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Mathematical models demonstrate that to achieve optimal performance 
in a heterogeneous cloud infrastructure, the slowest node’s response 
time should be no more than three times that of the fastest node.

C loud computing is transforming the entire IT 
industry, high-performance computing (HPC), and 
personal data sharing and management. In cloud 
computing, computing power is supplied as a util-

ity, similar to electricity or water. As such, service providers 
can centrally manage, maintain, and upgrade computing 
resources, offloading the burden from small business 
owners or those who do not have the expertise or budget 
to handle the fast-changing computing infrastructure. 

Using the cloud for HPC can substantially reduce the 
total cost of ownership by eliminating the need to maintain 
large-scale parallel machines and their energy-consuming 
power and cooling systems.1,2 From a cost-effectiveness 
perspective, there are tradeoffs in terms of resource pro-
visioning given that a target task can be parallelized, a 
common case for throughput-oriented computing. 

For example, assume that an HPC job, which can be per-
fectly parallelized, takes eight hours to complete using one 
computing node. If the cloud computing service provider 
charges for a job on a per-machine-hour basis (that is, based 

on the accumulated machine time), instead of running it on 
one node for eight hours, the job can be finished in one hour 
on eight machines with eight times speedup with the same 
utility charge (eight machine hours). 

One trend that complicates this tradeoff is the heteroge-
neity in a cloud computing environment. Although a cloud 
service provider can start with near-homogeneous comput-
ing nodes, the facility will likely grow more heterogeneous 
over time due to upgrades and replacement. Therefore, not 
only will each computing node’s performance and capa-
bility continue to deviate, the new computing nodes will 
also provide better performance for the same amount of 
power due to technology scaling and architectural innova-
tion. Because of this heterogeneity, response times will 
vary significantly depending on provisioning policies. To 
mitigate this variation and guarantee quality of service, the 
cloud provider might want to dismiss the slowest computing 
nodes. The question is how slow a physical node can be for 
a given task to maintain its optimal computing quality in 
terms of execution time and energy cost. 

Using Mathematical Modeling in 
Provisioning a Heterogeneous Cloud 
Computing Environment
Sungkap Yeo and Hsien-Hsin S. Lee, Georgia Institute of Technology



COMPUTER 56

PERSPECTIVES

To tackle this issue, we established a mathematical 
model based on statistics for a heterogeneous cloud envi-
ronment. To understand optimal provisioning in a cloud, 
we used this model to evaluate the tradeoff of a task’s exe-
cution time and energy consumption.

CLOUD COMPUTING MODEL
For this study, we assume the workload is perfectly 

parallelizable, which is often the case for throughput-
oriented computing in HPC and transactional processing 
applications. For example, the most common cloud com-
puting application is file transferring on the Web. Servers 
in the cloud can process all the requests received by a 
Web service at the same time individually and indepen-
dently. Therefore, the cloud can achieve n times speedup 
when n nodes are deployed if and only if the number of 
concurrent users is always larger than or equal to n.

Next, we assume that an entire workload can be 
evenly divided into m smaller job units without affect-

ing the workload’s scalability. We also 
assume that m is larger than n, where n 
represents the maximum number of vir-
tual machines in the cloud. (For simplicity,  
m = kn, where k is a positive integer.) 
In this study, one job unit represents the 
smallest task running to the end on a 
single physical node without interruption. 
However, we do not consider intermittent 
context switches within one job unit as 
interruption as long as the task keeps run-
ning on the same physical node.

In addition, we do not allow a virtual 
machine to be migrated among physical 
nodes during a job unit’s execution because 
this migration will not only include the exe-
cutable image but also all the architectural 
states, including the memory footprint. 
Data migration on interconnected cloud 
computing nodes would likely cause sig-
nificant performance degradation due to 
peer-to-peer communication.

Cloud power and performance 
behavior

Before detailing power and performance 
in a heterogeneous cloud, we present a 
scenario from a cloud administrator’s per-
spective. Typically, cloud service providers 
begin their cloud computing business with 
several near-homogeneous computing 
nodes. Over time, the cloud provider will 
replace some of the old computing nodes 
with newer nodes featuring the latest tech-
nologies. Gradually, the capability and 

performance of all machines in the cloud will become 
more heterogeneous. Although previous studies consid-
ered heterogeneity at the microarchitectural3 and system 
levels,4 they all assumed heterogeneity in the same genera-
tion of manufacturing technology. We consider computing 
heterogeneity in a broader sense.

