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Abstract—Consolidation through live VM migrations is a
promising approach to improve server utilization. However,
prior consolidation works have focused mostly on the perfor-
mance impact of migration and neglected the associated energy
overhead. Our research finds that energy impact of migration
can offset over 12% of the energy saved through energy-
conscious workload packing. To address this limitation of the
current state of research, in this paper we devise new schemes
to pack applications that targets a joint optimization of energy
and performance overhead of VM migrations. Additionally,
we develop a statistical workload modeling technique for
simulating consolidation problem in enterprise cloud contexts.
Our experiments with statistically generated synthetic trace
and Google’s production trace demonstrate that our schemes
can improve energy savings up to 23% compared to state of
the art power-aware workload consolidation strategy.

Keywords-VM migration energy; energy-efficient consolida-
tion; cloud resource management.

I. INTRODUCTION

Energy related costs are predicted to be the single largest
contributor of the operational cost in enterprise clouds.
Inherently, IT resources consume power in energy dis-
proportional manner. A key source of energy inefficiency
comes from the idle energy consumption by underutilized
server components. Low server utilization in production
datacenters [1, 2] stems from over-provisioning the server
farm’s capacity to cope with infrequent spikes of request. To
mitigate this energy wastage, adaptive resource provisioning
through dynamic VM resizing and live VM migrations is
used to consolidate applications on a small group of physical
hosts, and the rest servers are decommissioned [3, 4].

Workloads’ dynamism in enterprise clouds makes con-
solidation a very challenging task. Factors that constrain
consolidation efficacy can be classified in direct and indirect
overhead of VM migrations. The former component includes
time taken for VM transfer, additional power incurred by
migration operation, performance loss during the downtime
phase of a VM migration, and so on. The later part reflects
the penalty caused to co-located applications of the migrant
workload that is hard to be modeled in an application
agnostic manner, and thus falls beyond the scope of current
work. The specific contributions of this paper are as follows:
• We address the energy impact of workload migration

in consolidation perspective. Our findings reveal that
instantaneous power amplifications at the source and
the target servers during the period of migration mostly

depend on the CPU-utilization levels of the associated
hosts.

• We propose novel heuristics that leverage workloads’
resource usages and servers’ power profiles to make the
consolidation schedule more energy-effective.

• For characterizing runtime task resource usages, we
develop a statistical workload modeling technique for
simulating different consolidation schemes. We vali-
date our model by comprehensive experiments with
Google’s production trace [5] comprising over 12,500
servers.

The rest of this paper is structured as follows. Section II
presents background and motivation, and Section III dis-
cusses relevant research works. Migration energy-cost aware
heuristics are detailed in Sections IV. Section V describes
our statistical task resource-usage modeling. Section VI
analyzes the experimental results, and Section VII concludes
our work.

II. BACKGROUND AND MOTIVATION

A. Energy Overhead of VM migration

A precise analytical model for measuring energy cost of
migration requires architectural details of the workload and
the migration environment [6, 7]. In this paper, our goal is to
demonstrate the necessity of incorporating migration energy
overhead into consolidation context for large scale cloud
settings. Towards that end, we raise the level of abstraction to
model the applications, and characterize the workloads based
on their resource usages. This raised abstraction of workload
modeling facilitates simulating our proposed consolidation
schemes and validating the results against production data-
center traces.

To analyze the migration energy overhead for different
consolidation policies, we consider two key parameters:
(a) Migration Power - the instantaneous power hike at
the source and the destination servers during the migra-
tion period, and (b) Migration Time - time to transfer an
application’s memory footprint from the source server to
the destination server. For each migration, migration power
is multiplied with migration time to give an estimation of
migration energy.

First, to measure migration power, we set up a testbed
with two servers - one used as the source and the other
used as the destination of the migration; both attached with
WattsUp Pro meters to collect power consumption readings.



