
Fault Clustering Technique for 3D Memory BISR

Tianjian Li1, Yan Han1, Xiaoyao Liang1, Hsien-Hsin S. Lee2 and Li Jiang1∗
1 Department of Computer Science & Engineering, Shanghai Jiao Tong University

2Taiwan Semiconductor Manufacturing Company, Ltd.

Email: {ltj2013, hy123321, liang-xy, ljiang cs}@sjtu.edu.cn, hhleeq@tsmc.com

Abstract—Three Dimensional (3D) memory has gained a great momen-
tum because of its large storage capacity, bandwidth and etc. A critical
challenge for 3D memory is the significant yield loss due to the disruptive
integration process: any memory die that cannot be successfully repaired
leads to the failure of the whole stack. The repair ratio of each die must be
as high as possible to guarantee the overall yield. Existing memory repair
methods, however, follow the traditional way of using redundancies: a
redundant row/column replaces a row/column containing few or even one
faulty cell. We propose a novel technique specifically in 3D memory that
can overcome this limitation. It can cluster faulty cells across layers to
the same row/column in the same memory array so that each redundant
row/column can repair more “faults”. Moreover, it can be applied to
the existing repair algorithms. We design the BIST and BISR modules
to implement the proposed repair technique. Experimental results show
more than 71% enhancement of the repair ratio over the global 3D GESP
solution and 80% redundancy-cost reduction, respectively.

I. INTRODUCTION

Three Dimensional (3D) memory has been regarded as a promising

alternative to the conventional 2D memory. In a typical 3D stacked

memory [1], as shown in Fig. 1, a peripheral die and multiple

memory dies are vertically stacked. Through Silicon-Vias (TSVs)

are deployed as the address and data lines across the layers. The

decoder is partitioned and distributed in the peripheral layer and

memory layers; given an address, it will first choose which layer to

access and then choose which memory array to access. The separated

memory die and peripheral die can be optimized for device density

and logic performance, respectively [2]. By using TSVs, 3D memory

can provide much higher bandwidth, smaller latency and lower power

consumption when compared to conventional 2D memories; it can

increase the memory capacity without scaling down the devices.

Many 3D stacked DRAM products have been commercialized [3],

[4]. In addition, memories with heterogenous technologies can be

easily integrated in 3D fashion, such as monolithically 3D integrated

RRAMs [5] and STT-RAMs [6], rendering new opportunities in non-

volatile 3D memory.

Despite these promising advantages, the relative high cost (low

yield) is one of the most critical challenges in the 3D memory

technology due to the disruptive integration process [7]: any memory

die that can not be successfully repaired leads to the failure of the

whole stack. As reported in [8], the yield of 3D memories drops

significantly as the number of stacked memory layers increases.

Conventionally, two dimensional (2D) hardware redundancy—spare

rows and columns used to replace the rows and columns containing

faults—is widely adopted to improve the memory yield. Various

repair algorithms can obtain the optimal repair ratio for these 2D

redundancy memory architecture [9]. These repair algorithms and

the one implemented in built-in self-repair (BISR) mechanisms can

be properly applied in 3D memories [8].

This work is partly supported by the National Natural Science Foundation
of China (Grant No. 61602300, Grant No. 61202026 and No. 61332001),
Shanghai Science and Technology Committee (Grant No. 15YF1406000),
and Program of China National 1000 Young Talent Plan. *Li Jiang is the
corresponding author.

Layer 0

Controller

BISR

BIST

Memory
array

B

Layer1

Memory
array

Decoder

TSV

SA&buffer

Layer-selection Decoder

BISR
Layer

Muxes

Fig. 1: An example of 3D stacked memory.

Effective utilization of the redundancy is important for 3D memory

that is sensitive to cost issue. Simply adding more redundancy to

increase the repair ratio may cause unacceptable hardware overhead

and complex routing and thereby may not be cost-effective. On the

one hand, various methods have been developed to utilize the redun-

dancies in a more effective way [10], [11], [12], [13]. The basic idea

is to leverage the die-to-die variation of defect density. The memory

layer that cannot repair itself is allowed to borrow redundancy from

other memory layer that has unused redundancy. The global 3D

GESP algorithm outperforms the existing 2D redundancy sharing

methods [13]. In these works, however, the redundancy is not fully

utilized because a spare row/column repairs a row/column with few

or even single faulty cell. On the other hand, [14], [15] use more

flexible pointer/cache-based schemes to replace faulty memory cells

using redundant cells. In contrast to replace the whole row/column,

these techniques store a word (e.g., 16 bit) in a faulty cache to replace

the original word containing the faulty bits, rendering finer-grained

granularity of redundancy. However, their efficiency drops if most

words in the faulty cache only contain few faulty bits. Not to mention

their design complexity and large cache overhead.