We reviewed the power and performance trends of com-
mercial microprocessors over the past few years and used 
our observations to justify our model assumption. We first 
plotted the thermal design power (TDP) numbers and the 
PassMark performance scores5 for several processors under 
70 W, including Pentium, Core 2, Core i3/5/7, and Xeon. This 
included all commercial desktop and server processors 
from Intel from January 2006 to February 2011, except  
Celeron processors and certain processors that did not 
report TDP or PassMark results. The solid line in Figure 1 
shows their asymptotic power consumption and perfor-
mance trend between 2006 and 2011. The dashed lines 
without individual dots show the trends of two other 
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Figure 1. Power consumption and performance of Intel’s CPUs since 2006: (a) 
power consumption and (b) performance. Over time, newer CPUs achieve higher 
performance than the older ones without compromising the power consumption.  
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machine groups based on their TDP: 70 W to 120 W and 
more than 120 W.

We applied regression methods to estimate the rela-
tionship between power and performance over time. 
Taking all the samples into account, we plotted our 
regression models for power and performance (solid lines 
in Figure 1). As Figure 1b shows, the performance contin-
ues to improve for each machine group across different 
proliferations or generations. On the other hand, the TDP 
trend in Figure 1a shows negligible growth. More interest-
ingly, the TDP trends for the two lower-power machine 
classes are decreasing. This decrease is the consequence 
of a recent awareness of the power wall, which gradually 
increases the heat dissipation cost. For the same reason, 
we anticipate that the power grade of future processors 
will remain below the bar. This also implies that with the 
same power budget, newer machines can deliver higher 
performance. In other words, performance per power (a 
metric derived by dividing the performance score by the 
power consumption) continues to grow over time. For 
example, the 95 W Core i7 (Lynnfield), released in Sep-
tember 2009, achieves higher performance than the 95-W 
Pentium D (Presler), released in January 2006. This dif-
ference is largely attributable to technological advances 
in microarchitecture as well as scaled-down feature size 
and supply voltage.

Given these observations, we define our model of power 
and performance for a future heterogeneous cloud based 
on two assumptions. 

First, the computing nodes in the cloud we analyze are 
heterogeneous, having different microarchitectures fabri-
cated using different processes. Thus, the cloud provides 
varied capability and process technologies. Second, the 
performance capabilities of these computing nodes are uni-
formly distributed (from low to high) but consume exactly 
the same amount of power. 

The rationale behind this second assumption is two-
fold. First, for a given power budget, the performance of 
each machine class continues to improve linearly while 
their power envelope remains pretty much unchanged. 
In other words, the power efficiency measured by per-
formance per power improves over time. Second, when a 
datacenter phases out some computing nodes due to an 
upgrade, it can safely deploy new computing nodes only 
when these upgrades’ aggregated power consumption 
does not exceed the original. Otherwise, the datacenter 
must also upgrade its power delivery infrastructure as 
well as its cooling capacity to accommodate the new 
servers. Given this overhead, we anticipate that the 
replacement and upgrade will be done without altering 
the power delivery infrastructure. Therefore, we assume 
that the newly deployed servers will improve perfor-
mance linearly across different machine proliferations 
while using the same amount of power. 

To express this distribution mathematically, we assume 
that the response time for executing a job unit in such a 
cloud is uniformly distributed from a seconds (the fastest 
node) to b seconds (the slowest node). Figure 2 illustrates 
the probability distribution function (PDF) of the response 
time for executing a job unit in this cloud.

On the other hand, we assume that the cloud service 
provider can improve the worst-case response time by dis-
missing physical nodes with the least performance. For 
example, when a cloud service provider decides to retire 
one-third of its physical nodes from the slowest batch, 
we assume that the new response time for executing a 
job unit of this cloud becomes a uniform distribution 
from a seconds to (a + 2b)/3 seconds, represented by  
U(a, (a + 2b)/3). As such, we assume that the maximum 
number of virtual machines that can be allocated on this 
cloud also shrinks in the same ratio. 

