
Cache Coherence Support for Non-Shared Bus
Architecture on Heterogeneous MPSoCs

Taeweon Suh
School of Electrical and
Computer Engineering

Georgia Institute of
Technology

Atlanta, GA 30332
suhtw@ece.gatech.edu

Daehyun Kim

Microprocessor Technology
Labs

Intel Corporation
Santa Clara, CA 95052
daehyun.kim@intel.com

Hsien-Hsin S. Lee
School of Electrical and
Computer Engineering

Georgia Institute of
Technology

Atlanta, GA 30332
leehs@ece.gatech.edu

ABSTRACT
We propose two novel integration techniques — bypass and
bookkeeping — in the memory controller to address the cache
coherence compatibility issue of a non-shared bus heteroge-
neous MPSoC. The bypass approach is an inexpensive and
efficient solution for computation-bound applications while
the bookkeeping approach eliminating unnecessary forward-
ing traffic offers an alternative for bandwidth-limited appli-
cations. Our RTOS kernel simulations show up to 6.65x
speedup over the conventional software solution.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose
and application-specific systems, Real-time and embedded
systems

General Terms
Design

Keywords
Cache coherence, Inter-processor communication, Heteroge-
neous MPSoC, Real-time and embedded systems

1. INTRODUCTION
Today’s SoC designs increasingly demand the flexibility

for coping with evolving applications, which leads to the in-
tegration of multiple (homogeneous or heterogeneous) em-
bedded processors on MPSoCs. As more processors are inte-
grated in a system, software development will become more
expensive and time-consuming. Integrating heterogeneous
processors based on a shared bus creates compatibility is-
sues due to the protocol incompatibility of multiple bus in-
terfaces. Sometimes the wrapper [14] can be used to allevi-
ate the problem partially and other approaches such as Open
Core Protocol (OCP) proposes highly configurable interfaces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

for tackling the same problem. To fully support the func-
tionality of heterogeneous processors, a shared bus protocol
should provide a superset of the interface protocols from all
processors. In embedded system designs, however, hardware
designers are typically reluctant to develop their own super-
set bus protocol from scratch. Instead, off-the-shelf bus pro-
tocols such as AMBA, CoreConnect, and OCP are used but
at the cost of compromising the versatility provided by each
processor. As a result, very few MPSoC vendors use a shared
bus approach. Commercial MPSoCs such as TI’s OMAP or
Philip’s Nexperia [13] employ multiple bus architectures to
fully utilize the protocols based on applications’ demands.
As such, an explicit software-based synchronization mech-
anism must be used, leading to performance degradation
caused by inter-processor communication.

Another critical demand in SoC designs is to meet real-
time constraints of embedded applications. Real-time op-
erating systems (RTOS) are commonly used in embedded
systems. A hard real-time system provides a guarantee that
the response to an event must happen within a specified
deadline while a soft real-time system attempts to do its
best to meet the timing constraint. Regardless of any real-
time system, given a hardware system, software engineers
make an effort to optimize software to meet real-time re-
quirements. As described, the flexibility requirement puts
more pressure on the software-side for real-time demands.
During a design cycle, if a software optimization fails, it
would cause a redesign of the hardware system architec-
ture for meeting real-time constraints. Hardware-software
co-design often detects design issues in the early stage to
eliminate as many potential problems as possible. Nonethe-
less, if a software optimization fails, the burden eventually
falls on to the hardware side, forcing hardware engineers to
trade off the flexibility by employing hardcore IPs for time-
critical circuit blocks.

In this paper, we address the inter-processor communica-
tion issues on heterogeneous multiprocessors with a multi-
ple bus SoC architecture by proposing low-cost techniques
which enable cache coherence capability. Our architectural
support enhances system performance easing the tight tim-
ing budget for real-time system developments. The rest of
this paper is organized as follows. Section 2 discusses prior
art. Section 3 details our proposed techniques. We then
evaluate our techniques in Section 4 and analyze our simu-
lated results in Section 5. Section 6 concludes this work.