Therefore, in this paper, we propose a novel technique to further

improve the utilization of redundancies in 3D stacked memory. In

contrast to share the spare rows/columns across the memory dies,

we share the “faulty cells” across the memory dies. Intuitively, we

can cluster the faults from different memory layers to the same

row/column; as a result, each spare row/column can repair more faulty

cells. The proposed fault clustering technique achieve the above

objective by exchanging the row/column address among different

memory array across die and consequently reallocating the faults as-

sociated with the exchanged row/column in the redundancy CAM. We

redesign the conventional BIST and BISR modules to accommodate

the proposed fault clustering technique. This technique, on the one

hand, can be applied to any repair algorithms in 1D/2D redundancy

architecture. On the other hand, when applied to pointer/cache-based

560978-3-9815370-8-6/17/$31.00 c©2017 IEEE

redundancy architecture [14], [15], it can cluster the faulty bits

within a cache line/word to reduce the overhead of faulty cache.

Due to the page limit, in this paper, we demonstrate the efficiency of

the proposed technique by proposing the 3D Cluster-ESP algorithm

which is based on the global based GESP algorithm.

The rest of the paper is organized as follows. Section II provides

the background and motivates this paper. Section III-A, III-B and

III-C propose the fault clustering techniques and the 3D Cluster-ESP

algorithm. Section III-D optimizes the fault clustering technique. The

experimental results are shown in section IV. Section V concludes

the paper.

II. RELATED WORKS AND MOTIVATION

In this section, we introduce the related works on 3D memory

repair techniques and motivate this paper.

A. Prior works on 3D Memory Repair

Various bonding strategies (e.g., die-to-die bonding or wafer-to-

wafer bonding) and stacking flows result in diverse yields for 3D

stacked memory [11]. For die-to-die bonding, pre-bond testing can

derive the fault information of each memory die; redundancy analysis

algorithms (RA), i.e., memory repair algorithms, then determine

whether the memory die is self-repairable. Those self-repairable

memory dies are stacked while others are discarded. In contrast, post-

bond test can detect the faults in all the memory dies and those faults

are induced during the period of die stacking. RA algorithms then

repair all the memory dies. The stack can be useless if any memory

die cannot repair itself.

The memory test and repair are normally accommodated in BIST

and BISR modules. Two schemes exist in 3D memory: 3D (Parallel

Test and Parallel Repair) (PTPR) and 3D (Serial Test and Serial

Repair) (STSR) [8]. In 3D PTPR method, each memory die has

individual BIST and BISR modules. Thus, all the memory dies can

be tested and repaired in parallel. However, this method must pay

large hardware overhead for the short time cost of test and repair.

On the contrary, 3D STSR scheme only requires one BIST module

and BISR module, normally in the peripheral die, which test and

repair all the memory dies serially. It trades the time cost of test and

repair for the hardware overhead. Comparing these two schemes, the

latter one is more preferable as it provides a chance of more efficient

utilization of redundancy for higher yield, as described below.

Various techniques to share the redundancy are proposed in 1D/2D

redundancy architecture. Bahl et al. [16] propose to share the redun-

dancy among memory arrays in 2D memory. However, accessing the

shared redundancy must go through the long interconnect between

blocks, leading to large access latency and routing overhead. The

short and densely placed TSVs in 3D memory, on the one hand, can

eliminate the above limitation; on the other hand, sharing redundancy

across dies leverages the die-to-die variation of defect density. Chou

et al. [17] propose to salvage good memory blocks inside of the

bad irreparable memory dies by TSVs and Muxes. However, the

placements are accomplished at block-level rather than row-level;

the utilization of redundancy is less efficient than the following

techniques. Chou et al. [11] propose inter-die sharing of spare

columns and the optimized stacking flows to enhance the yield of

3D memory. This technique, however, only shares spare columns.

In [10], both spare rows and columns are sharable across layers;

thereby, sophisticated repair algorithms and a series of die matching

algorithms are developed for more efficient utilization of redundancy.

This work shows half amount of the redundancy saving to achieve the

same yield. But, it can only share spares between two neighboring

Column Address
Layer1

Layer2

La

a

ayera
00

111
222

333
444

5

C
0

ColuC
1

umn u
2

Adn
3

ddred
4

sse
5

(a) (b) (c)

Layer3

Layer4

Redundant row
LaRedundant

column

L
Fault cell

La
Borrowed

from layer 4

Column Address
Layer1

Layer2
ow

La

La

ayera
00

111
222

333
444

5

C
0

ColuC
1

umn u
2

Adn
3

ddred
4

esse
5

Layer3

Layer4

Borrowed
from layer 3,4

Column Address
Layer1

Layer2

5 La

La

ayera
00

111
222

333
444

5

C
0

ColuC
1

umn u
2

Adn
3

ddred
4

esse
5

Layer3

Layer4

Exchange
address

Fig. 2: Example of redundancy share techniques. (a) Inter-die Redun-

dancy Share; (b) Global Redundancy Share; (c) Fault Clustering.

