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lem, James Hamilton proposed a revised metric, total PUE, 
that factors fan power consumption out of the useful server 
power.3 All in all,  to accurately quantify datacenter energy 
efficiency, it is important to include the energy use of all 
components.4

Numerous software tools that simulate datacenters are 
available but exclude critical parameters. For example, 
CloudSim5 and DCSim6 do not consider the effects of in-
creased fan power use and heat recirculation, and others 
largely ignore the air travel time from CRACs to servers.4,7-9 
To overcome these shortcomings, we developed SimWare, 
a warehouse-scale computer simulator with detailed tem-
perature, power, and performance models for servers and 
CRACs that also models the impact of heat recirculation 
and air supply timing.

MOTIVATION
Many studies of datacenter energy efficiency4-9 have 

not considered the impact of temperature on server power 
use. In general, a server operating at a higher temperature 
consumes more power. To explore this relationship, we 
ran the Linpack benchmark using a Xeon 5160 server and 
measured the total system power consumption, fan power 
consumption, fan speed, and processor die temperature at 
different inlet air temperatures.

As Figure 1a shows, as the inlet air temperature in-
creased, total system power consumption increased 
because of the rise in fan power consumption. To under-
stand why fans consume more power when the server 
operates at a higher temperature, assume that a processor 
die’s temperature is 70°C. When the inlet air temperature 
is 10°C, the difference between them is 60°C. However, 
when the surrounding temperature is 40°C, the differ-
ence becomes 30°C. The latter situation requires twice as 
much air to cool as the former and so the fan must rotate 
twice as fast. 

C loud computing has emerged as a cost-effective  
way to meet both enterprise and consumer 
demands. More and larger warehouse-scale 
computers are being built to support this para-

digm shift, but constructing and operating such systems 
is expensive. In addition to the high infrastructure cost, a 
datacenter consumes considerable energy. 

Much of this energy goes to cooling the servers. Legacy 
systems can use more than half of their total power for 
cooling, which is highly inefficient. State-of-the-art data-
centers can operate at higher discharge temperatures, 
thereby using less than 10 percent of their total power for 
cooling. But the perceived energy savings can be deceptive.

Researchers have proposed various ways to measure 
datacenter efficiency. Power usage effectiveness1—the 
ratio of total facility power consumed to power delivered 
to computing equipment—is a common metric, but PUE 
ignores the nonnegligible impact of fan energy consump-
tion.2 Decreasing the power that  the computing room air 
conditioners (CRACs) use leads to an increase in room tem-
perature. This in turn causes the server fans to blow harder 
and consume more power, resulting in a misleadingly low 
PUE. In fact, the energy cost of the higher fan rotation 
speed can eventually overwhelm the energy savings from 
reducing CRAC power consumption. To address this prob-
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Figure 1b shows that as the inlet air temperature in-
creased, the fan speed steeply increased, but the processor 
die’s temperature remained the same until the inlet air tem-
perature reached 92°F (~33.3°C), just over the 89.6°F  (32°C) 
emergency temperature of an A1-class server.10

Prior studies have ignored changes in fan power con-
sumption, which accounts for 10 to 30 percent of total 
system power consumption.11 Assuming constant fan 
power will result in overly optimistic results. Many pro-
posed techniques for saving cooling energy leave more 
servers at a higher inlet air temperature than the base-
line.7-9 Although this saves significant energy in CRACs, 
the impact on server power must be carefully evaluated.

Previous studies have also disregarded the time it 
takes cool air to travel from a CRAC to a server. Without 
considering this factor, a datacenter could easily maxi-
mize power savings simply by setting a CRAC to raise the 
supply air temperature (Tsupply air) until any server’s inlet air 
temperature (Tinlet air) equals its emergency temperature  
(∀Tinlet air = Temergency). In reality, however, the time delay 
occasioned by the flow of cool supply air from the CRAC 
to the server to keep Tinlet air from exceeding Temergency  
necessitates the inclusion of a temperature safety margin  
(Tsafety margin) when raising Tsupply air, which results in a loss of 
cooling efficiency. 