2. RELATED WORK
Techniques for integrating cache coherence protocols on

a shared bus-based heterogeneous MPSoC have been pro-
posed in [9, 10, 11] in which read-to-write conversion and

Proc 1
 (MEI)

Proc 0
(MESI)

 Memory
Controller

 Memory

SoC

bus 0 bus 1

Figure 1: MPMB SoC architecture

shared signal assertion/deassertion were implemented in the
wrappers around the processors. For maintaining compat-
ibility, the integrated protocol utilizes the common states
of the heterogeneous coherence protocols in a system. To
further reduce the performance loss due to the lost states,
region-based cache coherence was introduced in [10, 11] to
enable the use of the homogeneous coherence protocols in
the shared memory regions.

In distributed shared memory (DSM) systems, directory-
based cache coherence protocols are employed in several de-
signs from academia [2, 7, 5] and industry [6, 4, 1]. They
eliminate bus snooping that diminishes scalability in a large-
scale shared memory system. In a DSM system, the memory
controller maintains all cache state information in a com-
mon directory to perform appropriate cache coherence ac-
tions without a snooping logic. Our bookkeeping scheme
proposed in this paper is conceptually similar to this ap-
proach. Despite of this, our purpose is not to eliminate
snooping for scalability, but rather to filter out unneces-
sary communication for achieving better bus utilization. In
addition, we propose a region-based directory scheme that
incurs less hardware overhead while exploiting the benefit
of a directory-based scheme.

3. INTEGRATION TECHNIQUES
The overall cost of fabricating SoCs or ASICs highly de-

pends on the die budget and the available pin count in pack-
aging technology. In most of the MPSoC systems, the ma-
jority of the pins are dedicated to memory interfaces. Given
several address and data buses of multiple processors on an
MPSoC, dozens of pins are easily consumed for each mem-
ory interface. For this reason, architects often make an effort
to share or multiplex the memory interface among proces-
sors in SoC designs as long as the performance meets its re-
quirement. For example, the C55x DSP and the ARM925T
core in TI’s OMAP 5910 processor share a common exter-
nal DRAM interface in a way similar to the schematic shown
in Figure 1. In this paper, we target a similar multiproces-
sor and multiple bus (MPMB) SoC architecture, on which
a common memory interface is shared among multiple bus
agents (e.g. processors) while each processor uses its own
private bus to access the shared memory. To simplify our
subsequent discussion, we assume only one processor is con-
nected to each bus as depicted in Figure 1. Note that it can
be easily extended to the scenario with multiple buses and
multiple processors on each bus where the cache coherence
on each bus can be guaranteed by employing the techniques
described in [10].

Unlike a shared bus architecture, the processors in a non-
shared bus MPSoC system cannot use their native snooping
mechanisms because the buses are separated. Without any
hardware support, the communication between processors
could become very inefficient since the software has to flush

 ccMC

bus 0 bus 1

start_addr_reg

range_reg

 Comparator MuxBREQ0 0

1

0

1 addr1

snoop-hit buffer

Figure 2: The bypass approach

out all shared data cache lines every time a processor ex-
its a critical section. For accelerating data communication
in MPSoCs, we propose a cache coherence-enforced memory
controller (ccMC), which wakes up the native snooping capa-
bility of each processor. As shown in Figure 2 and Figure 3, a
memory-mapped register pair is required inside ccMC. The
start addr reg is set to the starting address of a shared mem-
ory and the range reg specifies the size of a shared memory
region. According to applications’ needs, the register pair
can be replicated to accommodate more discrete shared re-
gions. We studied two different approaches depending on
the allowable silicon budget. The first approach is to bypass
a memory request (e.g., from bus1 in Figure 2) blindly to
the bus on the other side (bus0) if the requested address
falls into the shared memory range specified in the register
pair. We call this the bypass approach. The second approach
keeps track of coherence states of the shared memory blocks
inside ccMC. Depending on the state information, ccMC
either bypasses a transaction to the other bus or sends a re-
quest directly to the main memory, which we call the book-
keeping approach. The bookkeeping approach is similar to
the DSM’s directory-based scheme in a sense that it keeps
the directory information in the memory controller. How-
ever, it is different from the directory-based scheme since
the goal is not to eliminate snooping, but to help snooping
for improving bus utilization. Furthermore, ccMC employs
a small table to cover shared memory regions based on the
applications’ needs.