stacked memory dies. Chi et al. [18] provide a BISR architecture

that can shares cross-die spares, associated with pre-bond and post-

bond test/repair flow and a die matching heuristic. Instead of sharing

redundancy across memory layers, Wang et al. [13] propose a global
sharing method for the 3D memory, wherein the redundancy is only

deployed in the peripheral die. The global redundancy can be used

by any memory die at row-level. Because of this flexibility, this work

can outperform the above redundancy sharing schemes. Moreover, it

can test/repair all the memory die in parallel.

B. Motivation

Despite all that prior works have developed in improving the

utilization of redundancy, they all fall into a limitation: a redundant

row/column replaces a row/column containing few or even one faulty

cell. A lot of redundant resources are wasted when the faulty cells are

sparsely or uniformly distributed in the memory arrays. Intuitively, if

faulty cells in different rows/columns can be clustered into a single

row/column, we can increase the repair ratio to yet another level

with the same amount of redundancy. Unfortunately, it is difficult

and not cost-effective, if not impossible, to cluster the faulty cells in

2D memory dies. Instead, exchanging memory rows/columns across

memory arrays vertically stacked provides a way to cluster fault cells

in different layers into one layer.

We use an example to show our basic idea. We assume four

memory layers, each of which has one memory array; and each

memory array has one redundant row and one redundant column.

Obviously, the conventional repair method in 3D memory cannot

repair the faults in layer 3, as shown in Fig. 2(a). Inter-die redundancy

share scheme, e.g., [10], can repair the faults in layer 3 by borrowing

a redundant column from layer 4. But, it cannot repair the faults of

layer 1, as shown in Fig. 2(b): layer 1 is irreparable even it borrows a

redundancy from layer 2. With global redundancy share scheme [13],

we can repair all the faults by borrowing more redundancy from

layer 3 and 4. However, the global redundancy share method can

do nothing about the faults shown in Fig. 2(c). By exchanging the

address, the two rows in layer 1 containing the faulty cells, each

requiring a redundant row, are now reallocated as shown in the figure;

the faulty cells are now in the same rows with other faulty cells in

layer 2 and 3. The redundant row in both layer 2 and 3 can repair

more faults, rendering all faulty cells repaired with the same amount

of redundancy. The remaining problem is how to achieve the above

fault clustering legally in

Therefore, in this work, we explain why above fault cluttering is

legal and efficient in 3D memory and describe the 3D memory design

in detail to embrace the fault clustering techniques. Consequently, we

apply the fault clustering techniques to the conventional 3D GESP

algorithm—develop a novel 3D Cluster-ESP algorithm—as well as

the BISR design. Then, we discuss the optimal configuration of the

2017 Design, Automation and Test in Europe (DATE) 561

fault clustering to make trade-offs between the repair ratio and the

hardware overhead.

III. PROPOSED APPROACH

In this section, we first describe our BISR and the principle of fault

clustering. Consequently, we describe the fault clustering algorithm.

At last, as a case study, we adapt the fault clustering to 3D Global

ESP algorithm, which is called 3D Cluster-ESP algorithm.

A. Proposed 3D BISR with Fault Clustering

The proposed 3D BISR architecture adopts a global share redun-

dancy scheme. As shown in Fig. 3, the conventional BISR consists

of fault collection registers, redundancy analysis (RA) block, redun-

dancy Content Addressable Memories (CAM) and control circuits.

The fault collection registers store the locations of faulty cells derived

from BIST. The RA block fetches the location of faulty cells and

executes the redundancy analysis algorithm (3D GESP in this paper).

Based on the available redundancy, RA block determines to replace

the row/column with fault cells in the array with the redundancy. And

the informations of replacing will be transfered to the redundancy

CAM. When the input address is the fault cell address, the redundancy

CAM will map it to the redundancy address.

Conventionally, the BISR works as follows: when the input address

is decoded, both the memory array and the redundancy CAM are

accessed concurrently. If the input address is not found in the

redundancy CAM, the content derived from the memory array is the

final output. In contrast, if the input address is found, the content X

in the redundancy CAM is merged with the content Y from memory

array, in which the data from faulty cell in Y is replaced by the data

from X. Use Fig. 4 (a) as an example. One column in Array 1 c13
has four data, A, B, C and D. It has a physical faulty cell and thereby

B cannot be fetched out correctly. A redundant row is used to replace

the row r12; thus, the fault CAM contains all the data in r12. If we

access r12, the fault CAM then provides the data to merge the data

of r12 and deliver the correct data. Similar behavior can be observed

in Array 2. Two redundant rows are required to repair all the faults

in this example.

