
An FPGA Approach to Quantifying Coherence Traffic
Efficiency on Multiprocessor Systems

Taeweon Suh
Platform Validation

Architecture
Intel Corporation

taeweon.suh@intel.com

Shih-Lien Lu
Microarchitecture Research

Intel Labs
shih-lien.l.lu@intel.com

Hsien-Hsin S. Lee
Electrical and Computer

Engineering
Georgia Tech

leehs@gatech.edu

ABSTRACT
Recently, there is a surge of interests in using FPGAs for
computer architecture research including applications from
emulating and analyzing a new platform to accelerating mi-
croarchitecural simulation speed for design space exploration.
This paper proposes and demonstrates a novel usage of FP-
GAs for measuring the efficiency of coherent traffic of an
actual computer system. Our approach employs an FPGA
acting as a bus agent, interacting with a real CPU in a
dual processor system to measure the intrinsic delay of co-
herence traffic. This technique eliminates non-deterministic
factors in the measurement, such as the arbitration delay
and stall in the pipelined bus. It completely isolates the im-
pact of pure coherence traffic delay on system performance
while executing workloads natively. Our experiments show
that the overall execution time of the benchmark programs
on a system with coherence traffic was actually increased
over one without coherent traffic. It indicates that cache-
to-cache transfers are less efficient in an Intel-based server
system, and there exists room for further improvement such
as the inclusion of the O state and cache line buffers in the
memory controller.

1. INTRODUCTION
To maintain data consistency in multi-threaded applica-

tions, a symmetric multiprocessor (SMP) system often em-
ploys a cache coherence protocol to communicate among
processors. The performance of the cache coherence proto-
cols were previously evaluated in several literatures [1, 3, 7,
8]. Traditionally, the evaluations of coherence protocols fo-
cused on protocols themselves, and the system-wide perfor-
mance impact of coherence protocols has not been explicitly
investigated using off-the-shelf machines. When workloads
are parallelized and run natively on an SMP system, the
speedup is dependent on three factors: (1) how efficiently
workloads are parallelized, (2) how much communication is
involved among processors, and (3) how efficiently the com-
munication mechanism manages communication traffic, e.g.,
cache-to-cache transfer between processors. While program-
mers make every effort to efficiently parallelize workloads,
the underlying communication mechanism of the architec-
tural implementation remains unmanageable in the software
layer and becomes the limiting factor for speedup as the
number of processors increases. Despite the importance of
the communication, it has not been easy or feasible to com-
pletely isolate its impact directly from the speedup numbers
collected on an SMP system. Oftentimes, due to the dif-
ficulty of the direct evaluation on real machines, software
simulators [2, 4, 6, 9] were used to characterize performance
of an SMP. Nevertheless, the software-based simulation is

sometimes difficult to reach an unbiased conclusion since the
exact real-world modeling such as I/O is difficult. In addi-
tion, it hinders the broad range measurement of the system
behavior due to the intolerable simulation time.

By executing workloads on an off-the-shelf system na-
tively, our case study evaluates and analyzes the impact
of communication mechanism on the overall system perfor-
mance based on a simplified model. Notably, our methodol-
ogy completely isolates the impact of coherence traffic on the
overall system performance. Also note that, our methodol-
ogy did not attempt to accurately model the actual coher-
ence traffic of a given parallel application. Rather, the ob-
jective is to analyze and understand how the inter-processor
traffic itself, such as cache-to-cache transfer and invalida-
tion traffic, affects the overall performance based on coher-
ence traffic emulated with an implemented cache in a field-
programmable gate arrays (FPGAs). In this work, we im-
plemented coherent caches in the FPGA, then measured and
evaluated the coherence traffic efficiency of the Pentium R©-
III’s1 (referred to as P-III hereafter) MESI protocol on the
front-side bus (FSB). We then execute workloads directly
on the Intel server system to obtain, measure and analyze a
broad, precise spectrum of the system behavior. We found
that coherence traffic on the P-III FSB is not as efficient
as expected. The overall execution time of the benchmark
programs with coherence traffic was actually increased com-
pared to one without them.

2. BACKGROUND
Cache coherence protocols are widely used in shared-memory

MP systems for maintaining data consistency. Depending on
the scale of a shared-memory MP system, different proto-
cols are employed. Large-scale systems that adopt the dis-
tributed shared memory architecture use a directory-based
coherence scheme [3]. On the other hand, modest-sized MP
systems based on a shared-bus architecture typically use a
snoop-based coherence protocol [3]. Most of the commercial
servers and high-end PC systems employ the snoop-based
coherence protocols. Our work measures and evaluates the
coherence traffic efficiency for such systems.