SIMWARE OVERVIEW
Figure 2 provides an overview of SimWare, which sup-

ports different types of utilization traces as input and 
generates performance-, power-, and temperature-related 
statistics. 

The simulator models power at both the datacenter 
and server levels. The datacenter-level model estimates 
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Figure 1. Inlet air temperature versus (a) total system 
power and fan power consumption and (b) fan speed and 
processor die temperature. The server consumed more 
power at a higher temperature primarily due to increased 
fan power use. 
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heat flow using a heat distribution matrix (HDM)12 and  
determines CRAC power consumption using the approach 
developed by Justin Moore and colleagues.7 The server-level 
model estimates the power consumption of fans along with 
other components in terms of utilization and Tinlet air—that 
is, the thermal impact on server power. 

Unlike other datacenter simulators, SimWare takes 
into account the air travel time from CRACs to servers. In 
addition, it can evaluate user-defined job-scheduling algo-
rithms as well as virtual machine-related tasks.

Thermal impact on server power
In modeling the thermal impact on server power, we 

rely on the law of convective heat transfer and the laws of 
fan affinity.

The law of convective heat transfer states that heat 
transfer (in watts) is directly proportional to the amount 
of air and the temperature difference between the cooling 
object and surrounding air: 

Heat transfer (watts) ∝ Temperature difference ×  
     Amount of air  (1)

For simplicity, we assume that the density of air is con-
stant at the temperature range of interest.

The laws of fan affinity define the relationship of the 
rotational speed, the amount of air, and the fan’s power:

Amount of air ∝ Fanrpm (2)

Fanpower ∝ Fan3
rpm  (3)

We first assume that a CPU’s power consumption 
remains constant while the surrounding temperature 
increases from Tinlet air to Tinlet air + α. Meanwhile, we 
keep heat transfer constant. When the surrounding 
temperature changes from Tinlet air to Tinlet air + α, the 
initial temperature difference (ΔT) between the CPU 
and the surrounding air decreases to ΔT – α. 

In Equation 1, when the temperature difference 
decreases by (ΔT – α)/ΔT times, the amount of air 
must increase by ΔT/(ΔT – α) times to maintain 
constant heat transfer. As Equation 2 indicates, to 
supply ΔT/(ΔT – α) times more air, the fan must rotate  
ΔT/(ΔT – α) times faster. As a result, the increased 
fan speed consumes (ΔT/(ΔT – α))3 times more power,  
according to Equation 3.

These laws make it possible to calculate a fan’s 
power consumption relative to the CPU’s power con-
sumption and Tinlet air. Once the boundary conditions 
are defined, SimWare can calculate the exact power 
that a fan consumes. 

Air travel time from CRACs
Several factors affect the time it takes air to flow from a 

CRAC to a server, including the datacenter layout, the prox-
imity of the CRAC to the server, the air velocity discharged 
from the CRAC, and the plenum’s height. 

Using these physical parameters, we developed a  
thermodynamics-based scheme to estimate the air travel 
time. Our simulations revealed that a longer air travel time 
results in lower cooling efficiency. Therefore, to determine 
the lower bound of the air travel time’s impact, SimWare 
estimates the fastest possible travel time.

In our simulations, a CRAC unit discharges 8 m3/s of 
cool air into the plenum, indicated by the dotted line 
in Figure 3. Once this air has filled and pressurized the 
plenum, 0.6 m × 0.6 m tiles discharge the air into the 
room above. SimWare calculates how long this takes by 
dividing the plenum’s volume by the discharge rate. For 
simplicity, the simulator assumes the most optimistic sce-
nario, in which all the tiles discharge the same amount 
of air.

In reality, some of the cool air supplied to the room 
would bypass the servers and flow in the direction of A and 
B in Figure 3, but, again for simplicity, SimWare assumes 
that the supply air only fills up the volume above the tiles, 
or the cold aisle. 