3.1 Bypass approach
The bypass approach bypasses a shared memory request

indiscriminately to the other side bus for snooping. For ex-
ample, suppose that Processor 1 (P1) from the right-hand
side of Figure 2 requests a “shared” memory block and
misses P1’s data cache. Subsequently, this transaction is
put on bus1 and ccMC compares the address against the
register pair. Since it is in the shared memory range, ccMC
then bypasses it to bus0 after being granted the ownership
of bus0, in response to the bus request (BREQ0) generated
by the comparison match. Finally, Processor 0 (P0) will be
able to snoop the bypassed transaction.

The bypass approach consumes bus bandwidth on both
sides if a requested address is in the shared memory range.
This overhead is due to that ccMC must claim the bus mas-
tership of the other side bus whenever a processor requests a
shared data regardless the other processor has the data in its
cache or not. The advantage of using the bypass approach is
its simplicity and its minimum hardware required. As illus-
trated in Figure 2, only two comparators, two multiplexers
and one register pair are needed.1 The bypass approach

1We only show the schematic diagram from bus1 to bus0 in

Table 1: Problem of the Exclusive state and Solution in the bookkeeping approach
seq. Operation Without shared signal assertion With shared signal assertion

on C state C state ccMC table C state C state ccMC table
cache in P0 in P1 P0 P1 in P0 in P1 P0 P1
line C (MESI) (MSI) (MESI) (MSI)

a© P0 read I ⇒ E I I ⇒ E I I ⇒ S I I ⇒ S I
b© P0 write E ⇒ M I E I S ⇒ M I S ⇒ M I
c© P1 read M I ⇒ S E ⇒ S I ⇒ S M ⇒ S I ⇒ S M ⇒ S I ⇒ S

 ccMC

bus 0 bus 1

start_addr_reg
range_reg

BREQ0

addr1
 states
 P0 P1
 S S
 M I

 Memory

 if M

 if inside
the range

snoop-hit buffer

.....
.....

Figure 3: The bookkeeping approach

can be useful for computation-bound applications since less
memory traffic will appear on the bus.

In general, the coherence protocol integrated with the by-
pass approach is the same as the one proposed for shared-bus
architectures in [9], but with one more additional benefit. It
can take advantage of all the protocol functionalities when
integrating heterogeneous processors with homogeneous co-
herence protocols. For example, suppose that P0 has a
MESI [3] protocol with the cache-to-cache transfer and P1
also uses a MESI protocol but without the cache-to-cache
transfer. In this case, the integrated protocol on a shared-
bus architecture will prohibit the cache-to-cache transfer,
restricting the usage of all protocol states. However, the
bypass approach can preserve all the states in the protocol
because ccMC plays a role as a buffer between buses, and its
bus interface for each side is customized to support all the
functionalities that each processor provides. More details
will be explained in Section 3.2.2.

The snoop-hit buffer depicted in Figure 2 is used for ex-
pediting data transfer between processors when a snoop hit
occurs on a M-state cache line. Our current implementation
of the snoop-hit buffer stores one cache line.

3.2 Bookkeeping approach
Figure 3 shows our bookkeeping approach. Similar to the

bypass approach, the bookkeeping approach maintains one
pair of registers to specify a shared memory region. A state
table keeps the coherence state information for each pro-
cessor. When a memory request from bus1 falls within the
specified range, it records the coherence state of the memory
transaction in the corresponding state table entry. Depend-
ing on the state information in the table, if it is invalid or
shared,2 ccMC does not claim the bus mastership of the
other bus (bus0) and brings the data directly from main
memory. As such, it eliminates unnecessary request forward-
ings to the other bus. For bandwidth-bound applications,
the bookkeeping approach can filtrate false coherence traffic

this figure for brevity.
2If a processor supports cache-to-cache transfer mechanism
in the MESI protocol, ccMC will claim the bus mastership to
initiate the cache-to-cache transfer from the other processor.

and increase the effectiveness of bus utilization. In addition,
a snoop-hit buffer is also employed for performance improve-
ment. Bookkeeping approach is more expensive than the
bypass approach in terms of hardware overhead. We will
analyze the hardware implementation and their cost in Sec-
tion 4.

