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SUMMARY

This thesis states that dynamic profiling of the memory reference stream can improve en-

ergy and performance in the memory hierarchy. The research presented in this theses pro-

vides multiple instances of using lightweight hardware structures to profile the memory

reference stream. The objective of this research is to develop microarchitectural techniques

to reduce energy consumption at different levels of the memory hierarchy. Several sim-

ple and implementable techniques were developed as a part of this research. One of the

techniques identifies and eliminates redundant refresh operations in DRAM and reduces

DRAM refresh power. Another, reduces leakage energy in L2 and higher level caches for

multiprocessor systems. The emphasis of this research has been to develop several tech-

niques of obtaining energy savings in caches using a simple hardware structure called the

counting Bloom filter (CBF). CBFs have been used to predict L2 cache misses and obtain

energy savings by not accessing the L2 cache on a predicted miss. A simple extension of

this technique allows CBFs to do way-estimation of set associative caches to reduce energy

in cache lookups. Another technique using CBFs track addresses in a Virtual Cache and

reduce false synonym lookups. Finally this thesis presents a technique to reduce dynamic

power consumption in level one caches using significance compression. The significant

energy and performance improvements demonstrated by the techniques presented in this

thesis suggest that this work will be of great value for designing memory hierarchies of

future computing platforms.

xii



CHAPTER 1

INTRODUCTION

The increasing complexity and shrinking feature size of modern microprocessors has caused

energy consumption to become a critical design constraint [87]. The demands of the

working-set size from increasingly complex applications has led to ever-larger on-chip

caches with a slew of read/write ports making it a major consumer of on-chip power. Apart

from caches, other components of the memory hierarchy like DRAM also contribute sig-

nificantly to the power consumption of the overall system . In this chapter, we start with

discussing about energy consumption and redundancies in different parts of the memory

hierarchy. Then, we explain how this research aims at addressing and eliminating the re-

dundancies to reduce energy at different levels of the memory hierarchy.

1.1 Motivation
In this section, we consider energy consumption problems at different levels of the memory

hierarchy. We start with the level furthest from the processor, that is DRAMs, and continue

to move towards the processor and discuss problems in Level 2 or higher level SRAM

caches and finally talk about a couple of energy saving opportunities in the Level 1 cache.

First, we explain the energy consumption problems for DRAMs. DRAMs are used

as the bulk of the main memory in computing systems for its high density, high capacity

and low cost. Due to the dynamic, leaky nature of a DRAM cell, periodic refresh opera-

tions are required for retaining the data. Such regular refreshes account for a large energy

consumption in DRAMs even in the standby mode [88]. When a DRAM is not being ac-

cessed, all the energy consumed in the DRAM is because of the refresh operations. During

each refresh operation, the data of every DRAM bit cell is read out and then written back.

Since DRAMs reads are destructive, an access to the DRAM does the same operations

as a refresh for data retention purposes. Since the DRAM controller does not take into

1



account access patterns while refreshing DRAMs, a significant number of DRAM refresh

operations are redundant. Elimination of these redundant refresh operations will lead to

substantial savings in DRAM energy.

As processor designers moving toward the direction of integrating 3D die-stacked DRAM

(or 3D DRAM) on a package to alleviate memory latency and bandwidth issues [14, 16, 95],

the overhead of the refresh operations will increase. There are two reasons behind this

increase. First, a 3D DRAM could be used either as a cache between the last level SRAM-

based cache and the system memory or to replace the last level cache entirely. However, a

tag array is still needed for such 3D DRAM caches for data lookup and storage. Thus, the

refresh operation will become a significant overhead relatively.

Second, since the 3D DRAM is bonded directly on top of the processor using die-

to-die vias, the heat dissipated from the processor will be conducted across the DRAM

layers, leading to a much higher temperature operation environments for the DRAM. An-

navaram et al. [27] showed that the operating temperature of a 64MB 3D DRAM will be

90.27◦C. Furthermore, the leakage will also increase exponentially with an escalating op-

erating temperature. According to the data-sheet of Micron DRAM [83], the refresh rate

must be doubled if the operating temperature exceeds 85◦C. Therefore, a 3D DRAM will

require double (or more) refreshes, increasing the relative energy overhead substantially.

Eliminating redundant refresh operations in 3D DRAMs will be very important for both

energy and performance of such systems.

Apart from the DRAMs, the higher level caches(Level 2, Level 3) are also significant

contributors to the energy consumption of a computing system. The primary reason for

this is that with continuously shrinking CMOS technology, the capacity of single-chip pro-

cessors has exceeded one billion transistors. To use such an immense amount of available

transistors, processor architects tend to allocate more cache space and deepen the level of

cache hierarchy. While these caches constitute a major portion of a processor’s real estate,

they are also the least active components and dominate the leakage power among all other

2



architectural modules. One redundancy in data content for such large cache hierarchies is

the need to maintain multi level inclusion (MLI). MLI requires that if a cache line is present

in a lower level cache (say L1), it must be present in all the higher level caches (L2 and be-

yond). Though MLI is important for efficient implementation of cache coherence, it leads

to replication of data in the cache hierarchy. The elimination of this redundant replication

without affecting performance can lead to significant leakage energy savings in the level 2

cache.

Another significant trend in the microprocessor industry is to shift towards scalable and

simplistic multicore processors like the UltraSPARC T1 processor [110]. One side effect

of moving towards simplistic cores is that severe stalls that may occur when a data access

misses the last level cache and goes to DRAM memory. Such cache miss events can also

be used as a trigger for several microarchitectural energy management processes in the

processor. The energy management processes may include but are not limited to putting all

caches in a state preserving low power drowsy mode and/or clock-gating or power-gating

all or part of the processor core. Architectural techniques to efficiently utilize these energy

management activities will lead to significant energy savings.

Along with modern processors having large caches, the caches have increasingly higher

associativity [60]. Processors employing highly associative caches consume large amount

of energy on every cache lookup. In the case of a cache hit, depending on the implemen-

tation, an N way set-associative cache does N tag comparisons, and optionally may read N

data lines, and only use one of the cache data lines. For a miss, all tag comparisons and data

reads are redundant. Thus most energy consumed in a set-associative cache is redundant

and gives ample opportunity for saving dynamic energy.

From an energy consumption perspective, the L2 cache and other higher level caches

are primary consumers of leakage power. But, a significant amount of the processor energy

is the dynamic energy consumed by the level 1 caches. Virtual caches are employed in the

first level memory hierarchy for both high performance and embedded processors to meet
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their short latency requirement. However, they also introduce the synonym problem where

the same physical cache line can be present at multiple locations in the cache due to their

distinct virtual addresses from different processes, leading to potential data consistency

issues. To guarantee correctness, common hardware solutions either perform serial lookups

for all possible synonym locations in the L1 at the expense of additional energy. Since the

occurrence of synonyms is relatively rare, the energy consumed in detecting synonyms is

mostly redundant and presents significant opportunities for energy savings.

When considering the dynamic energy consumption of caches, a significant part is

drawn by the bitline driver circuitry because the bitlines are densely loaded with a large

number of storage cells thus increasing its effective switching capacitance. Also, it has

been observed that a significant percentage of data getting stored in the caches have a large

number of leading zeroes and ones. Therefore, there is a potential of significant dynamic

energy savings if significance compression is performed on the data stored in the cache and

the unused bitlines are gated-off.

In this section, we presented a number of facets of the energy consumption problem

at all levels of the memory hierarchy. Section 1.2 gives an overview of the contributions

of this thesis pertaining to each of the problems highlighted in this section. Section 1.2

constitutes a preview and framework for the rest of this thesis.

1.2 Thesis Statement and Contributions
This thesis states that dynamic profiling of the memory reference stream can improve en-

ergy and performance in the memory hierarchy. The research presented in this theses pro-

vides multiple instances of using lightweight hardware structures to profile the memory

reference stream. This profiled information has been used to identify and eliminate redun-

dancies in memory operation primarily with the objective of saving energy consumption

and in some cases improving performance. Several simple and implementable ideas to re-

duce dynamic power in caches, leakage power in higher-level caches, and refresh power
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of DRAM were developed as a part of this research. Emphasis was given on several tech-

niques of getting energy savings using a simple hardware structure called the Counting

Bloom filter. A modified design of the Counting Bloom filter has also been used to im-

prove performance in multicore systems. The rest of this section gives an overview of the

key aspects of this research.

Smart Refresh: Using Decay Counters to Reduce Energy Consumption in DRAMs

One facet of this research has been to reduce energy consumption in DRAMs [50].

DRAMs require periodic refresh for preserving data stored in them. The refresh interval of

DRAMs depend on the the vendor and the design technology they use. For each refresh in

a DRAM row, the stored information in each cell is read out and then written back to itself,

as each DRAM bit read is self-destructive. The refresh process often incurs large power

and bandwidth overhead. However, it is inevitable for maintaining data correctness.

This research involved construction of an innovative scheme to reduce the refresh over-

head in DRAMs. By using a countdown counter for each memory row of a DRAM memory

module, all the unnecessary periodic refresh operations were eliminated. The basic concept

behind this scheme is that a memory row that has been recently read or written to by the

processor (or other devices that share the same DRAM), does not need to be refreshed again

by the periodic DRAM refresh operation, thereby eliminating excessive refreshes and the

energy dissipated. Based on this concept, we proposed Smart Refresh, a low-cost technique

in the design of the memory controller for DRAM power reduction. The simulation results

show that our technique can reduce 52% of all refresh operations. This saved 34.5% of the

energy consumed for refresh operations. DRAM system energy savings of up to 22% and

an average of 9.5% were obtained for SPECint2000, Biobench, and Splash-2 benchmark

suites simulated with a 2GB DRAM. We used our Smart Refresh policy on the upcoming

3D die stacked DRAM technology and obtained energy savings up to 21% and 7.2% on an

average when the refresh rate is 64 ms.

The rest of this research concentrates on reducing power consumption of SRAM caches.
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We present three different techniques to reduce dynamic and leakage power in SRAM

caches in the subsequent paragraphs.

Using Virtual-Exclusion to reduce leakage power in Caches

Another aspect of our work was focused on architectural techniques to reduce leakage

energy in the L2 caches for cache-coherent multiprocessor systems [51]. This research

leverages two well-known circuit techniques, gated Vdd and drowsy cache, and proposes a

low cost, easily implementable architecture scheme called Virtual-Exclusion. The Virtual-

Exclusion scheme saves leakage energy by keeping the data portion of repetitive cache

lines “off” in the large higher-level caches, while still manages to maintain Multi-Level In-

clusion, an essential property for efficient implementation of conventional cache coherence

protocols. By exploiting the existing state information in the snoop based cache coher-

ence protocol, there is almost no extra hardware overhead associated with our scheme. The

SPLASH-2 multiprocessor benchmark suite was found to execute correctly under our new

Virtual-Exclusion policy. The benchmarks showed up to 72% savings of leakage energy

(46% for SMP and 35% for multicore in L2 on average) over a baseline drowsy L2 cache.

Using Bloom filters to Improve Power and Performance of Caches and Memory.

The techniques explained above exploited different forms of redundancies in the mem-

ory hierarchy to reduce energy consumption. For DRAMs, redundant refresh operations

were eliminated to reduce DRAM power. In higher level caches, redundancies were found

in the Multi-Level Inclusion policy and the snooping protocol to reduce cache leakage

power. The subsequent technique, in contrast, adds a new hardware structure called the

“Counting Bloom filter”(CBF) to the memory hierarchy. The emphasis of the research

being presented in this thesis are on several innovative uses of the CBF to reduce energy

consumption in SRAM caches and sometimes improve performance.

A CBF is an efficient data structure that comprises of a signature of a large data set

and indicates the absence of an element in that data set. Applying CBFs to cache lookups

result in faster and more power-efficient cache queries. As part of the research on CBFs,
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we present four techniques of reducing cache energy using the structure.

Firstly we use CBFs to predict cache misses by tracking addresses of cache lines

brought in and evicted from the cache [52] . On every linefill, the block address is hashed

to generate an index used to update a bitvector. Also the counter associated with that bit

is incremented. During block eviction, the corresponding counter associated with the bit

indexed by the hash of the evicted block’s address is decremented. On a cache access, the

CBF is accessed first, and a zero in the bitvector location obtained by hashing the block

address, indicates a cache miss. This prevents access to the larger cache, thus saving power

and latency. Our experiments based on SPECint2000 and embedded benchmarks showed

that CBFs correctly predict 89% of all L2 Cache misses, and reduces overall energy con-

sumption by 9%.

For the second technique, we present the Way Guard, an efficient hardware structure

based on CBFs, for estimating ways in a set-associative cache. Way estimation saves signif-

icant amount of unnecessary energy dissipation by reducing lookups going into redundant

ways when a set-associative cache is accessed. Our Way Estimation technique required

caches to look up only an average of 25-30% of the ways and saved up to 65% of the L2

energy and up to 70% of the L1 cache energy.

Finally, we examine the energy issues due to synonyms in a Virtually Indexed Cache

(V-Cache) [119] . V-Caches are used to isolate virtual to physical address translation

from the cache access critical path. V-Caches may have the synonym problem, where the

same physical cache line can be present at multiple locations in a cache. To maintain

data consistency, V-Caches are designed to ensure only one exclusive copy exists in the

cache. Towards this, many commercial processors perform serial lookups for all possible

synonym locations upon every miss, leading to a large energy overhead. Using a CBF

to track physical addresses of cache lines brought in and evicted from the cache, false

synonym lookups in the L1 cache are aborted. Using Windows application workloads, the

CBF demonstrated up to 27.6% savings in the total cache energy.
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Cache Power Reduction via Hybrid Significance Compression

This technique tries to reduce dynamic power consumption in caches by identifying

redundancies in the data-values stored in the cache [53]. The focus of this technique is

to analyze and identify the characteristics of workload behavior, in particular, in the first-

level instruction and data caches, for power saving opportunities. We performed data value

profiling for a large number of workloads, such as, the SPECint2000 and Mediabench

benchmarks and observed that the data values entering the cache consists of long sequence

of leading zeros and leading ones in the significance bits, indicating redundancy in the

information content.

We then conceived a new significance compression technique, as a part of this effort.

The basic idea is that, instead of enabling all the bitlines, the homogeneous data are com-

pressed to a more compact form and only the bitlines representing the compact data will

be enabled during cache accesses. The technique called CoolPression, is a dynamic hybrid

compression scheme that combines two significance compression methods — (1) Cool-

Count which involves counting the number of leading zeros or ones and keeping the count

by reusing the leading significant bits, and (2) Dynamic Zero Compression (DZC), an ex-

isting technique that compresses data in one-byte granularity. CoolPression combines these

two schemes and determines the lower power compression scheme on-the-fly. CoolPres-

sion reduced dynamic energy consumption by more than 35%, while improving the energy

consumption of both the CoolCount and DZC scheme by 5-15%.

This thesis is organized as follows. Chapter 2 gives a detailed description of prior

microarchitectural low power techniques for DRAMs and caches. Chapter 3 explains the

Smart Refresh technique and its energy savings in the DRAM. Next, we discuss the leakage

power reduction technique called Virtual-Exclusion in Chapter 4. Chapter 5 is composed

of a description of CBFs and their role in reducing cache energy consumption and way

estimation. Chapter 6 consists of the application of CBFs to reduce synonym lookups in

virtual caches. This is followed by a presentation of the significance compression technique
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called Coolpression in Chapter 7. Finally, Chapter 8 summarizes the contributions of this

thesis, talks about potential impact of this work in future microprocessors and enumerates

a few directions in which this work may be extended.
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CHAPTER 2

RELATED WORK

As explained in Chapter 1, our research addresses different aspects of the energy consump-

tion problem at different parts of the memory hierarchy. In this chapter we discuss prior

research done on each of the problems considered by this research. Firstly, we discuss prior

art in reducing refresh operations in DRAMs. Then we go on to discuss several techniques

to reduce dynamic power in caches. Next, we do a survey of static and leakage power

reduction techniques. This is followed by an overview of different microarchitectural tech-

niques using Bloom filters. Finally, we discuss prior art on way prediction and estimation

in set-associative caches.

2.1 Methods of Reducing DRAM Power
We discuss several methods of reducing DRAM energy in this section. Furthermore, we

also elaborate a number of reducing redundant refresh operations.

Modern DRAM modules have several low power states for saving energy. For example,

Micron DRAMs [7] have temperature controlled self refresh (TCSR), which dynamically

changes the refresh interval of a DRAM module based on the ambient temperature of the

DRAM component. This saves DRAM energy as the DRAM refresh interval does not

need to be conservatively designed for correctness at its maximum operating temperature.

Micron DRAMs also have a low power technique called partial array self refresh (PASR).

This allows the DRAM module user to select a subset of banks of the DRAM module to

be refreshed for data retention. If an application does not need the DRAM for extended

periods of time, the DRAM module can be sent to a deep power down (DPD) mode, which

does not retain data and turns off most of the array power generators. Similarly, RAMBUS

DRAM [4] modules typically support three low power modes, namely, idle, when the clock

distribution is paused, power down, when only the clock multiplier is on and a deep power

10



down mode that only consumes leakage power.

A number of compiler and microarchitectural techniques have been developed to effi-

ciently use the low power modes supported by DRAM modules. We discuss a few of these

techniques in this section. Delaluz et al. [41] discusses compiler techniques that performs

clustering of data and mode control to detect modules that are not being acceessed. Fur-

thermore, this paper discusses several heuristics implemented in hardware at the memory

controller to predict idleness of modules and efficiently switch to a low energy state. The

paper reports substantial energy savings of up to 89% .

In [18], the authors save energy in a broadcast based shared memory multiprocessor

system by using a regional coherence array to keep track of data present in other processor’s

cache and reducing access to the DRAM. This reduces DRAM read traffic by 28-32% and

reduces DRAM energy consumption by 16-21%.

Hur et al. [58] describe three different approaches of saving DRAM energy. The paper

describes a simple power down policy to better exploit the low power states of modern

DRAMs. It also describes an adaptive history based scheduler and a throttling scheme to

save DRAM energy without affecting performance. The paper reports up to 46% DRAM

energy efficiency improments using their techniques.

Zheng et al. [124] describe a technique that introduces a bridge chip to break a DRAM

DIMM into mini DIMMs to reduce the number of devices involved in a single memory

access. Experimental results show a 44% improvement in memory efficiency.

A number of DRAM circuit techniques have also been developed to reduce DRAM

power. One such technique is explained in [89], in which the authors use ECC in Em-

bedded DRAMs to introduce an Extended Data Retention Sleep mode that increases the

data retention time in this mode by more that 8 times and reduces idle time refresh energy.

Another circuit technique is explained in [62], where the authors implement a four rank

3D DRAM module using a master and three slave chips. Using a single master enables

the authors to remove redundant circuitry like delay locked loops, input buffers and clock
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circuitry from the slave chips. This helps this implementation of 3D DRAM to save power

compared to conventional quad-die package structures that have 4 ranks per module.

One of the earliest techniques of using countdown timers for tracking DRAM refresh

was proposed in a patent disclosure [43]. This patent describes a timer based circuitry to

reduce the number of refresh operations in a DRAM based cache. The patent’s objective

was to invalidate lines (via decay) that have not been accessed for a given time interval in

the context of DRAM Caches.

Another similar idea of using counters to reduce refreshes is described in [92]. How-

ever, as in the case of [43], the method described in the patent is far from optimal and does

not have any technique to solve the burst refresh situation. The patent disclosed by Song

et al. [108] also described a technique to selectively refresh DRAM rows based on their

access pattern. However, the technique based on the limited explanation in the patent can

lead to situations where the data of a row may be destroyed because it is not refreshed in

time.

Venkatesan et al. in [113] introduced RAPID, a retention-aware placement algorithm.

This work tries to reduce refresh operations to the DRAM by experimentally identifying

that different rows require different refresh times. Kim et al. in [69] exploits multiple

DRAM refresh times and ECC codes to reduce the number of refresh operations. Ohsawa

et al. used several techniques in [91] to reduce refresh operations required. One of the

techniques used by [91] is to statically declare a line to be dead. This may also be done

with the help of the OS. The lines marked as dead in the DRAM are not refreshed. Another

scheme is called VRA where counters are used to handle variable data refresh times.

2.2 Techniques for Reducing Dynamic Power for Caches
Although leakage power has become more important for higher level caches, dynamic

power consumption still dominates the power consumption for L1 caches because of the

high access rate. A significant part of the dynamic cache energy is drawn by the bitline
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driver circuitry because the bitlines are densely loaded with a large number of storage cells,

thus increasing its effective switching capacitance. To address this issue, many low-power

cache techniques were proposed including sub-banking, segmented bit-lines [49, 109], and

pulsed word-line drivers [22].

Another interesting approach to reduce dynamic power is to perform data compression

which allows gating off unused bit-lines, while reading from and writing data to the cache.

Kim et al. [70] describes a sign compression technique, where the most significant half

word is compressed to a sign bit to reduce energy. Canal et al. in [32] also applies sig-

nificance compression to reduce power consumption in all stages of the pipeline. Villa et

al. [114] describe a Dynamic Zero Compression (DZC) scheme that compresses if an entire

byte is zero.

2.3 Leakage Reduction Techniques for Caches
There have been a large number of architectural and circuits techniques proposed to reduce

leakage power in caches. Powell et al. [96, 121] shows that the leakage currents can be

dramatically reduced by employing sleep transistors to gate off the supply voltage when

the corresponding logic blocks are not in use. A microarchitectural technique called Cache

Decay was proposed in [63] to exploit this circuit technique in the L1 cache. This technique

saved energy by using simple counters to turn off cache lines if they are unlikely to be re-

accessed. Although it did mention some implications of applying the decay scheme in

large higher level caches, it provided no further in-depth evaluation, in particular, from the

cache coherence standpoint, a correctness issue for implementing a multiprocessor (MP)

system. One major drawback of the cache decay policy lies in the performance and power

trade-offs of the extra misses induced due to the switch-off of decayed lines, which leads

to additional accesses to the DRAM. This energy overhead often outweighs the leakage

savings from the technique itself.
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Another circuit technique for leakage reduction is using the ABC-MT-CMOS mem-

ory cell [90]. This circuit technique uses different supply and ground voltage levels to

bias the transistors to increase their effective threshold voltage. It reduces leakage cur-

rent dramatically while preserving transistor state in a lower supply-voltage, i.e., drowsy

mode. Memory cells, however, have to incur a small performance penalty for waking up the

drowsy cells. Flautner et al. [46] proposed an integrated architecture and circuit technique

called Drowsy Cache, that implements a simple circuit to dynamically choose between two

different supply voltage modes for leakage reduction. They analyzed different architec-

tural policies for turning the L1 lines into drowsy mode. They also showed that they can

achieve good leakage power reduction by simply keeping the data portion of all the L2

lines in drowsy mode. A specific data line is reinstated to a normal, high-power mode, only

when it is re-accessed with some activation penalty. Since an L2 cache takes tens of cy-

cles to access, adding an extra cycle or two for wake-up will be insignificant to the overall

performance.

2.4 Microarchitectural Energy Reduction Techniques using Bloom fil-
ters

The initial purpose of Bloom filters was to build memory efficient database applications.

Since then, Bloom filters have found numerous applications in networking and database

areas [30, 99, 42, 72, 35, 39]. Bloom filters were also applied as microarchitectural blocks

for tracking load/store addresses in load/store queues. For instance, Akkary et al. [19]

uses one to detect the load-store conflicts in the store queue. Sethumadhvan et al. [103]

improved the scalability for load store queues with a Bloom filter. More recently, Roth et

al. [100] uses a Bloom filter to reduce the number of load re-executions for load/store queue

optimizations. The use of Bloom filters as microarchitectural blocks for tracking load/store

addresses for resolving load-store conflicts have been demonstrated in [20, 104].