140 

150 

160 

170 

180 

190 

200 

210 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

P
o
w

e
r 

 (
W

a
tt

) 

Elapsed Time (Sec) 

Core Count # 0 Core Count # 1 Core Count # 2 Core Count # 3 

Core Count # 4 Core Count # 5 Core Count # 6 Core Count # 7 

migration time 

((a))

140 

150 

160 

170 

180 

190 

200 

210 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

P
o
w

e
r 

 (
W

a
tt

) 

Elapsed Time (Sec) 

Core Count # 0 Core Count # 1 Core Count # 2 Core Count # 3 

Core Count # 4 Core Count # 5 Core Count # 6 Core Count # 7 

migration time 

((b))

Figure 1. Migration Power Consumption Overhead at Destination and Source Servers

As the migration workload, we choose an idle guest image of
Ubuntu OS configured with 2 VCPUs and 1.2GB RAM. As
CPU usage dominantly impacts the system power consump-
tion, we measure the migration power overhead at different
resource consumption levels by tuning the CPU usages on
the source and the destination servers. CPU utilization is
tuned at the core granularity. As the server platforms in our
experiment are eight-core machines, we tune the CPU usage
level by launching increasing instances of CPU-intensive
LAPACK1 benchmarks (each instance being mapped to
execute on an individual core).

Fig. 1(a) depicts the instantaneous power elevation at
the destination server during the VM migration, when the
destination’s CPU is tuned by launching 0, 1, 2. . . up to 7
instances of LAPACK benchmark. A maximum peak of 23
watts is observed when the destination server remains idle,
and migration is triggered by the hypervisor. The amplitude
of power elevation due to migration gradually decreases as
more cores are tuned on (for example, power increased by
7 watts when 7 cores are active), and hence the processor’s
architectural states are warmed up already. A similar trend
is observed at the source end of the migration as shown
in Fig. 1(b). This time the source server’s CPU usage is
modulated by launching 0, 1, 2. . . up to 7 instances of the
same benchmark, while the VM migration is initiated by
the hypervisor at the source end. Similar to the destination
side, we see a maximum power elevation of 19 watts when
the source server triggers the migration from complete idle
state. Fig. 1(b) demonstrates that the amplitude of power
hike at the source side is lower than that at the destination
end. This is perhaps due to reason that migration operation
is initiated at the source server, and so better optimization
for data transfer and network traffic management is available
on this end compared to the destination side.

Now, to measure VM migration time at different resource
consumption levels, we observe that migration duration in

1Linear Algebra PACKage is a software library for numerical linear
algebra.

all cases is almost constant as long as the VM image’s
size and underlying network interface’s bandwidth remain
unchanged. This is consistent to prior studies [8, 9, 3] which
establish that migration time can be modeled as a linear
function of the VM size. We follow a similar scheme for
modeling the VM migration time. As live migration exerts
additional load on the datacenter’s network infrastructure,
most virtualized deployments utilize an entirely different
network and separate NIC per host to accommodate live
migration traffic [10].

B. Performance Impact (Slowdown) of VM Migration

During VM Migration, performance is compromised
while the application is transparently moving from the
source to the destination. During the final phase of VM
transfer, the application is suspended entirely, i.e. no CPU-
cycles are granted to the migratory application. Suspension
resumes after the dirty pages in penultimate phase are moved
to the destination. While the migration period is usually tens
of seconds, this suspension duration is in the order of tens to
hundreds of milliseconds [6]. In this paper, we attribute this
downtime duration times the application’s CPU-usage as the
performance penalty to the associated VM. This formulation
takes the first order impact of migration on the throughput
loss, while the second order performance overhead comes
from cold start on the destination end after resumption.
Modeling the second order impacts need knowledge about
micro-architectural states of the application before and after
the migration, and hence falls beyond the scope of this work.

C. Server Power Model

Server power modeling traditionally focused on develop-
ing a power profile that maps CPU utilization to a certain
power usage. In this paper, we use the liner model validated
by [1] and [11]:

Pdyn = Pidle + (Pmax − Pidle) ∗ CPUdyn (1)



In our experiment, we measure Pidle = 140W and
Pmax = 210W by running LAPACK benchmarks to load
100% CPU stress.

