
Microarchitectural Floorplanning
Under Performance and Thermal Tradeoff

Michael Healy, Mario Vittes, Mongkol Ekpanyapong, Chinnakrishnan Ballapuram,
Sung Kyu Lim, Hsien-Hsin S. Lee, and Gabriel H. Loh†

School of Electrical and Computer Engineering
†College of Computing

Georgia Institute of Technology

mbhealy@ece.gatech.edu

Abstract— In this paper, we present the first multi-objective
microarchitectural floorplanning algorithm for designing high-
performance, high-reliability processors in the early design phase.
Our floorplanner takes a microarchitectural netlist and deter-
mines the placement of the functional modules while simulta-
neously optimizing for performance and thermal reliability. The
traditional design objectives such as area and wirelength are also
considered. Our multi-objective hybrid floorplanning approach
combining Linear Programming and Simulated Annealing is
shown to be fast and effective in obtaining high quality solutions.
We evaluate the trade-off of performance, temperature, area, and
wirelength and provide comprehensive experimental results.

I. INTRODUCTION

Future processors implemented in nano-scale technologies
will spend more time in communicating data operands or
exchanging control information than actually performing use-
ful computation. Meanwhile, the impact of power and ther-
mal densities on these nano-scale devices and interconnects
continue to increase, thereby raising the cost for cooling
solutions, eroding performance gains, and threatening overall
circuit reliability. Microarchitectural floorplanning has drawn
significant interest from both the computer architecture and
EDA communities recently [1], [2], [3], [4], [5]. The main
motivation is to tackle the ever-worsening wire delay problem
of high-performance processors [6], [7] with a collaborative
effort between microarchitecture and physical CAD.

The location of individual microarchitectural modules plays
a significant role on many important metrics. First, the floor-
plan has a huge impact on the performance of a given mi-
croarchitecture (measured by IPC) as the global interconnects
between modules are likely to be pipelined in order to meet
high target clock frequencies. This may increase or decrease
the access latency on all inter-module interconnects. Second,
floorplanning significantly impacts the thermal and leakage
profile. This is because the temperature of microarchitectural
modules is not only dependent on the heat generation rate
of each individual module but also the heat coupling be-
tween neighboring modules. Moreover, the leakage power of
each transistor is exponentially dependent on the temperature.
Third, floorplanning impacts the dynamic power consumption
of the buses and clock distribution network. The total number
of flip-flops (FFs) inserted on global interconnects impacts the
dynamic power consumed by the clock distribution network.

However, the performance and temperature objectives conflict
with each other since shorter distance among the active and
hot modules improves the performance while exacerbating the
thermal issue.

Recent studies have focused on traditional 2D microarchi-
tectural floorplanning for performance optimization but not
temperature concerns [1], [2], [3], [4], [5]. Several microar-
chitecture research works on temperature [8], [9], [10] and
leakage power [11], [12], [13] provide runtime management
of the functional modules but do not perform floorplanning.
Most existing floorplanning works on a temperature objective
[14], [15], [16] target circuit designs, not microarchitectural
designs. Thus, the contribution of this paper is as follows:

• This work is the first to propose a multi-objective floor-
planner for high-performance, high-reliability processors
at the microarchitectural level. Our floorplanner simulta-
neously considers high performance, thermal reliability,
area, and interconnect length and provides various trade-
off points.

• Our microarchitectural thermal modeling considers the
thermal and leakage inter-dependence for effective ther-
mal runaway avoidance. Our microarchitectural power
analysis, which is needed by our thermal analyzer, mod-
els the dynamic and leakage power consumed by both
functional modules, global interconnect, and the clock
distribution network for more accurate computation.

Our floorplanning optimizer consists of two steps: initial
solution construction via Linear Programming and stochastic
refinement via Simulated Annealing. This hybrid approach
proves to be very effective in obtaining high quality solutions
in short runtime.