The earliest example of tracking cache misses with a counting Bloom filter is given by
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Moshovos et al. [86]. They proposed a hardware structure called Jetty to filter out cache

snoops in SMP systems. Each processing node has a Jetty that tracks its own L2 cache

accesses, and snoop requests are first checked in the Jetty before searching the cache. This

is reported to reduce snoop energy consumption in SMP systems. A Jetty-like filter is also

used by Peir et al. [94] for detecting load misses early in the pipeline so as to initiate

speculative execution. Similarly, Mehta et al. [81] also uses a Jetty-like filter to detect L2

misses early so that they can stall the instruction fetch to save processor energy.

Memik et al. [82] proposed early cache miss detection hardware techniques encapsu-

lated as Mostly No Machine (MNM), to detect misses early in the multi-level caches be-

low the L1 cache (i.e., L2, L3 etc). Their goal was to reduce dynamic cache energy and

to improve performance by bypassing the caches that will miss. The MNM is a multi-

ported hardware structure that collects block replacement and allocation addresses from

these caches and can be accessed after the L1 access or in parallel with it.

2.5 Way Prediction and Estimation Techniques
The most common way prediction mechanism is to predict the MRU way as proposed

in [31]. Similar way prediction techniques have been proposed in [59, 66]. Another way

prediction scheme that uses the PC to predict ways is proposed in [25]. However, way

prediction has the disadvantage of a large performance and energy loss if the prediction

is wrong. One alternative to way prediction is way memoization proposed by Ma et al in

[76]. Way memoization keeps way information in the instruction cache and also has a valid

bit that ensures that the way information is correct. However, this technique can only be

used in instruction caches. Way prediction has the disadvantage of a large performance and

energy loss if the prediction is wrong. This disadvantage is mitigated by way estimation.

Way estimation techniques do not predict one single way, but a set of ways where the

data is guaranteed to be present for a cache hit. Therefore, way estimation techniques

do not incur a large performance loss for a wrong estimation, because a wrong estimate
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only results in a lookup in the cache, when it is missing the cache. One way estimation

technique is the sentry tag technique proposed in [36]. This technique uses a buffer to hold

one tag bit for each line of the cache. On a cache lookup, the last bit of the tag of the

address is first compared to the corresponding set in the sentry buffer. On a mismatch for a

particular way, the tag comparison for that way is halted, resulting in energy savings. The

Way Halting technique [122] is an extension of the concept of sentry tags. This technique

explained in Chapter 5.6.5 uses a buffer to hold multiple tag bits for each line of the cache.

On a cache lookup, the least significant bits of the tag of the address is first compared to

the corresponding set in the sentry buffer. On a mismatch for a particular way, the tag

comparison for that way is halted, resulting in energy savings. Another way estimation

technique is proposed in [64], in which the authors tried to predict lines that have decayed,

because they have not been accessed for a fixed number of cycles. Since this technique

incorporates cache decay, it is not suitable for use in the L1 caches as it may increase the

miss rate considerably.

The following five chapters explain in detail the research done to exploit redundancies

in the memory hierarchy to save power and improve performance. The following chapter

explains a DRAM refresh power saving technique.
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CHAPTER 3

REDUCING DRAM REFRESH POWER WITH SMART REFRESH

Dynamic Random Access Memory (DRAM) is used as the bulk of the main memory in

computing systems for its high density, high capacity and low cost. Due to the dynamic,

leaky nature of a DRAM cell, periodic refresh operations are required for retaining the

data. Such regular refreshes account for a large energy consumption in DRAMs even in the

standby mode. For instance, a detailed power analysis of the ITSY computer [88] shows

that even in the lowest power mode, the refresh power needed accounts for about one third

of the total DRAM power dissipated. The refresh rate for DRAMs depends on the memory

vendor and the design technology they use. A typical refresh interval is 64ms [1, 2, 3]. The

refresh intervals in embedded DRAMs are an order of magnitude shorter. A typical refresh

interval for an NEC eDRAM is 4ms [8], and for an IBM eDRAM implementation is 64µs

[71]. During each refresh operation, the data of every DRAM bit cell is read out and then

written back. This refresh can incur large power and bandwidth overhead, nonetheless, it

is inevitable for the sake of data correctness.

As processor designers moving toward the direction of integrating 3D die-stacked DRAM

(or 3D DRAM) on a package to alleviate memory latency and bandwidth issues [14, 16, 95],

the overhead of the refresh operations will increase. There are two reasons behind this

increase. First, a 3D DRAM could be used either as a cache between the last level SRAM-

based cache and the system memory or to replace the last level cache entirely. A tag array is

still needed for such 3D DRAM caches for data lookup and storage. For brevity, we simply

call this 3D DRAM cache a 3D DRAM hereafter. Thus, the refresh operation will become

a significant overhead relatively. Second, since the 3D DRAM is bonded directly on top of

the processor using die-to-die vias, the heat dissipated from the processor will be conducted

across the DRAM layers, leading to a much higher temperature operation environments for

the DRAM. Annavaram et al. [27] showed that the operating temperature of a 64MB 3D
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Figure 1. Best Case for Smart Refresh

DRAM will be 90.27◦C. Furthermore, the leakage will also increase exponentially with

an escalating operating temperature. According to the datasheet of Micron DRAM [83],

the refresh rate must be doubled if the operating temperature exceeds 85◦C. Therefore, a

3D DRAM will require double (or more) refreshes, increasing the relative energy overhead

substantially.

To address these issues, in this chapter, we propose a novel technique called Smart

Refresh to eliminate all the unnecessary DRAM refresh overheads. This technique uses

a simple time-out counter for each row in a memory module, tracks the normal memory

transactions, and eliminates the excessive refresh operations. The basic concept behind our

scheme is that a memory row that has been recently read out or written to does not need to

be refreshed again by the periodic refresh mechanism. By simply exploiting such property

dynamically, the number of regular row-sweeping refresh operations in both conventional

DRAMs and 3D DRAMs can be substantially reduced.

3.1 Redundancy in DRAM refresh
To motivate the case for our Smart Refresh technique, a conjured memory access pattern

in Figure 1 is used to demonstrate the requirement for refresh operations. To simplify our

illustration, we assume that there are only 8 rows in the DRAM.

In this example, we assume that the DRAM is accessed by the processor with a regular

access pattern such that each memory row is accessed right before the row is to be refreshed.
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For a normal, periodic refresh policy, all the memory rows will be, anyhow, refreshed by the

memory controller without the knowledge of these recent accesses. Note that each access

to a memory row initiated by the processor, in fact, performs an operation equivalent to a

regular refresh from the standpoint of data preservation. In other words, if a row has been

recently read or written to, there is no need to refresh the row immediately as shown in this

figure. For the above example, in an ideal situation, there is no need to perform refresh at

all since these regular memory accesses have already accomplished the same effect.

Our Smart Refresh technique exploits such energy savings opportunities by keeping a

time-out counter for each row in the memory controller to minimize the required refresh

cycles. Basically, the time-out counters of those rows being accessed will be reset to a

default value (e.g. the refresh interval) and any following periodic refresh operation before

the counter counts down to zero will be aborted. When applying such mechanism to the

access pattern shown in Figure 1, the DRAM will not be refreshed at all by the default

periodic refresh, without affecting the correctness. Thus we will be eliminating half of

the refresh operations on the DRAM using this technique. So in theory, the best possible

energy savings that can be achieved by using Smart Refresh is 50% of the entire DRAM,

in which all the periodic refreshes are avoided.

3.2 DRAM Refresh Techniques
There are two common refresh modes in commodity DRAMs:

• Burst Refresh: In this scheme, the entire refresh operation of all the rows are done

sequentially in a bursty fashion. The scheme is less desirable as it increases the peak

power consumption of the DRAM. Moreover, during the time of the refresh operations,

the DRAM module cannot handle normal access requests, causing potential perfor-

mance degradation.

• Distributed Refresh: In distributed refresh, the memory controller spreads out the

refresh cycles for different rows evenly across the refresh interval. This method is more
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favorable as it refreshes each DRAM row in a timely manner, enables accesses to rows

that are not being refreshed, and minimizes the delay of normal memory requests.

In addition, a DRAM refresh cycle can be implemented in two distinct ways [84]. Note

that a refresh cycle can be executed in either the distributed mode or the burst mode ex-

plained above.

• RAS-only refresh: To perform a RAS-only refresh, a row address is put on the address

lines and then the RAS (Row Address Strobe) signal is asserted LOW. When the RAS

falls, that row will be refreshed as long as the CAS (Column Address Strobe) signal

is held HIGH. It is the DRAM controller’s function to provide the addresses to be

refreshed and make sure that all rows are being refreshed at the appropriate times. It is

important to note that for refresh operations the row order of refreshing does not matter;

however, each row must be refreshed before the data stored by the cell is destroyed.

• CAS before RAS refresh: This is often referred to as CBR refresh, and is a fre-

quently used method for refresh because it is easy to use and provides the advantage

of lower power. A CBR refresh cycle is performed by setting the CAS signal to LOW

(active) before the RAS signal is switched from HIGH to LOW. One refresh cycle will

be performed each time the RAS signal falls. The Write Enable (WE) signal must be

held HIGH during the period when the RAS signal is falling. The memory module

contains an internal address counter which is initialized to a preset value when the de-

vice is powered up. Each time a CBR refresh is performed, the device refreshes a row

based on the counter value, and then the counter is incremented. When CBR refresh

is performed again, the next row indicated by the counter is refreshed followed by an

increment in the counter. The counter is wrapped around automatically when it reaches

the maximum allowable value equivalent to the number of rows. There is no way to

reset the counter once set after initializing. Conventionally, CBR refresh is a more fa-

vorable refresh policy as it consumes lower power because the address does not have

to be put on the bus. In this chapter we will show that our Smart Refresh technique
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is suited to RAS-only Refresh, and despite the overhead over CBR, RAS-only refresh

method with our Smart Refresh technique shows significant energy savings over a CBR

refresh policy.

3.3 Smart Refresh
3.3.1 Basic Operation

Inspired by the Cache Decay work [63], our Smart Refresh technique applies the idea of us-

ing time-out counters in the context of the refresh operation of a DRAM to reduce dynamic

energy consumption. Before we discuss Smart Refresh, we will discuss the basic operation

of a DRAM access in more detail. Any DRAM read or write operation initiated by a bus

agent (e.g., the processor) starts with the memory controller selecting a bank and asserting

the RAS signal to LOW to be active. It simultaneously posts the row address on the address

bus. This causes the corresponding memory module to activate the sense amplifiers for the

entire row, and the data from the given row is brought into the sense amplifiers. Note that

this read operation essentially destroys the data present in the DRAM cells. Subsequently,

the CAS signal is set from HIGH to LOW (active) and the column address is placed on the

address bus, which causes the column decoder to multiplex the data out for a read opera-

tion. In the case of a write operation, the data on the data bus is written to the correct set

of the sense amplifiers. The data for the open row stays in the sense amplifiers until there

is an access to another bank or a different row. In either case the data in the sense amps is

written back to the original cells and the new row is pre-charged. We know that the refresh

operation of a DRAM also involves reading from the cells and writing back to them. Thus

we can see that a read or a write to a given row in the DRAM is actually the same as a

refresh to that row for data retention purposes. To summarize, whenever a row is accessed,

it does not need to be refreshed before another refresh interval is due. If the memory con-

troller can keep track of the rows that have been accessed, then it can potentially delay the

refresh of rows that have been recently accessed. This brings us to the concept of Smart

Refresh.
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The basic idea of our technique is to associate a time-out counter for each (bank, row)

pair of a memory module. The proposed array of time-out counters is stored and updated

in the memory controller. Each time-out counter is simply a 2-bit or 3-bit binary down

counter. The time-out counters uniformly count down from its maximum value to zero

within the refresh interval of the DRAM. If the value of a counter reaches zero, it indicates

that the particular row must be refreshed. The counter is reset to its maximum value when-

ever the corresponding bank and row in memory is accessed and the row is opened. Since

we assume an open page policy in this work, the counter corresponding to an open row is

reset again when the page is closed with a precharge operation. This is because during the

closing of a page, the values in the DRAM cells of the page are automatically refreshed.

The memory controller does not refresh rows whose corresponding counters have a non-

zero value. Hence that particular row for the accessed bank will not be refreshed during the

regular refresh period. This means that whenever a row is accessed for a normal memory

operation (e.g., one induced by a cache miss), the refresh operation for that row is delayed.

In the best case, if every row happens to be accessed right before it needs to be refreshed,

there will be no need for a separate, default refresh operation.

3.3.2 Staggered Countdown

In this subsection we analyze the potential problems of accessing all time-out counters

simultaneously. Let us consider a Smart Refresh memory controller that has a 2-bit time-

out counter for each row of the DRAM. The array of counters is illustrated in Figure 2(a)

horizontally. The refresh cycle in this example is assumed 64ms. For simplicity we assume

that there is no access to the DRAM in these examples. The figure shows the counter value

for each row of the DRAM as it is being updated by the memory controller. The time-line

flows from top to bottom. The 2-bit counter is designed to down-count from 3 to 0 within 64

ms to ensure refresh to all rows are done timely to retain correct data values. If all counters

are decremented simultaneously as shown in Figure 2(a), then they will be decremented at

times 16ms, 32ms and 48ms respectively. At 48ms, all the counters reach 0 and when the

22



2 2 2 2 2 2 2 2

1 1 1 1 1 1 11

0 0 0 0 0 0 0 0

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

: Refreshed

All Time−out Counters

Time
Line

16ms

0ms

32ms

48ms

64ms

(a) Timeout counters decremented together

: Refreshed

All Time−out Counters

Time
Line

16ms

0ms

32ms

48ms

64ms

3

1

00

3

3 2 1 0 2 1 0

2 1 0 3 2 1 0 3

1 0 3 2 0 3 2

3 2 1 3 2 1

3 2 1 0 2 1 0

(b) Timeout counters initially staggered

Figure 2. Down-counting Timeout counters

memory controller accesses them again at 64ms, all the rows must be refreshed at that time,

similar to a burst refresh condition that adversely reduces memory system performance. We

should note that even though all the rows need to be refreshed at the same time, they can

only be refreshed in a sequential order.

One solution to partially take care of this unwanted burst refresh situation is shown

in Figure 2(b). In this figure, the initialization of the time-out counters is staggered.In this

case, one quarter of all the counters will decrement to zero at 16ms, another quarter become

zero at 32ms, and so on. We have a situation similar to burst refresh where many memory

rows need to be refreshed one after another. This staggering at the beginning also incurs

some power overhead, because at the beginning even all rows have been refreshed, but 1/4

of the counters are initialized to 0. Therefore they are refreshed again within the first 64ms.

This however does not solve our problem. When the rows are accessed during normal
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Figure 3. Countdown counters divided into logical segments and countdown is staggered

processor reads and writes, their corresponding counters are reset to its maximum value.

This could lead to burst refresh like conditions as potentially a large number of counters

may have the same value and since they are decremented together, they will all count down

to zero at the same time. This problem can be solved only if the decrement to the counters

is also staggered along with the initialization.

The solution used in our design is shown in Figure 3. In this scheme, the counters are

evenly hashed into N logical segments where N = 4 in this illustration. The selection of N

segments is based on the size of the pending refresh request queue to be explained in Sec-

tion 3.4. All simulations were done using 8 entry pending refresh queue and 8 segments.

The major difference of this technique with previous techniques is that in this solution all

the counters will not be accessed by the memory controller simultaneously.

In this new staggered scheme, refresh or counter decrement by the memory controller

are only allowed for those four indexed counters (with arrows shown on top of the counter
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in the figure) at a given time. As a result of the hashing function, only N counters (4 in this

case) are active at the same time. The goal of this scheme is to index each counter exactly

once within a so-called counter access period which is defined as the refresh interval (i.e.,

64ms in our example) divided by the size of the counter (= 22bit = 4). In Figure 3, the

counter access period is 16ms. The index is advanced to the next counter by a clock period

equal to the counter access period divided by the number of time-out counters (i.e., memory

rows) within each segment. For example, if there are 16 memory rows for each segment

and the refresh period is 16ms, then the counter index will advance by one every 1ms.

The update of the counter is the same as previously described. When the value of the

indexed counter is zero, at the next time it is indexed again, the counter will be reset back

to the maximum value followed by a refresh request for the corresponding memory row;

otherwise, the indexed counter value simply decrements by one. The refresh request is

immediately sent to the pending refresh request queue for dispatching a refresh operation.

Without any memory accesses issued by the memory controller, the refresh policy is similar

to a distributed refresh policy, with each refresh operation performing a burst refresh for N

memory rows, the same size of pending refresh request queue.

The above solution ensures that the number of counters accessed simultaneously is

equal to the number of segments (N) chosen. This makes sure that we do not have more

than N refreshes pending in the pending refresh queue simultaneously. In Section 3.4 we

show that the for DRAMs with refresh time of 32ms, the time interval between accessing

counters is enough for completing the refreshes in the pending refresh request queue. This

proof for the 32ms case automatically proves the 64ms case. This staggering algorithm also

ensures accesses to counters at regular intervals and thus the staggering will not reduce over

time, avoiding any possible situation where burst refresh may occur.

Now let us assume there are normal accesses intersperse with refresh operations. When-

ever a memory row is accessed by normal reads or writes, the counter corresponding to the

row will be reset to the maximum value. Thus refresh operation to the counter will be

25



16ms 32ms 48ms 64ms
��
�

��
�
��
�0123

D

16ms 32ms 48ms 64ms

: Access a Row

:Decrement Counter for a Row

: Refresh a Row

��
�
��
�

��
�

��
�
��
�

Smart Refresh Access (Case 1)

Timeline

3 2 1 0

64ms −D

D

Smart Refresh Access (Case 2)
48ms + D

Figure 4. Smart Refresh Correctness

delayed until it counts down to zero. Our staggered countdown mechanism guarantees that

another refresh only takes place 64ms after the row has been accessed instead of a regular

refresh period. This delaying of refresh of memory rows that are being accessed enables

Smart Refresh to save significant amount of refresh energy if enough rows are accessed.

The size of the counter is chosen to be 2 bits for our explanation for the technique. We

actually used a 3-bit counter for our simulations. The size of the counter determines the

granularity with which the refresh operations can be controlled. A larger sized counter will

need more steps to count down and allow more finer grained control over how much time

the refresh operation can be delayed once the corresponding row is accessed. This will

lead to potentially greater power savings at the cost of maintaining and accessing a bigger

counter array.

3.3.3 Smart Refresh Correctness

We prove that for an arbitrary access pattern the Smart Refresh scheme always refreshes

the data within the refresh interval deadline. The proof for this is pictorially described

in Figure 4. For the example shown in the figure the refresh interval chosen is 64 ms and the

counter is 2 bits wide. The figure just shows the Smart Refresh technique is applied to one

particular memory row and its associated counter. The inverted triangles show the times

when the counter is decremented. The number above the triangle represent the counter

value after it was decremented. As explained earlier, the counter is decremented exactly

once within 16ms. We can have only two possible cases for an access to this row. The

figure shows that in both cases the row will guarantee be refreshed within 64ms.

26



In the first case on the left-hand side, the row is accessed D ms before it is decremented.

The access is denoted by an upward arrow. Note that D < 16ms. An access to the row resets

the counter to its maximum value 3. After D ms the counter is indexed and decremented

to 2. From the time-line progression the counter becomes 0 in D + 32 ms. Thus when the

counter is accessed again at D + 48 ms, the memory controller sees a 0 and refreshes the

row. Therefore, in this case the row is refreshed after D + 48 ms after it is accessed and

meets the deadline of 64ms.

The second possible case is that the row is accessed D ms after the counter is decre-

mented as shown in the right-hand side. The counter value becomes 3 on the access. It gets

decremented to 2 at 16ms -D, and 0 at 48ms - D after its access. Finally, it is refreshed at

64ms -D after it was accessed. Since this is less than 64ms, the refresh is effective.

For a D greater than 16ms, the scenario can be reduced to either Case 1 or Case 2 by

subtracting 16ms from D repeatedly until D is smaller than 16ms. Therefore, we show that

in all possible access patterns, the row will always be refreshed before its data retention

deadline.

3.3.4 Optimality of Smart Refresh

We define optimality for refresh as a metric of how close a DRAM row is refreshed to

the data retention deadline. Thus an ideal scheme where each row is refreshed exactly

after 64ms is said to be 100% optimal. In the Smart Refresh case, the optimality of the

scheme depends on the number of bits we use for each counter. We can easily see from

Section 3.3.3, if we use a two-bit counter for every row, the least optimal case will be when

all the rows are refreshed at 48ms + D where D is close to zero. Thus the optimality of

Smart Refresh for a 2 bit counter is 48/64 = 75 %. Similarly for a 3 bit counter the worst

case comes when each row is refreshed at 56ms. Thus the optimality of Smart Refresh

for a 3 bit counter is 87.5%. The general optimality formula is a function of the counting
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granularity and can be given by:

Optimality = [1 − 1
2Nbits_per_counter

] ∗ 100%

3.3.5 Smart Refresh Technique for 3D DRAM

3D die stacking is an emerging technology that vertically integrates two or more die with

inter-die vias [14, 16, 27, 28, 98]. These vias serve both as a fast communication inter-

face and a stability providing mechanism to the stacked die structure. 3D die stacking

reduces wire length and provides tight, high-speed coupling of die designed and manufac-

tured with incompatible technologies. One immediate application is to integrate 3D die-

stacked DRAMs with processor cores to alleviate the memory latencies and global wire

power consumption by replacing long on-board wires with short, fast inter-die vias [27].

The refresh operation will be a major overhead for 3D DRAMs. The operating temper-

ature of the 3D DRAM will likely be much higher than their conventional DRAM counter-

part. As shown in [27], a 64MB 3D DRAM will raise its operating temperature to 90.27◦C.

According to [83], the refresh rate must be doubled after the temperature exceeds 85◦C

in order to retain data. Therefore, 3D DRAMs will have a higher refresh rate than con-

ventional DRAMs, increasing the power consumption and potentially the access latency.

On the other hand, another design trend could increase the number of accesses to the 3D

DRAM compared to a conventional DRAM. As multi-layer DRAM is made possible to be

integrated on the same package, it reduces the requirement of having a large L2 on the pro-

cessor core for area/cost efficiency. The constraints on the size of the 3D DRAM is mainly

the number of DRAM cells that can be fitted into the available die layers and the number

SRAM tags that can be fitted into the processor die for accessing the 3D DRAM.

Another interesting aspect of 3D DRAMs is that it will be more frequently accessed.

Thus the refresh operation will also have a noticeable performance overhead. Our Smart

Refresh technique, in fact, uses the more frequent accesses to its advantage to significantly

reduce the amount of refreshes required for a 3D DRAM implementation. In Section 3.6.2
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we will discuss in more detail the performance and energy benefits of using a 3D DRAM.

3.3.6 Smart Refresh for embedded DRAMs

Embedded DRAMs are increasingly being used in modern SOCs. The main reason for their

use is compatibility with the logic CMOS process enables them to be integrated on a SOC

at a relatively low cost. This allows eDRAMs to offer higher bandwidth with wider on-chip

memory buses. However,the refresh intervals in embedded DRAMs are an order of mag-

nitude shorter than conventional DRAM. A typical refresh interval for an NEC eDRAM is

4ms [8], and for an IBM eDRAM implementation is 64µs [71]. Since the comventional

DRAMs have refresh overhead of 64ms, embedded DRAMs need to be refreshed 16 times

(for 4ms) or 1000 (for 64µs) times more frequently. This increases the overhead of refresh

of an embedded DRAM by an order of magnitude compared to conventional DRAMs.

However, since embedded DRAMs are faster than their conventional counterparts, they

will be typically accessed more often. This increasing access frequency significantly in-

creases the opportunity of our Smart Refresh technique to save more energy. Furthermore,

since in the embedded DRAM case the refresh operation is a major impediment to DRAM

availability for normal accesses, the Smart Refresh technique will have a big impact in

improving DRAM availability and hence system performance.