D. Bin-Packing Heuristics for Consolidation Problem

Consolidation problem can be modeled as a variation of
multidimensional bin-packing problem. Categorized as an
NP-hard problem, different heuristics and linear program-
ming based solutions are used for getting a near-optimal
solution. Several proposed VM packing algorithms use a
variant of First Fit Decreasing (FFD) heuristic. In FFD,
servers on the system are sorted in descending order of their
spare resource capacity, and then under-utilized servers are
selected to unload their VMs to migrate to the other-end
servers. Thus, VMs are consolidated on small number of
active servers, each operating at elevated utilization levels.
To keep the execution overhead very modest, our consolida-
tion schemes are constrained to work with single dimension
(i.e. CPU usage).

III. RELATED WORK

In recent years, extensive researches are conducted to op-
timize either power or performance in datacenters. Perhaps
the most relevant work is pMapper [3] that ranks the servers
based on power-efficiency index, which is defined as the
marginal increase in power for marginal increase in resource
(i.e. CPU) capacity. As server power is modeled as a linear
function of its CPU usage, the power-efficiency index in
pMapper is equivalent to the ratio of the peak power to
the CPU capacity of a server. For an application placement,
pMapper first selects the server with the least power increase
per unit increase in CPU usage. To ensure that servers are
packed with minimal fragmentation, pMapper uses a variant
of FFD algorithm. On several grounds our work varies from
pMapper. pMapper does not consider energy overhead of
migration; it translates the cost of migration to throughput-
loss only. Additionally, pMapper’s approach of ranking
power-efficient servers falls short when the peak power and
the peak capacity of all servers are same. In such scenario,
pMapper turns to simple FFD scheme that performs non-
optimally for energy-aware application packing.

Liu [7] et al. is the first to investigate the performance
and energy overhead of live migrations combinedly. By
exploiting the OS and hypervisor level architectural details,
their result shows that a precise prediction can be made to
quantify the impact of VM migrations within a modest range
of modeling error. However, their work does not delve into
the findings that migration power significantly vary due to
the run-time power profile of the source and the destination
servers. Besides, they do not address how to leverage the
migration’s energy impact to devise energy-efficient VM
packing schemes. Moreover, as this analytical prediction
model requires access to OS and hypervisor for collecting
statistics, such as, page dirtying rate, this is not feasible to
be validated against production datacenter traces.
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Figure 2. Schematic Consolidation of Two Workloads

IV. MIGRATION ENERGY-AWARE VM PACKING

A. Design Parameters

Before presenting the details of the proposed migration
energy-aware task packing schemes, we delineate the basic
principle behind the development of these heuristics. For
simplicity of illustration, we consider an initial mapping of
Fig. 2(a), where two servers S and T each hosts one VM x
and y respectively. After the consolidation, the two possible
configurations are shown in Fig. 2(b) and Fig. 2(c). Now, to
develop underlying design parameters for migration energy-
aware application packing, we consider two scenarios below.

Case 1 : power profiles of S and T are same, i.e. for a
particular CPU utilization level, power usage value on S,
P(S) and power usage value on T, P(T) are exactly same.

In this scenario, after the migration of workload y in
Fig. 2(b) (or, workload x in Fig. 2(c)), one of the servers
hosts both VMs and the other is switched off. As the
aggregated CPU usage on server S in Fig 2(b) and server
T in Fig 2(c) are exactly same and P(S) = P(T), both of
the final configurations consume exactly same power. In
such case, if migration energy of x, Em(x) is greater than
migration energy of y, Em(y), the net energy preservation
from the mapping of Fig 2(b) leads to higher savings.

Case 2 : power profiles of S and T are not same. In such
scenario, energy-efficiency of final configuration depends on
migration energy of workloads x and y, and power profiles
of S and T.

First, we consider the consolidation of Fig. 2(b). Let, Es

and Et denote S and T’s energy usage in initial mapping
respectively, and E

′
s denotes S’s energy usage in consoli-

dated mapping. Thus, total energy savings for final mapping
in Fig. 2(b) = (Es + Et) - (Em(y) + E

′
s) = Et - Em(y) - (E

′
s

- Es). In a similar approach, total energy savings for final
mapping of Fig. 2(c) can be estimated. The higher of these
two measurements is preferred for the consolidation.