The book-keeping approach does not allow the Exclusive
state of the coherence protocol, with an exception when in-
tegrating MEI [3] protocol with other protocols. The issue
caused by the E state is illustrated in Table 1. In the exam-
ple, we assume that P0 and P1 support MESI and MSI [3]
protocol, respectively. There are three back-to-back mem-
ory operations a©, b©, and c© executed on the same cache
line. Operation a© changes the cache line state from I to
E in P0 and updates the corresponding entry in the ccMC
state table. Even though the subsequent write operation b©
changes the state from E to M in P0, it does not appear
on the bus due to a cache hit, thus no update in the corre-
sponding entry of the ccMC table. Then, the read operation
c© from P1 will read a stale data from the main memory, in-

voking the E to S state transition in the ccMC table. These
state transitions are shown from column 3 to 6 in Table 1.

To forbid the E state, we have the ccMC asserting the
shared signal whenever a processor initiates a read transac-
tion. The new state transitions with this solution is shown
in the last 4 columns of Table 1. With the shared signal as-
sertion in P0 by ccMC, operation a© now changes the cache
line state from I to S. Then, operation b©, visible to ccMC,
invokes the state changes from S to M in both the P0 and
the ccMC state table. At the end, operation c© receives the
requested data from P0 rather than from the memory, ac-
companying the state changes from M to S in P0 and I to S
in P1, respectively. The ccMC state table also reflects the
state transitions coherently as shown in Table 1. Since the
E state only accounts for a very small portion of the total
state transitions, the impact of eliminating the E state is
rather insignificant.3

Although the E state is not allowed in our book-keeping
approach, the state transition to the E state is inevitable
in the MEI protocol. Since the S state is absent from the
MEI protocol, integrating MEI with other coherency proto-
cols requires ccMC to employ the read-to-write conversion
that eliminates the S state from the other protocols. There-
fore, only the I and E states are maintained in the ccMC
state table, where the I state indicates the data is not in the
cache and the E state shows the data is either in the cache
unmodified (true E state) or modified (hidden M state). For
each request from the processor with the MEI protocol, if
the ccMC state table indicates the line is in E state in the
other processor, ccMC accesses the other bus and places a
write operation on the bus. As such, the E state cache line
is invalidated, or the M state cache line is drained out to
main memory. Finally, the requester gets data either from
main memory or from the snoop-hit buffer.

In the following sections, we focus on the protocol in-
tegration of our target MPMB SoC architecture. We dis-
cuss integrated protocols on the combinations of four major

3SPLASH2 benchmark shows only 0.76% of the time a cache
line is in E state [10].

protocols: MEI, MSI, MESI, and MOESI [3]. The vari-
ations include (1) MEI with MSI/MESI/MOESI, (2) MSI
with MESI/MOESI, and (3) MESI with MOESI. We fur-
ther discuss SoC architectures in which both or either of the
processors do(es) not have any native coherence support.

3.2.1 MEI with MSI, MESI, or MOESI
For clarity, we assume that P1 with MEI sits on bus1

and P0 with one of the following protocols MSI, MESI, or
MOESI on bus0. To prohibit the transition into the S state
in P0, the read-to-write conversion is employed as discussed.
Therefore, ccMC claims the bus mastership of bus0 when a
request by P1 is within the shared memory range and the
ccMC state table indicates the E state in P0. After acquiring
the bus mastership, ccMC drives a write operation on bus0
using the requested address to drain out the cache line if
dirty, or invalidate the cache line otherwise. Therefore, the
final integrated protocol is MEI for all three cases.