3.3.7 Disabling Smart Refresh

By no means will Smart Refresh always reduce refresh operations in the memory. This

happens when the entire data working set fit into L1 (and L2) caches with very infrequent

accesses to the DRAM. In this case the refreshing action of Smart Refresh will be degen-

erated to that of the CBR policy. However, Smart Refresh will consume some extra energy

in maintaining those counters and also using the address bus for the RAS-only refresh op-

eration. To avoid this situation we add a simple circuitry that can disable Smart Refresh

policy and configure the memory controller to perform a regular CBR policy if accesses

to memory is found to be below 1% of the number of rows over the total refresh interval
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(64ms or 32ms). The same circuitry will also be responsible for turning Smart Refresh on

autonomously, if the accesses to DRAM exceed 2% of the number of rows in it. This turn-

off is especially useful for the conventional DRAM below a large 3D DRAM cache, whose

size is of the order of 32MB or 64MB as studied in [27]. Also, for the conventional DRAM

we checked this policy by simulating an idle OS for 1 billion instructions. We observed

that even for the idle OS we got savings of around 10% in refresh energy consumption.

With such self-configurability, this feature will exploit dynamic data working set behavior

for achieving the best energy management.

3.3.8 Area Overhead

We now explain the storage overhead for maintaining the time-out counters. In our design,

we refresh one row for a specific bank and rank in a single refresh operation. Hence, we

need to maintain a counter for each row and each bank in each rank. First we use the

configuration shown in Table 3.4 for a 2GB DRAM module. The number of banks, ranks,

and rows for the module is 4, 2, and 16384 respectively. Since we need a counter for every

bank, rank and row the number of counters needed are 4 * 2 * 16384 = 131,072. Each of

these counters has 3 bits. Thus the area overhead is (131,072 * 3)/(8 X 1024) = 48 KB. If

we assume that the memory controller can support up to 32 GB, the counter space needed

will be 768 KB. A simple formula is derived below for calculating the area overhead in the

counters. In our experiments in Section 3.6, the energy overheads caused by these extra

counters were all accounted for.

Area =
Nbanks ∗ Nranks ∗ Nrows ∗ Nbits_per_counter

8 ∗ 1024 (KB)

3.4 Smart Refresh Implementation
The schematic of the circuitry controlling refresh operations in the memory controller is

illustrated in Figure 5. We can see that the counter update circuitry updates a specific

number of time-out counters in a memory controller cycle. If one of the counters that
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Figure 5. Smart Refresh Control Schematic

needs to be updated has counted down to zero, then the row address and bank address

corresponding to the counter are inserted into the pending refresh requests queue. The

memory controller reads the addresses in the pending queue and puts the least recent row

address on the data bus and issues an RAS only refresh command. This requires neither

changes in the existing DRAM module itself nor the interface between the DRAM module

and the memory controller. The only changes are inside the memory controller, making

Smart Refresh a highly viable and cost effective technique.

One potential issue of having a queue to store pending refresh operations is to find

out any possible case of DRAM access patterns where the queue may overflow. We show

that this is not possible. A typical time taken to refresh a row is 70ns [3]. As explained

earlier, if the refresh interval is 32ms and there are 8192 rows in the device, the counters are

accessed every 4µs. Now if we choose the size of the refresh pending queue to be 8 entries

then we will divide the row into 8 segments. This will guarantee that at most 8 refresh

operations are triggered at a time. To avoid overflow for a queue having eight entries, it

is essential that all the eight refresh transactions are handled till the next time the counters

are accessed. Since refreshing a row takes 70ns and the counters are accessed every 4µs,
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if there is no normal DRAM access, the number of rows that may be refreshed between

successive counter accesses will be 57. Nevertheless, in the worst case, we only need to

refresh 8 rows in that deadline. Thus a queue of length 8 is sufficient for the purpose and

it will never overflow. In the worst case, normal DRAM accesses may get delayed due

to at most 8 refresh requests coming one after another. However, our experiments show

that for all the benchmark programs considered, since we reduce the refresh operations

considerably, any interference refreshes may have with normal accesses is reduced and we

always have a slight performance improvement.

We would like to emphasize that Smart Refresh for RAS only refresh does not change

the interface between the Memory Controller and the DRAM module. Although CBR

refresh is often chosen as the refresh policy for modern DRAMs, we use it as a baseline in

our results to show that Smart Refresh provides significant savings even after considering

the additional overhead of RAS only refresh.

Another potential issue with “Smart Refresh” is the design of the memory controller

with requisite number of counters, as the size of DRAM is not known when the memory

controller is designed. This problem can be handled by the memory controller having

multiple banks of count-down counters. The total number of counters would be the number

of rows for the maximum permissible size supported by the memory controller. The BIOS

will turn on requisite number of banks on startup of the system, based on the memory size

and configuration.

3.5 Evaluation Methodology
Our simulation infrastructure consists of three portions: Simics [77], Ruby [79] and DRAM-

sim [116]. Firstly, we used Virtutech Simics to execute the benchmark applications. Simics

is a full system emulator that can run unmodified production software like full blown op-

erating systems. This infrastructure was used to emulate a “Sun" virtual machine called

“sarek" running a version of Solaris 8. We used three different benchmark suites —
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Table 1. DRAM Module and L2 Cache Configuration
Parameter Value
Type DDR2
Size 2 GB and 4GB
Rows 16384
Frequency 667 MHz
Number of Banks 4 and 8
Number of Ranks 2
Number of Columns 2048
Data Width 72 bits (64 data + 8 ECC)
Row Buffer Policy Open Page
Refresh Interval 64ms
L2 Cache Size 1 MB
Number of L2 Port 1
L2 Cache Assoc 8 ways

Table 2. 3D DRAM Cache Configuration
Parameter Value
Type DDR2
Size 64 MB
Rows 16384
Frequency 667 MHz
Number of Banks 4
Number of Ranks 1
Number of Columns 128
Data Width 72 bits
Row Buffer Policy Open Page
Refresh Interval 32ms
Ports 1
Associativity Direct Mapped

SPLASH2 [120], SPECint2000 and Biobench [21] for their different memory behaviors.

All programs were compiled for the Solaris machine and installed in the virtual disk. Al-

though we could successfully compile all programs, not every benchmark ran for sufficient

number of instructions due to limitations and incompatibilities of the simulation infras-

tructure. We report results for those applications that successfully ran on the simulated

system. Except for SPLASH2 that was executed on a 2-processor emulated CMP sys-

tem sharing a 1MB conventional L2 cache, all other benchmark programs were run on

a uni-processor system. We also run a set of experiments where we selectively pair off

any two SPECint benchmark programs and run them together to emulate a multi-workload
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execution environment. These experiments were performed to observe the effect of more

frequent memory look-up’s for our technique. Although Simics is a full system emula-

tor, we only use it for functional simulation. To simulate memory and cache behavior in

details, the Ruby module developed at University of Wisconsin was loaded into Simics.

Ruby leverages the full system infrastructure of Simics and provides timing simulation for

the memory hierarchy. However, Ruby does not faithfully simulate the DRAM behavior.

The characteristics of DRAM were, on the other hand, simulated using a third simula-

tor called DRAMsim [116] from University of Maryland. DRAMsim can be used either

as a standalone trace-driven simulator or as a module that can be integrated into Ruby.

The complete implementation of our Smart Refresh technique was done in DRAMsim.

Table 3.4 shows the DRAM module and the L2 cache size used in our simulation. We

used the conventional DDR2 memory rather than the latest FB-DIMM for our simulation

because the conventional DDR2 performs better for benchmarks that are not limited by

bandwidth [47], which is the case for our benchmarks. The module configurations were

based on actual DRAM specification from [12]. The 3D DRAM Cache configuration is

shown in Table 13. The DRAM refresh command policy is one-channel, one-rank, one-

bank for all configurations. Each benchmark was simulated for 1 billion instructions after

fast-forwarding the first billion instructions.

The calculation of power involves two distinct components: the power consumption of

the DRAM module, and the power overhead of the newly proposed time-out counters. To

calculate power consumption for the DRAM module we used the power model provided

by DRAMsim [116]. For the time-out counters we assume a design consisting of an array

of SRAM bits storing the counter values and a logic circuit for the decrement operation.

The SRAM bit array has entries equal to the number of rows in the DRAM which is of

the order of thousands. Accessing such an array will need a large decoder and very long

bit-lines to transfer the data out. In contrast, the counter logic will have tens of gates.

Therefore the energy consumption of storing and accessing the array of SRAM bits will be
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an order of magnitude larger than the energy consumed by the logic circuitry to decrement

the respective values. Thus the energy consumption of the logic circuitry was neglected in

our energy calculations. The SRAM array was designed using the Artisan 90nm SRAM

library to get an estimate on the dynamic energy required to access it. The Artisan SRAM

generator is capable of generating synthesizable Verilog code for SRAMs using 90nm pro-

cess technology. The generated datasheet gives an estimate of the read and write power of

the generated SRAM. The counter arrays may be accessed in two different situations. First,

when a specific row is accessed and its corresponding time-out counter needs to be reset.

This is considered as a write operation to the SRAM array. The second case is that when a

counter is checked against zero value for triggering a refresh. When the value is positive,

it is decremented. As explained in Section 3.3.2, whenever the counters are accessed for

decrementing, eight counters are decremented at the same time. Therefore, in our design

we count eight reads and eight writes for each such counter access operation. The results

of the simulation will be presented in the next section.

Since Smart Refresh uses RAS-only refresh that consumes relatively more energy than

CBR refresh due to the requirement of posting the row address, we assume that the baseline

DRAM uses CBR refresh (a lower power baseline) in our experiments, while the Smart

Refresh DRAM is based on RAS-only refresh. The extra power for RAS-only refresh is

mainly consumed in putting the row address to be refreshed on the bus. To model the

power consumption of the bus we use the elementary model explained in [33]. The energy

consumption of the bus is given by:

Energy = C ∗ V2
DD ∗Width_o f _Bus ∗ Num_Accesses

Here “C” is the average capacitance of one wire of the bus and is given by:

C = Cload +Cdriver

Now for proper impedance matching according to [33], Cdriver is chosen to be 30 % of Cload.

Thus C = 1.3 ∗Cload.
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Table 3. Parameter Values Used in Bus Energy Calculation
Parameter Value
On Chip Length 36 mm
Off Chip Length 102 mm
On Chip Wire Capacitance .21 pF/mm
Off Chip Wire Capacitance 0.1 pF/mm
Input Capacitance of Memory Modules 3 pF

Cload = Lonchip ∗Cpermmonchip

+ Lo f f chip ∗Cpermmo f f chip +
∑

m∈M
Cin(m)

where “M” is the number of memory modules (ranks) in the DRAM system, and C in(m)

is the input capacitance of each module.

The estimation of wire length on the chip is done using the widely used “semi perime-

ter” method [101]. The on-chip length (Lonchip) is taken as double the length of one side

of the Intel 855PM Chipset MCH die [9]. Typical values of off-chip length was deter-

mined from Intel 855PM Chipset design guide [10]. Values of the on-chip capacitance per

unit length was obtained from the ITRS Roadmap [11]. The input capacitance of a memory

module was obtained from Micron datasheet [1]. The actual values used for these equations

have been summarized in Table 3.5.

Apart from evaluating our technique for conventional DRAMs we also performed ex-

periments to evaluate the effectiveness of Smart Refresh for the emerging 3D DRAMs.

We extend DRAMsim functionality to simulate the processor using 3D DRAM as another

level of cache between L2 and the on-board DRAM. Note that, to access and allocate data

on the 3D DRAM cache, an SRAM tag array is still needed on the processor. We imple-

mented Smart Refresh for such a configuration and ran the same benchmark programs for

two different sized 3D DRAM (32MB and 64MB). Practically, the 3D DRAMs are level 3

caches integrated directly on top of a processor core with a 256KB Level 2 SRAM cache.

The capacity of the 3D DRAM is limited by the core area and the number of DRAM die
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Figure 6. Comparison of Number of Refreshes per second for a 2GB DRAM

layers available. We chose the sizes in accordance with the results of the feasibility study

given in [27]. According to [27], 3D DRAMs will operate at much higher temperatures

(90.27◦C) than conventional DRAMs, we performed our experiments using two different

refresh intervals (32ms, and 64ms). The following section discusses our results.

3.6 Experimental Results
3.6.1 Conventional DRAM

Figure 6 shows the number of refresh operations per second taking place for each bench-

mark program. To show the effectiveness of our technique, we mark the baseline number

of refreshes per second required for a memory module with the same configuration.

From Figure 6 we can observe that, though the relative reduction in refreshes heav-

ily depends on the memory behavior of an application, the Smart Refresh technique is very

effective in reducing the number of regular refresh operations. The reductions in refresh op-

erations per second range from around 26% for fasta to as high as 85.7% in water-spatial.

On average, our technique can reduce more than 59.3% of regular refresh operations over

all the benchmark programs.

Figure 7 shows the relative energy consumption for Smart Refresh for refresh opera-

tions. We can see that Smart Refresh is successful in saving a significant percentage of

energy consumed in refreshing the DRAM. The savings range from 25% in gcc to as much

as 79% for radix. On an average Smart Refresh saves 52.57% of energy consumed in
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Figure 7. Relative Refresh Energy Savings for a 2GB DRAM
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Figure 8. Relative Total Energy Savings for a 2GB DRAM

DRAM refresh. We should note that there does not exist a linear relationship between the

percentage reduction in the number of refresh operations and the relative reduction in re-

fresh energy. This is because the energy consumed in refreshing a row depends on the state

of the bank where the row is being refreshed. For example, if the row of sense amplifiers

is in the precharge state for the bank where a row is being refreshed, the refresh operation

involves bringing the row of data being refreshed to the sense amps, restoring their charge,

writing them back to the row and precharging the sense-amps for the next operation. How-

ever, if the row of sense amps already has an open page, the refresh operation will involve

writing the present open page back to the DRAM cells, precharging the sense amps and

then refreshing the row as above. This clearly consumes more energy than the case when

the sense-amps were already precharged.
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Figure 9. Comparison of Number of Refreshes per second for a 4GB DRAM
Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)
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Figure 10. Relative Refresh Energy Savings for a 4GB DRAM

Figure 8 shows the relative energy consumption for the DRAM. We took into account

the energy overhead of maintaining the time-out counters in the memory controller. We can

see that benchmarks that have high refresh energy savings also have large savings in the

total energy. Thus benchmark programs such as perl_twolf whose relative refresh energy

savings is high, show high total energy savings of 25%. On average, the total savings

of DRAM energy is around 12.13%. However, we must also note that there is no exact

linear relationship between the relative refresh energy savings and the total DRAM energy

savings. This is because the total energy savings depend heavily on what percentage of

the total DRAM energy is contributed by refresh energy. This depends on the number of

memory references of a benchmark.

Figure 9, Figure 10, and Figure 11 show the number of refresh operations per second,

relative refresh energy and relative DRAM energy for a 4GB conventional DRAM. For

the baseline CBR refresh technique, we find that the number of refresh operations per
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Figure 11. Relative Total Energy Savings for a 4GB DRAM

second for every benchmark with the 4GB DRAM module is doubled compared to the

2GB module. This is expected because the 4GB DRAM module has double the number

of banks. Since the refresh command policy used in all experiments is one channel/one

bank/one rank, the number of rows that need to be refreshed for a 4GB module is twice

the number of rows of the 2GB module. As all benchmarks require similar number of

cycles to complete in both the 2GB and 4GB configurations, the number of refreshes for

the 4GB module is doubled. We observe that the relative reduction in refresh operations

is around 40% for a 4GB DRAM. The average reduction in refresh energy is 23.76% and

total energy reduction is 9.10%. The energy savings for a 4GB DRAM is generally lower

because all the benchmarks simulated have a memory footprint less than 2GB. So on using

a 4GB DRAM we increase both the base DRAM energy consumption and also the energy

required to maintain double the number of time-out counters. This reduces the savings that

can be obtained using the Smart Refresh technique. For example, phylip from Biobench

had about 13.3% total energy savings as shown in Figure 8 while the savings dropped down

to almost 7.3% as shown in Figure 11. Also, as in the case of the 2GB DRAM module,

there is no linear relationship between relative reduction in refresh operations, the refresh

energy savings, and the total energy savings.
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Figure 12. Comparison of Number of Refreshes for a 64MB 3D DRAM Cache with 64ms refresh rate
Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)
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Figure 13. Relative Refresh Energy Savings for a 64MB 3D DRAM Cache with 64ms refresh rate

3.6.2 3D Die-stacked DRAM

To study the benefit of Smart Refresh for emerging 3D integration technology, we per-

formed experiments by assuming a limited size DRAM bounded with a processor through

die-to-die vias. The results for the 3D die-stacked DRAM with a capacity of 64MB total

and a 64ms refresh period are shown in Figure 12, Figure 13 and Figure 14. As in the case

of the conventional DRAM, the reduction in the number of refresh operations per second

Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)

GMEAN = 9.37%
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Figure 14. Relative Total Energy Savings for a 64MB 3D DRAM Cache with 64ms refresh rate
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shown in Figure 12 highly depends on the benchmark considered. The reduction in refresh

operations is significant. It ranges from 42% in mummer to 4% in fasta. Figure 13 shows

the relative energy savings using Smart Refresh for 3D DRAMs with 64ms refresh rate.

Though there is no linear relationship, we observe that the refresh energy savings follow

the number of refresh operations reduced per second. The savings range from 42% in the

Biobench benchmarks like clustalw, mummer, to as low as 7% in fasta. The geometric

mean of refresh energy savings is 21.91%.

Figure 14 shows the total energy savings for the same 3D DRAM configuration. These

savings numbers consider that the baseline 3D DRAM cache uses CBR refresh. Thus the

power consumption in the wires and vias connecting the memory controller in the processor

die and DRAM in the stacked die have been modeled and added as an overhead for the

Smart Refresh technique. It can be seen from the savings that refreshes are a significant

overhead in 3D DRAMs. We obtain savings of up to 21.5% when running gcc and twolf

together. The geometric mean of the savings are 9.37%. A general trend that can be

observed from these simulations is that the savings continue to increase for those systems

running two processes. One reason for this is that dual process benchmark runs contain less

spatial locality of accesses than a single benchmark. So it is more likely for a 2-process

benchmark to access different rows rather than having a row buffer hit all the time. Since

different rows are accessed, fewer number of rows need to be refreshed and this helps in

saving energy. For the 3D DRAM cases, we also had a 2GB conventional DRAM that

back up the 3D DRAM which is essentially used as a Level 3 DRAM cache. Since these

benchmark programs fit into the 64MB cache and accesses to main memory was negligible,

in the order of a few thousands over more than 2 billion cycles for all the benchmarks, thus

we did not observe Smart Refresh shows any energy savings for the conventional DRAM

with a 64MB 3D DRAM integrated on top of a processor face-to-face. But since Smart

Refresh can effectively switch off all the counters and go to CBR refresh mode when less

than 1% of the rows are accessed over a whole refresh interval as described in Section 3.3.7,
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Figure 15. Comparison of Number of Refreshes for a 64MB 3D DRAM Cache with 32ms refresh rate
Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)
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Figure 16. Relative Refresh Energy Savings for a 64MB 3D DRAM Cache with 32ms refresh rate

we did not detect any energy loss in the conventional DRAM.

Since the 3D Cache will operate at a temperatures of 90.27◦C, the refresh rate required

will likely be doubled from the 64ms refresh rate. Therefore, we conducted experiments

on the same 64MB 3D DRAM with a faster 32ms refresh rate.

Figure 15 compares the number of refresh operations per second using Smart Refresh

with a conventional CBR refresh for the 64MB DRAM with the doubled 32ms refresh rate.

Biobench SPLASH2 SPECint2000 2 Processes (SPECint2000)

GMEAN = 6.87%
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Figure 17. Relative Total Energy Savings for a 64MB 3D DRAM Cache with 32ms refresh rate
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Figure 18. Performance improvement using Smart Refresh for a 64MB 3D DRAM Cache with 32ms
refresh rate

As expected, the trend in number of refreshes is similar to the 64ms case, but the baseline

number of refreshes is scaled up to twice the number of refreshes in the 64ms case. But

since the number of accesses is constant, the number of refreshes eliminated is reduced.

This is better illustrated in Figure 16, which shows the relative refresh energy savings using

Smart Refresh for 3D DRAMs with 32ms refresh rate. Although the trends are similar to

the 64ms case, the relative refresh energy savings is in general less than the 64ms case. The

geometric mean of refresh energy savings is 15.79%. The total 3D DRAM cache energy

savings is shown in Figure 17. We can see that even though the refresh energy savings are

modest, we get a decent saving in total energy. The geometric mean of the total energy

saved across benchmark suites is 6.87%. One reason for this is even though relatively

refresh savings have reduced, refresh energy for the 32ms case accounts for a large part of

the total energy. Thus the net energy savings for the 32ms is not much different than the

64ms case.

3.6.3 Performance Implication

While the objective of Smart Refresh is aimed at reducing the number of periodic refresh

operations, it also shortens the potential memory access delays caused by these redundant

refresh operations. Figure 18 shows the performance benefit of using Smart Refresh applied

to a 3D DRAM (32ms refresh rate) over a conventional CBR refresh policy. It can be seen
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that for all the benchmarks we have very slight (less than 1%) improvement in performance.

For all the other DRAM and 3D DRAM configurations with Smart Refresh, we found very

similar performance results. This shows that our Smart Refresh technique does not incur

any performance degradation, but sometimes has performance improvement.

3.7 Summary
In this chapter we presented a simple, low cost technique using time-out counters to save

power in DRAMs. This technique did not involve any change in the interface between

the memory controller and the DRAM, making it highly feasible. All additional hardware

went in the memory controller that controlled and issued the needed refresh operations. We

demonstrated that many refresh transactions were indeed not needed because their corre-

sponding rows were recently accessed due to cache misses. This technique saved up to 25%

and on an average 12.13% of the energy consumed in DRAMs. Modern computing sys-

tems like CMP, CMT, SMP, and SMT would try to exploit MLP and would have increasing

number of threads trying to access memory. In this case, the Smart Refresh technique will

be instrumental in saving energy as it is very light weight and would increase the bandwidth

availability and reduce energy consumption for refresh operations in DRAMs. The emerg-

ing 3D stacked ICs [16, 75, 97] will enable the accesses to the DRAM memory at a much

lower latency. Also, AMD’s licensing of ZRAM technology [5] indicate that future AMD

processors may use DRAM type memory using SOI technology for their caches. This work

clearly demonstrated that the Smart Refresh technique is very useful for such DRAM type

caches. Energy savings of up to 21.5% and 9.4% on an average was obtained when Smart

Refresh was used in a 3D DRAM Cache.

Apart from the DRAM, SRAM caches are a major consumer of the power. The sub-

sequent four chapters describe different microarchitectural techniques for saving energy in

SRAM caches. The next chapter explains a hybrid technique to save leakage energy in

SRAM caches.
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CHAPTER 4

REDUCING LEAKAGE ENERGY IN CACHES FOR
MULTIPROCESSOR SYSTEMS

Owing to the continuing down-scaling of CMOS technology, the threshold voltages have

become lower and the gate oxides are getting thinner, both resulting in a significant increase

in leakage power. Meanwhile, with technology scaling, the capacity of single-chip proces-

sors has exceeded one billion transistors. To use such an immense amount of available

transistors, processor architects tend to allocate more cache space and deepen the level of

cache hierarchy. While these caches constitute a major portion of a processor’s real estate,

they are also the least active components and dominate the leakage power among all other

architectural modules.

All prior architectural techniques that used Gated-Vdd [63], ignored the implications

and correctness issues of maintaining Multi-Level Inclusion (MLI) [24] and cache coher-

ence, voiding their applicability. Switching off an L2 cache line while keeping the same

line in the L1 active could either violate the MLI property or complicate the snooping

mechanism. With the industry making a paradigm shift to multicores or MPSoC, having

a leakage power saving policy for cache-coherent shared-memory Multi-Processor(MP)

systems is imperative.