B. Consolidation Heuristics

Our proposed heuristics assign an energy saving score to
a VM (or to a server) that indicates its effectiveness to save
energy with less performance impact. Higher scored VMs
(or servers) are selected first to schedule in consolidation,
and successively they get packed with lower scored VMs (or
servers). This strategy as a variant of FFD guarantees very
modest resource fragmentation, while simultaneously con-
siders the energy and performance overhead of migrations.
The point to be noted here is that — the destination server’s
power profile is not included in the heuristics, because at
the commencement of the schedule processing and during
the middle stage of the schedule preparation the target’s
power profile may have been changed due to intermediate
migrations mapped to the destination already.

1) Task Energy Saving Index (TESI) Heuristic: This
heuristic assigns a score to each VM, with higher value
indicates the VM’s aptitude to save energy by getting
migrated from its current host. TESI score is computed
to reflect both maximizing energy savings and minimizing
performance slowdown. For a workload x hosted on server
S, TESI score is computed as in Eq.(2). The first component,
ES , in the numerator amounts energy savings from S, when it
is decommissioned (after all its VMs are migrated). Eq.(1)
is used to compute this value with CPUdyn accounts for
aggregated CPU usages of all VMs. The subtrahend part,
Em(x), accounts the energy cost for migrating x, which is
measured from the experimental findings of Fig. 1(a) and
Fig. 1(b). Finally, the denominator, Slowdown(x), represents
the performance impact on the application incurred by VM
migration as detailed in Section II-B.

TESI(x) =
ES − Em(x)

Slowdown(x)
(2)

2) Server Energy Saving Index (SESI) Heuristic: This
heuristic assigns a score to each server that captures the
server’s capability to preserve higher energy. Server with the
highest SESI score is selected first, and all its hosted VMs
are scheduled for migration. Eq.(5) formulates the computa-
tion of SESI score for a server S. In Eq.(5), ES denotes the
same as in TESI. The second part in the numerator sums
up the migration energy for all VMs mapped to S, and the
denominator represents the combined performance impact.

Em(S) =
∑

x∈{VMs hosted on S}

Em(x) (3)

Slowdown(S) =
∑

x∈{VMs hosted on S}

Slowdown(x) (4)

SESI(S) =
ES − Em(S)

Slowdown(S)
(5)

3) Hybrid Heuristic: From a VM’s perspective, TESI
heuristic schedules migrating higher TESI-scored VMs first.
TESI offers modest slowdown, but leads to poor energy-
efficiency. Contrarily, from a server’s perspective, SESI
heuristic schedules all VMs of a selected server at a time.
SESI offers good energy effective packing, but incurs higher
throughput loss. To exploit both benefits from TESI and
SESI, in this hybrid approach, at first the TESI score is
calculated for each VM. Similar to TESI, the highest TESI-
scored VM is chosen for migration first. Now alike SESI,
all co-located VMs with this selected VM are added to
the consolidation schedule, before considering the second-
highest TESI-scored VM.

V. STATISTICAL CHARACTERIZATION OF TASK
RESOURCE USAGE

In this section, our goal is to develop a resource-usage
characterization model that is sufficiently accurate for pro-
ducing synthetic workload trace. In this paper, we focus
on characterizing run-time task resource usage for CPU
and memory. To that direction, we first discuss on the
underlying probability distribution used for generating the
random samples. Later, we detail the process of parameter
selection for the probability distributions that is used for
synthetic trace generation. Finally, we validate proposed
statistical characterization of task resource-usage against a
historical Google trace [5].

In our implementation, we characterize each workload on
basis of two major resource dimensions — CPU usage and
memory usage. Normal distribution, which is characterized
by two parameters — mean(µ) and variance(σ), is used
to generate random samples along any resource dimension.
The empirical rule of normal distribution, also known as
the 68-95-99.7 rule, states that when samples are drawn
for a particular normal distribution, about 68%, 95% and
99.7% of the samples would lie within one, two and three
standard deviations of the mean, respectively. So, for a given
parameter of (µ, σ), the samples generated by the normal
distribution lie in the range [µ − 3 ∗ σ, µ + 3 ∗ σ], where
µ− 3 ∗ σ is the lower boundary and µ+ 3 ∗ σ is the upper
boundary of the range.

