
55AUGUST 2011

PERSPECTIVES

Published by the IEEE Computer Society0018-9162/11/$26.00 © 2011 IEEE

Mathematical models demonstrate that to achieve optimal performance
in a heterogeneous cloud infrastructure, the slowest node’s response
time should be no more than three times that of the fastest node.

C loud computing is transforming the entire IT
industry, high-performance computing (HPC), and
personal data sharing and management. In cloud
computing, computing power is supplied as a util-

ity, similar to electricity or water. As such, service providers
can centrally manage, maintain, and upgrade computing
resources, offloading the burden from small business
owners or those who do not have the expertise or budget
to handle the fast-changing computing infrastructure.

Using the cloud for HPC can substantially reduce the
total cost of ownership by eliminating the need to maintain
large-scale parallel machines and their energy-consuming
power and cooling systems.1,2 From a cost-effectiveness
perspective, there are tradeoffs in terms of resource pro-
visioning given that a target task can be parallelized, a
common case for throughput-oriented computing.

For example, assume that an HPC job, which can be per-
fectly parallelized, takes eight hours to complete using one
computing node. If the cloud computing service provider
charges for a job on a per-machine-hour basis (that is, based

on the accumulated machine time), instead of running it on
one node for eight hours, the job can be finished in one hour
on eight machines with eight times speedup with the same
utility charge (eight machine hours).

One trend that complicates this tradeoff is the heteroge-
neity in a cloud computing environment. Although a cloud
service provider can start with near-homogeneous comput-
ing nodes, the facility will likely grow more heterogeneous
over time due to upgrades and replacement. Therefore, not
only will each computing node’s performance and capa-
bility continue to deviate, the new computing nodes will
also provide better performance for the same amount of
power due to technology scaling and architectural innova-
tion. Because of this heterogeneity, response times will
vary significantly depending on provisioning policies. To
mitigate this variation and guarantee quality of service, the
cloud provider might want to dismiss the slowest computing
nodes. The question is how slow a physical node can be for
a given task to maintain its optimal computing quality in
terms of execution time and energy cost.

Using Mathematical Modeling in
Provisioning a Heterogeneous Cloud
Computing Environment
Sungkap Yeo and Hsien-Hsin S. Lee, Georgia Institute of Technology

COMPUTER 56

PERSPECTIVES

To tackle this issue, we established a mathematical
model based on statistics for a heterogeneous cloud envi-
ronment. To understand optimal provisioning in a cloud,
we used this model to evaluate the tradeoff of a task’s exe-
cution time and energy consumption.

CLOUD COMPUTING MODEL
For this study, we assume the workload is perfectly

parallelizable, which is often the case for throughput-
oriented computing in HPC and transactional processing
applications. For example, the most common cloud com-
puting application is file transferring on the Web. Servers
in the cloud can process all the requests received by a
Web service at the same time individually and indepen-
dently. Therefore, the cloud can achieve n times speedup
when n nodes are deployed if and only if the number of
concurrent users is always larger than or equal to n.

Next, we assume that an entire workload can be
evenly divided into m smaller job units without affect-

ing the workload’s scalability. We also
assume that m is larger than n, where n
represents the maximum number of vir-
tual machines in the cloud. (For simplicity,
m = kn, where k is a positive integer.)
In this study, one job unit represents the
smallest task running to the end on a
single physical node without interruption.
However, we do not consider intermittent
context switches within one job unit as
interruption as long as the task keeps run-
ning on the same physical node.

In addition, we do not allow a virtual
machine to be migrated among physical
nodes during a job unit’s execution because
this migration will not only include the exe-
cutable image but also all the architectural
states, including the memory footprint.
Data migration on interconnected cloud
computing nodes would likely cause sig-
nificant performance degradation due to
peer-to-peer communication.