In our proposed BISR architecture, the fault clustering algorithm,

carried out in the RA block, analyzes the faulty maps of all the

vertically aligned memory arrays in different layers and decides

the exchange of rows/columns. The addresses involved in above

exchanges are stored into address CAM. RA algorithm, also carried

out in the RA block, allocates the redundancy to repair all the faults

based on the new address information. The RA algorithm is tricked

Amp

Column Decoder

AmpAm ppppmpppp

Amp

 Redundancy
 CAM

Address
CAM

Mux

Data Bus

Global Redundancy

Address Bus

TSVs
RA block

Fig. 3: Overview of 3D global architecture.

A
B
C
D

a
b
c
d

e A
B
C
D

f
g
h

Array 1

r11

r12

r13

r14

c11 c12 c13 c14

r11

r12

r13

r14

r21

r22

r23

r24

c11 c12 c23 c14

c21 c22 c13 c24

Array 2

Array 1

RA

Fault
CAM B

B

B

Address
Address

Address

Fault
CAM

b

f B

B

Address
CAM

Address
CAM

f b

f b

(b)

Data

e a
b
c
d

f
g
h

Array 2

r21

r22

r23

r24

c21 c22 c23 c24

RA

Fault
CAM Bf

bf

Bf

Address

Data

(a)

Data

f B

Data

Fig. 4: The principle of fault clustering.

by the faults that disguise themselves with “exchanged” address.

Magically, the faults from other layers are clustered in the same

row/column for repair.

We disclose the magic in the above process using the example in

Fig. 4(b). We exchange c13 and c23 and the data in Array 1 and 2 are

exchanged as shown in the figure. When the input address arrives for

memory access, the address CAM is first accessed and searched for

the input address. If the address has been exchanged, the decoder will

access the new physical location in the memory array. For example,

the data of c13 is now stored in Array 2 without any faults, while the

data of c23 is now in Array 1 and the data “b” is damaged. In the

faulty CAM, both data “b” and “f” are actually stored in the same

redundant row used to replace r22. When r22 is accessed, its data

is merged with the one—derived from the redundant column —in

the redundancy CAM. Compared to the conventional repair solution,

in Fig. 4(a), only one redundant row is required. It should be noted

that, in the above example, we cannot store “b” and “f” in the same

redundant column because it will damage the data integraty.

The fault clustering technique must be implemented in 3D memory.

First, it is meaningless to exchange two rows/columns in the same

memory array; because no matter how we exchange the address

rows/columns, we cannot cluster the faulty cells that are initially

in different rows/columns into a single row/column. Moreover, in

2D memory, it is not cost-effective to exchange the rows/columns

between two memory arrays due to the area overheads and routing

complexity. Fortunately, no such problems exist in 3D memory if the

extreme short TSVs are used for routing.

The detail of fault clustering algorithm—how to decide the pairs

of rows/columns for exchange—is then described in the next section.

B. Fault Clustering Algorithm

In order to clearly describe the fault clustering algorithm, we define

two terms: the Mapping layer and the Mapped layer. Intuitively, the

faulty cells of the memory array in the mapping layer are “mapped”

to the memory array in the mapped layer. In the implementation,

the faulty rows/columns in the mapping layer have their address

manipulated for an exchange of the faultless rows/columns in the

562 2017 Design, Automation and Test in Europe (DATE)

LA: Layer Address

RA: Row Address
CA: Column Address

RMF: Row Must FlagRMF: Row Must Flag
R/CEF: Row/Col Exchange Flag

R/CEF MLR/RR CEF ML

(a)

ow/Col Exchange Flag
ML: Mapped Layer

(b)

RMFML RMFML CMF

(bb)

LA RA CAAI

LA RA CAAI

y

RA: Row Address
AI : memory Array Index

g
CMF: Column Must Flag

Fig. 5: CAM structure: (a) Address CAM; (b) Redundancy CAM.

mapped layer. For example, in Fig. 2(c), Layer 1 is the mapping

layer and layer 2 and 3 are the mapped layer.

The address CAM manipulates the row/column address; its basic

structure is shown in Fig. 5 (a). LA field embodies the memory layer

index; AI field embodies the memory array index in the memory

layer LA, which are used to locate the memory array. The four fields,

i.e., row address (RA), column address (CA), LA and AI, belong to

the mapping layer. While Mapped layer (ML) field determines the

index of the mapped layer. The 1-bit Row/Col exchange flag (R/CEF)

indicates the type of address, row or column, to be exchanged. If

R/CEF = 0, the row indicated by the LA, AI and RA fields is

exchanged with the row indicated by ML, AI and RA fields. To be

specific, whenever an input address comes, if its first three fields (LA,

AI, RA) matches those fields of an entry and the R/CEF = 0, the

LA field in the input address is changed by the ML field. Similarly, if

R/CEF = 1, the column indicated by the LA, AI and CA fields can

be exchanged with the column indicated by ML, AI and CA fields.