The 68-95-99.7 rule entails that if we use a single normal
distribution for a resource dimension, such as, CPU usage,
over two-thirds of the samples would be in close proximity
around the mean. This would lead to limited variation
in workloads’ CPU-usage patterns that misrepresents the
tasks’ resource demands in production clouds. To alleviate
this constraint imposed by using a single normal distri-
bution, we employ multiple classes of distribution along
any resource dimension. Therefore, we sub-divide each of
the two resource dimensions into an arbitrary number of
groups to model wide variability in the resource demand
of all workloads. For example, we may divide CPU-usage
dimension into four groups and memory-usage dimension



into six groups. For any particular resource dimension, each
group represents a non-overlapped range for the samples
fallen into that particular group. Hence, to formulate the
probability distribution function of normal distribution for
samples resided in a specific group, an appropriate mean and
variance are set such that samples are constrained to fall into
the range [µ−3∗σ, µ+3∗σ]. The number of groups along any
resource dimension is a tunable parameter. By classifying
applications in arbitrary number of groups, and choosing
different mean and variance for the normal distribution of
different groups, we are able to faithfully model the diverse
nature of resource usages in modern datacenter workloads.
Accordingly, our synthetic trace is generated based on:

1) mixture of different resource intensive workloads, and
2) parameters for normal probability distribution of —

(a) CPU-usage value of each of the CPU groups, (b)
memory-usage value of each of the memory groups.

Finally, to validate the statistical characterization of run-
time task resource usage for a production Google trace [5],
we divide the resource (CPU and memory) usage spectrum
in twenty consecutive non-overlapped ranges (i.e. twenty
groups for each resource dimension), R1, R2, . . .R20, such
that each of the range contains five percent of the total
samples. For each range Ri, let Li and Ui be the lower and
the upper boundary of Ri. Then, we compute the mean(µi)
and the variance(σi) for each range Ri as below:

µi =
Ui + Li

2
and σi =

Ui - Li

6
(6)

Next, for each range Ri, random variables are generated
for five percent of the samples that reside in corresponding
group; while the distribution of the samples are normal with
parameters µi and σi as computed from Eq.(6). Now, for
each task record of the Google trace, we first identify which
group the usage-level for particular resource (either CPU or
memory) a record maps to. Then, for each resource type we
modify the trace by over-writing the actual task resource
usage by a random sample drawn from respective group
of generated samples. For example, if a task’s CPU and
memory usages are 0.20 and 0.05 respectively (both are
normalized with respect to corresponding resource capacity),
and if these usage-levels map to CPU group R4 and memory
group R1 respectively; then, we replace the original resource
usage value by CPU group R4’s and memory group R1’s
normally-distributed sample. The other components of the
workload, such as, arrival time and completion time are
kept intact. In the final step of validation, we experiment
different consolidation schemes on the historical trace and
the modified trace, and compare the final consolidation state.
We model the error as the discrepancy between the number
of consolidated servers in two experiments. Our results show
that the final consolidations with the statistically generated
samples for all packing techniques, i.e. pMapper, TESI, SESI
and Hybrid, very closely match (absolute error within 0.2 -

0.9%) with the outcomes of consolidation state using the
historical trace from Google cluster.

VI. EVALUATION

A. Experiments with Synthetic Workload Trace

To configure a datacenter’s workloads’ resources setting,
the required parameters are enlisted in Table I and Table II.
As explained in Section V, these parameters represent the
classes of distribution for two resource dimensions — CPU
usage and memory usage, along with representing a partic-
ular combination of different-resource intensive workloads.
For example, Table I shows that out of all generated work-
load samples, consecutive CPU group 1-4 contains 60%,
20%, 10% and 10% of the samples, respectively. Each row
in Table I represents parameters for one particular group
of CPU-usage. For each group, corresponding range for the
samples’ value is listed alongside. We assume four CPU
groups and four memory groups, and server’s CPU capacity
is set to 8 cores and memory capacity is set to 8GB.

CPU
Groups

Fraction of Sam-
ples (%)

Mean Variance Range for
Samples [CPU
cores]

1 60 0.25 0.083 (0.0, 0.5)
2 20 1.00 0.167 (0.5, 1.5)
3 10 2.25 0.250 (1.5, 3.0)
4 10 4.00 0.334 (3.0, 5.0)

Table I
CPU USAGE DISTRIBUTION PARAMETERS.