Cloud power and performance
behavior

Before detailing power and performance
in a heterogeneous cloud, we present a
scenario from a cloud administrator’s per-
spective. Typically, cloud service providers
begin their cloud computing business with
several near-homogeneous computing
nodes. Over time, the cloud provider will
replace some of the old computing nodes
with newer nodes featuring the latest tech-
nologies. Gradually, the capability and

performance of all machines in the cloud will become
more heterogeneous. Although previous studies consid-
ered heterogeneity at the microarchitectural3 and system
levels,4 they all assumed heterogeneity in the same genera-
tion of manufacturing technology. We consider computing
heterogeneity in a broader sense.

We reviewed the power and performance trends of com-
mercial microprocessors over the past few years and used
our observations to justify our model assumption. We first
plotted the thermal design power (TDP) numbers and the
PassMark performance scores5 for several processors under
70 W, including Pentium, Core 2, Core i3/5/7, and Xeon. This
included all commercial desktop and server processors
from Intel from January 2006 to February 2011, except
Celeron processors and certain processors that did not
report TDP or PassMark results. The solid line in Figure 1
shows their asymptotic power consumption and perfor-
mance trend between 2006 and 2011. The dashed lines
without individual dots show the trends of two other

0

20

40

60

80

100

120

140

160

Po
we

r (
W

)

Release date(a)

(b)

2,000

4,000

6,000

8,000

10,000

0

Xeon
Core i3, i5, i7
Core 2 Duo, Quad
Pentium D, E, G

Xeon
Core i3, i5, i7
Core 2 Duo, Quad
Pentium D, E, G

Apr. 2006 Mar. 2007 Jan. 2008 Dec. 2008 Oct. 2009 Sep. 2010 Jul. 2011

Release date
Apr. 2006 Mar. 2007 Jan. 2008 Dec. 2008 Oct. 2009 Sep. 2010 Jul. 2011

(70 W ≤ power < 120 W)

(Power < 70 W)

(120 W ≤ power)

Pa
ssM

ar
k p

er
fo

rm
an

ce
 sc

or
e

(Power < 70 W)

(70 W ≤ power < 120 W)

(120 W ≤ power)

Figure 1. Power consumption and performance of Intel’s CPUs since 2006: (a)
power consumption and (b) performance. Over time, newer CPUs achieve higher
performance than the older ones without compromising the power consumption.

57AUGUST 2011

machine groups based on their TDP: 70 W to 120 W and
more than 120 W.

We applied regression methods to estimate the rela-
tionship between power and performance over time.
Taking all the samples into account, we plotted our
regression models for power and performance (solid lines
in Figure 1). As Figure 1b shows, the performance contin-
ues to improve for each machine group across different
proliferations or generations. On the other hand, the TDP
trend in Figure 1a shows negligible growth. More interest-
ingly, the TDP trends for the two lower-power machine
classes are decreasing. This decrease is the consequence
of a recent awareness of the power wall, which gradually
increases the heat dissipation cost. For the same reason,
we anticipate that the power grade of future processors
will remain below the bar. This also implies that with the
same power budget, newer machines can deliver higher
performance. In other words, performance per power (a
metric derived by dividing the performance score by the
power consumption) continues to grow over time. For
example, the 95 W Core i7 (Lynnfield), released in Sep-
tember 2009, achieves higher performance than the 95-W
Pentium D (Presler), released in January 2006. This dif-
ference is largely attributable to technological advances
in microarchitecture as well as scaled-down feature size
and supply voltage.

Given these observations, we define our model of power
and performance for a future heterogeneous cloud based
on two assumptions.

First, the computing nodes in the cloud we analyze are
heterogeneous, having different microarchitectures fabri-
cated using different processes. Thus, the cloud provides
varied capability and process technologies. Second, the
performance capabilities of these computing nodes are uni-
formly distributed (from low to high) but consume exactly
the same amount of power.

The rationale behind this second assumption is two-
fold. First, for a given power budget, the performance of
each machine class continues to improve linearly while
their power envelope remains pretty much unchanged.
In other words, the power efficiency measured by per-
formance per power improves over time. Second, when a
datacenter phases out some computing nodes due to an
upgrade, it can safely deploy new computing nodes only
when these upgrades’ aggregated power consumption
does not exceed the original. Otherwise, the datacenter
must also upgrade its power delivery infrastructure as
well as its cooling capacity to accommodate the new
servers. Given this overhead, we anticipate that the
replacement and upgrade will be done without altering
the power delivery infrastructure. Therefore, we assume
that the newly deployed servers will improve perfor-
mance linearly across different machine proliferations
while using the same amount of power.