II. SIMULATION INFRASTRUCTURE

A. Microarchitectural Model

In order to model performance more faithfully for deep
submicron processors, we isolate and model each wire as a
separate resource which consumes power and has a delay in
proportion to its length. Note that architectural simulators that
ignore inter-module communication latencies will no longer
be useful for evaluating high frequency processors designed
with deep submicron technologies due to floorplan constraints

and thermal concerns. Essentially, the inter-module latency
is a function of the distance and the number of flip-flops
between modules and must be taken into account in both
performance evaluation and floorplanning. For this reason,
we use the distance information provided by the floorplanner
to determine the latency-related parameters such as pipeline
depth and communication/forwarding latencies.

The microarchitectural configuration used in our study is
summarized as follows: the machine width is 8. We use a 512-
entry gshare branch predictor, a 512-entry reorder buffer, 8KB
instruction and data L1 caches, a 128KB unified L2 cache, a
2MB unified L3 cache, 128-entry instruction and data TLBs,
8 ALUs, 4 FPUs, and a 128-entry load store queue. Note
that our algorithm is general enough to take in many different
configurations. For the sake of expediency, one configuration
was chosen for experimentation.

B. Dynamic Power Modeling

While collecting the inter-module traffic, we also generate
the power consumption profile for each microarchitectural
module cumulatively for every hundred thousand cycles. The
rationale for such sampling is that the temperature is very
unlikely to elevate abruptly within a processor’s operation
period of a few hundred thousand cycles. Note that these
detailed traffic activity and dynamic power profiles are only
collected once at the very beginning of the entire design
flow. The thermal analyzer then uses these power statistics
to provide the thermal profile.

We assume that the intra-module dynamic power consump-
tion remains the same for different floorplans as the module
activity factors primarily depend on the program behavior
rather than the relative positions. Since the new floorplan may
lead to different interconnect lengths between modules, our
tool recomputes all of the inter-module interconnect power
based on the new lengths and adds it to the dynamic per-
module power collected earlier.

The number of flip-flops inserted on the wires for an
extremely high clock frequency can create a large load on the
clock distribution network. This combined with the increasing
percentage of the power budget that the clock distribution
network consumes necessitates modeling the clock power
at a finer grained level. Toward this, we use the accurate
clock power model from [17]. This model considers clock
distribution network power for memory structure precharge
arrays, distribution wiring and drivers, pipeline flip-flops, and
the phase locked loop.

C. Leakage Power Modeling

The leakage power is modeled in a separate process within
our design flow. The model, which is based on [18], considers
different bias conditions, though it only estimates subthreshold
leakage power. For array-like structures, such as caches and
TLBs, the number of bits (or SRAM cells) stored is multiplied
by the amount of leakage current per bit and by the supply
voltage to calculate the total leakage power for the structure.
To calibrate our model, we also calculate the subthreshold
leakage currents using the method in eCACTI [19]. Our model
closely matches the leakage power estimated from eCACTI.

Fig. 1. 3D grid of a chip for thermal modeling

For logic structures, we assume that half the CMOS transistors
are leaking at any given time. The number of transistors
in these structures is estimated using the area values from
GENESYS [20].

Due to this temperature dependence on the subthreshold
leakage current, we first use our model to estimate the leakage
power based on an initial temperature. The results of this
estimate are then fed to our thermal analyzer so that it
will estimate the temperature and the leakage power more
accurately. This is done within the thermal analyzer due to
their interdependence. We follow the criteria [21] for detecting
the scenarios of thermal runaway: (i) the maximum module
temperature Tmax is increasing, (ii) the increment of power is
larger than the increment of package’s heat removal ability.
The package’s heat removal ability is defined as (Tmax −
Ta)/Rt, where Ta and Rt are ambient temperature and thermal
resistance.

D. Thermal Modeling

The chip is divided into a 3D grid as shown in Figure 1 to
apply a finite difference approximation to the thermal equation.
We rewrite the thermal equation into the following matrix
form: R · P = T , where R is the thermal resistance matrix
(Ri,j is the thermal resistance between node i and node j),
P is the power profile vector (Pi is the power dissipation
of node i), and T is the temperature profile vector (Ti is
the temperature of node i). Thus, the temperature of all the
active nodes can now be calculated from the power profile
using a single matrix-vector multiplication. The clock power
is distributed evenly among the modules according to their
area. The bus power for each net is added to the total power
of the source block. Then, the leakage power and temperature
of each module is calculated iteratively using our model until
they either converge or thermal runaway is detected.