Memory
Groups

Fraction of Sam-
ples (%)

Mean Variance Range for
Samples [MB]

1 25 30 10 (0, 60)
2 25 90 10 (60, 120)
3 25 180 20 (120, 240)
4 25 300 20 (240, 360)

Table II
MEMORY USAGE DISTRIBUTION PARAMETERS.

First, we configure three different datacenter settings by
varying normal distribution’s parameter (µ, σ) for memory-
usage. In these three configurations, termed as C1, C2 and
C3, normal distribution parameters for CPU-usage are same
as Table I. Now, for datacenter configuration C1, memory-
usage values are distributed as per Table II. For these as-
signed parameters to memory-usage distribution, the average
memory-usage per task stands at 150 MB (computed as
weighted mean of µ values in Table II). For, configurations
C2 and C3, the µ and σ values are multiplied by 3 and 6
respectively. Hence, average memory-usage per task in C2

and C3 are 450 MB and 900 MB respectively.
Fig. 3(a) presents the server energy savings (with respect

to default workload mapping) of pMapper, TESI, SESI and
Hybrid schemes for above three configurations. Normalized
to the savings of pMapper, the savings from SESI and
Hybrid are translated to 19 - 23% and 9 - 11% gain,
respectively. As shown, all four heuristics demonstrate de-
clining energy savings with datacenter setting moved from
C1 to C3. Higher VM memory footprint results in larger
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Figure 3. Synthetic Trace Results with pMapper, TESI, SESI and
Hybrid

fragmentation, which entails lesser opportunity for compact
consolidation. TESI being a task-grained migration policy
is more sensitive to fragmentation issue. Next, Fig. 3(b)
depicts performance slowdown impacted by VM migrations
in different consolidation policies. SESI being a server-
grained workload unloading scheme, disregard individual
VM’s parameters for preparing the consolidation schedule.
This results in the highest slowdown in SESI. Thus, SESI
is preferred due to highest energy-savings potentiality until
average VM size becomes too large. And, for higher VM-
size, Hybrid is preferred as it makes a good balance between
higher energy preservation from SESI and more tolerable
performance degradation from TESI.

B. Experiments with Google Cluster Trace

For better understanding of relative merits and limitations
of pMapper, TESI, SESI and Hybrid consolidation, we
experiment with recently released Google’s utilization trace
across a large compute cluster. For limited simulation time
budget, we restrict the trace size upto 6 hours. During
this period, a total of 1,647,757 tasks are submitted to the
cluster. The task usage record keeps information of the
submitted time, along with average CPU usage and memory
usage. To conceal internals of the system, most resource
measurements are normalized. The normalization is a scaling
relative to the largest capacity of the resource on any server
in the cluster. Results of different consolidation policies
on Google trace are shown in Fig. 4. For the six hours
long trace, the average normalized CPU-usage is 0.0264762
and normalized memory-usage is 0.0284707 across all the
tasks. For a memory capacity of 16 GB, per task memory
usage is translated to 466 MB. Fig. 4(a) depicts total energy
savings for different schemes that translates to a relative
energy savings of 22% and 13% for SESI and Hybrid policy
(with respect to pMapper), respectively. On Google trace
TESI performs as good as pMapper — this happens due to
the existence of regular resource usage pattern among large
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Figure 4. Google Trace Results with pMapper, TESI, SESI and Hybrid

number of tasks. Slowdown results are presented in Fig. 4(b)
which closely match with the results of synthetic trace for
datacenter setting with VM size of 450 MB in Fig. 3(b).

VII. CONCLUSION

This paper explores the migration energy overhead in
the context of application consolidation within enterprise
datacenters. We propose three novel application-packing
heuristics. These consolidation schemes faithfully capture
the energy overhead and performance impact caused by
VM migration. Our extensive experiments using statistically
generated synthetic trace guide to better understand the
comparative analysis among proposed application-packing
heuristics. Experimental results using Google trace reliably
validate the stability, accuracy and practicability of the
synthetic trace-driven consolidation methodology.
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