In this chapter we propose a simple, low-cost and viable architectural technique called

Virtual-Exclusion to reduce leakage energy consumption in the L2 caches. This technique

aggressively reduces leakage energy in the L2 or higher level caches while maintaining

Multi-Level Inclusion property and cache coherence simultaneously among multiple pro-

cessors. Virtual-Exclusion is achieved by turning off repetitive but infrequently accessed

cache lines in the higher level caches, given locality is already present in the lower level L1.

For maintaining Multi-Level Inclusion, small modifications to the MOESI snooping bus

coherence protocol are proposed to maintain correctness of the protocol when the power
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saving feature is enabled. It does not need any additional hardware support other than the

counters for switching off higher-level (e.g. L2) cache lines along with keeping the rest

of the lines in the drowsy state. Additionally, Virtual-Exclusion reduces the extra misses

from the L2 cache that are introduced by the original Cache-Decay scheme, thereby reduc-

ing both the performance penalty and dynamic energy consumption incurred by DRAM

memory accesses. This ensures that the leakage energy savings is not offset by the much

larger energy consumption of DRAM accesses. In addition, Virtual-Exclusion can be in-

tegrated with a conventional Cache-Decay scheme to obtain more leakage energy reduc-

tion. In this work, we provide a comprehensive analysis of the leakage energy reduction

for a functioning implementation of a cache coherent multiprocessor system based on the

Virtual-Exclusion technique. The contributions of this chapter are summarized as follows.

• We provide a viable and low-overhead solution for maintaining Multi-Level Inclusion

and coherence for MP systems in the context of saving leakage energy.

• The technique needs only minor changes to traditional snoop-based cache protocols,

e.g. MOESI.

• We apply our techniques to two MP architectures: Symmetric Multi-Processor (SMP)

and the emerging multicore processors, and demonstrate the advantages.

4.1 Multi-Level Inclusion and Cache Coherence
In this section we overview the Multi-Level Inclusion property and describe the architec-

tural policy changes required for having a leakage power management policies in the higher

level cache (e.g. L2 or L3), while maintaining multi-level cache inclusion and coherence

in a multiprocessor system.

4.1.1 Multi-Level Inclusion

A multi-level cache hierarchy consists of a number of levels of caches between the CPU

and the main memory, with the lower level caches being closer to the CPU. Multi-Level
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Inclusion (MLI), proposed by Baer and Wang in [24], is a property in a cache hierarchy

which requires that if a cache line is present in a lower level cache (e.g. L1), it should

also be present in all the higher levels (e.g. L2 and beyond). MLI is an important property

for facilitating an efficient implementation of cache coherence. Using this property the

higher level cache effectively shields the lower level cache from I/O and the snooping bus.

Without MLI, the lower-level caches will encounter a large number of queries from the

snooping bus. This could lead to substantial performance degradation due to the limited

number of ports in small and highly accessed L1 caches.

The baseline cache hierarchy we use to demonstrate MLI in this work contains multiple

cores, each with two-level caches communicating via a snooping bus. Each processor has

a small L1 data cache, backed by a larger L2 cache, which is connected to the memory

through the snooping bus. MOESI protocol is employed in this work to maintain cache

coherence across processor cores.

The detailed algorithm and architectural support for maintaining inclusion in such a

cache architecture is detailed in [24]. The second level cache needs to have an inclusion bit

for every cache line to indicate whether the line is at the previous level. The following are

the cache policy changes required to maintain MLI.

• For any line-fill in the L1 cache, the L2 cache sets the inclusion (I) bit for the corre-

sponding line.

• For all evictions (Clean and Dirty) in the L1 cache, the line address is given to the L2

cache and the L2 cache resets the I bit of the corresponding line.

• All invalidation requests for cache lines in the snooping bus are propagated from the

L2 cache to the L1. Both the L2 line and the L1 line are invalidated, ensuing necessary

writebacks for dirty lines.

• For any write to a line at L1, the line is also marked dirty and written to the L2 cache

and the L2 cache sends invalidation requests to the bus.
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Each of the afore-mentioned changes to the protocol is an overhead in terms of cache

bandwidth. They consume power and can affect performance due to cache contention. That

is the reason why a snooping port is typically dedicated to caches [17, 105]. However, these

enhancements are required for guaranteeing the correctness of cache coherency protocol

and hence are assumed to be part of the baseline cache hierarchy in our work.

4.1.2 Leakage Energy Reduction Schemes for Coherent Caches

In a multi-level cache hierarchy, leakage energy reduction schemes are more appealing and

profitable for higher level caches for several reasons. One reason is that higher level caches

are much larger using most of the on-chip transistors, thereby consuming more leakage

power that makes them good candidates for leakage power reduction. Moreover, given

the high hit rates of the L1 caches, L2 or higher level caches are not frequently accessed,

suggesting that they can stay idle for long periods of time.

Hu et al. [63] discussed briefly the effect of applying their policy on a cache-coherent

multiprocessor system. Note that the first design priority of applying leakage power schemes

to such systems is correctness. For their Cache-Decay technique, even if higher level cache

lines can be turned off, it is imperative that the tags and the state of a turned off line must

be kept active to maintain MLI and to shield the lower level caches (e.g. L1) from snooping

traffic. Another issue not addressed and evaluated in their work is the serious performance

degradation and additional power consumption by extra misses going to main memory due

to the L2 decayed lines.

The drowsy cache [46] does not suffer from the correctness or MLI issues as it keeps

the entire state in drowsy state. As such, the drowsy cache will not introduce additional

misses as the Cache-Decay scheme. However, the issue is the increase in the latency for

waking up a drowsy cache line. The performance degradation due to this is expected to be

negligible since the L2 latency is typically in the order of tens of cycles. Nonetheless, the

leakage power savings by using a drowsy cache is expected to be lower than the Cache-

Decay scheme as all the drowsy lines still consume some leakage power. In this work we
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Figure 19. SRAM cell with both Gated-Vdd and DVS control.

assume a cache line circuitry where we can control the Vdd reaching the circuit as in [46]

as well as gate off the supply voltage as shown in [96]. The schematic of such an SRAM

cell is shown in Figure 19. Our proposed architecture technique will exploit this circuit to

reduce leakage energy in caches. We discuss this technique in the next section.

4.2 Applying Virtual-Exclusion
In this section we explain why Cache-Decay fails to work with an MLI environment. We

then describe the concept of Virtual-Exclusion and explain how it can be used to save leak-

age energy. Finally, we apply the Virtual-Exclusion concept to Cache-Decay and explain

how can it help and improve cache performance over simple Cache-Decay and still saves

more leakage energy.

4.2.1 Generic Virtual-Exclusion Policy

The drowsy cache paper [46] shows that, for L2 or higher level caches the best and complexity-

effective architectural strategy for leakage power control is to keep them in drowsy mode.
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A specific data line is activated, or woken up only when it is accessed. Since the access

latency for L2 caches is large, keeping the whole cache drowsy will not incur a large per-

formance penalty as it just adds one or two cycles to the L2 access latency. Our entire L2

cache is initially assumed to be in the drowsy mode before the Virtual-Exclusion algorithm

is applied.

The Virtual-Exclusion scheme is added on top of the drowsy cache scheme to allow

more data lines to be turned off in the cache hierarchy for saving more leakage energy. To

make drowsy higher level caches work with a cache-coherent MP system, it is important to

note that the tag arrays of these higher level caches (i.e., L2 in our example) must be kept

on all the time for supporting a functional cache coherence protocol. The schematic of a

cache hierarchy using Virtual-Exclusion is depicted in Figure 20. Each entry in the Tag

RAM of the L2 cache contains a physical address Tag (T), a Valid bit (V), a Dirty bit (D),

an an Inclusion (I) bit. The state of the I bit indicates the presence of a line in the L1, so

as to determine whether the data portion of the line in the L2 should be kept on in drowsy

state or be Vdd-gated off. The first simple change for the Virtual-Exclusion scheme is the

following. Whenever there is a line-fill into the L1 cache due to an L1 miss, the same line

in the L2 cache (or the missed line brought back into the L2 from main memory) will have

its corresponding I bit set. This I bit precisely indicates that the data is now present in the

L1 cache as well. Subsequently, the corresponding data portion of the line in the L2 is Vdd

gated off immediately. This turn-off of the data lines in the L2 that are present in the L1

gives our technique its name. We illustrate this mechanism in Figure 20(a).

The L2 lines are turned back on under the following scenarios. Whenever a line is being

displaced from the L1 due to a conflict miss, in order to explicitly maintain MLI, the L1 will

inform the L2 and forward the line to the L2 for every single L1 line eviction regardless

of whether the state of the evicted line is clean or dirty. Note that, since the Virtually

Exclusive L2 cache does not have the data portion of a line when the line is present in the

L1. Therefore, for each eviction, the L1 cache always supplies the cached, (un)modified
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data portion along with its address to the L2. Upon such an eviction, the corresponding L2

cache line is turned back on to drowsy state and the I bit is reset to zero simultaneously

as depicted in Figure 20(b). Such eviction is completely off the critical path. The only

overhead is an increase in power consumption. This power overhead is accounted for in our

leakage calculations. Also, it takes place only when there is an L1 miss, thus is unlikely to

clobber L2 accesses and impact the performance. Another potential scenario to have data

lines in L2 in drowsy state is for architecture that support instructions that prefetch data

only into L2, e.g. prefetcht2 in Intel’s SSE instruction set. This type of instructions bring

data from main memory into L2, but not in the L1, and the data will be kept in drowsy

mode for saving leakage energy until the processor makes requests for them.

In addition to the simple changes in the cache line fill and line eviction policy in the

caches, some minor changes in the cache coherence protocol are also needed to maintain

data consistency. First, any remote request for a cache line with an local L2 hit and its

associated I bit set will cause the L2 to pass the request to the L1 cache. This is shown

in Figure 21(a). Second, when a line in the L1 cache is being written, the address is

provided to the L2 cache for marking the same line as dirty without changing any other

state. Meanwhile, the L2 also needs to broadcast an invalidation signal for the address on

the snooping bus. These operations are illustrated in Figure 21(b). In this way, the states of

the same line in the L1 and L2 are kept consistent.

For the scenario depicted in Figure 21(a), considering a remote request in the MOESI

protocol, our policy will increase latency if the tag of a line is present in the L2 cache and

its I bit is set. In order to maintain correctness, we need a slight change in the protocol to

handle this special case. If the requested line has its I bit set, then the only correct copy

of the cache line must be present in the L1. Now any remote request pertaining to the line

needs the line to be supplied to the bus. This can be done in two ways depending on the

cache architecture. If the L1 cache has a direct path to the bus, then the data may be directly

supplied by bypassing the L2. Otherwise, the data may be written back to the L2 cache,
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which in turn writes it to the bus. In our simulations, we assume that the line needs to be

written to L2 and then to the bus.

While discussing Virtual-Exclusion, we should consider the situation where a line being

replaced from the L1 Cache has already been replaced from the L2 Cache. Given the basis

of our assumptions of an inclusive cache hierarchy, this situation should never take place.

This is because for an inclusive cache the lines with their I bits set will not take part in

cache replacement and hence will never be replaced while the line is in the L1.

It is noteworthy, that apart from keeping the L1 lines in L2 turned off, we have other

opportunities to Vdd gate off a few more cache lines. One obvious candidate for turn-off

are the invalid lines. A line may become invalid if it is not being allocated or if it has

been invalidated by remote snooping activity. These lines, including the tag arrays and data

portion, can be safely turned off without incurring any performance loss. Once turned off,

they will be turned back when a cache miss to the same locations occurs. Since this event

involves an access to either main memory or remote caches, it could take some hundreds

of cycles or more. Thus, an additional delay of a few cycles to turn a line on will incur a

minute impact on performance.

4.2.2 Cache-Decay and Hybrid Virtual-Exclusion Policies
4.2.2.1 Generic Cache-Decay in L2

The original Cache-Decay scheme proposed in [63] does not address the correctness issue

for a cache coherent multiprocessor system where Multi-Level Inclusion property needs

to be enforced. The decay scheme turns off cache lines that are not used for a specified

number of cycles based on the size of the decay counter employed. Since data will be lost

when Vdd gating is applied, if a line is allowed to decay in a higher level cache when having

a copy in the lower level cache, it will violate the Multi-Level Inclusion property and cause

the cache coherency protocol to fail. Here, we first discuss a minor change to the cache

decay policy to enable Multi Level Inclusion.

To maintain the Multi Level Inclusion when Cache-Decay is applied, the tags of lines
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that have their I bit set need to be always turned on even if the decay counter indicates that

the line can be decayed for not being used for cycles. In our experiments, we always charge

up the tag arrays to the normal, high supply voltage even for the invalid lines. This policy

potentially decreases the power savings compared to the originally proposed decay policy

but is indispensable to preserve the requirement for the MLI and guarantees the correct

functioning of the coherence protocol. Figure 22 shows the decaying mechanism. When a

line is first brought into the L2 and L1, the corresponding L2 decay counter (DC) is reset to

the maximum value, e.g. 4 million as shown in Figure 22(a). Similar to a normal decaying

scheme, the DC starts down-counting also shown in Figure 22(a) when the corresponding

L2 line is idle. Illustrated in Figure 22(c), when there is a conflict miss causing an eviction

of the line, no matter it is clean or dirty, the L2 will keep down-counting. Typically, there

is no action if the line was not updated during its lifetime in the L1, otherwise, it needs

to be written back to the L2 if it is dirty. Nonetheless, the DC will be untouched in either

scenarios. The DC will only be reset back to the maximum value when there is a request

that generates an L2 hit. Figure 22(c) shows such a case.
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4.2.2.2 Hybrid Virtual-Exclusion Policy

Now we discuss how to further improve the energy efficiency of the Cache-Decay scheme

using our Virtually Exclusive cache architecture. To exploit the advantages of both Cache-

Decay and Virtual-Exclusion schemes, we will be able to further reduce the leakage energy

consumption. We call our new scheme Hybrid Virtual-Exclusion policy. There is a subtle

caveat in the generic Cache-Decay scheme. The intuition behind Cache-Decay is that due

to temporal locality a line not being used for a long time is unlikely to be used again any

time soon. Based on the above, when applying decay technique to higher level L2 cache,

lines in L2 is likely to decay when L1 is effective and exhibits high temporal locality.

Additionally, to maintain Multi-Level Exclusion in such scenarios, the tag arrays of the L2

cannot be completely gated off for snooping reasons even if the decay counter is already

counted down to zero. In other words, so long as the I bit in the L2 is set, decaying (e.g.

Vdd gate-off) will be disabled for the L2 address tags. According to our Virtual-Exclusion

mechanism discussed in Section 4.2.1, when a line is evicted from the L1, the I bit of the

same line in the L2 will be reset and the line from the L1 will be copied to its data portion.

Upon this point, the decay counter will start counting down.

It is noteworthy to point out that the L2 lines with I bit set do not decay as shown

in Figure 23(a), they only start decaying when the I bit is reset in Figure 23(b). Namely,

decaying of the L2 lines starts only after they are evicted from the L1, the difference be-

tween the hybrid and the decay scheme in the previous section. Note that, for any L2 hit,

similar to the generic decay scheme, the decay counter will be reset back to the maximum

value. From the above discussion, the decay counter, when starting to count, will always

(re)start from the maximum value because (1) the decaying only starts after an eviction due

to replacement; (2) any prior L1 line fill, either hit in L2 or miss the first time, must have

the decay counter reset back to the maximum value.

Having our Virtual-Exclusion policy applied to the Cache-Decay has the following ad-

vantages.
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• It reduces leakage consumption by turning off data portion of lines in the L2 that are

in the L1. It does not wait until the line finally decays. In prior work, there was

unnecessary leakage current consumption during the 4 million cycles the decay counter

is counting down.

• For inclusive lines, the decay counters start counting only when the corresponding L1

line is evicted. This gives us a decaying victim cache, reducing the possibility of decay-

induced L2 misses. Reducing a few L2 Cache misses is extremely important, because

a L2 cache miss causes a memory access, which in turn consumes more energy in the

DRAM and suffer from additional latency of some hundreds of cycles.

Our technique is extremely simple and it only uses the state bits, the dirty bit and the

inclusion bit to determine whether to switch a cache line off. Since these state bits are

already present in the cache for the purpose of maintaining coherence and inclusion, the

only major area overhead will be to maintain different voltage power supplies and the

simple cache line driver circuitry. There is also an extra overhead of decay counters that

are also present in the original Cache-Decay scheme.
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4.2.3 Virtual-Exclusion in Multicore Processors

In addition to a traditional multiprocessor system, the Virtual-Exclusion technique can also

be applied to the emerging multicore architectures. A modern multicore processor consists

of a number of processors sharing a large L2 cache. This L2 cache may be simply a single

monolithic structure or may be non-uniformly distributed among processor cores with some

type of interconnection network that guarantees coherency [38, 67, 57]. Similarly, in a

multicore architecture, the Inclusion bit will be set if any of the L1 caches has a copy

of the line. The concept of Virtual-Exclusion is the same as it is in the case of an SMP

architecture explained earlier; any line with its “I” bit set will have its data array part

switched “off”. Since the “I” bit being set guarantees that the line is present in some L1

Cache, any other cache requesting the data may get it through a cache-to-cache transfer.

As explained previously, we also apply the decay scheme on top of our Virtual-Exclusion

scheme to obtain energy benefits. In multicore type structures, a large number of cores can

share the L2 cache. Therefore, more L2 lines will be inclusive in several, distinct L1 caches,

thus we have a greater leakage saving opportunity for Virtual-Exclusion — leaving a larger

number of L2 data portions to be Vdd gated off. Also, due to a larger number of processor

cores, the number of accesses to the L2 cache will be greater, too, making decaying lines by

a conventional Cache-Decay mechanism more difficult. Our results show that using decay

with Virtual-Exclusion in a multicore lead to up to 72% savings in L2 cache leakage power

over a baseline drowsy L2 Cache.

4.3 Simulation Framework for Virtual-Exclusion
Our experiments were based on the M5 simulator system developed by the University of

Michigan [26]. M5 is capable of performing a system level simulation for a snooping bus

multiprocessor system. Our baseline architectural parameters along with various cache

sizes are listed in Table 4. The processor is chosen to be in-order to be in tune with the
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some latest trend in Multicore processors that have multiple cores of simple in-order pro-

cessors on a chip with an on-chip L2 Cache. The aim of these Multicore architectures is to

increase throughput through TLP. An example is the Ultra SPARC T1 (Niagara) processor

that contains 8 in-order processor cores on the die [15]. The power estimation tool used for

estimating leakage power is based on ECacti [78]. We integrated the ECacti leakage power

model into the M5 simulator to analyze both dynamic and leakage power consumptions in

caches. The DRAM access energy is estimated from the data sheets of commercial DRAMs

offered by Micron [1]. All the simulations are performed on the SPLASH-2 benchmark

suite [120] and SPEC CPU2000 Integer benchmark programs. To evaluate the dynamic

cost of using the same counters in [63] and the modified bitline and wordline driver cir-

cuitry in [46, 63], we use the energy overhead numbers supplied in these papers and scaled

down to 70nm technology using conventional technology scaling rules [80].

The simulations were carried out on two types of architectures: multicore processors

and SMPs. In the multicore architecture, we simulate using six configurations. These

configurations consist of an L2 cache size of either 256 KB or 512 KB, being shared by 2,

4 and 8 processor cores, respectively. For the SMP architecture, each processor contains

their own L1 and L2 caches. We simulate the above two L2 cache sizes, with 2, 4, and

8 processors running on a shared bus. We implement and evaluate three distinct energy

management policies for the L2 caches. The policies are:

• Decay: Cache-Decay policy implemented to work for Multi-Level Inclusion. The de-

caying policy was detailed in Section 4.2.2.1.

• Virtual-Exclusion: Generic Virtual-Exclusion policy described in Section 4.2.1 for the

L2 cache.

• Hybrid: Virtual-Exclusion implemented on top of the cache decay. The policy was

discussed in Section 4.2.2.2 with illustrations.

For all the above configurations we ran the SPLASH-2 benchmarks to completion. We
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Table 4. Architectural Parameters
Processor Core In-order, stalls on cache misses
L1 D Cache Size 16KB 2-way 64-byte line
L1 I Cache Size 16KB 2-way 64-byte line
L1 Access Time 1 cycle
L2 Cache Sizes 256KB 8-way and 512KB 8-way
L2 Access Time 10 cycles Normal, 12 cycles Drowsy
Memory Access Time 200 cycles

Table 5. Spec2000 Benchmark used for simulations
2-way Multicore bzip and gzip
4-way Multicore bzip, gzip, crafty and gap
8-way Multicore 2 copies each of bzip, gzip,

crafty and gap

also simulated a set of simulations for the multicore architecture that involves running het-

erogeneous SPEC benchmark programs on different processor cores in a multicore system.

These simulations were aimed to analyze the effect of heterogeneous applications running

on multiple cores that contain no data sharing. All the SPEC2000 INT benchmark pro-

grams were run for 1 billion instructions. The exact SPEC2000int programs used in our

simulations are given in Table 5. The reason we did not show all the results is that not all

the SPEC2000int programs were successfully ported to M5 simulation framework due to

various issues such as unimplemented system calls.

4.4 Energy Savings with Virtual-Exclusion
In this section we evaluate our techniques by running SPLASH-2 benchmarks for both

SMP and multicore architectures. All results shown are relative savings in the leakage

energy over a baseline drowsy cache. All savings numbers take into account the energy

consumption overhead. The overhead is different for different cache policies, this discus-

sion encompasses all overheads considered in our analysis. We consider the overhead for

the extra circuitry required for maintaining Gated-Vdd scheme, the energy consumed for the

extra misses by DRAM memory accesses and finally for Virtual Exclusion, the overhead
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of bringing a line from L1 on a bus read request, and also writing clean values from L1 to

L2 during evictions.

4.4.1 SMP Analysis

Figure 24 illustrates the energy savings for a dual processor SMP system and each proces-

sor has a 256 KB L2 cache. The percentage reduction calculation is based on the baseline

leakage energy (the denominator). The numerator considers both the leakage energy of

each scheme and the dynamic energy overhead caused by extra trips to the DRAM mem-

ory. The rationale is to evaluate how much energy can be saved with these architectural

leakage-reduction techniques. We observe that in almost all the benchmark programs the

hybrid scheme shows the best saving results. The reason is that the Cache-Decay scheme

incurs a lot of overhead for the extra L2 misses that consume additional DRAM memory

energy. This overhead is effectively eliminated by the hybrid scheme because the hybrid

scheme transforms a portion of the L2 cache into a decaying victim cache. Also note that

the decay scheme for some programs failed to save energy. This happens for the same

reason — the large memory access overheads caused by L2 misses. Our simple Virtual-

Exclusion scheme does not suffer from such overheads. But since the L1 cache size is a

small percentage of the L2, Virtual-Exclusion alone gives an average of 8% leakage energy

savings. By combining with decay in our hybrid scheme, the average savings are increased

to 20%. Also there is never a case where the hybrid scheme actually encounters energy

loss. For FFT and Lu-Contig from SPLASH-2, the pure decay scheme does better than the

hybrid scheme. This happens because the Virtual-Exclusion scheme turns “on” the lines

that are evicted from the L1 cache. On the other hand, in the decay scheme, the line might

have been decayed in the L2 already, therefore, some benchmark programs show better en-

ergy savings for the decay scheme. However, as seen from the results, this policy of having

a decaying victim cache is useful in reducing L2 misses and its ensuing memory access

overheads, if the replacement is transient.

Figure 25 plots the average L2 leakage energy savings for 2, 4, and 8 processor systems
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Figure 24. Leakage Energy Reduction for 2-way
SMP (256KB L2).
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Figure 25. Average Leakage Energy Reduction for
Different SMP Configurations.

for the entire SPLASH-2 benchmark suite. The average across all the applications clearly

reveals that the hybrid method is the best among all techniques. Another obvious trend

from the graph is that the leakage energy savings increase with increased cache size. This is

because for a given data working set, the larger the cache, the higher likelihood of decaying

a line. In overall, the hybrid scheme saves from 19% to as much as 45% of leakage energy

consumption of an L2.