Note that, to reduce the hardware cost of address CAM, we restrain

the exchange of row/column only happens between the addresses

with the same row/column index (RA/CA) in the memory array

with the same index (AI) across different layers (i.e., LA �= ML).

Consequently, the address CAM only has one set of AI, RA and CA

fields; only 1 bit is required for R/CEF; and lg n bits are required

for ML field, wherein n is the total number of memory layers.

The proposed fault clustering algorithm modifies the basic redun-

dancy CAM as shown in Fig. 5 (b). The fields of LA, AI, RA,

CA, ML are the same with those in address CAM. The Row Must

Flag (RMF) indicates that the fault must be repaired by the redundant

row (1 = enable). So does the Column Must Flag. It should be noted

that, if the faulty cells from the mapping layer are clustered into the

mapped layer through row (column) exchange, then the faulty cells

in the mapped layer must be repaired by redundant column (row).

The address CAM and redundancy CAM is cost effective. Use an

8-layer 4GB 3D memory as an example. Each layer has 64 memory

arrays, each of which has 1K columns and 1K rows. Each entry of

the address CAM has 3-bit LA, 6-bit AI, 10-bit RA and CA, 3-bit

ML and 1-bit R/CEF, totally 33 bits. While each entry of redundancy

CAM has 34 bits.

The fault clustering algorithm in RA block analyzes the redundancy

CAM and configure the address CAM for address exchange. Given

the mapping layer/mapped layer Lm/Ln, we use the row-based

address exchange as an example to describe the fault clustering

process as follows:

• Step 1: Search the entry Ee in the redundancy CAM with LA =
Lm, find the faulty cell Cellm whose location is (Ri, Cj). If

RMF is set as 1, go to step 4;

Column AddressLayer1

Layer2

Column AddressLayer1

Layer2

La

La er

La

Layer

y
00000

111
222

333
444

5

C
0

ColuC
1

umn u
2

Adn
3

ddred
4

esse
5

C
0

ColuC
1

umn u
2

Adn
3

ddred
4

sse
5y

000
111

222
333

444
5

(a)

(b)

(c)

(d)

Case 1
Case 2

Case 1

Case 2

Case 3

(2,0,3,C1)
(1,1,0,C2)
(1,2,3,C3)
(2,3,0,C4)
(2,4,1,C5)

(2,0,3,C1)
(1,1,0,C2)
(1,2,3,C1)
(2,3,0,C2)
(2,4,1,C3)

(e)

2 0 3 2 0 0
1 1 0 1 0 0
1 2 3 1 0 0
2 3 0 2 0 0
2 4 1

b)
2 0 0

22
LA

00
RA

33
CA

22
ML

00
RMF

00
CMF

2 0 3 1 0 1
1 1 0 1 0 1
1 2 3 1 0 1
2 3 0 1 0 1
2 4 1

)
2 0 0

22
LA

00
RA

3

(

3

(
CA

1

()((

1

)(
ML

00
RMF

11
CMF

LA RA CA MLMR/CEF
2 0

C
- 1

/C
1

2 3 - 11

Fig. 6: (a) A conceptional example of fault clustering; (b) Status of the

redundancy CAM before fault clustering; (c) Status of the redundancy

CAM after after fault clustering; (d) Status of address CAM after

fault clustering; (e) Potential spare allocation results: without fault

clustering and with fault clustering.

• Step 2: Search the entry in the redundancy CAM with ML =
Ln, find a faulty cell Celln whose location is (Rk, Cj), Ri �=
Rk. If not found, go to step 4;

• Step 3: If Celln found and the row Ri in Ln is faultless, the

two rows Ri in Lm and Ln is exchanged. Add two entries in

the address CAM and modify the entry in redundancy CAM by

setting the column-must flag as 1).

• Step 4: If not finished, increase the entry index, e + +, return

to step 1; otherwise, stop.

In step 1, if the RMF in the found entry is set as 1, the RA has

decided to repair this faulty cell with redundant row—multiple faulty

cells exist in this row Ri—it is not legal to exchange this row. In

step 2, if we cannot find a faulty cell Celln in the mapped layer

Ln with the same column index Cj (but different row index) with

Cellm, it is not beneficial to exchange: a redundant column in Ln

repairs only a single faulty cell. Step 4 is to control the end of fault

clustering algorithm: if all the entries in the redundancy CAM has

been searched, the algorithm suspends.