In order to facilitate fast but reasonably accurate temperature
calculation, we use a non-uniform 3D thermal resistor mesh,
where grid lines are defined at the center of each microar-
chitectural module. These grid lines are defined for the X
and Y directions and extend through the Z direction to form
planes. The intersection of grid lines in the X and Y directions
define the thermal nodes of the resistor mesh. Each thermal
node models a rectangular prism of silicon that may dissipate
power if it covers some portion of a block. The total power
of each block is distributed according to and among the X-Y
area of the nodes that block covers.

CACTI Genesys profiler+Waatch

module netlist

clock/bus

power

leakage

thermal

microarchtectural

floorplanning

IPC/power/thermal

verification

target

frequency

floorplan

temperature

frequence scaling

application

architectural

description

technology

parameters

module

power

profile

Fig. 2. Overview of our microarchitectural floorplanning framework.

III. MICROARCHITECTURAL FLOORPLANNING

A. Integrated Design Flow

Our design flow incorporates the power, leakage, perfor-
mance, and temperature analysis discussed earlier into our
floorplanner. An overview of this design flow is illustrated in
Figure 2. First, we estimate the area and delay of the microar-
chitectural modules using analytical tools such as CACTI [22]
and GENESYS [20]. Then we perform a cycle-level sim-
ulation using SimpleScalar [23] to collect and extract the
amount of traffic between modules for each given benchmark.
Wattch [24] was integrated into our framework to provide
an estimation of the dynamic power during this simulation.
We also integrate the clock power estimation from [17] and
the leakage estimation from [18] as described above into
our thermal analyzer. We then feed the module-level netlist,
statistical interconnection traffic, and a target frequency to our
thermal/profile-guided floorplanner.

Our floorplanner consists of two steps: initial solution
construction via Linear Programming (LP) and stochastic
refinement via Simulated Annealing (SA). We recursively
bipartition the floorplan area until each module is contained
in its own partition. Each bipartitioning solution is optimized
by an LP-based approach, where performance and thermal
objectives are simultaneously considered under the leakage
power constraint. We then call our power/thermal/leakage
analyzer upon each bipartitioning to update the thermal and
leakage profile. The interdependence between leakage power
and temperature creates the possibility of thermal runaway
[13], in which the temperature and leakage are caught in
a positive feedback loop and both blow up to infinity. If
the floorplanner decides that thermal runaway is unavoidable
given the current clock frequency then it scales the frequency
down until it is successful in avoiding runaway. Once the
recursive bipartitioning is finished, we further optimize the
current solution during our SA-based refinement. We perform
low-temperature annealing to fine-tune the LP-based solution,
where the thermal/leakage analyzer is again used to guide

our optimization. When the final solution is obtained, we use
SimpleScalar [23] and our power/thermal/leakage analyzer to
evaluate the final solution for IPC, power, and temperature
metrics.

B. LP-based Floorplanning

The basic idea behind our algorithm is to perform recursive
bipartitioning until each partition contains a single module.
After we choose a partition to be divided, we perform ther-
mal/leakage analysis to get module temperature. We then
use LP-based floorplanning to simultaneously optimize the
performance and thermal distribution under the clock period,
leakage, center of gravity constraints (to remove overlap
among the modules), and boundary constraints (to keep the
blocks within the chip boundary). An iteration in the LP
phase of our algorithm combines a single bipartitioning and
a subsequent LP-based floorplanning of all modules. Thus,
we perform k − 1 iterations if there are k modules in the
netlist. Note that each iteration can be repeated multiple times
to obtain different cutlines. This is because there exist multiple
solutions that satisfy the boundary and center of gravity
constraints during each bipartitioning. Thus, we perform each
bipartitioning several times and pick the best solution in terms
of performance and thermal profile. The following variables
are used for our LP-based floorplanning formulation:

• N : set of all modules in the netlist.
• xi, yi: location of module i.
• wi, hi: half width and half height of module i
• ai, gi: area and delay of module i
• wm(i), wx(i): minimum/maximum width of module i
• λi,j : normalized profile weight on wire (i,j)
• zi,j : number of flip-flops on wire (i,j) after insertion
• Xi,j = |xi − xj | and Yi,j = |yi − yj |
• Ti,j : normalized product of the temperature of i and j
• A: aspect ratio of the chip
• Xmax, Ymax: maximum among all xi/yi values
• C: target cycle period
• dr: repeated wire delay

Our LP floorplanner determines the values for the following
decision variables: xi, yi, wi, hi, and zij . The following are
the variables used for bipartitioning:

• B(u): set of all modules at iteration u
• Mj(u): set of all modules in partition j at iteration u
• Sj,k(u): set of modules assigned to subpartition k (k ∈

{1, 2} for bipartitioning) in partition j at iteration u
• (x̄jk, ȳjk): center of subpartition k in partition j
• rj ,vj ,tj ,bj : the right, left, top, and bottom boundaries of

partition j

Our LP-based slicing floorplanning algorithm is formulated
as follows:

Minimize:

∑

(i,j)∈E

(α · λij · zij + β · (1 − Tij)(Xij + Yij) + γ · Xmax) (1)

Subject to:

zij ≥
gi + dr(Xij + Yij)

C
, (i, j) ∈ E (2)

Xij ≥ xi − xj and Xij ≥ xj − xi, (i, j) ∈ E (3)

Yij ≥ yi − yj and Yij ≥ yj − yi, (i, j) ∈ E (4)

zij ≥ 0, (i, j) ∈ E (5)

wm(i) ≤ wi ≤ wx(i), i ∈ N (6)

xi, yi ≥ 0, i ∈ N (7)

Xmax ≥ xi and A · Xmax ≥ yi, i ∈ N (8)

Boundary Constraints:

xi + wi ≤ rj , i ∈ Mj(u), j ∈ B(u) (9)

xi − wi ≥ vj , i ∈ Mj(u), j ∈ B(u) (10)

yi + miwi + ki ≤ tj , i ∈ Mj(u), j ∈ B(u) (11)

yi − miwi − ki ≥ bj , i ∈ Mj(u), j ∈ B(u) (12)

Center of Gravity Constrains: for k ∈ {1, 2}, j ∈ B(u)
∑

i∈Sjk(u)

aixi =
∑

i∈Sjk(u)

ai × x̄jk (13)

∑

i∈Sjk(u)

aiyi =
∑

i∈Sjk(u)

ai × ȳjk (14)

Our objective function shown in Equation (1) contains
three terms: profile-weighted wirelength (= λij · zij), thermal-
weighted wirelength (= (1 − Tij)(Xij + Yij)), and area (=
Xmax), where λij is the profiled activity factor of the wire
between modules i and j.1 The minimization of the first
term improves IPC while the minimization of the second term
increases the distance between a pair of hot modules, thereby
reducing thermal coupling. Since minimizing Xmax ·Ymax (=
floorplan area) is non-linear, we only minimize Xmax since the
constraint (8) enforces A·Xmax to be greater than all y values.
Note that α, β, and γ are user defined parameters to weight the
performance, thermal, and area objectives. In case α = 0, our
floorplanner optimizes performance+area only. In case β = 0,
our floorplanner optimizes thermal+area objective only. Lastly,
the conventional area/wirelength-driven floorplanner is using
the following new objective function:

γ · Xmax + δ ·
∑

(i,j)∈E

(Xij + Yij) (15)

We provide an extensive comparison on these
four different floorplanning objectives (simultaneous
performance+thermal+area, performance+area, thermal+area,
and simultaneous area+wirelength) in Section IV.