3.2.2 MSI with MESI, or MOESI
Now we assume that P1 with MSI on bus1 and P0 with

other protocols (MESI or MOESI) on bus0. In these com-
binations, the E state is eliminated by using shared signal
assertion to avoid the problem discussed in Table 1. Unlike a
shared bus architecture, in a multiple bus architecture, the
cache-to-cache transfer is allowed if the MESI or MOESI
protocol provides it, even though a processor on the other
side bus does not support the cache-to-cache transfer. It is
because ccMC plays a role as a buffer between buses, and
the bus interface for each side is customized to support all
the functionalities each processor provides. For example,
suppose that P1 with MSI requests a block of memory in
the I state in its own cache, and P0 with MOESI currently
has the block in the M state. Since the ccMC state table
indicates the M state in P0, ccMC forwards the request to
bus0. Then, P0 directly provides the block to ccMC, making
the state transition from M to O in P0. ccMC buffers the
block in the snoop-hit buffer, simultaneously forwarding it to
bus1, which changes the state from I to S in P1. According
to the specification of the MOESI protocol, main memory is
not updated for this M to O transition. Main memory will
be updated only when the O-state cache line is displaced.
In the opposite case, when P0 with MOESI requests a block
of memory in the I state in its own cache and P1 has the
block in the M state, P1 changes the state from M to S, sup-
plying the block to P0 through the snoop-hit buffer and P0
changes the state from I to S. Since the S state indicates that
main memory is also up-to-date, the snoop-hit buffer has to
update the main memory simultaneously while transferring
the block to P0. Thus, the integrated protocol is MSI with
the O state or the cache-to-cache transfer enabled

3.2.3 MESI with MOESI
Similar to the integration of MSI and MOESI, the cache-

to-cache transfer is permitted in the integration of MESI and
MOESI. Hence, unlike the integrated protocol on a shared
bus architecture, the final integrated protocol is MESI with
the O state and the cache-to-cache transfer enabled.

3.2.4 Integration with no native protocol
A normal data cache without any native coherence proto-

col support behaves like having the MEI protocol without
any snooping capability. When a read miss occurs, a block
is brought into the cache and set to valid (the E state). A
subsequent write to the same line marks the block dirty (the
M state). A write miss sets both the valid and dirty bits (the
M state) when the line is brought in. Therefore, when inte-
grating with other coherence protocols, the final integrated
protocol is MEI. However, due to the lack of the snooping
functionality, an interrupt is used to drain or invalidate a
cache line, when a request is received from a processor on
the other side bus.

Table 2: Hardware cost of bookkeeping approach
(cache line=32 bytes)

Shared Table size Synthesized
memory area (Bytes) result (Gates)

1KB 16B (32×4bits) 1,337
2KB 32B (64×4bits) 3,147
4KB 64B (128×4bits) 6,106
8KB 128B (256×4bits) 11,927
16KB 256B (512×4bits) 24,467
32KB 512B (1024×4bits) 50,715

4. HARDWARE COST EVALUATION
We implemented the bypass and bookkeeping approaches

in ccMC using Verilog-HDL and synthesized them by Design
Compiler from Synopsys with TSMC 0.18µ technology.

The bypass approach uses two comparators, two multi-
plexers, and two registers for each memory area with a state
machine to manage the bypassing. ccMC also needs the bus
master logic to drive all the buses for each processor. The
synthesized result reports 356 gates.

The bookkeeping approach introduces additional cost on
top of the hardware cost of the bypass approach. This addi-
tional cost mainly comes from the ccMC state table. Since
the E state is not allowed as explained in Section 3, each
state table entry needs two 2-bit registers for keeping three
states, M, S, and I for MESI and four states, M, O, S, and
I for the MOESI protocol. Table 2 shows the synthesized
results for different sizes of the table covering the shared
area. Note that all control logic overheads such as the table
indexing are included in evaluating the design cost.