2.1 Coherence mechanism on the P-III FSB
The P-III-based SMP systems utilizes the FSB as a shared

bus for communication. The FSB is a 7-stage pipelined
bus, consisting of request1, request2, error1, error2, snoop,
response, and data phases, as illustrated in Figure 1. Re-
sponse and data phases are often overlapped. The FSB sup-
ports eight outstanding transactions. For cache coherence,

1Pentium R© is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other countries.

DRDY#

DBSY#

DATA[63:0] D0 D1 D2 D3

1

2
3 4

ADS#

A[35:3]# Addr

request1

request2

error1

error2

snoop

HITM#

TRDY#

response

data

5 6

HIT#

Figure 1: Simplified timing diagram of cache-to-
cache transfer on the FSB

FSB State State FSB Cache-
data change in change in signal to-
traffic requesting remote assertion cache
type processor processor HIT# HITM# transfer

I → S
M → S

√ √

Read E,S → S
√

I → E I → I

Write I → M
M → I

√ √

E,S,I → I

Table 1: Cache line state changes and snoop phase
bus signal behavior on the P-III FSB

the P-III uses the MESI protocol. Two active-low bus sig-
nals (HIT# and HITM#) are dedicated for the snooping
purpose. The HIT# assertion indicates that one or more
processors have the requested line in one of the clean states
(E or S). The HITM# is asserted when the remote proces-
sor has the requested line in the M state, as depicted in 1©
of Figure 1. The snoop result of every memory transaction
is driven in the snoop phase of the pipeline. Depending on
the cache line status of the remote processors, the bus signal
behavior and state transitions are different as shown in Ta-
ble 2. Table 2 assumes that an FSB transaction hits the
snooping processor’s cache whose line is in the M, E, or S
state. There are three kinds of coherence traffic on the P-III
FSB

• Cache-to-cache transfer

• Read-for-ownership

• Invalidation traffic for upgrade miss

In the P-III, cache-to-cache transfer is limited to snoop-
hits on the M state line. As shown in Table 2, it occurs with
HITM# asserted, when memory read or write transactions
hit on the M state line. Because of the lack of the O state,
the P-III updates main memory simultaneously when cache-
to-cache transfer occurs. To update memory, the memory
controller (MC) should be ready to accept data. It repre-
sents its readiness by asserting the TRDY# (target ready)
FSB signal, as depicted in 2© of Figure 1. Afterwards, eight
words (32B) of data are transferred as shown in 3©, 4©, 5©,
and 6©. The number of bus cycles taken depends on the
readiness of data from the processor or the main memory.
Figure 1 shows six cycles to transfer one cache line. The
read-for-ownership transaction takes place when a write op-
eration misses its own cache. It generates a full-line memory
read with invalidation on the P-III FSB. The upgrade miss
takes place when a write operation hits on the S state line in
its own cache. It initiates 0-byte memory read with invalida-

bus request[3:0]

bus grant[3:0] processor 0

arbitration delay (t2-t1)

b’1111 (all processors request for the bus mastership)

processor 1 processor 2

t1 t2

(a) Bus arbitration delay

Processor 0

stall

req0 req1 err1 err2 snp resp data

Processor 1 req0 req1 err1 err2 snp resp data

Processor 2 req0 req1 err1 err2 snp resp data

stall

(b) Stall in the pipelined bus

Figure 2: Non-deterministic factors in SMP systems

tion on the P-III FSB. All remote processors’ caches, which
may have the same line in the S state, invalidate the corre-
sponding cache lines when invalidation traffic is observed.

3. METHODOLOGY
We first introduce the issues in measuring the intrinsic

delay of coherence traffic with MP configurations. Then we
present our methodology, and justify that our experimental
configuration, i.e. one processor and an FPGA, is one fea-
sible way of measuring and evaluating the intrinsic delay of
coherence traffic.

3.1 Shortcomings in MP Environment
The pipelined bus architecture in the MP systems makes it

difficult to measure communication efficiency because of the
arbitration delay and the pipeline stall incurred by multiple
outstanding requests from processors. We now discuss the
problems using a four-way SMP system as an example.