Constraint (2) is obtained from the definition of latency.
If there is no FF on a wire (i, j), the delay of this wire
is calculated as d(i, j) = dr(Xij + Yij). Then, gi + d(i, j)
represents the latency of module i accessing module j, where
d(i, j) denotes the delay between i and j. Since C denotes the
clock period constraint, (gi +d(i, j))/C denotes the minimum

1Since we add performance and thermal-related weights to the pure wire-
length, we do not explicitly consider non-weighted pure wirelength objective.
However, we report the wirelength metric in all of our experiments to show
the impact of this multi-objective on wirelength.

number of FFs required on (i, j) in order to satisfy C.
Absolute values on x and y distance are given in (3)–(4).
Constraint (5) requires that the number of FFs on each edge is
non-negative. The block boundary constraints (9)–(12) require
that all modules in the block be enclosed by these block
boundaries. The center of gravity constraints (13)–(14) require
that the area-weighted mean (= center of gravity) among all
modules in each sub-block corresponds to the center of the
sub-block.

C. Stochastic Refinement

The standard LP relaxation of the floorplanning problem in-
troduces several non-optimalities. The recursive bipartitioning
process also yields only slicing floorplans. In order to address
these issues we implemented a simulated annealing based
refinement engine for our floorplanner. This allows us to search
around the local space and find a local minimum without
being constrained by linearity. We derive a sequence pair
from the LP floorplanning result and perform low temperature
annealing with them. We use the gridding scheme described in
[25] to derive the corresponding sequence pair representation
from the slicing floorplan. Specifically, we draw the positive
and negative loci for each module and order these loci to
obtain the sequence pair. Next we compute the initial annealing
temperature by setting the probability of accepting bad moves
to a low value. This reduces the runtime required for the
annealing process significantly and focuses on results that are
near the LP based result, which is assumed to be fairly close
to optimal. We use the following cost function during our
annealing:

cost = α · perf wire + β · max temp + γ · area

where perf wire is the profile-weighted wirelength and
max temp is the maximum module temperature. We use
the same weighting constants α and β used in Equation (1)
between the performance and thermal objectives.

Our thermal analysis is the runtime bottleneck during our
refinement since we need to perform the analysis for poten-
tially many candidate solutions. Assuming that the thermal
conductivity of functional modules are similar (they are mostly
silicon), swapping the location of modules would not change
the thermal resistance matrix R. This means that matrix R only
needs to be computed once in the beginning. To calculate the
temperature profile of a new floorplan, the power profile P
needs to be updated and then multiplied by R. Swapping two
blocks usually has a small effect on the power profile, so ∆P
should be sparse. This reduces the number of multiplications
used by the second method at the expense of doing extra
additions and subtractions. Lastly, the leakage and clock power
update are done faster since it basically involves evaluating
a set of equations based on the new module locations and
temperature values.

IV. EXPERIMENTAL RESULTS

Our experiments were performed on 10 programs from the
SPEC2000 benchmark suite. We chose 4 from the floating
point and 6 from the integer benchmark suites. For IPC
evaluation, we ran each benchmark on the average case

TABLE I

MULTI-OBJECTIVE FLOORPLANNING RESULTS WITH PERFORMANCE (P),

MAXIMUM BLOCK TEMPERATURE (T), AREA (A), WIRELENGTH (W), AND

RUNTIME REPORTED. THE LP+SA-BASED FLOORPLANNER IS USED.

A+W A+P A+T A+P+T
bench IPC temp IPC temp IPC temp IPC temp
gzip 1.22 98.57 1.30 99.6 1.02 84.4 1.23 93
swim 1.12 68.08 1.18 67.1 0.99 63.9 1.12 65.7
vpr 1.03 80.85 1.11 80.9 0.84 72.6 1.04 77.2
art 1.01 107.53 1.08 109.8 0.84 90.5 1.01 101.1
mcf 2.00 70.14 2.28 69.4 1.74 65.4 2.11 67.6
equake 1.84 65.61 1.93 64.4 1.52 62.2 1.84 63.4
lucas 3.64 131.12 3.72 135.9 3.33 106.8 3.64 122.7
gap 1.36 74.68 1.45 74.8 1.14 68.7 1.38 72.1
bzip2 1.24 105.67 1.32 106.4 1.07 88.7 1.25 98.8
twolf 0.92 106.19 1.01 109.2 0.73 90.3 0.93 100.6
RATIO 1.00 1.00 1.06 1.01 0.86 0.87 1.01 0.95
AREA 153.38 194.96 201.22 206.84
WIRE 402.5 617.6 781.2 502.87
TIME 647 1245 1886 1348