5. PERFORMANCE EVALUATION
Figure 4 shows two hardware platforms for performance

evaluation. Platform 1© has a PowerPC755 with MEI and
an ARM core with MESI, of which the integrated protocol
is MEI. Platform 2© integrates an ARM with MSI and an-
other ARM with MESI, of which the integrated protocol is
MSI. We implemented the hardware platform using Verilog-
HDL and Seamless [8] processor models. The Seamless CVE
and ModelSim from Mentor Graphics were used for simula-
tion. The PowerPC755 has a 32KB data cache with the MEI
coherence protocol. For ARM9TDMI, we implemented an
8KB data cache with the MSI and MESI protocols using
Verilog. The cache line size of both data caches is 32 bytes.
The ARM core and the PowerPC processor are operated
at 50MHz4 and 100MHz respectively. The memory is syn-
chronized at 50MHz. The cache miss penalty was varied
from 14 cycles to 45 cycles for the simulations. There are
two bus agents which can request bus mastership from each
bus: the processor and the DMA engine. The DMA engine
handles direct data transfer from peripheral devices to local
memory and vice versa. It is used for injecting traffic on
each bus. We assume a 100Mbps Ethernet interface on bus0
and a 320×240 resolution, 30 frames/sec LCD controller on
bus1. DMA0 manages data transfer from the RX buffer to
local memory and from local memory to the TX buffer while
DMA1 transfers frame data for LCD display.

For the performance evaluation, the RTOS kernel simula-
tion was performed. Simulated task insertion/deletion rou-
tines are based on a slightly modified version of the kernel
routines extracted from Atalanta [12]. For inter-processor
communication and synchronization, Atalanta provides a
shared address space approach. Thus, processors that share
system objects such as semaphores or mailboxes can access

4This low frequency is due to the limitation of the Seamless
ARM9TMDI model, however, we expect similar simulation
results at a higher frequency.

P0

 Memory
Controller

 Memory

bus 0 bus 1

P1DMA0 DMA1

100Mbps
Ethernet

320x240 LCD
 controller

platform 1

P0 / protocol P1/ protocol
Integrated
 Protocol

platform

PowerPC755/MEI ARM9TDMI/MESI

ARM9TDMI/MSI ARM9TDMI/MESI

MEI

MSI2

Figure 4: Simulated hardware platforms

each other’s task control block (TCB). For example, assum-
ing P0 and P1 share a semaphore S and currently P0 owns S
and P1 is waiting for S. When P0 is done with the semaphore
S, it releases it. Then, P0 promotes the waiting task’s TCB
to the ready state by changing the state field in the TCB
and inserts the TCB into the ready list of P1. Then, P0
sends an interrupt to P1 so that P1 can reschedule tasks
and execute the task with the highest priority. In Atalanta,
the tasks’ TCB on each processor is connected via a doubly-
linked list based on priority. Each task’s TCB has 14 word-
length fields including the state field and two fields for the
doubly-linked list. Atalanta also maintains an array to refer-
ence the highest-priority ready tasks, which is shared by all
processors in a system. The task insertion/deletion mech-
anism in Atalanta RTOS has been modeled and simulated.
We used the explicit software synchronization mechanism as
the baseline.

5.1 Performance of bypass approach
Figure 5 and Figure 6 show the simulation results with

2 tasks and 32 tasks for each processor. For 2 tasks with
a miss penalty of 14 cycles, platform 1© shows a 2.20X
speedup while platform 2© shows a 1.64X speedup without
the snoop-hit buffer. When the snoop-hit buffer is employed,
the speedup is increased to 2.28X and 1.70X for platform 1©
and 2© respectively. Snoop-hit buffer boosts the perfor-
mance because it shortens data transfer time upon a snoop-
hit in ccMC. For 32 tasks with the same miss penalty, plat-
form 1© shows 6.65X and 6.57X speedups and platform 2©
shows 4.78X and 4.71X speedups with and without snoop-
hit buffer. Speedup differences between two platforms come
from different processor cores. Since PowerPC755 is 2-way
superscalar machine running twice faster than the ARM
core, platform 1© shows better speedup numbers than plat-
form 2©. For a lower miss penalty, the execution time of the
software solution is more conspicuous since the total execu-
tion time is comparably smaller than the one with a longer
memory access time. As the miss penalty increases, the to-
tal execution time largely depends on the memory access
time. The rate of the execution time increase is faster in
proposed approaches than in the baseline software solution
since the software solution was already slow. Therefore, the
speedup of a smaller miss penalty is higher than the one of
a larger miss penalty and it becomes saturated as the miss
penalty is large enough.