Fig.6 represents an example of the fault clustering process. Layer

1 is the mapped layer ML = 1, while Layer 2 is the mapping layer

LA = 2. The locations of faulty cells are stored in the redundancy

CAM as shown in Fig. 6(b); the address CAM is empty. As case

1 (in red color), we first search the faulty cell in redundancy CAM

with LA = 2, and find one with location (0,3). Then, we iteratively

search for the faulty cell with ML = 1 and with column index equals

to 3. A faulty cell in layer 1 with location (2,3) is found. At last,

the row 0 in layer 1 is faultless, and thereby we can exchange the

two rows with 0 index between these two layers, resulting in two

new entries in the address CAM as shown in Fig 6 (d). The involved

entries in the redundancy CAM is changed as shown in Fig. 6 (c).

The fault clustering algorithm then finds the faulty cell (3,0) in layer

2 and exchange row 3 between these two layers. The changes in the

address CAM and redundancy CAM is shown as case 2 in the figure.

The fault clustering algorithm continues and finds the faulty cell (4,1)

in the mapping layer. As no faulty cell in column 1 of the mapped

2017 Design, Automation and Test in Europe (DATE) 563

(a) (b) (c)

Column AddressLayer1

Layer2

Lay

Laye

eray
000

111
222

333
444

5

C
0

ColuC
1

umn u
2

Adn
3

ddred
4

sse
5

Layer3

Layer4

Column AddressLayer1

Layer2

L

L

ayer
00

111
222

333
444

5

C
0

ColuC
1

umnu
2
n Adn

3
ddred

4
sse
5

Layer3

Layer4

Column AddressLayer1

Layer2

aye
00

111
222

333
444

5

Layer3

Layer4

C
0

ColuC
1

umnu
2

n Adn
3

ddred
4

esse
5

Exchange
address

FirstFirst
Second

Fig. 7: Example of fault clustering techniques. (a) Pairwise mapping;

(b) Multi-to-one mapping; (c) Cyclic mapping.

layer is found, no row is exchanged. Fig.6 (e) represents the spare

allocation results for the above cases. Without fault clustering, five

redundant columns are required. In contrast, with fault clustering,

three spare columns are required to repair all the faults. Faulty cells

(0,3) and (2,3) lie in different layer, but can be replaced by a single

column (C1).

C. 3D Map-Global ESP

The proposed fault clustering technique can be applied in many

repair algorithms. It disguises the input address through the address

CAM, without interfering other modules in the BISR and memory

controller. While any redundancy analysis algorithms can pretend that

no exchange of row/column ever happens in the redundancy CAM

and then repair the faults as normal. In this paper, we provide a 3D

Map-GESP algorithm, by combining the fault clustering technique

and the 3D GESP algorithm [13]. First, the 3D Map-GESP algorithm

collects the location of faults derived from BIST module, and stores

them in the redundancy CAM. Then, it executes the fault cluster

algorithm and fills in the address CAM and changes the redundancy

CAM. Consequently, it allocates the redundancy and repairs the

faults based on the R(C)MF fields; and it executes the 3D GESP

algorithm for the remaining faults in the redundancy CAM based on

the remaining redundancy.

D. Optimization for Fault Clustering

Until now, we demonstrate the fault clustering technique between

two adjacent layers. We denote it as pairwise fault clustering.

Next, we optimize the fault clustering technique through judiciously

strategies of choosing the mapping layers and mapped layers. We use

a 4-layer 3D memory containing faults in Fig. 2 (a) as an example.

For clarity, we only show one memory array in each layer. Without

fault clustering technique, nine redundant columns are required. If

we apply the pairwise fault clustering between layer 1 and 2, and

between layer 3 and 4, six redundant columns are required as shown

in the Fig. 7 (a). However, we need more efficient methods in the

following scenarios: faults in multiple layers can be clustered into

one layer for redundancy reduction.

In contrast to the pairwise fault clustering, Multi-to-one fault
clustering strategy allows multiple mapping layers but only a single

mapped layer. As shown in Fig. 7 (b), the faults in layer 2-4 can be

clustered into layer 1. We then reduce the requirement of redundant

columns from six to five. However, a considerable amount of faults

are still remaining in layer 2-4 without clustering.

We propose Cyclic fault clustering to resolve the above problem.

The basic idea is to iteratively execute Multi-to-one fault clustering
strategy with a different mapped layer in each iteration. For a 3D

memory with n layers, the Multi-to-one fault clustering process is

executed in n−1 iterations. In the first iteration, the faults in the top

n− 1 layers are clustered into the top layer. In the second iteration,

the faults in the top n− 2 layers are clustered into the second layer.

This process continues until the n−1 iterations are finished. Note that

some rows or columns of a memory array may be exchanged multiple

times. As shown in Fig. 7 (c), row 3 of layer 2 are exchanged twice:

it is first exchanged with row 3 of layer 1, and then is exchanged

with row 3 of layer 3. Cyclic fault clustering can further reduce the

requirement of redundant columns to three. We note that the number

of layers allowed for fault clustering determines the complexity and

overhead of address CAM and redundancy CAM in the proposed

3D memory BISR architecture. We have to pay high cost for high

repair ratio. With no doubts, Cyclic mapping leads to unacceptable

cost when the number of layers in 3D stacked memory is very large.