floorplan using a modified SimpleScalar 3.0 [23] by fast-
forwarding 100 million instructions and simulating the next
100 million instructions. The reported temperature is simulated
after all floorplanning steps and is adjusted relative to a 45◦C
ambient temperature. Wirelength is reported in mm and Area
is reported in mm2. The runtime of our framework was
collected on Pentium Xeon 2.4 GHz dual-processor systems.
The runtime of profiling 4 billion instructions after fast-
forwarding 4 billion instructions was about 4 hours per bench-
mark as was the power collection simulation for the same sets
of instructions. The floorplanning steps took approximately
25 minutes and the simulations for the reported values of
temperature and IPC took approximately 2 minutes and 1 hour
per benchmark, respectively.

Table I presents a comparison of the IPC, temperature, area,
wirelength, and runtime of 4 different objective functions.
All data in this table is taken from the combined LP+SA
approach. The area and wirelength only objective is used as
the basis for the ratios in all the tables. One can see that the
average temperature is increased slightly for the performance
only objective and the maximum increases by 4◦C over the
baseline. The IPC of the performance only objective is the
best among the experiments with an average IPC improve-
ment over the baseline of 6%. The thermal only objective
decreases the average temperature by about 14% over the
performance only objective while maintaining reasonable IPC
values and decreasing the maximum temperature by 29◦C over
the performance only objective. The hybrid performance and
thermal objective decreases the temperature by 6% over the
performance only objective while mainting high IPC value of
1% over the baseline and decreasing the maximum temperature
by 14◦C.

A tradeoff between performance and temperature is shown
in Figure 3. Temperature and IPC are reported as averages
over the 10 benchmarks. The performance and area weights
are held constant while the thermal weight is varied. As
expected the graph shows that as the thermal weight is given
more consideration by the floorplanner the performance drops.
Ideally there would be some separation between the curves to
indicate that high reduction in temperature could occur with

72

74

76

78

80

82

84

86

88

90

92

94

thermal weight

0 1.7 3.3 5.0 6.7 8.3 10 12 13 15 17 18 20

temperature

temperature IPC 1.6

1.5

1.4

1.3

1.2

1.1

1.0

IPC

Fig. 3. Tradeoff between performance and temperature. Performance and
area weights are held constant while thermal weight varies.

degradation in IPC value. The sweet spot of the curve appears
to be around the middle point, as expected. The IPC drops
sharply after this and so would be undesirable for the reduction
in temperature achieved. One can observe that there is a 14%
reduction in IPC and a 20% reduction in average maximum
temperature between the performance-only objective (0) and
the highest weight hybrid objective (20).

Experimental results were also gathered across the three
floorplanning algorithms; linear programming only, simulated
annealing, and the combined approach of linear programming
followed by simulated annealing refinement. Table II presents
a comparison of the IPC, temperature, area, wirelength, and
runtime of these three floorplanning algorithms. One can
observe from the table that the LP floorplanner does very
poorly on the area of the floorplan and is not as good as
the combined approach for temperature. The IPC values also
maintain a trend similar to the temperature. The wirelength
values are within an acceptable range for all approaches,
though it is interesting to note that while the LP-only approach
creates large area the wirelength values are still comparable.
This is because while wirelength was an objective during the
recursive bipartitioning phase of the LP the area is not because
the formulation has no way to constrain overlap. The runtime
of all approaches was roughly equivalent, showing that in a
similar amount of time the combined approach produces better
solution quality.

A breakdown of the total power for each benchmark and the
averages are provided in Table III. This demonstrates that our
power profile simulators were in the range of other published
works. This table also shows that our thermal objective was
able to reduce the percentage of total power on average caused
by leakage. Figure 4 shows a snapshot of our floorplanning
solution.