3.1.1 Bus Arbitration Delay
In shared-bus-based MP systems, an arbiter mediates the

bus mastership one at a time. Typically, a priority-based or
round-robin-based arbitration is used to grant bus accesses
for processors. Therefore, a processor with a low-priority
or a processor recently accessed the bus will have to wait
until its next turn to access the bus again. In Figure 2(a),
we assume that all four processors are requesting for the
bus mastership at time t1 and the processor 2’s transaction
incurs cache-to-cache transfer. Processor 0 is first granted
for the bus access, followed by Processor 1. Processor 2 is
granted for the bus mastership at time t2. This arbitration
delay elongates processor 2’s transaction by t2 - t1, causing
an effectively longer cache-to-cache transfer time. Such a
non-deterministic arbitration delay highly depends on how
the workloads are parallelized and when cache misses occur.

3.1.2 Stall in Pipelined Bus
Modern bus protocols provide pipeline to increase the

overall throughput. For example, the P-III FSB has a 7-
stage pipeline, as illustrated in Figure 1. Although the
pipelined bus increases the throughput, it also incurs the
non-deterministic behavior of data transfer for bus transac-
tions. For example, suppose that there are three outstanding
transactions from different processors on the FSB as shown
in Figure 2(b). We assume again that the processor 2’s
transaction incurs cache-to-cache transfer. Processor 0 fin-
ishes its transaction in the shortest time because there are

no previous transactions. However, processor 1’s transac-
tion is stalled by three cycles, as illustrated in Figure 2(b),
because its snoop phase is overlapped with the data phase of
the previous transaction. Note that the data phase requires
at least four bus cycles to transfer one cache line (32B). Even
worse, the processor 2’s transaction is stalled by six cycles
because of the overlaps with the processor 0 and processor
1’s transactions. This six-cycle delay is effectively reflected
as part of the cache-to-cache transfer time. The stall in the
pipelined bus is also non-deterministic because it again de-
pends on how workloads are parallelized and consequently
how processors manage cache misses.

3.1.3 Discussion
Measuring and evaluating the intrinsic delay of coherence

traffic requires eliminating non-deterministic factors such as
arbitration delay and stalls in the pipelined bus. Unfortu-
nately, these problems persist as long as parallel workloads
are running on an MP system. In the next section, we in-
troduce our FPGA-based methodology, which is capable of
eliminating these interferences and isolating the impact of
coherence traffic on system performance. Note that, our
methodology did not attempt to accurately model the co-
herence traffic of a given parallel workload running on a
shared-memory MP machine. Rather, our goal is aimed to
analyze and understand how the inter-processor traffic itself
(cache-to-cache transfer and invalidation traffic) affects the
overall performance based on coherence traffic emulated by
the use of an FPGA.

3.2 Proposed Methodology
We use an Intel dual processor system, which features two

P-III2 processors on the FSB. To remove the non-deterministic
factors, one P-III was replaced with an FPGA board and a
cache is implemented in the FPGA. From the P-III’s point
of view, the FPGA functions like a virtual processor with
a cache. Then, our strategy to measure the efficiency of
coherence traffic is shown in Figure 3. Whenever the P-III
evicts a modified cache line to the main memory, the FPGA
seizes the line from the bus and saves it into the cache im-
plemented in Block RAM (BRAM). This is shown in 1©
of Figure 3. When the P-III requests the same line later,
the FPGA indicates a snoop-hit by asserting HITM# and
provides the requested line through cache-to-cache transfer,
as shown in 2© of Figure 3. In other words, the FPGA
is helping the P-III to run workloads by supplying data via
cache-to-cache transfer. By comparing execution times with
and without the FPGA, we can evaluate the effectiveness of
the intrinsic delay of coherence traffic.

This configuration completely eliminates the bus arbitra-
tion delay because only one P-III is requesting for the bus
mastership. In other words, the FSB is always granted for
the remaining P-III. The pipeline stalls incurred by multiple
processors’ requests are also completely eliminated because
again only one processor is monopolizing the bus. Even
though one processor may initiate multiple transactions on
the bus, it does not disturb our measurement because the
same behavior will take place in our baseline. The baseline
is to measure the execution times of benchmark programs
on one P-III without the FPGA. Consequently, this evalu-
ation scheme is able to isolate the impact of the intrinsic
delay of coherence traffic on system performance, and en-
ables its efficiency evaluation by measuring and comparing
the execution times of the benchmark programs.