To express this distribution mathematically, we assume
that the response time for executing a job unit in such a
cloud is uniformly distributed from a seconds (the fastest
node) to b seconds (the slowest node). Figure 2 illustrates
the probability distribution function (PDF) of the response
time for executing a job unit in this cloud.

On the other hand, we assume that the cloud service
provider can improve the worst-case response time by dis-
missing physical nodes with the least performance. For
example, when a cloud service provider decides to retire
one-third of its physical nodes from the slowest batch,
we assume that the new response time for executing a
job unit of this cloud becomes a uniform distribution
from a seconds to (a + 2b)/3 seconds, represented by
U(a, (a + 2b)/3). As such, we assume that the maximum
number of virtual machines that can be allocated on this
cloud also shrinks in the same ratio.

Figure 3 shows the impact of retiring one-third of a cloud
service provider’s physical nodes from the cloud. The vari-
able p in this figure represents the maximum number of
virtual machines that can be allocated on the cloud, while

Pr
ob

ab
ilit

y

Response time
a b

1/(b – a)

Figure 2. Probability distribution function (PDF) of the execution
time of a job unit when there are n virtual machines. The
execution time is uniformly distributed from a seconds (the
fastest node) to b seconds (the slowest node).

a b

Cloud A
Faster ★★ Cloud C

Slow ✩✩
Cloud B

Fast ★✩

Response time

Pr
ob

ab
ilit

y

1/(b – a)

n/(bp – ap)

a + (b – a) (p / n)

 p = 2n/3

 p = n

Figure 3. Probability distribution function (PDF) of the execution
time of a job unit when there are 2n/3 virtual machines. The
worst-case response time is improved by dismissing the one-third
of physical nodes with the lowest performance.

COMPUTER 58

PERSPECTIVES

n represents the maximum number of virtual machines
for the original cloud as shown in Figure 2. Moreover, the
PDF in Figure 3 shows the improved worst-case response
time as a result of removing one-third of the physical nodes
from the slowest side.

Nevertheless, in the given response time PDF, we did not
assume that a particular virtual machine can pick a physi-
cal node at a particular speed. Rather, when a cloud’s PDF
is given, we assumed that a virtual machine’s behavior in
this cloud follows the PDF in a statistical manner. In other
words, we assumed that virtual machines will be uniformly
distributed across the physical nodes.

Although dispatching more jobs to newly deployed
servers with higher power efficiency increases energy

efficiency, this is not the case for a datacenter, for two rea-
sons. First, for a datacenter, it is important to balance the
power draw across the AC phases.6 The balance will break
when jobs are distributed to only certain computing racks.
Second, we want to minimize the number of hotspots for a
datacenter, a common consequence of unbalanced work-
loads. Hotspots generally cause higher machine failure
rates and require additional attention and effort to remove
the heat.

Execution time and energy consumption
We define the execution time of a given workload on a

cloud as the time required to finish a workload consisting
of m job units. When some job units are assigned to more
than one virtual machine, the execution time, in our defini-
tion, is bounded by the virtual machine that finishes last.
For example, when an animator renders a movie compris-
ing m independent frames, the movie cannot be released
before the last frame finishes rendering. In addition, when
comparing the performance of cloud configurations, we
use as the baseline the case of executing the same amount
of workload on a virtual machine running on the fastest
node. When we use more virtual machines to execute the
workload in parallel, we use slower nodes to accomplish
the task. As a result, the parallelized version could reduce
the overall effectiveness of energy consumed in the cloud.

Energy consumption is the total energy needed to com-
plete a given workload. In particular, when some physical
nodes finish their assigned job units before the others, we
assume that these nodes will not consume energy while

waiting for the others to finish. This is because, in a real-
world scenario, these nodes will either be assigned to other
tasks or moved to a near-zero power state to save energy.7
In addition, given that each computing node consumes the
same amount of power, energy consumption as defined will
be proportional to the total execution time. Therefore, we
calculate a parallelized workload’s utility consumption as
the summation of each virtual machine’s execution time.