Figure 5 shows similar speedup patterns between two plat-
forms even though the integrated protocols are different
(MEI and MSI). This is a result of a much shorter length of
the TCB’s linked list. Since only two tasks are running on
each processor, the length of the doubly-linked list is two.
The insertion and deletion of the linked list demands the

10 15 20 25 30 35 40 45
1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

 platform 2 (MSI-MESI): bypass with snoop-hit buffer
 platform 2 (MSI-MESI): bypass

S
pe

ed
up

 o
ve

r
so

ft
w

ar
e

so
lu

tio
n

Miss penalty (cycles)

 platform 1 (MEI-MESI): bypass with snoop-hit buffer
 platform 1 (MEI-MESI): bypass

Figure 5: RTOS kernel simulation results with 2
tasks per each CPU

modification of fields in both lists, resulting in the useless S
state. On the contrary, in Figure 6, the MSI protocol en-
joys the benefit of the S state since there are 32 tasks on
each CPU and only two or three TCBs need to be modified
depending on the position of insertion and deletion. There-
fore, the speedup slope in platform 2© is less steep than the
one in platform 1©.

5.2 Performance of bookkeeping approach
In RTOS simulations, the bookkeeping approach did not

show any significant performance improvement over the the
bypass approach, thus we did not show them in the figures.
This is due to the tiny data working set used. Note that
only 56 cache lines are needed for all the TCBs of the 32
tasks. In fact, the bookkeeping approach has an advantage
over the bypass approach. It happens when one processor
misses a cache line and the state table indicates that the
other processor either does not have the line in its cache or
has the line in S state. In this case, the requesting processor
can acquire this line directly from main memory instead of
snooping the other processor’s cache as in the bypass ap-
proach. Due to the restriction of the small working set in
our RTOS simulations, this advantage was not clearly shown
in our prior analysis. To illustrate this advantage, we mod-
eled a synthetic benchmark by running one single task on
each processor and having each task try to access the same
memory blocks. Before entering a critical section in the
shared memory, each task needs to acquire a lock. Upon ex-
iting the critical section, all the shared blocks accessed are
forcibly evicted by contrived conflict misses in the bench-
mark. DMAs with the cycle-steal mode are used to inject
traffic on all buses like the RTOS simulations. We studied
the performance sensitivity under different bus bandwidth
utilizations by controlling the amount of the DMA traffic
injected on the bus. For example, in our simulation results
in Figure 7, the 25% bus utilization (x-axis) means that
DMA0 and DMA1 both request their own bus for every 32
cycles and transfer data for 8 cycles once granted.5 Fig-
ure 7 shows the speedups of bookkeeping over bypass as

5However, it does not mean that DMAs always uses 25% of
the bus bandwidth since processors or snoop requests might
be granted already for the bus when DMAs request the bus
mastership.

10 15 20 25 30 35 40 45

3

4

5

6

7

 platform 2 (MSI-MESI): bypass with snoop-hit buffer
 platform 2 (MSI-MESI): bypass

S
pe

ed
up

 o
ve

r
so

ft
w

ar
e

so
lu

tio
n

Miss penalty (cycles)

 platform 1 (MEI-MESI): bypass with snoop-hit buffer
 platform 1 (MEI-MESI): bypass

Figure 6: RTOS kernel simulation results with 32
tasks per each CPU

the bus utilization rate by DMA injection increases from
10% to 90%. As shown, the bookkeeping approach shows
up to 10% performance improvement compared to the by-
pass approach. In general, the performance continues to
increase up to the point when the bus utilization used by
DMAs reaches 70%. After that, DMAs are very likely to
block both the snoop requests and the processor’s requests
in both approaches, thus declining the speedups. We also
observed some outliers cases. For example, when the num-
ber of shared cache lines is 8 and bus utilization by DMAs
is 10%, the bypass approach shows a slightly better perfor-
mance. By analyzing the simulation waveforms, we found
that by coincidence DMA operations are synchronized and
periodically delay processors’ requests in the bookkeeping
approach, but not in the bypass approach. Two other cases
show the same behavior when the bus utilization is changed
from 10% to 25% with 2 and 4 cache lines shared.