Figure 3 shows the impact of retiring one-third of a cloud 
service provider’s physical nodes from the cloud. The vari-
able p in this figure represents the maximum number of 
virtual machines that can be allocated on the cloud, while 
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Figure 2. Probability distribution function (PDF) of the execution 
time of a job unit when there are n virtual machines. The 
execution time is uniformly distributed from a seconds (the 
fastest node) to b seconds (the slowest node).
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Figure 3. Probability distribution function (PDF) of the execution 
time of a job unit when there are 2n/3 virtual machines. The 
worst-case response time is improved by dismissing the one-third 
of physical nodes with the lowest performance.
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n represents the maximum number of virtual machines 
for the original cloud as shown in Figure 2. Moreover, the 
PDF in Figure 3 shows the improved worst-case response 
time as a result of removing one-third of the physical nodes 
from the slowest side.

Nevertheless, in the given response time PDF, we did not 
assume that a particular virtual machine can pick a physi-
cal node at a particular speed. Rather, when a cloud’s PDF 
is given, we assumed that a virtual machine’s behavior in 
this cloud follows the PDF in a statistical manner. In other 
words, we assumed that virtual machines will be uniformly 
distributed across the physical nodes. 

Although dispatching more jobs to newly deployed 
servers with higher power efficiency increases energy 

efficiency, this is not the case for a datacenter, for two rea-
sons. First, for a datacenter, it is important to balance the 
power draw across the AC phases.6 The balance will break 
when jobs are distributed to only certain computing racks. 
Second, we want to minimize the number of hotspots for a 
datacenter, a common consequence of unbalanced work-
loads. Hotspots generally cause higher machine failure 
rates and require additional attention and effort to remove 
the heat.

Execution time and energy consumption
We define the execution time of a given workload on a 

cloud as the time required to finish a workload consisting 
of m job units. When some job units are assigned to more 
than one virtual machine, the execution time, in our defini-
tion, is bounded by the virtual machine that finishes last. 
For example, when an animator renders a movie compris-
ing m independent frames, the movie cannot be released 
before the last frame finishes rendering. In addition, when 
comparing the performance of cloud configurations, we 
use as the baseline the case of executing the same amount 
of workload on a virtual machine running on the fastest 
node. When we use more virtual machines to execute the 
workload in parallel, we use slower nodes to accomplish 
the task. As a result, the parallelized version could reduce 
the overall effectiveness of energy consumed in the cloud.

Energy consumption is the total energy needed to com-
plete a given workload. In particular, when some physical 
nodes finish their assigned job units before the others, we 
assume that these nodes will not consume energy while 

waiting for the others to finish. This is because, in a real-
world scenario, these nodes will either be assigned to other 
tasks or moved to a near-zero power state to save energy.7 
In addition, given that each computing node consumes the 
same amount of power, energy consumption as defined will 
be proportional to the total execution time. Therefore, we 
calculate a parallelized workload’s utility consumption as 
the summation of each virtual machine’s execution time.

To quantify the effectiveness of resource provisioning 
in a cloud, we use the energy-delay product (EDP),8 which 
we calculate by multiplying the execution time (seconds) 
with the energy consumption (joules). We will use this 
metric in our subsequent evaluation when provisioning 
resources (that is, the number of virtual machines to allo-
cate to achieve optimal energy efficiency).

ANALYTICAL EVALUATION
Next, we use analytical models, based on our assump-

tions, to compare each configuration’s EDP to the baseline 
EDP.

Baseline
The baseline of our study assumes that the entire job 

is performed on one virtual machine running on the fast-
est physical node. In this case, the fastest physical node 
can retire a job unit every a seconds. Because there are m 
independent job units in the entire workload, the baseline 
configuration takes ma seconds to finish. This configura-
tion consumes W × ma joules for completing the entire 
workload, where W represents a physical node’s power. 
Thus, the EDP of this study’s baseline is 

EDPbase = (W × ma)(ma) = Wm2a2.

Expectation-based analysis
We use an expectation-based analysis to determine a 

cloud model’s execution time and energy consumption. 
We use a new distribution function to represent the execu-
tion time of a virtual machine with more than one job unit.

Execution time distribution across virtual machines. 
The PDF of the response time when using p virtual 
machines is given by U(a, (a + ((b – a)p)/n)), as Figure 3 
illustrates. However, when a virtual machine is respon-
sible for more than one job unit (that is, m/p units), the 
virtual machine’s total execution time cannot be modeled 
the same way. Rather, we model it as the summation of 
independently selected m/  samples from Figure 3. When 
we add independent samples from a uniform distribution, 
the summation’s distribution function tends to approach a 
normal distribution according to the central limit theorem.9 
This theorem proves that when we add more independent 
samples into the summation, the summation’s distribution 
will become more like a normal distribution. In addition, 
the summation of 12 samples is known to be good enough 

Given that each computing node 
consumes the same amount of 
power, energy consumption will  
be proportional to the total 
execution time. 
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to satisfy the central limit theorem.9 In this case, we assume 
that a virtual machine is responsible for more than 12 job 
units by letting m ≥ 12n (that is, m ≥ 12p because p ≤ n).