4.4.2 Multicore Processors Analysis

Now, we show the energy results for multicore processors in Figure 26. Using the same

metric, we compare the leakage energy savings for each of the three techniques, Decay,

Virtual-Exclusion and Hybrid in each figure. Figure 26(a) shows the savings for different

SPLASH-2 benchmark programs for a 2-way multicore system with a 16KB L1 data and in-

struction cache in each processor and a 256KB L2 cache shared by the two processor cores.

We can see that the leakage energy savings highly depend on the benchmark characteris-

tics. Similar to the observations made in the SMP analysis, we find that the Cache Decay

technique sometimes led to energy loss for more DRAM accesses. The Virtual-Exclusion

technique provides around 10% savings across all the benchmark programs. The hybrid

technique obtains the best savings of L2 leakage energy, up to 52% in Radix. Neither the

Virtual-Exclusion nor the Hybrid technique ever shows any negative savings results.
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We further studied the leakage energy savings for a 4- and 8-core system using SPLASH-

2. The results in Figure 26(b) and Figure 26(c) demonstrated similar trends to a 2-core

system. In fact, as the number of processor cores increases in a multicore system, the rela-

tive leakage power savings using the hybrid scheme also increases compared to the decay

scheme. This is because as the number of processors increases, the occupancy and activ-

ity in the L2 by different workloads also increases. This reduces the opportunity for the

generic decay scheme to decay lines.

Figure 27 shows leakage energy savings for systems where different SPEC benchmark

programs run on different processor cores. The purpose of this experiment is aimed to

study the energy impact for heterogeneous applications running on a multicore system, a

more realistic scenario for multiple independent single-threaded applications are concur-

rently executing. Note that, these applications have their respective address spaces. The

combinations of SPEC2000int programs for different cores on a 2-, 4- and 8-core system

are detailed in Table 5. As mentioned earlier, we subset the results simply because some

SPECint programs have not been successfully ported to the M5 simulator yet. We ob-

serve that the hybrid scheme provides the best average savings (9%) for all the benchmark

programs and configurations we simulated. Unlike the decay scheme, neither the Virtual

Exclusion nor the Hybrid scheme ever consumes more energy (i.e., negative savings) than

the baseline. As the number of processor cores keeps increasing in future generations of

multicore processors, our scheme will become more effective in addressing the leakage

issues.

4.4.3 Performance Impact

Compared to the baseline MP system with drowsy L2 caches, the performance of our

Virtual-Exclusion will mostly be on par. Note that during a snoop hit, the baseline system

requires extra cycles to wake up the drowsy lines. On the other hand, the Virtual Exclusion

needs to perform an L1 lookup for retrieving the most up-to-date data if the snoop-hit line

in the L2 is turned off. In other words, both schemes suffer similar performance overheads.
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(a) 2-way Multicore Processor.
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(b) 4-way Multicore Processor.

-5%

5%

15%

25%

35%

45%

55%

65%

75%

    
Ba

rn
es

  C
ho

les
ky

FF
T 

    
   F

MM

  L
UC

on
tig

LU
No

nc
on

tig

Oc
ea

nC
on

tig

Oc
ea

nN
on

co
nt

    
 R

ad
ix

  R
ay

tra
ce

W
ate

rN
Sq

ua
re

d

W
ate

rS
pa

tia
l

Av
er

ag
e

Decay Virtual Exclusion Hybrid

(c) 8-way Multicore Processor.

Figure 26. Leakage Energy Reduction for Multicore Processors (256KB L2).
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Figure 27. Leakage Energy Reduction for Multicore Systems (SPEC2000 Integer Benchmarks).

According to our simulation results, the performance differences between our scheme and

the baseline are within the noise range (below 0.00001%) — almost negligible. Therefore,

we do not report the performance results in this work.

4.5 Summary
Multiprocessor or multicore systems are the current design trend in all processor market

segments. All these designs use multiple levels of large on-chip caches, in which leakage

control in caches will become highly critical for several looming issues — power man-

agement, thermal control, and circuit reliability. However, existing leakage energy saving

techniques in multiprocessor systems are limited in scope because cache coherency main-

tenance for correctness is often neglected in these previously proposed low-power archi-

tectural designs. In this chapter, we presented a new, low-overhead architectural technique

called Virtual-Exclusion to save leakage energy in higher level caches that simultaneously

provided guaranteed Multi-Level Inclusion property for correct operations of cache coher-

ence protocols and saved leakage energy more effectively. Our technique showed that a

66



significant leakage energy savings of up to 46% in an 8-processor SMP and 35% for an

8-way multicore architecture can be achieved. We envision that such a practical and easy-

to-implement technique will be very useful in saving leakage energy for the cache-coherent

multicore, multiprocessor systems.

The techniques explained in the previous three chapters exploited different forms of

redundancies in the memory hierarchy to reduce energy consumption. For DRAMs, redun-

dant refresh operations were eliminated to reduce DRAM power. In a cache, redundancies

were identified in the data storage, the Multi-Level Inclusion policy, and the snooping pro-

tocol to reduce leakage energy. The subsequent techniques, in contrast, add a new hardware

structure called the “counting Bloom filter”(CBF) to the memory hierarchy. This is the

main emphasis of the authors research. The following two chapters describe and evaluate

three different applications of the counting Bloom filters in reducing cache energy.

67



CHAPTER 5

USING BLOOM FILTERS FOR EARLY MISS DETECTION AND
WAY ESTIMATION

5.1 Energy Management for ever larger caches
The increasing complexity and shrinking feature size of modern microprocessors has caused

energy consumption to become a critical design constraint [87]. At the same time, also due

to shrinking feature size, processor designers are given more transistors for a given die bud-

get at their disposal, leading to large caches with multiple read/write ports. Caches have

become a major consumer of both static and dynamic energy in microprocessors. Two

general trends have been observed in the microprocessor industry that motivates the use of

energy saving techniques described in this chapter. The first trend is the move towards mul-

ticore processors leading to simpler cores. The other significant trend is the use of larger

caches with increasingly higher associativity.

The memory hierarchy of modern processors typically consists of single or multi-level

caches implemented with SRAM cells backed up by a large DRAM. With the general trend

of the microprocessor industry moving towards multicore processors, each individual core

is becoming simpler to focus on parallelism exploitation in exchange for the reduction of

the insurmountable design complexity and verification effort. As such, processor architects

can incorporate many cores sharing a common, large last-level cache on a single die. A case

in point is the UltraSPARC T1 processor [110] that contains eight in-order cores with the

support of fine-grained multithreading. In such simplistic cores running at high frequency, a

DRAM memory access can be expensive, taking hundreds of cycles. Therefore, significant

stalls may occur upon each cache miss. Processors such as UltraSPARC T1 exploit this

property by selecting an alternate thread for execution in the event of a stall. On the other

hand, such cache miss events can also be used as a trigger for several microarchitectural

energy management processes in the processor. The energy management processes may
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include but are not limited to putting all caches in a state preserving low power drowsy

mode and/or clock-gating or power-gating all or part of the processor core.

Another trend along with having large caches is increasingly higher associativity. For

example, the AMD’s K8 processor [102] employs a 16-way L2 cache. Some embedded

processor such as the Intel XScale [60] implements a 32-way L1 cache. Processors em-

ploying highly associative caches will consume an even larger amount of energy on every

lookup. N tag comparisons are needed for an N-way cache. Depending on the implemen-

tation, the data may need to be retrieved from all N ways before the hit cache line can be

“muxed” out. As can be seen, most of the energy consumed for a lookup in a set-associative

cache is redundant. Since for a hit, the data can only be present in one particular way. This

redundancy provides a good opportunity for saving dynamic energy.

In this chapter, by applying counting Bloom filters, we propose two different techniques

to exploit the energy saving opportunities explained above. Bloom filters are simple, fast

structures that can eliminate the need of performing associative lookup especially when the

lookup address space is huge. They can replace the expensive set associative tag matching

with a simple bit vector that can precisely identify addresses that have not been observed

before. This mechanism provides early detection of events without resorting to the associa-

tive lookup buffers. This leads to significant improvements in energy consumption without

adversely affecting performance, considering the fact that Bloom filters are very efficient

hardware structures in terms of area, energy consumption and speed.

The first technique previously described in [52] presents an innovative segmented de-

sign of the counting Bloom filter that saves energy by detecting a miss in the cache level

before the memory. The detection of the miss happens much earlier than the actual request

reaches the particular cache level. This early detection allows the processor to respond and

initiate the energy management processes in advance in the memory hierarchy. Starting

energy saving measures early provides more energy saving opportunities than in the case

where the measures are taken after a miss in the lowest cache level is detected.
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Figure 28. Bloom Filters

For the second technique, we present Way Guard, an efficient method for estimating

ways using counting Bloom filters in a set-associative cache. Way estimation saves signif-

icant amount of unnecessary energy dissipation by reducing lookups going into redundant

ways when a set-associative cache is accessed.

5.2 Bloom Filters
The structure of the original Bloom filter concept [29] is shown in Figure 28(a). It consists

of several hash functions and a bit vector. A given N-bit address is hashed into k hash

values using k different random hash functions. The output of each hash function is an

m-bit index value that addresses the Bloom filter bit vector of 2m entries, where m is much

smaller than N.

Each element of the Bloom filter bit vector contains only 1 bit. Initially, the Bloom

filter bit vector is zero. Whenever an N-bit address is observed, it is hashed to the bit vector

and the bit value hashed by each m-bit index is set to one. When a query is to be made

whether a given N-bit address has been observed before, the N-bit address is hashed using

the same hash functions and the bit values are read from the locations indexed by the m-bit

hash values. If at least one of the bit values is 0, it implies that this address has definitely
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not been observed before. This is called a true miss. On the other hand, if all of the bit

values are 1, the address may have been observed if all of the bit values are 1 but there is no

guarantee that the address has actually been observed. Despite a Bloom Filter indicating a

hit, the event of an address not being observed is called a false hit.

As the number of hash functions increases, the Bloom filter bit vector is polluted much

faster. On the other hand, the probability of finding a zero during a query increases if more

hash functions are used. The major drawback of the original Bloom filter is the high false

hit rate because the filter can be quickly filled up with all 1’s and start signaling false hits.

To reduce the false hit rate, the original Bloom filter has to be very large. Note that

once a bit is set in the filter there is no way to reset it. Thus, as more bits are set in the filter,

the number of false hits increase. To improve performance of the original Bloom filter,

a mechanism for resetting entries containing one is needed. The counting Bloom filter

as shown in Figure 28(b) proposed by Fan et al. in [45] for web cache sharing provides

such capability of resetting entries in the filter. For a counting Bloom Filter, an array of

counters is added along with the bit vector of the classical Bloom Filter. Each L-bit counter

has a one-to-one association with each bit in the bit vector. Queries to a counting Bloom

filter are similar to the original Bloom filter. The slight modification is the following:

when an address is entered into the Bloom filter, each m-bit hash index will increment its

corresponding counter of the counter array in addition to setting the corresponding bit in

the bit vector. Similarly, when an address is deleted from the Bloom filter, each m-bit hash

index will decrement its corresponding counter. If more than one hash index addresses to

the same location for a given address, the counter is incremented or decremented only once.

Finally, when a counter is reduced to zero, its associated bit in the bit vector will be reset.

5.3 Segmented Bloom Filter Design
We propose an innovative segmented counting Bloom filter as shown in Figure 29 where

the counter array of L bits per counter is decoupled from the bit vector and the same hash
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function is duplicated on the bit vector side. The cache line allocation/de-allocation ad-

dresses are sent to the counter array using one hash function while the cache request ad-

dress from the processor is sent to the bit vector using a copy of the same hash function.

The segmented Bloom filter design allows the counter array and bit vector to be in separate

physical locations.

A single duplicated hash function is sufficient, as we found in our experiments that the

filtering rate of a Bloom filter with two or more hash functions was only slightly better than

a single hash function. For the rest of this chapter, we assume only a single hash function

is used. The implemented hash function divides a physical address into several chunks of

hash index long and bitwise XOR them to obtain a single hash index. The number of bits

needed per counter (L) depends on how the hash function distributes the indices across the

Bloom filter. To deal with the worst case scenario where all cache lines happen to map

to the same counter, the bit-width of the counter must be log(Num o f Cache Lines)
2 to prevent

counter overflow. In reality, the required number of bits per counter is much smaller than

the worst-case.

The counter array is updated with each cache line allocation and de-allocation opera-

tion. Whenever a new cache line is allocated, the address of the allocated line is hashed

into the counter array and the associated counter is incremented. Similarly, when a cache
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line is evicted from the cache, its associated counter is decremented.

The counter array is responsible for keeping the bit vector up-to-date. The update from

the counter array to the bit vector is done only for a single bit location if and only if the

counter becomes zero from one during a decrement operation or one from zero during an

increment operation. The following are the steps taken for updating the bit vector:

1) The L-bit counter value is read from the counter array prior to an increment or decre-

ment operation.

2) The counter value is checked for a zero boundary condition by the zero/nonzero

detector to see whether it will become non-zero from zero or zero from non-zero inferred

by the increment/decrement line.

3) If a zero boundary condition is detected, the Bit Update signal is asserted, which

forwards the hash index to the bit vector.

4) Finally, the Bit Write signal is made 1 to set the bit vector location if the counter will

become non-zero. Otherwise, the bit write line is made 0 to reset the bit vector location.

5) If there is no zero boundary condition, then the Bit Update signal is de-asserted,

which disables the hash index forwarding to the bit vector.

When the processor issues a lookup in the cache, the cache address is also sent to the

bit vector through the duplicated hash function. The hash function generates an index and

reads the single bit value from the vector. If the value is 0, this is a safe indication that

this address has never been observed before. If it is 1, it is an indefinite response, i.e., the

access can be either a miss or a hit.

There are several reasons for designing a segmented Bloom filter: 1) We only need

the bit vector, whose size is smaller than the counter, to know the outcome of a query to

the Bloom filter. Decoupling the bit vector enables faster and lower energy accesses to the

Bloom Filter. Hence the result of a query issued from the core can be obtained by just look-

ing at the bit vector. 2) The update to the counters is not time-critical with respect to the

core. So, the segmented design allows the counter array to run at a much lower frequency
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than the bit vector. The vector part being smaller provides a fast access time, whereas the

larger counter part runs at a lower frequency to save energy. The only additional overhead

of our segmented design is the duplication of the hash function hardware. 3) The decou-

pled bit vector can sit in-between the L1 and L2 caches or can also be integrated into the

core. For systems where the L1 and L2 caches are inclusive, the integrated bit vector can

also filter out accesses to both the L1 instruction and data caches if an L2 cache miss is

detected. This will increase the L1 access time by one cycle and has been modeled in our

experiments.

We must note here that the energy savings obtained by powering down the processor

and L1 and L2 caches is only possible if the core is a simple inorder processor with blocking

caches. This assumption is true for a many embedded processors. Powering down the core

is also possible in many-core processors with simple in-order cores like Sun’s Ultrasparc

T1 and T2 processors. However, superscalar processors cannot be stalled because of a

cache miss. Therefore, the savings from our technique will only be the dynamic energy for

not accessing the L2 cache on a Bloom filter predicted miss.
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5.4 Processor Energy Management with Segmented Counting Bloom
Filters

This section explains how the segmented Bloom Filter detects L2 cache misses and saves

the overall system energy without losing performance in an in-order processor. In an in-

order processor with two cache levels, severe stalls may occur for an L2 cache miss leading

of an off-chip DRAM memory access. Depending on the processor-memory frequency

ratio, a DRAM access may take hundreds of cycles to complete.

By detecting an L2 cache read miss early with a segmented Bloom filter, we can save

static energy of the system by turning off all or part of the core and by putting the L1

and L2 caches into drowsy or low-power state-preserving mode until the data returns. The

overhead incurred by this technique is turning on and turning off of the core and the caches.

This overhead is not much of a concern because the turn-off period overlaps with the mem-

ory access, which may take hundreds of cycles. Also, since it is known exactly when the

data returns from memory, the turned-off units can be turned on in stages progressively to

save energy. In addition to reducing static energy, dynamic energy of the system can also

be reduced by preventing an L2 cache access. Not only does this save the dynamic energy

of the L2 but also reduces the bus energy consumption due to reduction in bus switching

activity.

The segmented Bloom filter is shown in Figure 30(a) for an processor in which the L1

and L2 caches are not inclusive. In such a system, the bit vector is located just below the L1

caches. The processor issues a cache address to the L1 data cache. On a miss, the bit vector

snoops the address and signals in a cycle if the L2 cache does not have the cache line. Upon

receiving the signal, the CPU is powered down and the L1 I and D and L2 caches can be

put into the drowsy mode. The access to the L2 cache is also called off.

Figure 30(b) shows a system where the L2 cache is inclusive with the L1 caches. Here,

the bit vector is placed inside the core and can detect L2 cache misses before they are sent to

the L1 caches. In a cache system maintaining inclusion property, an L2 miss also indicates
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a miss in the L1 cache. Thus, a cache request address can be sent directly to the memory

when a miss is detected by the bit vector inside the core.

For both systems, the bit vector may not be 100% consistent with the counter array as

there is some delay occurring between updating the bit vector from the counter array. This

situation happens if incrementing the counter in the counter array is deferred till the time

of a linefill. At that moment, the corresponding bit location in the bit vector might be 0.

So, if the counter changes from 0 to 1, the counter array sends an update to the bit vector to

set the bit location in the vector. Before this update reaches the bit vector, if the processor

accesses the same bit location, then it reads 0 and assumes that this line is not in the cache

and therefore forwards the request to memory. This discrepancy is eliminated if the counter

is incremented at the time of the miss rather than the linefill. By the time the actual linefill

occurs, the bit vector will have been updated by the counter array.

We see that segmenting the Bloom Filter allows the bit vector to be placed in a different

physical location leading to more energy saving opportunities. This concept may be ex-

tended to cases where there are more than two levels of caches and the segmented Bloom

filter is used to filter out requests to the cache that is accessed just before the DRAM

memory. In such a case, though the counter array would be updated for the cache before

memory, the bit vector may be kept at a place where it would be accessible with any of the

previous cache levels, thus providing early miss indication. In the following section we pro-

pose another application of the counting Bloom filters in way estimation for set-associative

caches.

5.5 Way Guard Mechanism
In this section, we describe a novel application of counting Bloom filters to set-associative

caches to determine data presence and save lookup energy. The basic idea illustrated in

Figure 31 shows the design of a 4-way set-associative cache with our proposed Way Guard

mechanism. As shown, each Way Guard, structurally the same as the counting Bloom
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Figure 31. Way Guard Mechanism — Filtering Out Unnecessary Cache Way Lookup

Filter, consists of a Bit Vector (shown as BV) and an array of counters. Each way of a set-

associative cache is assigned one Way Guard. The purpose and functionality of these filters

are very similar to the Segmented Bloom Filters explained earlier. The only difference

is that each Way Guard keeps linefill and replacement information of the cache way it is

guarding. The following two properties are important in understanding how the Way Guard

technique works:

1. If the filter indicates that the data address is not present in the way it is guarding, then

the data is certainly not present in that particular cache way.

2. If the filter indicates that the data address is present, then the data may be present in

the given cache way.

As such, the filter provides a completely safe indication about the absence of data in the

cache way it is guarding. Also, this indication can be performed within a fixed access time,

as opposed to previously proposed prediction techniques that contain undesirable variable

access times. Figure 31 shows an example scenario of an access to a Way Guard cache.
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As illustrated in the figure, since the Way Guard filters of Way 0 and Way 3 indicate a

possible hit, only their Tag RAMs need to be checked. Thus, for every cache access we

only need to check a subset of Tag RAMs which enables the dynamic energy reduction.

Even though the scheme incurs extra hardware, the Way Guard only comprises of a bit-

vector and counters. Querying a Way Guard only involves checking the bit vector and this

consumes much less energy than looking for the address in the Tag RAM it is guarding.

Note that, since the filter must be checked prior to the Tag RAMs being selected, there is a

potential performance penalty. However, since the filter is fast, the filter access and the Tag

RAM selection process can be potentially contained within a cycle. In the worst case, the

filter would add one extra cycle to the cache access time.

One implementation variant of the Way Guard technique is illustrated by dotted lines in

Figure 31. As explained in the previous section the Way Guard are essentially segmented

Bloom filters and consist of a bit vector and an array of counters. There will be “n”

Guards each guarding a way of an n-way cache. However, note that each of these filters is

indexed by the same hash function. Given a data address, all the filters will check at the

same indices for the presence of the data. Since for all cache accesses all the filters are

queried, we propose the following design alternative. In this variant, the vector part of the

segmented Bloom filters are coalesced to form the Way Guard Matrix shown by the dotted

line table. Each row in the matrix contains a bit for each guard filter. This bit will be the bit

in the bit vector corresponding to the index of the row. Thus Matrix[i][k] will consist of the

ith row of the bit vector of the Way Guard guarding the kth way. During a cache access, this

matrix is first queried as shown by the dotted arrows coming from the address and the row

of bits obtained for the given index of the address is used to enable only the cache ways

that may contain the data. This technique can further reduce energy by using the lower

energy matrix structure to filter out unneeded cache lookups going to the Tag RAMs. The

bit vectors which consist of a very large number of one-bit entries1, and the majority of the
1The number of entries we chose is four times of the number of cache lines. For a 256KB cache with

32-byte lines, the number of entries in the array is 32768.
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access cost to the bit vector structure goes in decoding the index. Using one matrix instead

of n one bit arrays saved (n-1) decoder access costs for every access to the Way Guard.

One notable point about our technique is that it can be extended to other implemen-

tations of highly associative caches such as CAM tag caches [123]. This can be done by

simply adding an AND gate in the path of every CAM comparator. One input to these

AND gates is obtained from the Way Guard result to effectively reduce tag comparisons.

The detailed evaluation is outside the scope of this dissertation.

5.6 Experimental Results
5.6.1 Experimental Framework and Benchmarks

For choosing an experimental framework, we wanted an infrastructure that allowed sim-

ulation of a large number of cache configurations at once. Also, we wanted to show the

effect of running applications on top of an OS for the way estimation simulations. There-

fore, to evaluate the energy savings for both cache miss prediction and way estimation we

use a modified version of the Bochs [61]. Bochs is a full system simulator that can boot

x86-based operating systems such as Windows NT, XP, and RedHat Linux. For cache miss

prediction, the simulation involves running SPEC, Mediabench and MiBench applications

on RedHat Linux in Bochs. For way estimation, the simulations further involved running

common Windows applications on a Windows NT platform. To collect cache statistics,

we integrate the cache simulator from Simplescalar [23] into Bochs. We also enhance the

cache simulator with our Bloom filter model. This innovative simulation technique allows

us to gather cache statistics of various applications running on top of a full operating sys-

tem. Previous techniques using Bochs, collected instruction execution traces from Bochs,

that were then fed into a microarchitectural simulator like Simplescalar. By integrating

the cache simulator into Bochs we remove the time-consuming and cumbersome process

of trace collection from the simulation process. This technique is much faster than trace

collection and we may simulate a lot more instructions than trace collection techniques

which is inherently limited by the size of the trace. Using this technique we can test several
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Table 6. Architectural assumption
Drowsy-mode in/out time = 10 cycles
CPU clock gating time = 8 cycles
Shutdown Penalty = 16 cycles
Bit vector access time = 1 cycle
Memory access time = 100 cycles
CPU Energy = 2 x L1 Cache Energy
Cache Drowsy Energy = 1/6 x Cache Leakage Energy

memory hierarchies simultaneously.