Calculated results indicate that it takes the cool air 
about six seconds to reach the servers at the bottom of 
the racks and seven seconds to reach the servers at the top. 
In real scenarios, tiles near the CRAC supply less cool air. 
Because cooling down certain servers such as C in Figure 3  
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Figure 3. Layout of a raised-floor warehouse-scale computer.
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is more difficult, the CRAC usually lowers the Tsupply air with 
a larger Tsafety margin, thereby reducing cooling efficiency.

Heat distribution matrix
Building a datacenter simulator that integrates heat flow 

with temperature, power, and performance in one infra-
structure was impractical because modeling recirculated 
heat as workload utilization changes requires a prohibitive 
amount of computation. SimWare mitigates this problem 
by employing heat flow as an HDM.12 

Generating a datacenter’s HDM requires a tool capable 
of complex computational fluid dynamics simulations 
such as Arizona State University’s BlueTool (http://impact.
asu.edu/BlueTool). Nevertheless, the concept is simple: an 
HDM converts the heat generated by a particular server 
into an increase in the temperature of all other servers. 

For example, if a datacenter has 10 servers, the size 
of the HDM will be 10 × 10. The first row of the matrix 
represents how much one server’s Tinlet air is affected by the 
heat generated by all 10 servers. Matrix multiplication of 
the first row by the power consumption of all the servers 
will produce the first server’s Tinlet air. In other words, each 
cell (i, j) of the HDM indicates the contribution of server j 
to the temperature increase of server i. 

Figure 4 shows the configuration and HDM of a ref-
erence datacenter with a 50-blade chassis. In Figure 4b, 
server 50 has tall bars for servers 1-10, indicating that the 
heat generated by server 50 is more likely to recirculate to 
servers 1-10 than to the others.

SimWare uses the HDM to calculate each server’s Tinlet air, 
which varies by server location because of heat recircula-

tion. The HDM takes this effect into account by converting 
the impact of power consumption (in watts) to the tempera-
ture difference (in °C) between one server and the other 
servers. Unfortunately, an HDM does not model changes in 
convective flows as a consequence of variable fan speeds; 
it assumes that airflow patterns are temperature invariant, 
which could lead to temperature estimation errors in some 
datacenter geometries.

CRAC power consumption
Moore and colleagues7 showed that the power CRACs 

require in a typical datacenter can be represented as a 
function of their Tsupply air and the amount of heat that must 
be removed:

Power drawn from CRACs = 
Heat to remove (power drawn from servers)
0.0068T2

supply air + 0.0008Tsupply air + 0.458  
(4)

SimWare uses this equation to calculate CRAC power 
consumption. When Tsupply air is 10°C, the denominator 
is about 1 and the CRACs consume the same amount of 
power as the servers. However, if the CRACs produce a 
higher Tsupply air, the denominator increases, and they con-
sume less power while removing the same amount of heat. 
When the CRACs increase Tsupply air to 20°C, they consume 
only one-third of the servers’ power. 

Input and putput
For input traces, SimWare currently supports Standard 

Workload Format (SWF) files and Google cluster data.  
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Once a simulation finishes, SimWare 
generates performance-, power-, 
energy-, and temperature-related data.

Several utilization traces in SWF collected from massively 
parallel processing systems and experimental datacenters 
are available at www.cs.huji.ac.il/labs/parallel/workload/
swf.html. Based on ASCII, each line of an SWF file describes 
a submitted job and contains the job ID, the submitted 
time, the runtime, the number of allocated processors, 
the average CPU time used, and the dependency be-
tween jobs. Google cluster data (http://code.google.com/p/ 
googleclusterdata) contains similar records collected from 
the company’s warehouse-scale computers.

Once a simulation finishes, SimWare generates perfor-
mance-, power-, energy-, and temperature-related data 
including job turnaround time (important for latency- 
sensitive Internet applications13,14), peak/average server 
and CRAC power consumption, energy use for a given time 
frame, and the current configuration’s energy-delay prod-
uct. SimWare also outputs the average room temperature, 
average temperature by server chassis, and utilization 
level.