Now our goal is to obtain the mean and variance of the 
normal distribution representing the total execution time 
of a virtual machine responsible for m/p job units. First, we 
calculate the mean and variance for the original uniform 
distribution, U(a,(a + ((b – a)p)/n)):
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For convenience, we use μ and σ2 to denote the distribu-
tion’s mean and variance. All in all, when using p virtual 
machines, each machine’s execution time will follow the 
normal distribution, N(μ, σ2). The ultimate question is, “How 
many seconds will it take to finish the entire workload?” To 
answer this question, we must first determine  the expecta-
tion of the largest sample from N(μ, σ2) when we must pick 
p samples. Because the overall execution time depends on 
the slowest virtual machine that finishes last, the largest of 
p samples will give the total execution time. 

Expectation of the largest sample. Before finding the 
largest sample’s expectation, we discuss the same question 
for the standard normal distribution, N(0, 1). Let pdf(x) be 
the PDF of the standard normal distribution. In this PDF, let 
y be the largest sample among randomly chosen p samples. 
For each case out of p cases, the probability of y being the 
largest sample is given as follows:
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For convenience, ExB(p) denotes the expectation of the 
largest sample among p samples from the standard normal 
distribution. In addition, by substituting pdf(x) in Equation 
2 with Equation 3, we can find the numerical values of 
ExB(p) for various p. We show the results in the middle 
column of Table 1.

pdf x x( ) = ( )    exp – /   1
2

22

π
 (3)

Because Equation 2’s complexity grows exponentially as 
p increases, we cannot find the exact numerical values of 
ExB(p) for p > 64. To address this shortcoming, we propose 
a more scalable way of approximating the values in Table 1. 
In this solution, we first implement a random number gen-
erator that produces random numbers from the standard 
normal distribution. Using this random number genera-
tor, our solution picks p independent random samples and 
remembers the largest sample among them. This operation 
continues for a long enough time (for example, to produce 
the results in Table 1, our software repeated this opera-
tion more than 100 million times) and averages the largest 
samples. This experimental method generates the exact 
numerical values of ExB(p), as shown in the third column 
of Table 1, after averaging more than 100 million trials. As 
a comparison of the second and third columns in the table 
shows, the mathematical accuracy is slightly compromised 
in exchange for scalability. However, we do not expect the 
tiny error rate to affect our analysis and conclusion.

The study of the largest sample in the standard normal 
distribution gives us an idea about the ExB(p) for other 
normal distributions. Let a random variable X follow  
N(μ, σ2) with μ ≠ 0, σ ≠ 1, σ ≠ 0, and a derived random 
variable Y = (X – μ)/σ. Then, Y follows N(0, 1) by recall-
ing the property that if X follows N(μ, σ2) and a and b are 
real numbers, then aX + b follows N(aμ + b,(aσ)2). From 
Equation 2, the expectation of the largest sample for Y is 
ExB(p) because Y = (X – μ)/σ, X = Yσ + μ; and the expecta-
tion of the largest sample for X is ExB(p) · σ + μ. Now, we  
can calculate the expectation of the largest sample for any 
arbitrary normal distribution.

Execution time and energy consumption analysis. In 
our model, each of the p virtual machines is responsible 
for m/p job units, and the response time for each job unit 

Table 1. Expectation of the largest sample (ExB(p)) from N(0, 1).