For cache miss prediction experiments, we model a common embedded processor that

executes instructions in program order with blocking caches. We compute the total energy

consumption of the on-chip system including the processor, the caches and the Bloom fil-

ters. Our baseline model is a system with no Bloom filter. We evaluated twelve applications

including bzip2, gcc, gzip, mcf, parser, vortex and vpr from SPECint2000, the lame MP3

player application from MiBench [56] and adpcm , epic, jpeg, mesa and pegwit from Medi-

abench [73]. 4 billion instructions after fast forwarding 1 billion instructions are simulated

in the SPECint benchmark programs while lame and the Mediabench benchmarks run to

completion. Since our technique involves predicting misses in the L2 cache, for proper

analysis, we needed benchmarks that stressed the L2 cache. The SPECint, Mibench and

Mediabench benchmark programs were chosen, for their stressing L2 cache behavior.

Other pertinent architectural assumptions are listed in Table 6. The following assump-

tions are made to estimate the energy consumption of the baseline system (i.e., system

without the Bloom filter) and a low-power system with the segmented Bloom filter. The

time taken to put the caches in drowsy mode is 10 cycles, and it also takes another 10 cy-

cles to resume back to the normal mode. As reported by [46], it takes less than 2 cycles to

put a cache line into drowsy mode. Nevertheless, since cache is a large structure, putting

the whole cache to a drowsy state simultaneously could lead to high-frequency inductive

noise issues [85]. Therefore, we assume that the entire operation is done in five progressive

phases, taking a total of 10 cycles. Similarly, turning the cache from the drowsy back to
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Table 7. Architectural Configuration
Description Configuration 1 Configuration 2
L1 I and D cache 2-way 16KB 2-way 64KB
L2 cache 4-way 64KB unified 4-way 256KB unified
Bit vector size 8192 bits 32768 bits
Counter array size 8192 3-bit counters 32768 3-bit counters
L1 latency (cycles) 1 4
L2 latency (cycles) 10 30

normal state also takes 10 cycles in our simulations. We also assume that the time taken

to aggresively clock-gate microarchitectural blocks in a processor is 8 cycles. This number

is obtained from the clock gating time of the ARM Cortex A8 processor [6]. In our sim-

ulations it was assumed that the core that is aggresively clock gated consumes 40% of the

actual core energy. This is a reasonable approximation based on the power consumption

reported for the C1/C2 states in the Silverthorne processor [48].

The total time for turning clock gating on and off (16 cycles) is called the shutdown

penalty. This is estimated from the typical cycles taken to aggresively clock gate ARM’s

Cortex A8 processor and also to wake up from its sleep state. The access time to the bit

vector takes one cycle while the memory access time is assumed 100 cycles. We also

assume that the processor energy consumption is twice the total L1 instruction and data

cache energy consumption which is a realistic assumption shown in some embedded pro-

cessors [44]. The cache leakage energy in the drowsy mode was estimated one sixth of the

cache leakage energy as shown by Flautner et al. in [46].

We experiment two different cache architectures as shown in Table 7. The first config-

uration contains 2-way set-associative 16KB L1 instruction and data caches, 4-way 64KB

L2 cache, a 8192-bit Bloom filter bit vector and a Bloom filter counter array of 8192 entries

with 3-bit counter per entry. Although the worst case number of bits required per counter

is 12, we observe in our experiments that the value of each counter never exceeds 4. Thus

we use 3 bits per counter to save energy and have a policy of disabling a particular counter

if it saturates. The line size is 32B for both L1 and the L2 caches. The latencies of the
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L1 instruction and data caches and L2 cache are 1 and 10 cycles, respectively. This con-

figuration represents low-end market such as industrial and automotive applications in the

embedded domain.

The second configuration includes 2-way set-associative 64KB L1 instruction and data

caches, a 4-way 256KB L2 cache, each has a 32B line size. The Bloom filter consists of

a 32768-bit bit vector and a counter array of 32768 entries with a 3-bit counter per entry.

The latencies of the L1 instruction and data caches and the L2 cache are 4 and 30 cycles,

respectively. This configuration represents the high-end-market where slightly larger scale

applications are targeted, e.g. consumer and wireless applications.

We have chosen the number of Bloom Filter entries to be four times the number of cache

lines. We experimented with different BF sizes and found this empirical ratio provides the

best results. The area overhead for the Bloom Filters is about 6% of the L2 cache area for

both configurations.

The experimental evaluation for “Way Guard” is performed in two stages. In the first

stage, only the L2 cache is guarded by the Way Guard filters. So, we used a fixed size of

2-way 16KB L1 caches, and 30 different configurations of the L2 cache. We varied the

cache capacity by gradually doubling its size from 64KB up to 2MB. The associativity was

varied in the same manner from 2 to 32 ways.

The size of each Way Guard filter was chosen to be four times the number of lines of

each cache way. The area overhead for all Way Guards in the L2 Cache is 6% of the L2

cache size. Notice that this 6% relative overhead is irrespective of the cache size, as we

always use the heuristic of choosing the Way Guard filter with entries that is four times the

number of entries of the number of cache lines it is guarding.2

We show energy savings results for both the serial access and parallel access versions

of the L2 cache. In a serial access, cache data access follows the tag access only when

there is a tag match. In contrast, for a parallel access cache, the data and tag of all ways are
2There is also a small overhead of a few logic gates per Way Guard, but the overhead is negligible com-

pared to the size of the filter.
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enabled in parallel, and the correct data is “muxed” out.

In the second stage, only L1 caches are guarded by the Way Guard. So, we used a 4-

way 128KB fixed sized L2 cache, and 20 L1 configurations. Similarly, the L1 capacity was

varied from 8KB up to 64KB and their associativity from 2 to 32 ways. The 32-way L1 is

similar to what is employed in Xscale processors. We assume a parallel access L1 cache

for all our experiments. We use the a set of seven SPEC benchmarks that were known

to stress the L2 cache. In addition, we also used five MS Windows applications used in

desktop systems including the booting of Windows NT, Visual Studio compiling the Bochs

source code, an MPEG decoder, a MP3 decoder, and a simple web browsing application.

All the above applications show sufficient amount of memory activity to properly illustrate

our results. Also, the MS Windows benchmarks help us understand how the Way Guard

technique will behave in a real multiprocessing environment.

5.6.2 Energy Modeling

The L1 and L2 caches, the bit vector and the counter array were designed using the Ar-

tisan 90nm SRAM library in order to get an estimate for the dynamic and static energy

consumption of the caches and the segmented Bloom filter. The Artisan SRAM generator

is capable of generating synthesizable Verilog code for SRAMs in 90nm technology. The

generated datasheet provides the read and write current of the generated SRAM. This gives

us an estimate of the dynamic energy per access of such a structure. The datasheet also

provides a standby current from which we can calculate the leakage energy per cycle of the

SRAM.

We have two system energy models. The first model is the baseline model in which the

dynamic and static energy consumption of the processor, L1 instruction and data caches

and the L2 cache are calculated. The second system model is the low-energy system model

in which the dynamic and static energy consumptions of the bit vector and counter array

are also added to the rest of the system components. Table 8 lists the abbreviation of the

variables we will use to formulate the system energy of the baseline and the low-energy
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system models.

5.6.2.1 Baseline System Energy Model

Cyco f f = NumL2readmiss ∗ (Latmem − S P)

Cycon = Cyctot −Cyco f f

Ebase
cpu = Cycon ∗CPUdyn +Cyco f f ∗CPUleak

Ebase
$ (type) = Numcacheaccess ∗ $dyn +Cycon ∗ $leak +Cyco f f ∗ $dr

Ebase
sys = Ebase

cpu + Ebase
$ (I) + Ebase

$ (D) + Ebase
$ (L2)

5.6.2.2 Low-energy System Energy Model

We now estimate the energy consumption of the low-energy system model having L1 and

L2 caches which are designed with inclusion property with the segmented Bloom filter as

follows:

Cyco f f = NumL2readmiss ∗ (Latmem − S P) + NumL2 f ilt ∗ (LatL2 − Latvector)

Cycon = Cyctot −Cyco f f

Elow
cpu = Cycon ∗CPUdyn +Cyco f f ∗CPUleak

Elow
L2 = (NumL2access − NumL2 f ilt) ∗ L2dyn +Cycon ∗ L2leak +Cyco f f ∗ L2dr

Elow
L1 (type) = NumL1access ∗ L1dyn +Cycon ∗ L1leak +Cyco f f ∗ L1dr

Elow
vector = NumL2access ∗ BVdyn +Cycon ∗ BVleak +Cyco f f ∗ BVdr

Elow
counter = NumL2access ∗Counterdyn +Cycon ∗Counterleak +Cyco f f ∗Counterdr

Elow
sys = Ecpu + Elow

L1 (I) + Elow
L1 (D) + Elow

L2 + Elow
vector + Elow

counter
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If the L1 and L2 caches are inclusive, then the energy consumption of the L1 cache is

determined by the total number of L1 accesses less the number of filtered L2 misses. Also,

the number of L2 accesses is replaced by the number of L1 accesses in the bit vector energy

equation.

Elow
L1 (type) = (NumL1access − NumL2 f ilt) ∗ L1dyn +Cycon ∗ L1leak +Cyco f f ∗ L1dr

Elow
vector = NumL1access ∗ BVdyn +Cycon ∗ BVleak +Cyco f f ∗ BVdr

For measuring Way Guard energy we divide the L2 cache energy into energy for accessing the tags

of one way and that for accessing the data. So for a Way Guard in a parallel access cache:

Elow
L2 = (NumWayHit ∗ NumL2Hits + NumWayMisses ∗ NumL2Misses) ∗ (EL2Tag

Dyn + EL2Data
Dyn )

+NumL2access ∗ EBV
Dyn + (NumL2Line f ill + NumL2Replace) ∗ ECounter

Dyn

+NumBVU pdate ∗ EBV
Dyn +Cycles ∗ (EL2

leak + EBV
leak + ECounter

leak )

For a serial access cache:

Elow
L2 = (NumL2

WayHit ∗ NumL2Hits + NumL2
WayMisses ∗ NumL2Misses) ∗ EL2Tag

Dyn + NumL2Hits

∗EL2Data
Dyn + NumL2access ∗ EBV

Dyn + (NumL2Line f ill + NumL2Replace) ∗ ECounter
Dyn

+NumL2
BVU pdate ∗ EBV

Dyn +Cyctot ∗ (EL2
leak + EBV

leak + ECounter
leak )

Finally, the percentage savings in the total system (Dynamic + Leakage) energy is defined by

the following equation:

% Savings =
Ebase

sys − Elow
sys

Ebase
sys

(1)
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5.6.3 Cache and Bloom Filter Statistics

For studying the efficacy of early cache miss detection using our segmented Bloom filter, we col-

lected the cache miss rates for the L1 instruction and data caches and L2 cache and the miss filtering

rates of the Bloom filter for the two configurations listed in Table 9 and Table 10. Some bechmark

programs such as adpcm, gcc, or mesa show higher L2 miss rates in the larger L2 cache configu-

ration. This is because their L1 miss rates were much improved, resulting in fewer accesses to the

L2 cache. The miss filtering rates in the last column of the tables are the percentage of the L2 misses

that the Bloom filter can detect correctly (i.e., true miss rate). For instance, 86% of the L2 misses

can be detected correctly by the Bloom filter in parser for Configuration 1. The remaining 14% of

them cannot be detected, i.e., the false hit rate. The average true miss rates across all benchmarks

are 80% and 81% for both configurations. These rates imply that a great majority of the L2 misses

can be captured by the Bloom filter. An 80% filtering of L2 misses also implies that the Bloom filter

can reduce accesses to the L2 cache by more than 30%.

5.6.4 Energy Consumption Results for Early Cache Miss Detection

Table 11 shows the L2 dynamic energy savings for the two configurations with respect to the L2

cache in the baseline model. Most benchmarks like gzip, jpeg, vortex and mcf suffer a drop in

the L2 dynamic energy savings in Configuration 2 because of improvements in the L2 miss rates

by employing a much larger L2 cache. As the L2 miss rate improves, the number of misses of

which the Bloom filter can take advantage to shut down the processor and caches diminishes. The

reduction in the L2 energy savings in Configuration 2 are more dramatic in pegwit, vortex and vpr

since their miss rates drop significantly in Configuration 2.

In summary, using the segmented Bloom filter provides an average of 34% and 31% savings in

the L2 dynamic energy respectively for the two configurations.

Figure 32 plots the static energy savings. The static energy accounts for the leakage energy of
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Figure 32. Static Energy results

the processor, L1 and L2 caches in the baseline model, and the leakage energy of the bit vector and

the counter array. In addition to the two configurations, we also show the results of the inclusive

versions for each configuration. In the inclusive version, the bit vector is embedded within the core.

This enables the bit vector to filter out accesses to the L1 instruction and data cache.

The percentage increase in the system static energy savings are quite significant for bzip2 and

mcf from a smaller configuration to a larger one. For the non-inclusive version, in Configuration

2, 8% and 17% of the static energy consumption can be saved by using the segmented Bloom filter

for bzip2 and mcf, respectively. Similar to the L2 dynamic energy results, when switching from

a smaller configuration to a larger one,some benchmarks like adpcm, gcc and lame observe some

percentage loss in the static energy savings due to lower L2 miss rates. The inclusive versions for
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Figure 33. Total system energy results

both configurations show slightly better savings for all benchmarks because the inclusive config-

uration allows early turning off the system components, which reduces the system static energy

consumption. The average system static energy savings are 2.93%, 3.82%, 3.14% and 4.12% for

Configuration 1, its inclusive version, Configuration 2 and its inclusive version, respectively.

Figure 33 plots the total energy savings in percentage. The total energy is defined as the total

dynamic and static energy consumed by the processor, L1 caches, L2 cache for the baseline model.

For the Bloom filter enabled cache the total energy also includes the dynamic and static energy

consumption of the bit vector and the counter array. Here, we see a very similar trend to the system

static energy savings above when changing to a larger configuration from a smaller one. Similar to

the static energy reduction, the inclusive versions for both configurations reduces the total energy

more than the cases where inclusion property is not applied because of the reduction in the number
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Figure 34. Average Number of Ways Looked Up for Hits in an L2 Cache

of L1 cache accesses that reduces the dynamic as well as the static energy consumption.

The average total energy savings for Configuration 1 and its inclusive version are 3.18% and

3.72%, respectively. These rates go to 6.5% and 7.27% for Configuration 2 and its inclusive version.

We should note that the energy savings obtained in the benchmarks above are because of the

fact that each of them have a significant L2 cache miss ratio. However, if an application has a very

low L2 cache miss ratio, our technique will not lead to energy savings and result in excess energy

consumption for maintaining the bloom filter information. Though not evaluated in this chapter,

this shortcoming can be addressed in the following way. A separate counter will keep track of the

miss ratio of the L2 cache. If the miss ratio goes below a certain threshold, the bloom filter vector

will be powered down and the counter will be maintained in the drowsy state. After being in a state

preserving mode, if the miss ratio exceeds another threshold, the normal bloom filter operation may

be resumed by first powering on the bit vector and then updating its contents from the counters. If

there is sufficient hysteresis in choosing the thresholds, this scheme will not have a large overhead.

5.6.5 Energy Savings for Way Guard

To illustrate the effectiveness of the Way Guard, we show the average number of ways looked up (for

all the benchmark programs) for hits and misses for all the 30 L2 cache configurations in Figure 34

and Figure 35. A notable observation of these results is that the Way Guard does a very good job in

filtering out ways where the data is not present. In a typical case of a cache hit for an 8-way cache,
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only 2.77 ways need to be looked up for a data access. The average number of ways needed to

determine a cache miss is significantly lower than that for hits. To determine a miss, the Way Guard

cache checks less than 25% of the ways. Another interesting trend is that the performance of the

Way Guards continues to improve with increasing cache sizes. This has to do with the sensitivity of

the counting Bloom filter performance with its size. Our experiments showed that a larger counting

Bloom filter always performs better than a smaller one, even though the size of the Bloom filter is

always chosen to be four times the number of cache lines in each way. For a given associativity,

since larger caches have larger Way Guards guarding their ways, the performance of the filters in

larger caches will be better.

In Figure 36 we try to find out how the total energy savings is affected by the miss rate. The

energy savings take into account both dynamic and leakage energy consumptions of the cache as

well as those consumed by the Way Guards. The baseline is a normal L2 cache without the Way
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Figure 37. Comparing Way Halting and Way Guard Energy Savings in a Serial Lookup Cache

Guard mechanism. The figure shows the savings obtained for two cache sizes (1MB and 2MB) for

the “bzip2” from SPEC benchmark. “Bzip2” is chosen for this illustration as a typical benchmark

showing trends reflected in all other benchmarks. We find that the miss rate for a fixed cache size

is almost the same for associativities greater than 2. We observe that we get significant savings for

up to 53% for a 32-way 2 MB cache. As expected for all cache sizes, the savings increase as the

associativity increases. In other words, the effectiveness of the Way Guard is increased with higher

associativity. The reason behind this is that the Bloom filters are very effective at indicating absence

of data, and can predict more than 80% of cache misses [52]. In a set associative cache lookup, most

of the accesses to ways result in misses, that counting Bloom filters are usually good in predicting.

In the case of a cache hit only one way has the required data and in the case of a cache miss none of

the ways have the data. Thus, a higher associativity gives a greater chance for indicating absence,

leading to larger energy savings.

By fixing the associativity, the energy savings decrease with increased cache sizes. One reason

for this is that for larger cache sizes the overhead of the Bloom filter also increases. Also larger

caches contain lower miss rates. So the relative benefits do not completely account for the larger

overheads.
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Another trend that was observed was that the relative energy overhead of Way Guard increases

with associativity and decreases with cache size. We found that for a small 64KB L2 cache the

relative energy overhead of Way Guard ranges from 16% for a 2-way cache to 22% for a 32-way

cache. Instead, for a 2MB cache, the overhead is only 5% for 2-way to 14% for 32-way. There are

two reasons why the Way Guard’s overhead increases with associativity. First, as the associativity

increases, more bits (one bit for each way) have to accessed for each access to the cache. Second, as

the associativity increases, the performance of Way Guard also improves leading to less total energy

consumption. The reason for the relative overhead decreasing with increasing cache size is that, as

the cache size increases, the relative energy in accessing the cache becomes relatively larger than

that of accessing the Way Guard.

We compared our technique with the Way Halting technique described in [122]. Way Halting

uses a fully associative buffer to hold four tag bits for each line of the cache. When the cache is

looked up, the way halting buffer matches the stored bits for each way of the corresponding set with

the least significant tag bits of the address looked up. If these bits do not match for a particular way,

then the lookup will surely miss that way, and the tag comparison for that way is halted, resulting

in energy savings. We implemented the way halting scheme in our Bochs infrastructure. We also

modeled the power overheads for the way halting technique using the Artisan SRAM generator.

The L2 cache energy savings comparing Way Halting and our Way Guard techniques are shown

in Figure 37. The baseline cache for these relative energy numbers is a serial lookup cache. In a

serial lookup cache, to reduce the lookup energy consumption, tag comparisons and the retrieval

of the data portion of a cache line are done serially, similar to what was described in Figure 31.

An access involves two steps starting with a tag comparison. Only if there is a tag match will the

corresponding data row be accessed to supply the data line. All benchmark programs show similar

energy saving trends in the serial lookup cache. Thus we report the geometric means of energy
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savings for all the benchmarks in Figure 37. We see that since the data of all the ways are not fired

up, the primary savings with the Way Guard lie in the tag comparisons. We find that for all cache

sizes considered, the Way Guard technique is not very effective for caches whose associativity is less

than 4. The reason behind this is, for a 2-way cache, Bloom filters save at most one tag comparison

for a hit and 2 tag comparisons for a miss. This benefit in most cases does not surpass the extra

energy cost needed for checking the Bloom filters for each L2 access. In contrast, it shows energy

savings of up to 37% for larger associativity caches. Compared to the Way Halting scheme , the

Way Guard technique shows much better energy savings for 27 of the 30 cache configurations. In a

typical case a 1MB 16-way L2 has a 17% energy savings for a Way Guard while the Way Halting

scheme only achieves 6.3% savings. Also for low associativities, the Way Halting technique does

not have any energy savings. For a 2MB 4-way cache, Way Halting technique results in a 7%

energy loss. The reason behind this is the high overhead of Way Halting for every cache access, that

involves comparing four tag bits for every cache way. In contrast, the Way Guard technique only

involves reading “n” bits from a bit vector array, where “n” is the associativity.

We also compared the energy savings of our technique against Way Halting, assuming a baseline

parallel lookup cache. The results illustrated in Figure 38 assume that the set-associative cache

accesses the same data row for all cache ways in parallel using the same set index. It can be easily

seen that the Way Guard technique performs much better than the Way Halting technique for 25

of the 30 cache configurations. In a typical case, for a 1 MB 4-way cache, the Way Guard cache

shows a saving of 32%, while Way Halting manages to improve the energy by 21%. As expected,

the results for a parallel lookup cache show similar trends as the results for a serial lookup cache in

terms of sensitivity to cache associativity and cache sizes.

For the L1 cache experiment, we consider the L1 to be a high performance parallel access cache,

where data and tag are accessed together to achieving a fast hit latency. We applied our Way Guard
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Figure 38. Comparing Way Halting and Way Guard Energy Savings in a Parallel Lookup Cache

technique to both the instruction and data caches. For all our experiments we assume a 2-cycle

cache access. We assume that our Way Guard lookup can be fit into these two cycles to not affect

the L1 cache performance. This assumption is validated by considering the access times of a typical

cache configuration (64KB 4-way) and its corresponding Way Guard Bloom filter (2048 entries

each way). Using Artisan the access latencies were found to be 0.74ns for the cache and 0.66ns for

the Way Guard. The combined access time fits into 2 cycles of an embedded processor like AMD

Geode NX 1750 running at 1.4GHz. Note that a normal cache access to this processor will also take

2 cycles, as the 0.74ns access time to the cache is larger than the 0.714ns cycle time.

We first show the geometric means of the normalized energy savings in the L1 I-cache across all

the benchmark in Figure 39. In these experiments, our Way Guard technique shows huge benefits

up to 68% for a 32-way cache and more than 50% for a 4-way cache. L1 caches show huge benefits

because it is almost accessed every cycle during execution. For every access, with the help of Way

Guard filters, only 25 to 30% of the ways need to be checked.

We also performed similar experiments for the L1 D-cache. The results are also shown in Fig-

ure 39. Similar to the I-cache results, the savings obtained using Way Guard despite the overheads

are very impressive. In a typical case of a 32KB 4-way L1 cache, a 52% overall energy saving was
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shown.

5.7 Summary

This chapter presents a segmented counting Bloom filter to perform energy management at the

microarchitectural level and evaluates its effectiveness in reducing energy. As shown in our ex-

periments, the segmented Bloom filter technique is an efficient microarchitectural mechanism for

reducing the total processor energy consumption. A significant part of the total processor energy

including L2 dynamic cache energy, L1, L2 and processor static energy can be saved in a system

where the multi-level cache hierarchy assumed does not maintain inclusion property. Also,the seg-

mented design is shown to provide even higher energy-efficiency if the multi-level cache hierarchy

implements inclusive behavior.This is because the segmented design provides the opportunity to

make the bit vector accessible before the L1 cache access and allows for detection of misses much
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earlier in the memory hierarchy. The segmented counting Bloom filter is capable of filtering out

more than 89% of the L2 misses, causing a 30% reduction in accesses to the L2 cache. This results

in a saving of more than 33% of L2 dynamic energy. The results also demonstrated that the overall

system energy can be reduced by up to 9% using the proposed segmented Bloom filter.

We also demonstrated that the segmented Bloom filter can be efficiently used as a way estima-

tion technique and saves much more energy than the prior Way Halting technique. We showed that

our technique can be efficiently used in all levels of the cache hierarchy obtaining substantial energy

savings of up to 70% using Way Guard in both instruction and data L1 caches, and up to 65% for

an unified L2 cache.