Chassis and servers
SimWare currently simulates a warehouse-scale com-

puter consisting of 500 blade servers in 50 chassis, with 10 
servers per chassis. Each server has a 130-W TDP Xeon E7-
2850 processor with 10 cores, resulting in a total of 5,000 
cores. SimWare is not limited to this physical layout—it 
can simulate any size datacenter as long as an HDM can 
be generated for it.

Excluding the fans, each blade server consumes 260 W 
when fully loaded and consumes half of its peak power 
when idle.15 The fan on the CPU heatsink must remove heat 
generated by the CPU at any time. Therefore, when the fan 
runs at its maximum speed, it should remove 130 W (the 
maximum CPU power) at Temergency (the highest operable 
temperature). 

At this operating point, SimWare assumes that the fan 
consumes 15 W and runs at 3,000 rpm. Each server has 
two other fans with the same specification at the front 
and back panel. The rotational speed of these case fans is 
directly proportional to the server’s power consumption 
and Tinlet air. SimWare also assumes that the fans cannot be 
turned off and that they run at 500 rpm when the server 
is idle.

The servers’ Temergency is set to 30°C, which meets the 
A1-class server specification for datacenters.10 SimWare as-
sumes that the goal of fan control is to save fan power and 

keeps the die temperature lower than 70°C for reliability. 

CRAC control policies
SimWare currently supports two CRAC control policies: 

constant and dynamic.
Constant control—supplying cool air at a constant 

temperature—is the most basic strategy. With this policy, 
Tsupply air is low enough to ensure that all servers stay below  
Temergency at any time. Because the cooling power is 
constant and set to the worst-case scenario, this 
policy wastes cooling power when the datacenter is 
underutilized.

To tackle this inefficiency, researchers have proposed 
dynamic control policies.7,16 In SimWare, the CRAC first 
supplies the lowest possible Tsupply air and then gradu-
ally raises it at the rate of 0.01°C/sec until any server 
reaches a trigger temperature (Ttrigger). When any server’s  
Tinlet air = Ttrigger, the CRAC starts to lower Tsupply air at the same 
rate. 

In the ideal case, Ttrigger can be set as high as Temergency—
that is, the CRAC continues to raise Tsupply air until any server 
reaches Temergency. However, due to the timing delay of the 
CRAC to lower Tinlet air, using Ttrigger = Temergency as a condi-
tion will cause some servers to operate above Temergency.  
A dynamic control policy thus requires a safety margin 
(Ttrigger = Temergency – Tsafety margin), which leads to cooling 
inefficiency. 

EXPERIMENTAL EVALUATION
We used SimWare to run an SWF workload from 10 

high-performance computing clusters in the Shared Hi-
erarchical Academic Research Computing Network in 
Canada. The SHARCNET log contains nearly 1.2 million 
accounting jobs from December 2005 through January 
2007. We omitted results from the other trace files due to 
their similarity.

The black graph in Figure 5a plots the simulated sys-
tem’s daily utilization. For days 0-50, the average utilization 
is less than 1 percent. For days 50-150, the workload is 
moderate, with an average utilization of 5.3 percent and 
a maximum utilization of 44.3 percent. The workload is 
heavy for the remaining days, with an average utilization 
of 71.3 percent.

Figure 5a also shows the simulated system’s CRAC and 
server power consumption. Total power consumption gen-
erally tracks the utilization level except when the system 
is underutilized. Because SimWare assumes that servers 
consume half of their peak power when idle, the system 
is not energy-proportional.15

In addition, Figure 5a plots the normalized latency of 
submitted jobs. Because SHARCNET has more than 7,000 
cores and the simulated system has 5,000 cores, normal-
ized latency drastically increases when the latter is at high 
utilization.
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To evaluate the importance of air travel time, we ran 
simulations with two different configurations: one that 
assumes the cool air from the CRACs instantly lowers the 
servers’ Tinlet air (zero air travel time), and one that assumes 
the fastest possible air travel time. These two simulations 
shared all other parameters.