2Note that the P-III used contains an 8KB L1 and a 256KB
L2 cache, each with a line size of 32 bytes.

Intel server system

Pentium-III

 2GB PC100 SDRAM

 Memory
controller

256KB L2

8KB L1

CPU

FPD

FSB

Cache

 state
machine Regs

1

2 cache-to-cache

 write-back

R

Figure 3: Proposed evaluation methodology.

In this configuration, three types of coherence traffic are
generated on the P-III FSB, as if there are two P-IIIs in the
system. First, cache-to-cache transfer is generated when the
FPGA finds the requested block in its own cache. Second,
the read-for-ownership transaction, which is known as the
full-line (32B) memory read with invalidation on the P-III
FSB, is generated upon a write miss in the P-III. The re-
quested block is supplied either from a cache-to-cache trans-
fer (if found in the FPGA) or from the main memory (if miss-
ing the FPGA). Third, invalidation traffic, which is known
as the 0-byte memory read with invalidation on the FSB, is
generated by a P-III’s write to an S state line.

By changing the cache size in the FPGA and measuring
native execution times of workloads, we study the sensitiv-
ity of system performance on the intrinsic delay of coherence
traffic. In this experiment, the more the P-III evicts replaced
cache lines onto the FSB, there are better chances for the
FPGA to incur coherence traffic, resulting in a more accu-
rate evaluation of coherence traffic efficiency. Therefore, as
long as the reasonable number of evictions occurs, the selec-
tion of the benchmark programs running on the P-III does
not make any difference in the evaluation.

4. EXPERIMENT INFRASTRUCTURE
Figure 4 shows the equipment setup for our experiments.

There are three major components — an Intel server sys-
tem, a host computer, and a logic analyzer. The Intel server
system originally features two P-III processors. For this
work, one processor was replaced with the FPGA board
as depicted in Figure 4(b). Therefore, the P-III and the
FPGA board are connected through the FSB, and the MC
intermediates the main memory accesses. The FPGA board
contains a Xilinx’ Virtex-II (XC2V6000) [10], logic analyzer
ports, and LEDs for debugging purposes. Each FSB sig-
nal is mapped to one Virtex-II pin. The FSB operates at
66MHz while the P-III runs at 500MHz. The host com-
puter is used for synthesizing our hardware design and pro-
gramming the FPGA with the generated bitstreams. It also
collects statistics from the FPGA board, which sends the
number of events occurred every second through UART for
post-processing. The logic analyzer (K420) from Tektronix
is used for debugging our hardware design. It is connected
onto the FPGA board to probe the FSB and internal hard-
ware signals.

5. HARDWARE DESIGN

(a) Equipment picture

Intel server system

logic analyzer
host computer

Pentium-III

FPD board

FSB Main
Memory

MC

UART

Tektronix K420

(b) Equipment schematic

Figure 4: Experiment equipment

Figure 5 demonstrates the hardware schematic designed in
the Virtex-II FPGA. It consists of several state machines, a
direct-mapped cache, statistics registers, and the FSB inter-
face. Now we detail each component designed in the FPGA.

State Machine: The main state machines keep track of
all bus transactions on the FSB and manage all internal and
external operations. As shown in Figure 5, it is composed
of three paths to perform the followings operations:

• To seize evicted cache lines from the FSB and store those
into the cache implemented in the FPGA.

• To initiate a cache-to-cache transfer when the requested
block is found in the FPGA’s cache.

• The rest, which follows all other transactions on the FSB,
including code read, I/O transactions, etc.

Since the P-III allows up to eight outstanding transactions
on the bus, the FPGA should be able to track all eight
transactions concurrently. Thus, the same state machine is
instantiated eight times as shown in Figure 5.

Cache: To retain evicted cache lines, we implemented
a direct-mapped cache. For the experiments, several ver-
sions varying from 1KB (32 cache lines) to 256KB (8192
cache lines) were designed. The cache’s TAG, data, and
valid bits were implemented with the dual-port BRAM in-
side the FPGA. One port is configured as the read port,
and the other one is configured as the write port. In our
implementation, the critical path is from the TAG lookup
to driving the snoop result on the bus. All FSB signals are
latched inside the FPGA prior to their use. Even though it
exacerbated the timing budget, it is an inevitable choice for
stable data processing.