6. CONCLUSIONS
In this paper, we proposed efficient integration techniques

— bypass and bookkeeping — for maintaining cache coher-
ence among heterogeneous processors on a non-shared bus
SoC architecture. A cache coherence-enforced memory con-
troller (ccMC) is proposed to awake the snooping capability
of processors on MPMB SoCs. The bypass approach is a
very inexpensive solution for coherence. The bookkeeping
approach filters out unnecessary forwardings, resulting in
more performance improvement over the bypass approach,
at the expense of additional hardware. The proposed two
approaches show a significant speedup (up to 6.65X) over the
naive software solution in the RTOS kernel simulations. The
bookkeeping approach reports up to 10% performance im-
provement over the bypass approach in the synthetic bench-
mark simulations. As more and more SoCs in commer-
cial market adopt heterogeneous multiprocessors with real-
time constraints, we strongly believe that our methodology
provides cost-effective solutions for efficient communication
among heterogeneous processors.

7. REFERENCES
[1] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,

S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese.

0 20 40 60 80 100
0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

S
pe

ed
up

 o
ve

r
th

e
by

pa
ss

 a
pp

ro
ac

h

Bus utilization attempt by DMAs (percent)

 accessed
cache lines
 1
 2
 4
 8
 16
 32

Figure 7: Simulation results for comparison between
the bypass and bookkeeping approach

Piranha: A Scalable Architecture Based on Single-Chip
Multiprocessing. In Proc. of the Int’l Symp. on Computer
Architecture, 2000.

[2] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS
Directories: A Scalable Cache Coherence Scheme. In Proc.
of the In’tl Conf. on Architectural Support of Programming
Languages and Operating Systems, pages 224–234, Apr.
1991.

[3] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan
Kaufmann Publishers, 1999.

[4] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren.
Architecture and Design of AlphaServer GS314. In Proc. of
the Int’l Conf. on Architecture Support for Programming
Languages and Operating Systems, 2000.

[5] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni,
K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter,
M. Horowitz, A. Gupta, M. rosenblum, and J. Hennessy.
The Stanford FLASH Multiprocessor. In Proc. of the Int’l
Symp. on Computer Architecture, 1994.

[6] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. In Proc. of the Int’l Symp. on
Computer Architecture, 1997.

[7] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and
J. Hennessy. The Directory-Based Cache Coherence
Protocol for the DASH Multiprocessor. In Proc. of the Int’l
Symp. on Computer Architecture, 1990.

[8] Mentor Graphics. Hardware/Software Co-Verification:
Seamless. http://www.mentor.com/seamless.

[9] T. Suh, D. M. Blough, and H.-H. S. Lee. Supporting Cache
Coherence in Heterogeneous Multiprocessor Systems. In
Proc. of the Conf. on Design, Automation and Test in
Europe, 2004.

[10] T. Suh, H.-H. S. Lee, and D. M. Blough. Integrating Cache
Coherence Protocols for Heterogeneous Multiprocessor
Systems, Part 1. IEEE Micro, July/August 2004.

[11] T. Suh, H.-H. S. Lee, and D. M. Blough. Integrating Cache
Coherence Protocols for Heterogeneous Multiprocessor
Systems, Part 2. IEEE Micro, September/October 2004.

[12] D.-S. Sun, D. M. Blough, and V. Mooney. Atalanta: A New
Multiprocessor RTOS Kernel for System-on-a-Chip
Applications. Technical Report GIT-CC-02-19, CERCS,
Georgia Institute of Technology, 2002.

[13] W. Wolf. The Future of Multiprocessor Systems-on-Chips.
In Proc. of the 42th Design Automation Conference, 2004.

[14] S. Yoo, G. Nicolescu, D. Lyonnard, A. Baghdadi, and A. A.
Jerraya. A Generic Wrapper Architecture for
Multi-Processor SoC Cosimulation and Design. In Proc. of
the Int’l Symp. on Hardware/Software Codesign, 2001.