As future applications demand more memory and shrinking feature sizes allow more one-die

transistors, processors would be inclined to have larger caches with higher associativity. Having

these longer latency, higher associative caches will provide further opportunities for the segmented

design to facilitate microarchitectural energy management earlier in the memory hierarchy and the

Way Guard technique to save lookup energy. Therefore, cache miss detection and way estimation

techniques in general and the segmented filter design presented in this chapter will play a key role

in energy management for future microprocessors.
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Table 8. Abbreviations and their descriptions

Abbreviation Description
Cyctot Total Number of Cycles
Cyco f f Number of Idle Cycles
Cycon Number of Active Cycles
Numcacheaccess Number of Cache Accesses
NumL2readmiss Number of L2 Read Misses
NumL2access Number of L2 Accesses without filtering
NumL1access Num of L1 Accesses
NumL2 f ilt Number of Filtered L2 Misses
NumWayHit Average Number of Ways looked up in the case of a Cache Hit
NumWayMisses Average Number of Ways looked up in the case of a Cache Miss
NumBVU pdate Number of times the Bit Vector is updated. (Changes from 1 to 0 or 0 to 1 )
Latmem Memory Latency
SP Shutdown Penalty
LatL2 L2 latency
Latvector Bit vector latency
CPUdyn CPU Dynamic Energy per Cycle
CPUleak CPU Leakage Energy per Cycle
$dyn Cache Dynamic Energy per Cycle
$leak Cache Leakage Energy per Cycle
Cachedr Cache Drowsy Energy per Cycle
BVdyn Bit Vector Dynamic Energy per Cycle
BVleak Bit Vector Leakage Energy per Cycle
BVdr Bit Vector Drowsy Energy per Cycle
Counterdyn Counter Array Dynamic Energy per Cycle
Counterleak Counter Array Leakage Energy per Cycle
Counterdr Counter Array Drowsy Energy per Cycle
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Table 9. Cache miss and miss filtering rates for configuration 1

Benchmark L1 I L1 D L2 Bloom Filter
adpcm 0.74% 0.78% 36.25% 79.6%
bzip2 0.27% 3.4% 67.44% 77.12%
epic 0.29% 1.13% 36.20% 83.01%
gcc 1.55% 2.61% 21.47% 81.29%
gzip 1.35% 2.64% 40.47% 79.48%
jpeg 0.46% 0.89% 37.23% 79.82%
lame 2.34% 10.11% 26.42% 81%
mcf 0.09% 19.27% 51.66% 82.94%
mesa 0.42% 0.77% 30.86% 77.13%
parser 0.17% 2.85% 40.73% 86.34%
pegwit 0.47% 7.83% 34.55% 71.62%
vortex 0.78% 2.76% 27.61% 85.6%
vpr 0.16% 3.84% 34.73% 81.91%
MEAN 0.7% 4.53% 37.36% 80.53%

Table 10. Cache miss and miss filtering rates for configuration 2

Benchmark L1 I L1 D L2 Bloom Filter
adpcm 0.17% 0.46% 51.75% 78.49%
bzip2 0.07% 3.07% 51.06% 78.72%
epic 0.06% 0.74% 22.90% 89.30%
gcc 0.21% 0.84% 42.76% 80.43%
gzip 0.49% 1.78% 38.87% 78.91%
jpeg 0.12% 0.36% 34.98% 79.23%
lame 0.87% 6.47% 31.36% 79.84%
mcf 0.02% 16.60% 48.85% 78.56%
mesa 0.07% 0.51% 38.78% 76.73%
parser 0.05% 1.82% 32.92% 80.91%
pegwit 0.08% 4.19% 9.66% 81.64%
vortex 0.11% 2.15% 33.67% 84.35%
vpr 0.02% 2.14% 12.62% 89.75%
MEAN 0.18% 3.18% 34.63% 81.30%
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Table 11. L2 cache energy savings

Benchmark Configuration 1 Configuration 2
adpcm 28.85% 40.61%
bzip2 52.01% 51.06%
epic 21.46% 22.90%
gcc 36.20% 42.75%
gzip 40.47% 38.86%
jpeg 37.22% 34.97%
lame 22.37% 20.64%
mcf 51.65% 48.85%
mesa 30.86% 38.78%
parser 40.73% 32.92%
pegwit 34.55% 9.66%
vortex 18.09% 5.79%
vpr 34.73% 12.62%
MEAN 34.55% 30.80%
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CHAPTER 6

REDUCING VIRTUAL CACHE ENERGY CONSUMPTION BY
USING BLOOM FILTERS TO DETECT SYNONYMS

Virtual caches are often chosen over physical caches as the first level cache because they do not

need an address translation path from the virtual addresses generated by the processor. This can

potentially reduce the critical path to the cache by eliminating the address translation stage through

the Translation Lookaside Buffer (TLB), thereby reducing the cache access time significantly.

However, the major problem with the virtually-indexed caches is the synonym or aliasing prob-

lem [107], where multiple virtual addresses can map to the same physical address. The synonym

problem occurs when the cache index bits include some bits from the virtual page number without

TLB translation. In such cases, the cache block may reside in multiple cache locations, and all the

tags in these locations must be looked up. However, to maintain cache consistency, only one copy

of a cache line can be present in the cache. So the tag lookup must be done in multiple cache sets to

check for possible synonyms.

Synonyms can be avoided by either software, hardware or a combination of both. Software

techniques involve OS intervention that restricts address mapping. For instance, page coloring [65]

that aligns pages so that their virtual and physical addresses point to the same cache set. However,

page coloring can have an effect on system performance such as page fault rate and restricts memory

allocation. Another software solution to the synonym problem is that the OS flushes the caches on

context switches to prevent synonyms, at a cost of degrading the overall system performance.

Hardware solutions, on the other hand, can detect synonyms without restricting the system

software. Some of these solutions use duplicated tag arrays or reverse maps [54, 68, 107, 118],

however, these techniques increase the die area and the power budget. Instead, designers prefer

a simpler approach that only a single copy of a cache line is kept in the cache at any time [40,

100



112]. Synonyms are eliminated by the cache controller on a cache miss by searching for a possible

synonym in every cache line belonging to the synonymous sets. In this chapter, we assume that this

simpler approach is used to detect synonyms.

Performing multiple tag lookups for finding a synonym consumes a considerable amount of

cache dynamic energy. The increasing dynamic energy consumed by tag lookups in highly associa-

tive caches pushes the designers to consider ad hoc techniques such as way prediction [59]. These

techniques can predict the way that the cache line may reside in by using the address history infor-

mation. Only the tag at the predicted way is compared against the outstanding address rather than

initiating all-way lookup. Such techniques are not useful to reduce energy consumed by synonym

lookups because synonyms are rare events and can be hard to predict using history-based predictors.

Even though the occurrence of synonym is very infrequent, the potential locations in the cache

still need to be looked up for every access to maintain correctness. In fact, all we need is a mech-

anism that can guarantee that there is no synonym in the cache so that no further tag lookup is

necessary. Such mechanism will be functionally sufficient and potentially beneficial to dynamic

energy consumption.

In this chapter, we propose Synergy — an early synonym detection mechanism based on Bloom

filters to reduce SYNonym lookup enERGY — to filter out unnecessary synonym lookups. A Bloom

filter can provide a definitive indication that a data item or an address has not been encountered

before. We call this a negative recognition. However, it cannot definitively indicate that the data

item or address has been observed before. So, a positive recognition is not guaranteed in a Bloom

filter. We will exploit the property of negative recognition in Bloom filters to filter synonym lookups

in virtual caches for reducing cache dynamic energy consumption.
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Figure 40. Virtual-to-Physical Addressing

6.1 Redundancy in Synonym Lookup in Virtual Caches

Figure 40(a) shows an example where there is no synonym problem. The sum of cache index

and line offset bits (m) is smaller than or equal to the page offset bits, n. No synonym exists in

this configuration as none of the cache indexing bits falls in virtual space. On the other hand,

Figure 40(b) shows a case where synonyms can exist in the cache. When the sum of index and

offset bits (m) is greater than n, s bits from the virtual page number are used to index the cache

without going through a virtual-to-physical address translation. The synonym problem occurs when

these s bits or synonym bits are used to index the cache. The synonym bits determine the number

of synonym cache sets in which the potential data synonym can reside.

One of the basic hardware approaches for handling synonyms in virtual caches is to keep only

a single copy of a cache line in the cache [34, 93]. In this approach, there is no extra lookup penalty

or energy consumption when there is a cache hit. However, when there is a cache miss, the memory
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request is sent to the lower-level memory while all cache lines in the synonym sets are looked up

for a potential synonym. For virtually-indexed physically-tagged caches, all physical tags in the

synonym sets are looked up for a synonym, the memory request is aborted and the cache line is

moved to the indexed set if a synonym is found. For virtually-indexed virtually-tagged caches,

every virtual tag must be translated into physical tags and then each must be compared with the tag

of the missed cache address. Again, if a synonym is found, the memory request is aborted and the

cache line is remapped or retagged and the line can also be moved to the indexed set.

6.1.1 Synonym Lookup and Tag Energy

Figure 41 shows the effect of the synonym problem on the number of tag lookups and energy

consumption illustrated by an example. In this example we assume a 32-bit address space, 4KB

pages, and a 2-way set associative 32KB cache with 64B line size. The page offset has 12 bits and

the rest of 20 bits go through address translation. The cache consists of 256 sets indexed by 8 bits,

6 of which come from the page offset. The remaining 2 bits are taken from the virtual page number
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without being translated. After getting translated the value of these two bits can lead to 4 different

values. Thus the requested cache line can be in one of 4 different sets or 8 different lines in a 2-way

cache.

When a cache request is made, the cache is accessed with the given virtual index and both ways

are looked up for a hit. If there is a hit, then it means that there is no synonym in the cache as

the cache keeps a single copy. If there is a miss, this may or may not be a true miss because the

requested cache line might be in the other 3 synonym cache sets. The miss request is sent to the L2

cache and in the mean time, the tag lookup in the L1 continues serially until a synonym is found.

After 3 serial lookups, if there is a hit, a synonym is found in the cache. The lookup in the L1 is

then stopped and the miss request to the L2 cache is also aborted. Afterward, the synonym is moved

to the location that generated the miss.

If a synonym is not found after 3 serial lookups, this is a true miss and the cache does not have a

synonym with the given address. As such, six additional tag lookups were performed to determine

if there is a true miss. This certainly increases the cache dynamic energy consumption.

Given the fact that synonyms are infrequent, performing the additional search for a synonym is

generally a waste of dynamic energy. We can eliminate the extra synonym lookups if we know for

certain that there is no synonym in the cache. For this purpose, we propose to use a Bloom filter

associated with the cache that can safely indicate that there is no synonym in the cache. A detailed

description of Bloom filters is given in Section 5.2.

6.2 Synergy: Early Synonym Detection with a Decoupled Bloom Fil-
ter

If finding synonyms is a rare event per cache miss, then the Bloom filter can be quite successful for

fast and low-power detection of synonyms in virtual caches. It is fast because it indicates whether

there is no synonym by checking a single bit location in the vector. In contrast, the baseline serial
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lookup cache detection may also be detrimental to performance in some cases. If a cache has 3

synonym bits, it would have 8 possible locations to search for a synonym. If each search takes 2

cycles and the L2 cache access time is 10 cycles, searching for a synonym serially is worse than

going to the L2 cache. It is low-power because (w*S) tag lookup comparisons can be eliminated

where w is the cache associativity and S is the number of synonym sets. The frequency of synonyms

depends on the number of shared pages. When also considering the fact that cache misses are less

frequent than hits, the frequency of finding synonyms per cache miss is likely to be low, so the

virtual cache system certainly benefits from using a Bloom filter to filter out several tag lookups.

6.2.1 Virtually-indexed Physically-tagged Caches

Figure 42 shows an early synonym detection mechanism with a loosely-coupled Bloom filter for

a virtually-indexed physically-tagged (VIPT) cache. The Bloom filter keeps track of physical ad-

dresses rather than virtual ones so that it can provide a quick response regarding synonym existence

with a given physical address. The counter array is updated with the physical addresses of the linefill

from the physical L2 cache and the evicted line. The physical address of the evicted line is formed

from the tag that contains the usual tag bits and the translated synonym bits, appended with the
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lower part of the index of the set.

When there is a miss in the VIPT cache for a lookup, the physical address is sent to the L2 cache

to service the miss. At the same time, the physical address is hashed into the bit vector to check for

any synonym. If the bit location is zero, there is no synonym in the cache. In that case, no synonym

lookup is needed in the cache. If the bit location is 1, this implies that there may be a synonym in the

cache, and a serial synonym lookup process is launched to all synonym sets for synonym detection.

6.2.2 Virtually-indexed Virtually-tagged Caches

For virtually-indexed virtually-tagged (VIVT) caches, the Bloom filter counters are updated by the

physical address of the linefill during a linefill. For eviction, however, the evicted address must be

translated into the physical address by the TLB. The dirty evicted lines are already translated by

the TLB before sending it to the physical memory. The only extra TLB translations are needed

for the clean evicted lines. When a cache miss occurs, the Bloom filter vector is accessed by the

physical address acquired from the TLB. Similar to the VIPT caches, a true miss in the Bloom filter

vector (value returned is zero) means that there is no synonym in the cache associated with this

physical address, and a false hit (value returned is one) means that all synonym sets must be looked

up for a synonym in the cache. This involves in translating all virtual tags in all the synonym sets

into physical tags and then compare them to the physical tag of the outstanding address. Because

the Bloom filter keeps track of signatures of physical addresses, its functionality remains correct

regardless of context switches.

6.3 Counter Overflow Issues
6.3.1 Probability of Overflow

One important concern with Synergy is whether an L-bit counter is big enough to prevent it from

overflowing. As the data access pattern of applications are unpredictable and corresponding hashing
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results are difficult to analyze, this is not easy to tell. From our vast amount of experiments with

tens of billion instructions simulated, we found that a 3-bit counter is good enough for the Bloom

filter with α = 4. In this case, as the number of entries of this Bloom filter is four times more than

the number of cache lines of the L1 data cache, overflow is unlikely to occur. For example, 32KB

2-way set associative cache with 32B line contains total 1024 cache lines. Corresponding Bloom

filter contains 4096 entries. Since the presence of an address in a cache line counts as one increment

of a counter, the sum of all counter values is limited to the number of cache lines (1024), thus the

expected value of each counter is 0.25 (=1024/4096), which is very small compared to 7, the biggest

number that 3-bit counter can count.

In this section we try to show mathematically that the probability of overflow of a counter is

indeed very small. We define our probabilistic experiment as follows:

Experiment E: Select a cache line from the cache and note corresponding Bloom filter index of

this cache line

The sample space for this experiment is S = {A, B}, where A corresponds to the event, “the ith

cache line maps to the jth index of the Bloom filter”, and B to the event, “the ith cache line does not

map to the jth index of the Bloom filter”.

The number of entries of the Bloom filter, nb, is α×w×ns, where w is associativity of the cache,

ns is the number of sets of the cache, and α is the design-dependent constant that determines the

size of Bloom filter. Then, the number of cache lines, nc, is represented as w × ns.

Random variable X j
i is defined as 1 if the ith cache line maps to the jth index of the Bloom filter,

or 0 otherwise, where 0 ≤ i < nc and 0 ≤ j < nb. We assume that the hash generated by the XOR

hashing function can be uniformly spread across the entire Bloom filter indices, so the probability
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of the ith cache line mapping to the jth index of the Bloom filter is represented as follows.

P[X j
i = 1] = 1

nb
=

1
α × w × ns

= p

On the other hand, the probability of the ith cache line mapping to indices other than the jth index

of the Bloom filter is represented as follows.

P[X j
i = 0] = 1 − P[X j

i = 1] = 1 − p

Now, let S j
nc be the sum of all the random variables of the form X j

i , for all cache lines with

respect to the Bloom filter index j:

S j
nc = X j

0 + X j
1 + · · · + X j

nc−1

Note that S j
nc represents the counter value of the jth Bloom filter index. Assuming that X j

i is an

independent identically distributed random variable, now S j
nc becomes binomial random variable.

Thus, the probability that S j
nc is equal to x can be represented as follows:

P[S j
nc = x] =
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Then, the probability of overflowing a 3-bit counting Bloom filter can be represented as follows:

P[S j
nc > 7] = 1 −

7
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∑
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Because nc is fairly big, we can apply the central limit theorem to use the uniform Gaussian

distribution as an approximation to the discrete binomial distribution [74].1 The mean of S j
nc is

ms = nc p = 1
α

, and its variance is

σ
2
s = nc p(1 − p) = αnc − 1

α2nc

1The smallest nc in our experiments is 256.
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Then, now the probability of overflow can be represented as follows:

P[S j
nc > 7] = 1

√
2πσs

∫ ∞

7
e
− (s−ms)2

2σ2s ds

If we normalize this Gaussian distribution, using

Z j
nc =

S j
nc − ms

σs

, then finally the probability of overflow of jth index is represented as follows:

P[S j
nc > 7] = P[Z j

nc >
7 − ms
σs

] = 1
√

2π

∫ ∞

7−ms
σs

e−
z2
2 dz = 1

√
2π

∫ ∞

7− 1
α

√

αnc−1
α2nc

e−
z2
2 dz

In all our cache configurations where α = 4, z = 7− 1
α

√

αnc−1
α2nc

is found to be bigger than 13. Thus,

P[S j
nc > 7] < P[Z j

nc > 13]. Unfortunately, P[Z j
nc > 13] is very small number, so we are not able to

calculate this number using either normal distribution table or MATLAB. For reference, we provide

some other probability numbers that MATLAB calculates with smaller z in Table 12. In conclusion,

the probability is so small that the counters will overflow very rarely.

Table 12. P[Z j
nc > z]

z P[Z j
nc > z]

5 2.8665 × 10−7

6 9.8659 × 10−10

7 1.2799 × 10−12

8 6.6613 × 10−16

9 ∼ 0.0000

6.3.2 Simple Solutions to the Overflow Problem

Nonetheless, the overflow of a counter will affect the correctness of the filter and thus should not

be ignored. There are several solutions that can solve the correctness problem. The first solution

is disabling Synergy once it overflows. For example, once one entry of the Bloom filter overflows,

the following memory lookup’s that map to this entry will not rely on Synergy. Instead, they need

to look up all possible synonym sets as in a conventional design. Only after the system is rebooted,

the full functionality of Synergy can be recovered. The second solution is flushing the cache once

one entry of the Bloom filter overflows. Considering the fact that this is a very rare event, this
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will not affect the system performance a lot, and seems to be a good design trade-off in terms of

performance, energy, and area. The third solution is to use larger counters. In the previous example

with 1024 cache lines in total, we can prevent the overflow problem if all counters are 11 bit wide,

which can count up to 1024, the worst case where all cache lines map to the same entry. However,

considering the fact that this is a extremely rare event, this is a design overkill.

6.4 Overflow-free Bloom Filter
Here, we propose an overflow-free Bloom filter design, although this may be more expensive in

terms of hardware and energy. This solution is to use a more predictable hash function and estimate

the required number of bits in a virtual cache. Instead of XOR-ing, hashing can be done by simply

taking the least significant bits (LSBs) of the physical memory address excluding line offset bits.

For example, when using a 2-way set associative 32KB cache with 32B line, and a 4096-entry

Bloom filter, this hash function uses physical address bit[16:5] to index the Bloom filter as shown

in Figure 43.

We now show that using the simplistic hash function described above, we may obtain a math-

ematical bound on the maximum value a counter can reach. Since the bits [11:5] of the example

shown in Figure 43 is part of the page offset, it is used to index both the cache and the Bloom

filter. Thus, only different combinations of the s-bits (bit[13:12]) can make different cache lines

to be mapped to the same Bloom filter entry. Furthermore, owing to the cache allocation/eviction

mechanism, only two valid cache lines can map to the same set of the 2-way cache at any given

20−bits 12−bits

Page OffsetVirtual Page Number

s−bitstag

18−bits 2−bits 7−bits 5−bits

cache index
line−offset

Page Offset

Bloom filter index (bit16 ~ bit5)

Physical Page Number

Virtual Address

Physical Address

Figure 43. 2-way Set Associative 32KB Cache with 32B Line
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time. Consequently, with this simplistic hash function, these 8 (= 2 × 22) virtually-indexed cache

lines can all map to the same Bloom filter entry under the worst case scenario.

In general, to prevent an overflow, theoretically, we need 1 + log2(w × 2s) bit counters where

w is associativity of the cache, and s is the length of synonym bits. This can be easily proved as

follows.

DEFINITION 6.4.1. Let w be the associativity of the cache, s be the length of synonym bits, i be

the length of cache index bits, b be the length of cache block offset bits, and r be the length of hashed

values of the new hashing function.

DEFINITION 6.4.2. For any virtually-indexed cache, the bits that are both a part of the page

offset and the cache index bits are defined as the non-synonym index bits.

DEFINITION 6.4.3. Let V = {x : x ∈ N} and Wr = {x : x ∈ N, x < 2r}, where r is a positive

integer. Modulo hash function (MHF), Modr
b(x), is a function from V to Wr, defined by

Modr
b(x) = ( x

2b ) mod 2r

where b, r ∈ N and r > i. In the context of caches, this function right-shifts a given physical address

by the amount of log2(blocksize), and takes r least significant bits.

LEMMA 6.4.4. Non-synonym index bits of one virtual address are identical to non-synonym in-

dex bits of the corresponding physical address.

PROOF. From the definition of non-synonym index bits, they are part of the page offset, thus

not affected by address translation. Therefore, non-synonym index bits of one virtual address are

identical to non-synonym index bits of the corresponding physical address. �

LEMMA 6.4.5. For a counting Bloom filter using Modr
b(x), any two virtual addresses with dif-

ferent non-synonym index bits are mapped to different indices of the Bloom filter.

PROOF. From Lemma 6.4.4, any two virtual addresses with different non-synonym index bits

would be translated into physical addresses with different non-synonym index bits. Because non-

synonym index bits become the suffix of hashed value of Modr
b(x), these two virtual addresses

would be mapped to different indices of the counting Bloom filter. �
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LEMMA 6.4.6. In a virtually indexed cache, the maximum number of addresses with the same

non-synonym index bits is given by the expression w × 2s.

PROOF. By the definition of cache index bits, there exists 2s cache indices with the same non-

synonym bits. Now for every cache index, by the definition of cache associativity, there can be at

most w cache lines which are mapped to the same index and are present in the cache simultaneously.

Thus, the maximum number of cache lines that can have the same non-synonym index bits is w×2 s.

�

THEOREM 6.4.7. The counter value of any counter in a counting Bloom filter using Modr
b(x) is

less than or equal to w × 2s.

PROOF. From Lemma 6.4.5, all cache lines that differ in the non-synonym index bits are

mapped to different indices in the Bloom filter. Thus, the maximum number of cache lines that

can be mapped to one Bloom filter counter is bounded by the maximum number of cache lines that

have the same non-synonym index bits. From Lemma 6.4.6, the maximum number of cache lines

having the same non-synonym index bits is w × 2s. Consequently, it is proved that the possible

maximum value of the counter is w × 2s. �

Because this counter should be able to count numbers from 0 to w × 2s not to overflow, each

counter should be 1+ log2(w×2s) bits long. We have thus presented a design of the counting bloom

filter that will never overflow. In the following section we present results obtained using both the

conventional and overflow free counting bloom filters.