To obtain a trade-off between repair rate and cost, we propose

a Group-based fault clustering strategy. As an eclectic strategy, it

divides memory layers into groups, each of which adopts the Cyclic
fault clustering strategy. No fault clustering is allowed across different

groups.

IV. EXPERIMENTS

A. Experimental Setup

In order to evaluate the performance of proposed 3D BISR

schemes, we build a 3D memory simulator. The sample 3D memory

is composed of eight layers; each layer has 64 memory arrays, each

of which contains 1024 × 1024 memory cells. We generate 1000

3D memory samples for Monte Carlo simulation. The simulator can

generate fault maps by randomly injecting faults using Compound

Poisson distribution [19], which well models the real distribution

of faults. We evaluate the proposed Pairwise, Multi-to-one, Cyclic

and Group-based fault clustering strategies, and compare them with

the Original 3D GESP repair algorithm for the repair ratio. As the

3D GESP repair algorithm outperforms the remaining 3D repair

solutions, no other repair methods are chosen as comparison. The

yield of 3D memories and the hardware overhead of the proposed

BISR architecture are also analyzed.

B. Results

In Fig. 8 (a), we evaluate the repair ratio of 3D memory with

varying number of redundancies. The error rate is set as 1.5%. All the

proposed fault clustering techniques obtain much higher repair ratio

than that of Original solution. The Cyclic fault clustering technique

outperforms the others. In average, the Cyclic fault clustering, the

Multi-to-one fault clustering and the pairwise fault clustering tech-

niques can approximately improve the repair ratio by 50%, 25% and

15% compared to the original scheme, respectively. More mapped

layers involved in the solution, higher repair ratio can be obtained as

more faults can be clustered together that improve the efficiency of

redundancy. As the number of redundancy increases, the improvement

on repair ratio decreases.

Fig. 8 (b) presents the repair ratio with varying error rate of

3D stacked memory. The number of redundancy is set as 40. The

proposed fault clustering techniques can significantly improve the

repair ratio. Their improvements are similar to what we observe in

Fig. 8 (a). As the error rate increases, the repair ratio drops for all the

methods. While for Cyclic fault clustering technique, the repair ratio

drops smoothly. In average, the Cyclic fault clustering, the Multi-
to-one fault clustering and the pairwise fault clustering techniques

can approximately improve the repair ratio by 50%, 25% and 15%

compared to the original scheme, respectively. In the highest error

564 2017 Design, Automation and Test in Europe (DATE)

Error rate

R
ep

ai
r r

at
e

Error rate

N
um

be
r o

f r
ed

un
da

nc
y

R
ep

ai
r r

at
e

Number of Redundancy

R
ep

ai
r r

at
e

R
i

t

Number of Redundancy
a

Error rate
b

rror rat
(c)

ber of Redu
d

R
ep

ai
r r

at
e

Fig. 8: Simulation results on (a) repair ratio varying the error rate; (b) repair ratio varying the error rate; (c) the number of redundancy; (d)

repair ratio of Group-based fault clustering with different group size varying the redundancy.

rate, the repair ratio of Cyclic fault clustering technique is about

85%, which is about 60% better than the original solution.

Fig. 8 (c) shows the required redundancy with a target 99% yield

varying the error rate. With the increasing error rate, the required

redundancy increases for all the methods. However, the proposed

techniques can efficiently save the requirement of redundancy. Sur-

prisingly, whatever the error rate is, few redundancy is required for

Cyclic fault clustering technique. In the highest error rate, the original

solution needs more than 50 redundant rows/columns; on the contrary,

only 10 redundancy is enough for Cyclic fault clustering. Five times

of cost reduction can be achieved.

Finally, to evaluate the repair ratio of Group-based fault clustering,

we compare the repair ratio of different group size varying the number

of redundancy. The error rate is fixed as 1.5%. When the group size is

two and eight, Group-based fault clustering reduces to the Pairwise
fault clustering and Cyclic fault clustering techniques, respectively.

As shown in Fig. 8 (d), for Cyclic fault clustering and pairwise
clustering, the results are similar to what is shown in Fig. 8 (a).

Interestingly, if we compare these two figures, we find that the Group-
based fault clustering technique outperforms the Multi-to-one fault
clustering.

C. Overhead analysis

The proposed BISR architecture incurs some timing penalty be-

cause additional time will be needed to search the address CAM

and manipulate the address. Compared to the 3D BISR with global

spare sharing [13], the additional hardware cost is list as follows. We

don’t need additional TSVs. On average, for each layer, We need to

map for 4 times. For a 8-layer chip, 32 entries in the address CAM,

which roughly equals to 1056 bit SRAM cells. We need 80 entries in

the redundancy CAM; each entry has 2 more bits than that in [13].