Number of samples 
(p) 

Value using 
Equation 2

Value using the 
experimental 

method

1 0.00000 –0.00001

2 0.56419 0.56419

4 1.02938 1.02938

8 1.42360 1.42356

16 1.76599 1.76591

32 2.06967 2.06968

64 2.34373 2.34368

128 2.59461

256 2.82679

512 3.04392
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follows U(a, (a + ((b – a)p)/n)). We use the following equa-
tion to calculate the expectation of the time required on a 
virtual machine finishing last:
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In this equation, we name the second term unbalance, 
which becomes zero if and only if every virtual machine 
finishes at the same time:
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For example, a higher deviation from the normal dis-
tribution indicates that the random samples from this 
distribution are more spread out, increasing the probabil-
ity of having more deviated samples. In our case, because 
we model a virtual machine’s finishing time by picking 
a sample from Equation 1, more deviated samples indi-
cate that the workload assignment is unbalanced among 
virtual machines executing this workload. In particular, 
a larger b/a will lead to a larger σ2 in Equation 1 and a 
larger Unbalance((b/a), p, m) in Equation 4. Hence, we can 
conclude that a larger b/a value causes a more unbalanced 
workload distribution among virtual machines, degrad-
ing the overall performance. Also note that Unbalance 
((b/a), p, m) is directly proportional to 1 /  m . Because m 
is independent of p and b/a, changing the value of m will 
not affect other variables in Equation 4. This implies that a 
very large m will eventually zero out Equation 4. Thus, we 
can express the execution time when m → ∞ as
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We also evaluate the energy consumption probabilisti-
cally. Because performance is bounded by the execution 
time of the virtual machine finishing last, we must calculate 
the expectation of the largest sample from Equation 1. In 
contrast, to evaluate the utility consumption, we must focus 
on the average execution time of p virtual machines. This is 
because, in a normal distribution, the probability for having 
μ + α samples is exactly the same as having μ – α samples. 
This fact indicates that the odds of having a virtual machine 
consuming α seconds more than the average is the same as 

having a virtual machine consuming α seconds less than 
the average. Therefore, we conclude that the expectation 
of the total execution time is given by μ × p, the number of 
virtual machines. Given the power of a physical node in the 
cloud is W, the total energy consumption will be as follows:

Energy consumption           
 – 

= × +
( )⎛

⎝⎜
⎞
⎠⎟

W m
p

a
b a p

n2
pp

W m a                                           = ×     
 – 

,+
( )⎛

⎝⎜
⎞
⎠⎟

b a p
n2

EDP p Wm a
n p

n b
a

p Unbala

exp        

     –     

( ) = ×

+ ( ) +

2 2

24

2 1 nnce b
a

p m n b
a

p, ,      – 

       

( )⎛
⎝

⎞
⎠ + ( )⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟2 1

                  

     –     

= ×

+ ( ) +

EDP
n p

n b
a

p Un

base

4

2 1

2

bbalance b
a

p m n b
a

p, ,      – ( )⎛
⎝

⎞
⎠ + ( )⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟2 1

Similarly, we calculate the EDP for m → ∞ as follows:
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To visualize the effect of a large m in the EDPexp metric, 
Figure 4 shows the EDP analysis for m = 12n, m = 120n, 
and m → ∞ using the following coefficients: n = 16,384, 
b/a = 1, 2, 3, 5, and ExB(p) from Table 1. To find the exact 
value p that makes the EDP metric a global minimum point, 
we take the derivative of Equation 5 with respect to p and 
set it to zero:

d
dp
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4n2 p
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In the example of m → ∞ in Figure 4, we achieve the 
minimum EDP when p = 2n/(b/a – 1) = 16,384 in Figure 
4c or p = 2n/(b/a – 1) = 8,192 in Figure 4d.

Again, p = n must be fulfilled while maintaining Equa-
tion 6 to be energy-effective for all n virtual machines in the 
cloud. By combining two conditions, p = n and Equation 6, 
we can calculate the requirement of b/a as n = 2n/(b/a – 1); 
b/a = 3. This equation suggests that in a heterogeneous 
cloud computing environment with uniformly distributed 
performance, physical nodes that respond 3 times slower 
than the fastest node should not be used when attempting 
to minimize the EDP.

These models and analysis can be used to guide future 
deployment, allocation, and upgrades of cloud infra-
structure to achieve optimal utility effectiveness. The 

findings presented here hold not only for a computing 
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Architectural Support for Programming Languages and 
Operating Systems, (ASPLOS 09), ACM Press, 2009, pp. 
205-216.

environment operated by a single heterogeneous data-
center but also for a larger computing service comprising 
many datacenters of varying ages. Because more recent 
datacenters show better energy efficiency, the effective-
ness of the collaboration of multigenerational datacenters 
can be analyzed in the same way. Our future work will 
study the power management techniques and schedul-
ing algorithms for the heterogeneous cloud computing 
environments. 
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