Statistics Registers: Statistics registers were imple-
mented to keep track of statistics such as the number of
cache-to-cache transfers, invalidation traffic, cache line evic-
tions, and data read transactions on the FSB. Whenever
those events occur, the appropriate counter is incremented,
and is reset to zero after sending it to the host computer.
The statistics is sent every second to the host computer via
UART. The UART is configured with 9600 baudrate.

FSB interface: As explained in the cache design, the
FSB signals are latched before being processed. The state

TAG DATA

FSB I/F (HIT#, HITM#, address, data, etc)

Registers for statistics UART

logic analyzer I/F

LEDs

write-back

cache-to-cache the rest

8

32 bytes

Direct-mapped cache State machines

Figure 5: Hardware design schematic in Virtex-II

Table 2: Metrics for efficiency evaluation.

Metric Unit

Number of cache-to-cache transfers #/sec
Number of increased invalidation traffic #/sec
Hit rate of coherence caches in the FPGA Percent (%)
Execution time difference compared to baseline sec

machines change states depending on the latched FSB sig-
nals. Especially, when the state machine goes through the
“cache-to-cache transfer” path, the FPGA actively partic-
ipates in the bus transactions. Cache-to-cache transfer in-
volves assertion of several FSB signals by the FPGA such as
HITM#, 64-bit data bus, Data Ready (DRDY#), and Data
Busy (DBSY#). The DRDY# and DBSY# signals are used
to inform the right time to latch data by the P-III and/or
by the MC. Figure 1 illustrates the usage of those signals.
The DBSY# signal is kept asserted until all 4 quadwords
are transferred. Then, when the DRDY# signal is asserted,
data is available as indicated 3©, 4©, 5© in Figure 1. The last
data is available when the DRDY# signal is asserted and the
DBSY# signal is de-asserted, as shown in 6© of Figure 1.

6. COHERENCE TRAFFIC EVALUATION
To measure and analyze the coherence traffic efficiency,

we ran the SPEC2000 integer benchmark suite natively un-
der Redhat Linux 2.4.20-8 on the remaining P-III. Eight
benchmark programs from SPECint2000 were executed for
5 times. Then, the average is calculated from the statistics
gathered. By changing the cache size from 1KB to 256KB in
the FPGA, we report and analyze the behavior of coherence
traffic. The baseline system has a single P-III without the
FPGA. As a result, all the memory transactions initiated
by the P-III are serviced from the main memory. In other
words, cache-to-cache transfers and associated invalidation
traffic never occur in the baseline. As discussed in Section 3,
because of the nature of the experiment methodology, the
benchmark selection does not affect our evaluation as long
as the reasonable number of eviction transactions is gener-
ated on the bus. Table 2 summarizes the metrics used to
report measured coherence traffic and evaluate its efficiency.

6.1 Cache-to-cache transfer
Figure 6 shows the average cache-to-cache transfers oc-

curred every second, and Figure 7 shows the hit rates in the
FPGA’s caches. The hit rate is calculated based on Eq (1)
that denotes the number of times the FPGA can supply data
when the P-III requests memory blocks.

gzip vpr gcc mcf parser gap bzip2 twolf total

100k
200k
300k
400k
500k
600k
700k
800k

of

 c
ac

he
-t

o-
ca

ch
e

tr
an

sf
er

 /
se

c 1KB
 2KB
 4KB
 8KB
 16KB
 32KB
 64KB
 128KB
 256KB

Figure 6: Average cache-to-cache transfer per second

gzip vpr gcc mcf parser gap bzip2 twolf total
0

10

20

30

40

50

60

70

hi
t r

at
e

(%
)

 1KB
 2KB
 4KB
 8KB
 16KB
 32KB
 64KB
 128KB
 256KB

Figure 7: Hit rate of coherence caches in the FPGA

hit rate (%) =
cache-to-cache tranfer

data read (full cache line) on the FSB
× 100

(1)

As the cache size in the FPGA increases, the number of
cache-to-cache transfers for all the benchmark programs also
increases. With a 256KB cache in the FPGA, twolf shows
the highest transfer frequency (804.2K/sec), whereas gap
shows the lowest (20.2K/sec). With a 256KB cache, the
hit rate can go as high as 64.89% in gzip and as low as
2.24% in gap. On average, as the cache size increases, the
overall cache-to-cache transfer increases from 5.4K/sec to
433.3K/sec, and the hit rate varies from 0.2% to 16.9%.
Memory-bound programs do not necessarily show the high-
est cache-to-cache transfer frequency because they might
not use the evicted cache lines later and/or because conflict
or capacity misses occur in the FPGA’s cache. For exam-
ple, mcf shows a relatively smaller number of cache-to-cache
transfers. The low hit rate 4.5% even with a 256KB cache
indicates that most of data requests in mcf were serviced
from main memory.