The control logic for address manipulation around the address CAM

can be ignored and the one around the redundancy CAM is similar

to [13]. In total, the hardware overhead in the BISR is 0.53% larger

than that in [13].

V. CONCLUSION

Three Dimensional (3D) memory has gained a great momentum

because of its large storage capacity, bandwidth and etc. The yield

has become one of the most critical challenges 3D memory design.

We propose a novel BISR architecture for 3D memory to dramatically

improve the repair ratio with ignorable timing penalty and hardware

overhead. The experimental results show 71.82% higher repair rate

than what can be achieved with the state-of-art 3D BISR technique

in average.

REFERENCES

[1] Kiran Puttaswamy et al. 3D-integrated SRAM components for high-
performance microprocessors. IEEE Transactions on Computers,
58(10):1369–1381, 2009.

[2] G H Loh. 3D-Stacked Memory Architectures for Multi-core Processors.
ACM Sigarch Computer Architecture News, 36(3):453–464, 2008.

[3] Uksong Kang et al. 8Gb 3-D DDR3 DRAM using through-silicon-via
technology. IEEE Journal of Solid-State Circuits, 45(1):111–119, 2010.

[4] M Kawano et al. A 3D packaging technology for 4 Gbit stacked DRAM
with 3 Gbps data transfer. In 2006 International Electron Devices
Meeting, pages 1–4. IEEE, 2006.

[5] Liu T et al. A 130.7-2-layer 32-gb reram memory device in 24-nm
technology. IEEE Journal of Solid-State Circuits, 49(1):140–153, 2014.

[6] Sabry Aly M M et al. Energy-efficient abundant-data computing: The
n3xt 1,000x. Computer, 48(12):24–33, 2015.

[7] Meng-Fan Chang et al. Challenges and trends in low-power 3D die-
stacked IC designs using RAM, memristor logic, and resistive memory
(ReRAM). In ASIC (ASICON), 2011 IEEE 9th International Conference
on, pages 299–302. IEEE, 2011.

[8] Wooheon Kang et al. A 3 Dimensional Built-In Self-Repair Scheme for
Yield Improvement of 3 Dimensional Memories. IEEE Transactions on
Reliability, 64(2):586–595, 2015.

[9] Woosik Jeong et al. An advanced BIRA for memories with an optimal
repair rate and fast analysis speed by using a branch analyzer. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 29(12):2014–2026, 2010.

[10] Li Jiang et al. Yield enhancement for 3D-stacked memory by redundancy
sharing across dies. In Proceedings of the International Conference on
Computer-Aided Design, pages 230–234. IEEE Press, 2010.

[11] Che-Wei Chou et al. Yield-enhancement techniques for 3D random
access memories. In VLSI Design Automation and Test (VLSI-DAT),
2010 International Symposium on, pages 104–107. IEEE, 2010.

[12] Minsu Choi et al. Balanced redundancy utilization in embedded memory
cores for dependable systems. In Defect and Fault Tolerance in
VLSI Systems, 2002. DFT 2002. Proceedings. 17th IEEE International
Symposium on, pages 419–427. IEEE, 2002.

[13] Xiaodong Wang et al. Global built-in self-repair for 3D memories with
redundancy sharing and parallel testing. In 3D Systems Integration
Conference (3DIC), 2011 IEEE International, pages 1–8. IEEE, 2012.

[14] Y. H. Son et al. Cidra: A cache-inspired dram resilience architecture.
In IEEE International Symposium on High Performance Computer
Architecture, pages 502–513, 2015.

[15] P. J. Nair et al. Archshield: architectural framework for assisting DRAM
scaling by tolerating high error rates. In International Symposium on
Computer Architecture, pages 72–83, 2013.

[16] Swapnil Bahl. A sharable built-in self-repair for semiconductor mem-
ories with 2-D redundancy scheme. In 22nd IEEE International
Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007),
pages 331–339. IEEE, 2007.

[17] Yung-Fa Chou et al. Memory repair by die stacking with through silicon
vias. In 2009 IEEE International Workshop on Memory Technology,
Design, and Testing, pages 53–58. IEEE, 2009.

[18] Chun-Chuan Chi et al. 3D-IC BISR for stacked memories using cross-
die spares. In VLSI Design, Automation, and Test (VLSI-DAT), 2012
International Symposium on, pages 1–4. IEEE, 2012.

[19] Israel Koren et al. Defect tolerance in VLSI circuits: techniques and
yield analysis. Proceedings of the IEEE, 86(9):1819–1838, 1998.

2017 Design, Automation and Test in Europe (DATE) 565

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