To quantify the effectiveness of resource provisioning
in a cloud, we use the energy-delay product (EDP),8 which
we calculate by multiplying the execution time (seconds)
with the energy consumption (joules). We will use this
metric in our subsequent evaluation when provisioning
resources (that is, the number of virtual machines to allo-
cate to achieve optimal energy efficiency).

ANALYTICAL EVALUATION
Next, we use analytical models, based on our assump-

tions, to compare each configuration’s EDP to the baseline
EDP.

Baseline
The baseline of our study assumes that the entire job

is performed on one virtual machine running on the fast-
est physical node. In this case, the fastest physical node
can retire a job unit every a seconds. Because there are m
independent job units in the entire workload, the baseline
configuration takes ma seconds to finish. This configura-
tion consumes W × ma joules for completing the entire
workload, where W represents a physical node’s power.
Thus, the EDP of this study’s baseline is

EDPbase = (W × ma)(ma) = Wm2a2.

Expectation-based analysis
We use an expectation-based analysis to determine a

cloud model’s execution time and energy consumption.
We use a new distribution function to represent the execu-
tion time of a virtual machine with more than one job unit.

Execution time distribution across virtual machines.
The PDF of the response time when using p virtual
machines is given by U(a, (a + ((b – a)p)/n)), as Figure 3
illustrates. However, when a virtual machine is respon-
sible for more than one job unit (that is, m/p units), the
virtual machine’s total execution time cannot be modeled
the same way. Rather, we model it as the summation of
independently selected m/ samples from Figure 3. When
we add independent samples from a uniform distribution,
the summation’s distribution function tends to approach a
normal distribution according to the central limit theorem.9
This theorem proves that when we add more independent
samples into the summation, the summation’s distribution
will become more like a normal distribution. In addition,
the summation of 12 samples is known to be good enough

Given that each computing node
consumes the same amount of
power, energy consumption will
be proportional to the total
execution time.

59AUGUST 2011

to satisfy the central limit theorem.9 In this case, we assume
that a virtual machine is responsible for more than 12 job
units by letting m ≥ 12n (that is, m ≥ 12p because p ≤ n).

Now our goal is to obtain the mean and variance of the
normal distribution representing the total execution time
of a virtual machine responsible for m/p job units. First, we
calculate the mean and variance for the original uniform
distribution, U(a,(a + ((b – a)p)/n)):

 –

Mean = + +
()⎛

⎝⎜
⎞
⎠⎟

= +1
2

a a
b a p

n
a

b ––

 –

 –

a p
n

a
b a p

n
a

()

= +
()⎛

⎝⎜

2

1
12

and

Variance ⎞⎞
⎠⎟

=
()⎛

⎝⎜
⎞
⎠⎟

2 2

12

 – b a p

n

The central limit theorem shows that the summation of m/p
independent samples from this distribution will become a
normal distribution with the following mean and variance:

N m
p

a
b a p

n
m
p

b a p

n

 –
,

 –
+

()⎛
⎝⎜

⎞
⎠⎟

×
()⎛

⎝⎜
⎞
⎠⎟2 12

22

2

⎛

⎝
⎜

⎞

⎠
⎟ =

()

,N μ σ (1)

For convenience, we use μ and σ2 to denote the distribu-
tion’s mean and variance. All in all, when using p virtual
machines, each machine’s execution time will follow the
normal distribution, N(μ, σ2). The ultimate question is, “How
many seconds will it take to finish the entire workload?” To
answer this question, we must first determine the expecta-
tion of the largest sample from N(μ, σ2) when we must pick
p samples. Because the overall execution time depends on
the slowest virtual machine that finishes last, the largest of
p samples will give the total execution time.