6.2 Invalidation traffic
Figure 8 shows the “increased” amount of invalidation

traffic per second, compared to the baseline. With a 256KB
cache in the FPGA, twolf again shows the highest peak
(306.8K/sec). On average, as the cache size increases, over-
all invalidation traffic increases from 1.7K/sec to 157.5K/sec.
As explained in Section 2.1, Invalidation traffic is incurred
by two scenarios: a© 0-byte memory read with invalidation,
b© full-line (32B) memory read with invalidation. Figure 8
includes both traffic even though we observed that type a©
accounts for more than 99% of the activity. This indicates
that the SPECint2000 benchmark programs read data first
and subsequently write to the same cache line, generating

type a© traffic.
In general, Figure 8 shows a similar pattern to the av-

erage cache-to-cache transfers shown in Figure 6. This is
explained as follows. When a memory read hits the cache
in the FPGA, the FPGA initiates a cache-to-cache trans-
fer to supply data, causing the I→S transition in the line
of the P-III’s cache. A subsequent write by the P-III to
the same cache line generates type a© traffic because of an
upgrade miss, as the cache line is in the S state. As mea-
sured, SPECint2000 benchmark programs tend to read data
first and subsequently write to the same line. Therefore, the
more cache-to-cache transfer occurs, the more likely invali-
dation traffic is to be generated.

The baseline system also generates invalidation traffic even
though cache-to-cache transfer never occurs. This is due to
cache flush instructions. When a page fault occurs, the P-III
internally executes a cache flush instruction, which in turn,
appears on the FSB as invalidation traffic. Depending on
the Linux system services running in the background, the
amount of invalidation traffic varies over time. In Figure 8,
invalidation traffic sometimes decreases in the cases when
the cache size in the FPGA is small enough, e.g. 1KB or
2KB. With small caches, the hit rate and the corresponding
frequency of cache-to-cache transfer decrease significantly.
For this reason, overall invalidation traffic is more sensitive
to the system noise generated by the Linux system services.
Especially, gcc is rather susceptible to the Linux system per-
turbation. The page faults caused by the large number of
malloc() calls in gcc induce inconsistent patterns.

6.3 Execution time
Figure 9 shows the increase of the overall execution time

as the cache size increases. It shows all the collected data
from five runs. On average, the total execution of the base-
line takes 5,635 seconds (93.9 minutes). As shown in Fig-
ure 9, the execution time increases compared to the base-

gzip vpr gcc mcf parser gap bzip2 twolf total
0

50k

100k

150k

200k

250k

300k

of

 in
va

lid
at

io
n

tr
af

fic
 in

cr
ea

se
 /

se
c

 1KB
 2KB
 4KB
 8KB
 16KB
 32KB
 64KB
 128KB
 256KB

Figure 8: Average increase of invalidation traffic per second (99% type a© traffic)

line, as the number of coherence traffic increases. In other
words, the benchmark execution assisted by coherence traf-
fic is more time-consuming than the one without it. With
a 256KB cache, the execution time increased up to 191 sec-
onds. There are two reasons that cause the inefficiency of
coherence traffic. First, as explained in Section 2.1, main
memory is simultaneously updated with each cache-to-cache
transfer. This means that even when the P-III is ready to
drive the FSB for the data transfer, it has to wait until the
MC is ready to accept data. Because of the busy schedule of
the pipelined FSB, the MC would not promptly respond to
cache-to-cache transfer requests. The second reason comes
from invalidation traffic. As explained in Section 6.2, the in-
crease of invalidation traffic follows a similar pattern to the
number of cache-to-cache transfers. With a 256KB cache,
overall invalidation traffic increased by 157.5K/sec on aver-
age. Even though such invalidation involves no data trans-
fer, it still takes in-negligible amount of time since one FSB
slot is needed for each invalidation.

