for enabling full-system multiprocessor deterministic
replay. In Proceedings of the 30th Annual
International Symposium on Computer Architecture,
pages 122–135, June 2003.

[34] Y. Zhong, C. Ding, and K. Kennedy. Reuse distance
analysis for scientific programs. In Proceedings of the
Workshop on Languages, Compilers, and
Runtime-Systems for Scalable Computers, Mar. 2002.

[35] Y. Zhong, S. G. Dropsho, and C. Ding. Miss rate
prediction across all program inputs. In Proceedings of
the 2003 International Conference on Parallel
Architectures and Compilation Techniques, pages
79–90, Sept. 2003.