Expectation of the largest sample. Before finding the
largest sample’s expectation, we discuss the same question
for the standard normal distribution, N(0, 1). Let pdf(x) be
the PDF of the standard normal distribution. In this PDF, let
y be the largest sample among randomly chosen p samples.
For each case out of p cases, the probability of y being the
largest sample is given as follows:

Probability
–

 –

= () × ()()∞∫pdf y pdf x dx
y p 1

Equation 2 gives the expectation of the variable y.

p y pdf y

pdf x dx dy ExB
y p

–

–

 –

× × () ×

()() =

∞

∞

∞

∫

∫
1

pp() (2)

For convenience, ExB(p) denotes the expectation of the
largest sample among p samples from the standard normal
distribution. In addition, by substituting pdf(x) in Equation
2 with Equation 3, we can find the numerical values of
ExB(p) for various p. We show the results in the middle
column of Table 1.

pdf x x() = () exp – / 1
2

22

π
 (3)

Because Equation 2’s complexity grows exponentially as
p increases, we cannot find the exact numerical values of
ExB(p) for p > 64. To address this shortcoming, we propose
a more scalable way of approximating the values in Table 1.
In this solution, we first implement a random number gen-
erator that produces random numbers from the standard
normal distribution. Using this random number genera-
tor, our solution picks p independent random samples and
remembers the largest sample among them. This operation
continues for a long enough time (for example, to produce
the results in Table 1, our software repeated this opera-
tion more than 100 million times) and averages the largest
samples. This experimental method generates the exact
numerical values of ExB(p), as shown in the third column
of Table 1, after averaging more than 100 million trials. As
a comparison of the second and third columns in the table
shows, the mathematical accuracy is slightly compromised
in exchange for scalability. However, we do not expect the
tiny error rate to affect our analysis and conclusion.

The study of the largest sample in the standard normal
distribution gives us an idea about the ExB(p) for other
normal distributions. Let a random variable X follow
N(μ, σ2) with μ ≠ 0, σ ≠ 1, σ ≠ 0, and a derived random
variable Y = (X – μ)/σ. Then, Y follows N(0, 1) by recall-
ing the property that if X follows N(μ, σ2) and a and b are
real numbers, then aX + b follows N(aμ + b,(aσ)2). From
Equation 2, the expectation of the largest sample for Y is
ExB(p) because Y = (X – μ)/σ, X = Yσ + μ; and the expecta-
tion of the largest sample for X is ExB(p) · σ + μ. Now, we
can calculate the expectation of the largest sample for any
arbitrary normal distribution.

Execution time and energy consumption analysis. In
our model, each of the p virtual machines is responsible
for m/p job units, and the response time for each job unit

Table 1. Expectation of the largest sample (ExB(p)) from N(0, 1).

Number of samples
(p)

Value using
Equation 2

Value using the
experimental

method

1 0.00000 –0.00001

2 0.56419 0.56419

4 1.02938 1.02938

8 1.42360 1.42356

16 1.76599 1.76591

32 2.06967 2.06968

64 2.34373 2.34368

128 2.59461

256 2.82679

512 3.04392

COMPUTER 60

PERSPECTIVES

follows U(a, (a + ((b – a)p)/n)). We use the following equa-
tion to calculate the expectation of the time required on a
virtual machine finishing last:

Execution time

= + () ×

= +
()

+ () ×

 –

μ σExB p

m
p

a
b a p

n
ExB p m

2 pp
b a p

n

ma
np

n b
a

p E

 –

 –

×
()⎛

⎝⎜
⎞
⎠⎟

= + () +

12

2
2 1 xxB p p

m
b
a

ma
np

n b

() × × ()⎛
⎝⎜

⎞
⎠⎟

= +

 –

/3 2 1
3

1

2
2

aa
p Unbalance b

a
p m – , , 1() + ()⎛

⎝
⎞
⎠

In this equation, we name the second term unbalance,
which becomes zero if and only if every virtual machine
finishes at the same time:

Unbalance b
a

p m ExB p p
m

b
a

, , – /() = () × × ()3 2 1
3

1 (4)