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB256KB
-20

0

20

40

60

80

100

120

140

160

180

200

E
xe

cu
tio

n
tim

e
in

cr
ea

se
 o

ve
r

ba
se

lin
e

(s
ec

)

Cache size in FPGA

 Average

Figure 9: Execution time increase (5 runs, baseline
= 5635 sec)

6.4 Intrinsic Delay Estimation
The pipelined nature of the FSB makes it difficult to break

down the contribution of each coherence traffic to the execu-
tion times. In some cases, coherence traffic may be delayed
by long snoop and/or data phases of previous transactions
when pipelined with other traffic. On the other hand, some

coherence traffic might be injected to the FSB when the
bus is idle. Therefore, our estimation is done by closely ob-
serving the FSB waveforms of coherence traffic in the logic
analyzer. By roughly estimating 5 ∼ 10 FSB cycles for each
invalidation traffic and 10 ∼ 20 FSB cycles for each cache-
to-cache transfer, the time spent for each coherence traffic
is calculated using Eq (2).

Execution time (sec) =

(average occurrences/sec)× (total execution time)

× (clock period/cycle)× (latency for each traffic)

(2)

Average occurrences/sec = 157.5K/sec

Total execution time = 5806 (= 5635 + 171) seconds

Clock period/cycle = 15.15 ns/cycle

Latency for each invalidation traffic = 5 cycles

(3)

For example, the time spent for invalidation traffic with a
5-cycle latency and a 256KB cache in the FPGA is calculated
by plugging the numbers of Eq (3) into Eq (2), and Table 3
summarizes estimated times according to different latencies.
Even with a 10-cycle latency for each invalidation traffic, it
requires only 138 seconds, which is less than the average
increase (171 seconds) of the total execution time. There-
fore, the difference (33 seconds) in this calculation comes
from cache-to-cache transfers unless each invalidation traf-
fic requires more cycles. Based on this calculation, it is not
unreasonable to say that cache-to-cache transfer in this In-
tel sever system, which takes roughly 6.5% ∼ 13% of the
total execution time, is not as efficient as expected. In other
words, cache-to-cache transfer on the P-III FSB is slower
than getting data directly from main memory.3 Even though
clearly shown in Figure 9, this trend would be more conspic-
uous with a bigger cache size and/or high associativity cache
implemented in the FPGA, as more coherence traffic is gen-
erated.

6.5 Opportunities for Performance Enhance-
ment

3 It does not mean that cache-to-cache transfer is
not good. Note that without cache-to-cache trans-
fer, two memory transactions are necessary when a
snoop hits on the M state line; one for writing back
modified block to main memory, the other for read-
ing the same block from memory. Cache-to-cache
transfer reduces the number of memory transactions
from two to one. Therefore, it clearly has the ad-
vantage over non-cache-to-cache transfer.

Table 3: Times spent for each coherence traffic ac-
cording to latencies (256KB cache in the FPGA)

Coherence traffic
Invalidation traffic Cache-to-cache transfer

Latencies 5 ∼ 10 cycles 10 ∼ 20 cycles
Times spent 69 ∼ 138 seconds 381 ∼ 762 seconds

Coherence traffic plays an important role in the perfor-
mance of MP systems. In the P-III FSB, the fact that main
memory should be updated simultaneously upon cache-to-
cache transfer would be the main reason for the slowdown.
The O state in the MOESI protocol is specially designed for
this purpose. It allows cache-to-cache transfer without up-
dating main memory. However, a processor with the O state
line is responsible for updating main memory when the line
is displaced. With the O state, the MC need not represent
its readiness like the P-III FSB. Another alternative is to
include cache line buffers in the MC. With the buffers, the
MC receives cache-to-cache transfer data temporarily before
updating main memory. As long as the buffer space is avail-
able, the MC is ready to accept data from snoop-hit pro-
cessors, which would enable the prompt response for faster
cache-to-cache transfer. If the MC is designed to have an
ability to compare addresses on the FSB and supply data to
a processor when hit on the buffered lines, it would further
reduce the memory access latency.

Invalidation traffic is also inevitable in MP systems. In
the P-III FSB, remote processors inform a master proces-
sor of the snoop results in the snoop phase, which is the
5th-stage in the pipeline. Advancing the snoop phase to an
earlier stage bear a potential of reducing the latency. It
could reduce the effective cache-to-cache transfer latency,
too. However, it requires the faster TAG-lookup in data
caches. Deep pipelined-bus and faster bus speed would also
help relieve the impact of invalidation traffic even though
it complicates the hardware to process requests in shorter
time and to accommodate more outstanding transactions.