V. CONCLUSIONS

In this paper, we presented the first multi-objective
microarchitecture-level floorplanning algorithm for design-
ing high-performance, high-reliability microprocessors. We
simultaneously considered both performance and tempera-
ture objectives such that our automated floorplanner can
provide a balanced or goal-directed processor organization
that achieves both design objectives. Moreover, we integrated

TABLE II

COMPARISON AMONG PURE-SA, PURE-LP, AND LP+SA APPROACHES.

THE OBJECTIVE USED IS A LINEAR COMBINATION OF PERFORMANCE,

THERMAL, AND AREA ALL WITH EQUAL WEIGHT.

pure SA pure LP LP+SA
bench IPC temp IPC temp IPC temp
gzip 1.20 100.9 1.15 96.9 1.23 93
swim 1.11 67.3 3.62 66.3 1.12 65.7
vpr 0.99 81.5 0.56 79.1 1.04 77.2
art 0.96 111.5 0.22 105.4 1.01 101.1
mcf 1.81 69.5 1.07 68.5 2.11 67.6
equake 1.54 64.5 0.56 63.9 1.84 63.4
lucas 3.44 137.6 4.22 129.4 3.64 122.7
gap 1.31 74.7 0.55 73.4 1.38 72.1
bzip2 1.22 108.0 2.20 103.5 1.25 98.8
twolf 0.87 109.8 0.32 105.0 0.93 100.6
RATIO 0.94 1.02 0.95 0.98 1.01 0.95
AREA 197.84 664.94 206.84
WIRE 508.07 535.80 502.87
TIME 1453 1068 1452

TABLE III

POWER BREAKDOWN FOR VARIOUS FLOORPLANNING APPROACHES. WE

REPORT THE MODULE AND BUS (M+B), CLOCK (CLK), AND LEAKAGE

(LEAK) POWER AS A PERCENTAGE OF TOTAL POWER, WHICH IS IN THE

RANGE OF 40 TO 50 WATTS.

performance thermal perf+thermal
bench m+b clk leak m+b clk leak m+b clk leak
gzip 60 20 20 62 19 19 61 21 18
swim 62 15 23 64 16 20 61 16 24
vpr 14 40 46 15 34 51 14 35 51
art 28 38 34 32 35 33 29 38 33
mcf 58 17 25 56 17 27 57 18 25
equake 70 11 19 71 11 18 70 12 18
lucas 19 49 32 23 44 33 19 44 37
gap 22 34 44 22 30 48 23 35 42
bzip2 58 24 18 59 21 20 54 22 24
twolf 39 35 26 40 30 30 38 31 31
AVG 49.5 24.6 25.9 50.9 22.2 26.7 48.9 23.5 27.5

leakage modeling into our thermal analyzer and monitored the
temperature/leakage interaction to prevent thermal runaway.
Our hybrid approach that combines Linear Programming and
Simulated Annealing proved to be very effective in obtaining
a high quality solution in short runtime.

REFERENCES

[1] C. Long, L. Simonson, W. Liao, and L. He, “Floorplanning optimization
with trajectory piecewise-linear model for pipelined interconnects,” in
Proc. ACM Design Automation Conf., 2004.

[2] J. Cong, A. Jagannathan, G. Reinman, and M. Romesis, “Microar-
chitecture evaluation with physical planning,” in Proc. ACM Design
Automation Conf., 2003.

[3] M. Casu and L. Macchiarulo, “Floorplanning for throughput,” in Proc.
Int. Symp. on Physical Design, 2004.

[4] M. Ekpanyapong, J. Minz, T. Watewai, H.-H. Lee, and S. K. Lim,
“Profile-guided microarchitectural floorplanning for deep submicron
processor design,” in Proc. ACM Design Automation Conf., 2004.

[5] V. Nookala, Y. Chen, D. Lilja, and S. Sapatnekar, “Microarchitecture-
Aware Floorplanning Using a Statistical Design of Experiments Ap-
proach,” in Proc. ACM Design Automation Conf., 2005.

[6] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, “Clock Rate
versus IPC: The End of the Road for Conventional Microarchitectures,”
in Proc. IEEE Int. Conf. on Computer Architecture, 2000.