For example, a higher deviation from the normal dis-
tribution indicates that the random samples from this
distribution are more spread out, increasing the probabil-
ity of having more deviated samples. In our case, because
we model a virtual machine’s finishing time by picking
a sample from Equation 1, more deviated samples indi-
cate that the workload assignment is unbalanced among
virtual machines executing this workload. In particular,
a larger b/a will lead to a larger σ2 in Equation 1 and a
larger Unbalance((b/a), p, m) in Equation 4. Hence, we can
conclude that a larger b/a value causes a more unbalanced
workload distribution among virtual machines, degrad-
ing the overall performance. Also note that Unbalance
((b/a), p, m) is directly proportional to 1 / m . Because m
is independent of p and b/a, changing the value of m will
not affect other variables in Equation 4. This implies that a
very large m will eventually zero out Equation 4. Thus, we
can express the execution time when m → ∞ as

Execution time ()

 –

when m

ma
np

n b
a

→ ∞

= + (2
2 1))⎛

⎝
⎞
⎠p

We also evaluate the energy consumption probabilisti-
cally. Because performance is bounded by the execution
time of the virtual machine finishing last, we must calculate
the expectation of the largest sample from Equation 1. In
contrast, to evaluate the utility consumption, we must focus
on the average execution time of p virtual machines. This is
because, in a normal distribution, the probability for having
μ + α samples is exactly the same as having μ – α samples.
This fact indicates that the odds of having a virtual machine
consuming α seconds more than the average is the same as

having a virtual machine consuming α seconds less than
the average. Therefore, we conclude that the expectation
of the total execution time is given by μ × p, the number of
virtual machines. Given the power of a physical node in the
cloud is W, the total energy consumption will be as follows:

Energy consumption
 –

= × +
()⎛

⎝⎜
⎞
⎠⎟

W m
p

a
b a p

n2
pp

W m a = ×
 –

,+
()⎛

⎝⎜
⎞
⎠⎟

b a p
n2

EDP p Wm a
n p

n b
a

p Unbala

exp

 –

() = ×

+ () +

2 2

24

2 1 nnce b
a

p m n b
a

p, , –

()⎛
⎝

⎞
⎠ + ()⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟2 1

 –

= ×

+ () +

EDP
n p

n b
a

p Un

base

4

2 1

2

bbalance b
a

p m n b
a

p, , – ()⎛
⎝

⎞
⎠ + ()⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟2 1

Similarly, we calculate the EDP for m → ∞ as follows:

EDP p
EDP

n p
n b

a
pmexp, – → ∞ () = × + ()⎛base

4
2 12 ⎝⎝

⎞
⎠

2

 (5)

To visualize the effect of a large m in the EDPexp metric,
Figure 4 shows the EDP analysis for m = 12n, m = 120n,
and m → ∞ using the following coefficients: n = 16,384,
b/a = 1, 2, 3, 5, and ExB(p) from Table 1. To find the exact
value p that makes the EDP metric a global minimum point,
we take the derivative of Equation 5 with respect to p and
set it to zero:

d
dp

EDPbase ×
2n + b / a – 1() p()2

4n2 p









 = 0

 p = 2n
b
a
 – 1
∵ p > 0() (6)

In the example of m → ∞ in Figure 4, we achieve the
minimum EDP when p = 2n/(b/a – 1) = 16,384 in Figure
4c or p = 2n/(b/a – 1) = 8,192 in Figure 4d.

Again, p = n must be fulfilled while maintaining Equa-
tion 6 to be energy-effective for all n virtual machines in the
cloud. By combining two conditions, p = n and Equation 6,
we can calculate the requirement of b/a as n = 2n/(b/a – 1);
b/a = 3. This equation suggests that in a heterogeneous
cloud computing environment with uniformly distributed
performance, physical nodes that respond 3 times slower
than the fastest node should not be used when attempting
to minimize the EDP.

These models and analysis can be used to guide future
deployment, allocation, and upgrades of cloud infra-
structure to achieve optimal utility effectiveness. The

findings presented here hold not only for a computing

61AUGUST 2011

 3. S. Ghiasi, T. Keller, and F. Rawson, “Scheduling for Het-
erogeneous Processors in Server Systems,” Proc. 2nd
Conf. Computing Frontiers, ACM Press, 2005, pp. 199-210.