Figure 5b shows the distribution of Tinlet air for all servers, 
with the bars representing the fraction of time that serv-
ers spend at a given Tinlet air. In the case of instant delivery 
of cool air, all the servers operate under Temergency (30°C). 
However, with nonzero air travel time, servers experience  
Tinlet air over Temergency, up to 35°C. Therefore, to ensure that 
∀Tinlet air < Temergency at any time, a dynamic CRAC control 
scheme must secure a safety margin.

Even with the most optimistic air travel time, when  
Ttrigger = Temergency, one of the servers is above Temergency more 
than 49 percent of the time. However, if Ttrigger = Temergency 
– 1, all servers operate below Temergency 99.99 percent of 
the time. To make it 100 percent, Ttrigger must be as low as  
Ttrigger = Temergency – 7. Moreover, when Ttrigger = Temergency – 7, 
the average Tsupply air is 14.7°C, close to the typical outlet air 
temperature of CRACs.8,17,18

Figure 5c illustrates how much energy this safety 

margin costs. The bars represent server and cooling energy 
consumption for a given CRAC control policy. Each policy 
has the same algorithm but uses a different Ttrigger value. 
For example, the leftmost bar indicates that total energy 
consumption is slightly more than 5,000 gigajoules when 
Ttrigger = Temergency – 7. 

Comparing the bars for α = –1 and α = –7, cooling 
energy consumption increases from 1,100 GJ to 1,900 GJ. 
The safety margin in this case thus costs about 800 GJ 
(≈73 percent). Cooling energy decreases with a larger α or 
higher room temperature, but server fans now consume 
more energy, negating the savings. Consequently, total 
energy consumption saturates at α = 9. Although α > 9  
does not result in any energy savings, it can lead to a 
lower PUE. From α = 11 to α = 15, servers consume more 
energy while cooling units consume less. Consequently, 
PUE monotonically decreases regardless of total energy 
consumption. On the contrary, because tPUE3 factors 
fan power out of the useful server power, a smaller tPUE  
guarantees maximum energy efficiency.

In general, the heat recirculation effect and the air travel 
time from CRACs to servers result in two types of inequal-
ity among servers. First, because hot air tends to circulate 
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upward, top-rack servers typically have a higher Tinlet air 

than lower-rack servers. In our simulation, the difference 
between the highest and lowest Tinlet air among servers was 
8.1°C. In other words, most servers are overcooled because 
the CRACs must lower the Tsupply air enough to ensure that 
Tinlet air < Temergency for every server. Second, due to air travel 
time, some servers require more time to cool down de-
pending on their location. Because CRACs must set a safety 
margin based on the worst-case scenario, these two types 
of inequality among servers reduce the cooling system’s 
efficiency.

To address this problem, we suggest implementing het-
erogeneous cooling capacities among datacenter servers. If 
top-rack servers have better cooling capacities and a higher 
Temergency, the CRACs can safely discharge air at a higher 
temperature by using aggressive dynamic control policies. 

We adopted this approach in the simulated sysyem. 
We selected 11 blade chassis with the highest average  
Tinlet air and changed their Temergency from 30°C to 35°C. Using 
a dynamic CRAC control policy of Ttrigger = Temergency – 2 
saved 37 percent more cooling energy than the baseline 
policy of Ttrigger = Temergency – 7 without compromising ther-
mal guidelines.

B y modeling all cooling units, computing nodes, 
and heat recirculation for a warehouse-scale com-
puter, SimWare provides a holistic simulation-based 

infrastructure to help datacenter designers evaluate energy-
saving policies more accurately and effectively. Using real 
utilization traces, it can also reveal new insights about 
cooling efficiency and enables further energy optimization 
opportunities that exploit the inequality in inlet tempera-
tures and air traveling paths. Finally, in conjunction with 
tools that generate heat distribution matrices, SimWare can 
assess mechanical design options such as server placement, 
airflow management, and CRAC control strategies. 

To promote our holistic simulation methodology and 
enable more green datacenter design activity, we have 
made SimWare freely available to researchers at http://
arch.ece.gatech.edu/simware.html. 
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