[7] R. Ho, K. W. Mai, and M. A. Horowitz, “The Future of Wires,”
Proceedings of the IEEE, 2001.

[8] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware microarchitecture,” in Proc. IEEE
Int. Conf. on Computer Architecture, 2003, pp. 2–13.

(a) (b)

btb

ruu

dl1

fpissue

alu1

fpalu3

bpred
wb

dc
issue

fpalu2

fpalu1
dtlb

mem

lsq

dl2

dl3

il1

commit

itlb

biu

irf

fetchq

fpalu4 frf

ifetch
alu2 alu5

alu6alu4
alu7 alu8

alu3

Fig. 4. (a) snapshot of our LP+SA floorplanning with hybrid (area,
performance, thermal) objective, (b) temperature profile, where darker color
denotes higher block temperature.

[9] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas, “A framework
for dynamic energy efficiency and temperature management,” in Pro-
ceedings of the 33rd annual ACM/IEEE international symposium on
Microarchitecture, Monterey, California, 2000, pp. 202–213.

[10] D. Brooks and M. Martonosi, “Dynamic thermal management for
high-performance microprocessors,” in Proceedings of the Seventh In-
ternational Symposium on High-Performance Computer Architecture.
Monterrey, Mexico: IEEE Computer Society, 2001, p. 171.

[11] N. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Drowsy instruction
caches: leakage power reduction using dynamic voltage scaling and
cache sub-bank prediction,” in Proc. Annual Int. Symp. Microarchitec-
ture, 2002.

[12] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: exploiting gen-
erational behavior to reduce cache leakage power,” in Proceedings of
the 28th annual international symposium on Computer architecture,
Gteborg, Sweden, 2001, pp. 240–251.

[13] L. He, W. Liao, and M. Stan, “System Level Leakage Reduction
Considering Leakage and Thermal Interdependency,” in Proc. ACM
Design Automation Conf., 2004.

[14] C. N. Chu and D. F. Wong, “A matrix synthesis approach to thermal
placement,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 1998.

[15] W. Hung, Y. Xie, N. Vijaykrishnan, C. Addo-Quaye, T. Theocharides,
and M. Irwin, “Thermal-aware floorplanning using genetic algorithms,”
in Proc. Int. Symp. on Quality Electronic Design, 2005.

[16] J. Cong, J. Wei, and Y. Zhang, “A Thermal-Driven Floorplanning
Algorithm for 3D ICs,” in Proc. IEEE Int. Conf. on Computer-Aided
Design, 2004.

[17] D. Duarte, Vijaykrishnan, and M. J. Erwin, “A clock power model to
evaluate the impact of architectural and technology optimizations,” IEEE
Transactions on VLSI Systems, Volume 10, Issue 6, pp. 844–855, Dec.
2002.

[18] Y. Tsai, A. Ankadi, N. Vijaykrishnan, M. Irwin, and T. Theocharides,
“ChipPower: An Architecture-Level Leakage Simulator,” in Proc. IEEE
Int. SOC Conf., 2004.

[19] eCACTI, http://www.ics.uci.edu/ maheshmn/eCACTI/main.htm.
[20] J. C. Eble, V. K. De, D. S. Wills, and J. D. Meindl, “A Generic System

Simulator (GENESYS) for ASIC Technology and Architecture Beyond
2001,” in Int’l ASIC Conference, 1996.

[21] W. Liao, F. Li, and L. He, “Microarchitecture level power and thermal
simulation considering temperature,” in Proc. Int. Symp. on Low Power
Electronics and Design, 2003.

[22] P. Shivakumar and N. P. Jouppi, “CACTI 3.0: An Integrated Cache
Timing, Power, and Area Model,” HP Western Research Labs, Tech.
Rep. 2001.2, 2001.

[23] T. M. Austin, “Simplescalar tool suite,” http:/www.simplescalar.com.
[24] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for

architectural-level power analysis and optimizations,” in Proc. IEEE Int.
Conf. on Computer Architecture, 2000.

[25] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle pack-
ing based module placement,” in Proc. IEEE Int. Conf. on Computer-
Aided Design, 1995, pp. 472–479.