 4. R. Nathuji, C. Isci, and E. Gorbatov, “Exploiting Platform
Heterogeneity for Power-Efficient Datacenters,” Proc. 4th
Int’l Conf. Autonomic Computing (ICAC 07), IEEE CS Press,
2007, pp. 5-14.

 5. PassMark Software, “CPU Benchmarks;” www.cpu-
benchmark.net.

 6. S. Pelley et al., “Power Routing: Dynamic Power Pro-
visioning in the Datacenter,” Proc. 15th Int’l Conf.
Architectural Support for Programming Languages and
Operating Systems (ASPLOS 10), ACM Press, 2010, pp.
231-242.

 7. D. Meisner, B.T. Gold, and T.F. Wenisch, “PowerNap:
Eliminating Server Idle Power,” Proc. 14th Int’l Conf.
Architectural Support for Programming Languages and
Operating Systems, (ASPLOS 09), ACM Press, 2009, pp.
205-216.

environment operated by a single heterogeneous data-
center but also for a larger computing service comprising
many datacenters of varying ages. Because more recent
datacenters show better energy efficiency, the effective-
ness of the collaboration of multigenerational datacenters
can be analyzed in the same way. Our future work will
study the power management techniques and schedul-
ing algorithms for the heterogeneous cloud computing
environments.

References
 1. M. Palankar et al., “Amazon S3 for Science Grids: A Viable

Solution?” Proc. 2008 Int’l Workshop Data-Aware Distrib-
uted Computing, ACM Press, 2008, pp. 55-64.

 2. L.A. Barroso, “The Price of Performance,” ACM Queue,
vol. 3, no. 7, 2005, pp. 48-53.

10–4

10–3

10–2

10–1

100

1 4 16 64 256 1,024 4,096 16,384

ED
P n

or
m

ali
ze

d t
o E

DP
ba

se

10–4

10–3

10–2

10–1

100

ED
P n

or
m

ali
ze

d t
o E

DP
ba

se

Number of virtual machines (= p)(a) (b)

(c) (d)

1 4 16 64 256 1,024 4,096 16,384
Number of virtual machines (= p)

10–4

10–3

10–2

10–1

100

1 4 16 64 256 1,024 4,096 16,384

ED
P n

or
m

ali
ze

d t
o E

DP
ba

se

10–4

10–3

10–2

10–1

100

ED
P n

or
m

ali
ze

d t
o E

DP
ba

se

Number of virtual machines (= p)
1 4 16 64 256 1,024 4,096 16,384

Number of virtual machines (= p)

m = 12n
m = 120n
m = in�nity

Figure 4. Example of the expectation-based analysis where the total number of available virtual machines is 16,384: (a) b/a = 1,
(b) b/a = 2, (c) b/a = 3, (d) b/a = 5. When the response time of the slowest node b divided by that of the fastest node a is larger than 3,
using all available virtual machines will compromise EDP.

COMPUTER 62

PERSPECTIVES

Hsien-Hsin S. Lee is an associate professor in the School of
Electrical and Computer Engineering at the Georgia Insti-
tute of Technology. His research interests include computer
architecture, cybersecurity, and 3D integration. Lee received
a PhD in computer science and engineering from the Uni-
versity of Michigan at Ann Arbor. He is a senior member of
IEEE and the ACM. Contact him at leehs@gatech.edu.

 8. R. Gonzalez and M. Horowitz, “Energy Dissipation in
General Purpose Processors,” IEEE J. Solid-State Circuits,
vol. 31, no. 9, 1996, pp. 1277-1284.

 9. J.A. Rice, Mathematical Statistics and Data Analysis, Dux-
bury Press, 2007.

Sungkap Yeo is a PhD student in electrical and computer
engineering at the Georgia Institute of Technology. His
research interests include power management for datacen-
ters and microarchitectural support for the future cloud
computing environment. Yeo received an MS in electrical
and computer engineering from Georgia Institute of Tech-
nology. Contact him at sungkap@gatech.edu.

 Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org.