7. RELATED WORK
MemorIES [5] is a passive emulator developed by IBM

T.J. Watson, for evaluating large caches and SMP cache co-
herence protocols for future server systems. The emulation
board can be directly plugged into the 6xx bus of RS/6000
SMP server. Therefore, it is able to perform on-line emula-
tion of several cache configurations, structures, and proto-
cols while the system is running real-life workloads, without
any slowdown in application execution speed. Even though
our proposed method looks similar to the MemorIES, it has
a critical difference from the MemorIES. The MemorIES is a
passive emulator, whereas our proposal is a active one. Since
the MemorIES is passively monitoring 6xx bus transactions,
it is not able to inject transactions on the bus such as cache-
to-cache transfer and invalidation traffic. Thus, MemorIES
cannot emulate a fully-inclusive cache and cannot perform
the latency studies.

8. CONCLUSION
In this paper, we measured the intrinsic delay of coher-

ence traffic, and analyzed its efficiency using a novel FPGA
approach on a P-III-based server system. The proposed ap-
proach eliminates non-deterministic factors in the measure-
ment, such as the arbitration delay and stall in the pipelined
bus. Therefore, it completely isolates the impact of coher-
ence traffic on the system performance. Our case study im-

plements coherence caches in the FPGA and shows that the
performance of the SPECint2000 benchmark with coherence
traffic was actually degraded. The overall execution time
was increased by up to 191 seconds over 5635 seconds of the
baseline. With a 256KB cache implemented in the FPGA,
the cache-to-cache transfer and the invalidation traffic oc-
curred 433.3K/sec and 157.5K/sec respectively, on average.
Performance degradation is attributed to the following rea-
sons. First, cache-to-cache transfer in the MESI protocol
requires main memory update simultaneously. It often de-
lays cache-to-cache transfer since the MC would not respond
promptly for the update requests because of the busy sched-
ule of the pipelined FSB. Second, invalidation traffic also in-
creased in proportion to the number of cache-to-cache trans-
fers. Even though invalidation traffic involves no data trans-
fer, it still takes in-negligible amount of time since one FSB
slot is needed for each invalidation.

To reduce the latency of coherence traffic, we discussed ar-
chitectural possibilities; the inclusion of the O state, cache-
line buffers in the MC, advancing the snoop phase to an
earlier stage, and deep pipelined-bus and faster bus speed.
However, all these potential architectural enhancements come
at the expense of additional hardware. Thus, thorough in-
vestigations are necessary to measure the trade-offs.

9. ACKNOWLEDGMENTS
This research was sponsored in part by the National Sci-

ence Foundation under award CNS-0325536.

10. REFERENCES
[1] J. Archibald and J.-L. Baer. Cache coherence protocols:

Evaluation using a multiprocessor simulation model. ACM
Transactions on Computer Systems, 4(4):273–298, Nov.
1986.

[2] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt.
Network-oriented full-system simulation using m5. In
Proceedings of the 6th Workshop on Computer Architecture
Evaluation using Commercial Workloads (CAECW),
February 2003.

[3] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan
Kaufmann Publishers, 1999.

[4] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A Full System Simulation Platform.
IEEE Computer, Feb. 2002.

[5] A. Nanda, K.-K. Mak, K. Sugavanam, R. K. Sahoo,
V. Soundararajan, and T. B. Smith. MemorIES: a
programmable, real-time hardware emulation tool for
multiprocessor server design. In Proc. of ASPLOS-9, pages
37–48, November 2000.

[6] V. Pai, P. Ranganathan, and S. Adve. RSIM reference
manual, version 1.0. IEEE Technical Committee on
Computer Architecture Newsletter, Fall 1997.

[7] K. Petersen and K. Li. An evaluation of multiprocessor
cache coherence based on virtual memory support. In
Proceedings of the 8th Int’l Parallel Processing Symposium,
pages 158–164, 1994.

[8] C. A. Prete, G. Prina, and L. Ricciardi. A trace-driven
simulator for performance evaluation of cache-based
multiprocessor systems. IEEE Transactions on Parallel
and Distributed Systems, 6(9):915–929, 1995.

[9] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta.
Complete computer simulation: The SimOS approach.
IEEE Parallel and Distributed Technology, 3(4):34–43,
1995.

[10] Xilinx. Virtex-II Platform FPGAs.
http://www.xilinx.com/products/silicon solutions/fpgas/
virtex/virtex ii platform fpgas/index.htm.