6.5 Experimental Results
6.5.1 Simulation Environment

We use Bochs [61] to perform full-system simulations. Each simulation involves running one or

more common applications on a Windows NT platform. To collect cache statistics, we integrate

Simplescalar’s cache simulator in Bochs. We also integrated our Bloom filter model within the

cache simulator. This simulation technique allows us to gather cache statistics of various appli-

cations running on top of a full-blown operating system. Previous techniques [115] used Bochs to

collect instruction execution traces and fed them into a micro-architectural simulator. By integrating
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Table 13. L1 data cache configuration
# of # of Line Cache Bit Counter s-bits S**
sets ways size (B) size (KB) vector (b) array* (b)
256 1 32 8 1k 3k 1 2
256 2 32 16 2k 6k 1 2
256 4 32 32 4k 12k 1 2
256 8 32 64 8k 24k 1 2
512 1 32 16 2k 6k 2 4
512 2 32 32 4k 12k 2 4
512 4 32 64 8k 24k 2 4
1024 1 32 32 4k 12k 3 8
1024 2 32 64 8k 24k 3 8
2048 1 32 64 8k 24k 4 16
256 1 64 16 1k 3k 2 4
256 2 64 32 2k 6k 2 4
256 4 64 64 4k 12k 2 4
512 1 64 32 2k 6k 3 8
512 2 64 64 4k 12k 3 8
1024 1 64 64 4k 12k 4 16
* Size of one counter is 3 bits
** S is the number of synonym sets

the cache simulator into Bochs we remove the time-consuming and cumbersome process of trace

collection from the simulation process. This technique is much faster than trace collection and we

may simulate a lot more instructions than trace collection techniques, as trace collection inherently

limits the size of the trace that may be collected.

We choose the size of each page to be 4KB and use 16 different configurations for L1 data cache

as shown in Table 13. These 16 cache configurations are the only configurations possible for cache

sizes less than 64KB with a page size of 4KB to demonstrate the synonym problem.2 We simulate

both VIPT caches and VIVT caches with 64-bit virtual memory space. The L1 instruction cache was

also modeled using the same configuration with the L1 data cache. To estimate power consumption

for the caches and the Bloom filter, we use Artisan 90nm SRAM library. The Artisan SRAM

generator is capable of generating synthesizable Verilog code for SRAMs in 90nm technology. A

datasheet is also generated that gives an estimate of the read and write power of the generated

SRAM. The datasheet also provides a standby current from which we can estimate the leakage

power of the SRAM.

The energy reduction results reported are only for the data cache. Synonyms in I-Cache do not

affect correctness as they are read only. Also hit rates of I-Cache is extremely high. So we assume no

hardware technique for detecting synonyms for the I-Cache. Our simulation system runs Windows
2We exclude four configurations with 128 sets that Artisan 90nm SRAM library does not support.
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NT and we uses eight applications to evaluate our approach. These applications include typical

everyday workloads like mp3/jpeg/mpeg decoding and pdf/powerpoint viewing. Since it would be

difficult to exactly reproduce actions that involve human interaction like clicking the mouse, we

decided to simulate all 16 cache configurations simultaneously. We instantiated 16 cache simulators

and fed them with the instruction stream produced by Bochs. Throughout all simulations that we

performed, we evaluated the advantage of our Bloom filter enhanced cache structure compared with

the conventional cache structure.

We accurately model the delay and energy overhead for the Bloom filter. To estimate dynamic

and static power consumption, we synthesize the Bloom filter structures using the same 90nm Ar-

tisan SRAM generator used for synthesizing the caches. Since we have implemented the loosely

coupled design, the bit vector and the counter array are synthesized separately. We add the bit vec-

tor access energy every time the Bloom filter is queried for the presence or absence of an address.

This is done for every cache miss to check for synonyms. The counter array access energy is added

every time the structure is updated. This happens when a cache line is evicted from the cache and

also when a line-fill occurs. Since our bit vector is a relatively small structure than the cache, we

assume the access latency to be one cycle. However, this access latency affects performance only on

cache miss events in the presence of synonyms. Since the occurrence of synonyms is very rare it has

negligible effect on the performance of the system. For VIVT caches, we also model the additional

energy overhead for accessing the TLB (Section 6.2.2).

6.5.2 Results

First, we analyze the number of synonyms detected during our simulations. Here, we define syn-

onym ratio as the number of synonyms detected normalized to the number of cache misses. All our

ten simulation scenarios show that synonyms are rarely present. The harmonic mean of synonym

ratio is merely 0.00003%, meaning that only three out of ten million cache misses are identified as

synonyms. Note that, even though the occurrence of synonyms is rare, it is nonetheless required

for the baseline processor to examine all synonym sets on every cache miss — leading to large,

superfluous dynamic energy consumption just for synonym detection. This observation justifies

our motivation for finding a light weight hardware alternative to alleviate the unnecessary energy
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Figure 44. Dynamic Energy Savings (VIPT)

consumed due to synonym problem.

One reason of the synonym ratio being extremely low is that the number of operations between

successive context switches is very large. Since the L1 data cache is very small, the cache would

only contain data pertaining to the presently running process. This reduces the probability of having

shared data from another process, making the number of synonyms negligible. Synonyms would

only be detected at the initial phase of one context switching period, after which the cache would

be warmed up and filled with data from the current process.

Figure 44 shows the dynamic energy saved in VIPT caches with 32 and 64 byte cache lines,

using XOR-based 3-bit counting Bloom filter. Unless otherwise stated, we use this Bloom filter

model by default. The amount of dynamic energy reduction of Synergy ranges from 0.3% to 38.9%

depending on the cache configuration and the characteristics of the application. Note that these

savings take into account the dynamic energy overheads of the bit vector and the counter array.

Figure 45 shows that the amount of total energy reduction of L1 data cache with Synergy ranges
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Figure 45. Overall Energy Savings (VIPT)

between 0.3% and 38.2%. To facilitate the estimation of the leakage energy, we assume a 4GHz

in-order processor with blocking cache. The latencies of L1, L2 and DRAM are 3, 20 and 250

cycles. We assume the average micro-ops to x86 instruction ratio is 1.4 as shown in [106]. Note

that our approach is very conservative because a longer execution time of our simulation model will

lead to more pessimistic leakage energy consumption although our solution is aimed for reducing

dynamic energy consumption. Thus, the actual total energy reduction using our scheme in out-of-

order processors with non-blocking caches is expected to be higher. This savings take into account

the dynamic and leakage energy consumption (Figure 46) of the added hardware structures, namely

the bit vectors and the counters. The leakage energy overhead of the additional hardware, compared

to overall dynamic and leakage energy consumption, is found to be 0.04% over all the benchmark

programs. Since the additional hardware structures are very small compared to the original cache,

and the dynamic energy consumption of L1 caches dominates the leakage energy consumption, the

leakage energy overhead of Synergy is negligibly small.
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Figure 46. Leakage Energy Overhead (VIPT)

To further understand the source of energy savings, we use the PowerPoint workload running

on 32-byte line caches for our analysis. The reason for choosing Powerpoint is that the simulation

result with this benchmark is very sensitive to different cache configurations and thus helps us to

get a better understanding of the source of energy savings. Figure 47 plots the normalized dynamic

energy consumed by hits and misses in the baseline cases, and by true misses, false hits of Synergy.

We may easily see that Synergy’s miss handling contributes to a significant amount of L1 data cache

dynamic energy. In some cases it is as high as 44.4% (for the configuration of 2048 sets, Direct-

Mapped). The figure also shows that Synergy can significantly reduce dynamic energy consumption

for miss handling, resulting in an overall 33.9% energy reduction for this configuration. In addition

to energy consumption of the cache itself, dynamic energy consumed by bit vectors and counter

arrays are also shown in the figure, but they are too small to be recognized. It is found that the

energy consumed by the bit vector and the counter array account only for 0.06% and 0.16% on

average (geometric mean) respectively.
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Figure 48. Relative Number of L1 D-cache accesses of PowerPoint for 32B-Line Caches

Figure 48 shows the relative percentage of L1 cache accesses of Synergy compared to the base-

line cache. In this figure, for every cache miss, we count S accesses to the baseline cache with each

n-way access, where S is the number of synonym sets. We see that Synergy can reduce cache ac-

cesses by up to 32.1%. In the extreme case, the image rotation algorithm, Synergy can reduce cache

accesses by 40.7%. We know that L1 cache performance is critical to overall system performance.

The contention for the L1 cache would be more of a critical factor in superscalar and SMT systems

where multiple cache accesses may occur in one single cycle. Our simple hardware technique will

be extremely useful in such systems as it would reduce a large number of accesses and contention

for the L1 cache.

Figure 49(d) shows the effect of cache configuration on the effectiveness of our approach. From

the figures we see that energy reduction decreases when associativity increases. One reason for this

is that increasing associativity drastically reduces the number of misses as shown in Figure 49(a)
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Figure 49. Simulation Results of PowerPoint for 32B-Line Caches

and thus the opportunity of Synergy to save energy. Another reason can be found by looking at Fig-

ure 49(b). We see that for cache configurations having the same cache and line sizes, the number of

synonym sets drops linearly as the associativity increases. Consequently, the opportunity of energy

saving also drops. The design trend of modern L1 caches, however, are in favor of lower associa-

tivity to meet cycle time constraints. Another observation that can be made from these figures is

that energy reduction decreases as the cache size is reduced. This is because even though miss rates

decrease with larger caches, the number of synonym sets also increase. This gives a significant

energy saving opportunity for our technique over the baseline.

The last factor that affects the benefit of Synergy is the true miss rate. This indicates how

efficiently the Bloom filter can filter out unnecessary synonym lookups. However, the effect of the

true miss rate is not clearly revealed in the set of simulations shown in Figure 49(c), because true

miss rate of these simulations are similar.

To analyze the effect of true miss rate, we vary the number of entries of the Bloom Filter. In

this simulation, it is set to α × (#o f sets) × (associativity) where α =1, 2, 4 or 8, and corresponding
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Figure 50. Sensitivity Study of the Bloom Filter Size with PowerPoint (32B-line Caches)

different energy overheads are modeled. In all previous simulations α was uniformly set to four

(Table 13). Figure 50 shows the effect of the Bloom filter size for a 32KB cache with 32B lines.

As expected, as the α value increases from one to eight, the true miss rate increases (Figure 50(a)),

because the probability of two or more different physical addresses being mapped to the same index

of the Bloom filter decreases. Consequently, the amount of dynamic energy saved, also increases

(Figure 50(b)). However, it does not scale well, because the dynamic overhead grows as α increases.

Furthermore, leakage overhead increases linearly with α (Figure 50(c)). Thus, the total energy

saving that we can achieve with a larger Bloom filter gradually levels off as shown in Figure 50(d).

Although the good choice of the Bloom filter size depends on the cache configuration, the Bloom

filter with α = 4 seems to be reasonable, considering the fact that the advantage of the Bloom filter

with α = 8 is not significant, and it consumes larger area.

In addition to VIPT caches, we also evaluate the advantage of Synergy with VIVT caches.

Figure 51 shows simulation results with VIVT caches. Although we performed simulations with

all workloads, we only show the simulation results with the PowerPoint workloads, because the
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Figure 51. Simulation Result with VIVT Caches using PowerPoint

trend shown by this workload is representative of other workloads used. For easier comparison,

previous simulation results with VIPT caches are shown as well. In comparison to VIPT caches, for

VIVT caches, Synergy needs to perform an additional TLB access on clean evictions, as mentioned

in Section 6.2.2. However, as shown in Figure 51(a), additional accesses to the TLB upon clean

eviction on a VIVT cache do not hurt dynamic savings of Synergy. Rather, it was found that Synergy

on a VIVT cache can save more dynamic energy than Synergy on a VIPT cache. It is mainly caused

by following facts: (1) Upon every cache miss, a baseline VIVT cache needs to access the TLB to

detect synonyms, thus it consumes more power on miss handling than a baseline VIPT cache. (2)

Because Synergy mainly saves power consumed upon cache miss, Synergy on a VIVT cache has

more chances to save power. (3) Consequently, additional power overhead of Synergy on a VIVT
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cache (due to additional TLB access upon clean eviction) becomes relatively small. Since the tag

array of VIVT caches is bigger than that of VIPT caches, due to bigger virtual tags and additional

process ID information to solve the homonym problem, the leakage energy overhead of Synergy

on VIVT caches is found to be smaller than that on VIPT caches (Figure 51(b)). Owing to these

reasons, overall energy saving of Synergy does not change a lot either (Figure 51(c)).

Finally, we also quantify the energy saving of overflow-free Synergy described in Section 6.4.

Table 14 shows the number of bits required to build overflow-free Synergy. As shown in the table,

area overhead of overflow-free Synergy usually is bigger than that of XOR-based 3-bit counter

Synergy, but in some cases, e.g. 256 sets, directly-mapped 8KB cache, overflow-free Synergy is

more area-efficient. Note that, in both cases, area overhead of Synergy is negligibly small compared

to corresponding L1 data cache.

Table 14. 3-bit Counter vs. Overflow-free Counter
# of # of Line s- Bit 3-bit counter Overflow-free
sets ways size (B) bits vector (b) array (b) counter array (b)
256 1 32 1 1k 3k 2k (2-bit counters)
256 2 32 1 2k 6k 6k (3-bit counters)
256 4 32 1 4k 12k 16k (4-bit counters)
256 8 32 1 8k 24k 40k (5-bit counters)
512 1 32 2 2k 6k 6k (3-bit counters)
512 2 32 2 4k 12k 16k (4-bit counters)
512 4 32 2 8k 24k 40k (5-bit counters)
1024 1 32 3 4k 12k 16k (4-bit counters)
1024 2 32 3 8k 24k 40k (5-bit counters)
2048 1 32 4 8k 24k 40k (5-bit counters)
256 1 64 2 1k 3k 3k (3-bit counters)
256 2 64 2 2k 6k 8k (4-bit counters)
256 4 64 2 4k 12k 20k (5-bit counters)
512 1 64 3 2k 6k 8k (4-bit counters)
512 2 64 3 4k 12k 20k (5-bit counters)
1024 1 64 4 4k 12k 20k (5-bit counters)

Since overflow-free Synergy uses several LSBs of virtual addresses excluding line offset bits as

its hashing function (Section 6.4), the true miss rate of overflow-free Synergy is different from that

of XOR-based 3-bit Synergy. As previously explained, true miss rate is one of the critical factors

that affects overall energy saving. Figure 53(a) shows the true miss rate of normal Synergy and

overflow-free Synergy. As shown in the figure, XOR-based hashing works well regardless of cache

configurations and workloads, while the true miss rate of overflow-free Synergy is more dependent

on cache configurations and workloads. The XOR hash function generates a more uniform distri-

bution of indices, and eliminates aliasing of the Bloom filter indices more efficiently. However,
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we should note that the true miss rate of overflow-free Synergy is as good as that of XOR-based

Synergy on an average.
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(a) XOR-based 3-bit Synergy
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(b) Overflow-free Synergy

Figure 52. True Miss Rate Comparison

Figure 53 shows energy saving of overflow-free Synergy. For easier comparison, energy saving

of XOR-based 3-bit Synergy is also shown. As shown in Figure 53(b), overflow-free Synergy works

as well as XOR-based 3-bit Synergy. Although overflow-free Synergy uses bigger counters in most

cases, the amount of energy savings is dominated by the true miss rate (Figure 53(a)), rather than

the greater overhead of dynamic energy consumption of bigger counters. This is because power

consumption of the Bloom filter is very small compared to that of the cache itself. Figure 53(c)

shows leakage energy overhead of overflow-free Synergy. Clearly, in most cases, it consumes more

leakage energy due to its bigger counters. However, since dynamic energy consumption of the cache

dominates leakage energy consumption, overall energy saving is not affected much by the additional

leakage overhead, as shown in Figure 53(d).
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(b) Dynamic Energy Saving
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(c) Leakage Energy Overhead

0% 5% 10% 15% 20% 25% 30% 35%

256set    DM 32B-line
256set 2way 32B-line
256set 4way 32B-line
256set 8way 32B-line
512set    DM 32B-line
512set 2way 32B-line
512set 4way 32B-line

1024set    DM 32B-line
1024set 2way 32B-line
2048set    DM 32B-line
256set    DM 64B-line
256set 2way 64B-line
256set 4way 64B-line
512set    DM 64B-line
512set 2way 64B-line

1024set    DM 64B-line

3-bit Overflow-free

(d) Overall Energy Saving

Figure 53. Simulation Result of Overflow-free Synergy using PowerPoint

6.5.2.1 Effect of Different Hash Functions on True Miss Rate

Another experiment is performed to see the effect of the hash functions on the true miss rate of a

counting Bloom filter. Four hash functions which can be easily implemented are evaluated. The

first hash function is XOR as explained before, and the second one is using XNOR instead of XOR

operations. The third hash function inverts and reverses the the bits before doing the XOR. The

fourth hash function is just simply taking the least significant bits (LSBs) of the physical memory

address excluding line offset bits. For example, when using the cache with 32B line, and the 4096-

entry Bloom filter, this hash function takes bits between bit16 and bit5 as the Bloom filter index of

this physical address. Figure 54 shows that for most of cache configurations, there is almost no

appreciable difference in true miss rate among the three different hash functions. We may conclude

124



from this that a sufficiently random hash function, even the one using the LSBs can give very high

true miss rates.
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Figure 54. True Miss Rate using Different Hashing Functions

6.6 Summary
Implementing virtual caches can accelerate L1 cache accesses while introducing the synonym prob-

lem. Even though a synonym hit is an infrequent event, to guarantee correctness, the processor still

needs to perform additional lookups for all possible synonym locations upon each L1 miss, thereby

consuming more energy. In this chapter, we propose Synergy, an early synonym detection mech-

anism using counting Bloom filters. It is shown to be fast, effective, and consumes lower power.

By tracking and checking the address signature in the filters, we are able to exclude unnecessary

lookups for addresses that were never accessed. Furthermore, we also analyze the overflow prob-

ability of counting Bloom filters using the probability theory, and propose a novel overflow-free

Bloom filter design.

To evaluate Synergy, we performed thorough simulations using different sizes of both VIPT

and VIVT caches and different sizes of Bloom filters. Our full-system simulation results show that
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Synergy can effectively reduced the total cache accesses by up to 40.7%. The dynamic energy con-

sumption and the overall energy consumption (including leakage energy) in the L1 can be reduced

by up to 38.9% and 38.2%, respectively.
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CHAPTER 7

REDUCING DYNAMIC ENERGY CONSUMPTION OF CACHES
WITH COOLPRESSION

Continuous shrinking of transistor feature size and demands of the working set size from increas-

ingly complex applications has led to ever-larger on-chip cache design with a slew of read/write

ports making it a major consumer of on-chip power. A significant part of the cache energy is drawn

by the bitline driver circuitry because the bitlines are densely loaded with a large number of storage

cells thus increasing its effective switching capacitance. The focus of this chapter is to identify

redundancy in data values stored in caches to reduce the energy consumed in precharging bitlines

during cache operation.

In order to identify redundancy in data values stored in level one caches, we performed data

value profiling for a large number of workloads, such as, the SPECint2000 and Mediabench bench-

marks and observed that the data values entering the cache consists of long sequence of leading

zeros and leading ones in the significance bits. On identification of the redundancy we came up

with a novel significance compression technique. The basic idea is that, instead of enabling all

the bitlines, the homogeneous data are compressed to a more compact form and only the bitlines

representing the compact data will be enabled during cache accesses.

We propose CoolPression, a hybrid significance compression technique by using Villa’s DZC

as a basis along with a novel technique called CoolCount, and then dynamically determine the more

energy-efficient way to minimize the number of instances of driving data bitlines. The CoolPression

circuitry monitors all accesses to the cache and compresses/encodes any data written to the cache,

using either of the two compression schemes according to the compressibility of the given data.

An extra bit is used to indicate which compression scheme was used. For every read it decodes

the data before sending it. The CoolCount technique uses a novel priority encoder and XOR gates,

and can count both leading ones and leading zeroes. The novelty of the counting technique lies in

the fact that this scheme compresses information1 in the granularity of bits, while all prior schemes

applied compression in the granularity of bytes at best, losing the saving opportunities across byte
1Information hereafter represents both instructions and data in general.
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boundaries. In addition, CoolCount is able to exploit data with leading ones, primarily the small

negative integer numbers. Reusing the most significant byte for book-keeping purposes also avoids

the area overheads, thus no extra dynamic and leakage energy is consumed. As shown in our

experiments, our compression scheme can save 35% of the cache energy on an average over a

baseline cache. As the cache size keeps increasing, the CoolPression will demonstrate even more

benefits.

7.1 Redundant Leading Zeroes and Ones
It has been shown in [37] that more than 70% of bits read from or written to the cache are all zeroes.

Also more than 75% of the values used are rather small, having a large number of leading ones or

zeroes.

As shown in Figure 55, we conducted a study on the data accesses for SPECint2000 benchmark

to profile how many data accesses to the Dcache has “x” (1< “x” < 64) number of leading zeroes

and ones. In the two figures, Y-axis plots the number of leading zeroes (or ones) from 1 to 64

while the X-axis shows the number of instances. The triangle in the plots represents the average

number of instances. Each vertical bar shows the range of the number of instances from the 8

SPECint2000 integer benchmark programs. As shown in Figure 55(a), the average number of times

we access a piece of data which has “x” number of leading zeroes is quite uniform across the

board, for 1<x<64. A similar trend is also observed for the number of leading ones as shown

in Figure 55(b). The encoding techniques proposed in [70, 114], are unable to adequately capture

instances in which leading zeroes are not in multiples of 8. Therefore, we will be losing a lot of

energy saving opportunities if we only consider compressing data in the granularity of bytes rather

than in bits. Based on this analysis, we introduce a compression scheme where we count the leading

bits, and keep the count instead of all the bits. We would need 6 counting bits for counting 64 bits

of data. We also need another bit indicating whether we counted leading ones or zeroes. If we add

7 bits for every 64 bits of data in the cache, our area overhead would become prohibitively large.

We thus propose to reuse the most significant byte of the data to keep the count. Using this method

we would need to have only one extra bit for every 64 bits to indicate whether we have employed

the counting scheme. If the data being accessed has “count” number of leading zeroes or ones, we
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need to enable only 64 minus count bitlines to read or write the actual data and append them with

leading zeroes or ones. We detail our approach in the following section.

7.2 CoolPression Cache
The CoolPression cache is illustrated in Figure 56. It employs two compression schemes — Dy-

namic zero compression to capture the zero bytes, and a new CoolCount technique to exploit com-

pression opportunities in bit-level granularity. To explain our approach we would first explain each

one individually before we demonstrate the hybrid approach.

7.2.1 Dynamic Zero Compression (DZC)

The DZC in [114] uses an extra bit, known as the Zero Indicator Bit (ZIB), for each data byte in the

cache. On every data write, it is checked whether any of the eight data bits being written are all 0’s,

if so, the ZIB is enabled and the write for the eight bits is disabled. If the data bits are not all zeroes

then the ZIB is cleared and the data is written to the cache as normal. On a cache read, if the ZIB

for a byte is enabled, the corresponding bit-lines are gated off and a zero byte is emitted, through a

bank of NOR gates. If the ZIB is zero for a byte then a normal cache read operation occurs.

7.2.2 CoolCount

Our proposed technique, CoolCount, counts the number of leading 0’s or 1’s and reuses the most

significant byte to record the count. On a cache write the CoolCount circuit counts the number of

leading 0’s or 1’s. If the count is more than eight, it asserts the Count Enable (CE) bit high. The

most significant bit is used to store whether we counted leading 0’s or 1’s. The next six bits from

the most significant byte are used to keep the count. Along with this, (64 - count) least significant

bitlines are enabled to store the actual data. If the number of leading 0’s or 1’s is lower than eight,

the cache performs a normal write. The cache read is illustrated in Figure 57(a). Reading is a two

step but pipelined process. On a cache read if the CE bit is enabled, the most significant 6 bits are

read to get the number of leading 0’s or 1’s. Next the least significant bit-lines are enabled to get the

actual data appended with the leading bits to obtain the final data. However if the CE bit is zero, the

CoolCount cache behaves exactly like a normal cache for a read.
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(a) Number of Leading Zeroes.

(b) Number of Leading Ones.

Figure 55. Leading 0’s and 1’s for SPECint2000.
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Figure 56. CoolPression Cache.

7.2.3 Hybrid Compression Scheme

Our evaluation indicated that both techniques can lead to significant energy savings when operated

independently. However, there are certain cases where the CoolCount scheme outperforms the DZC

and in some cases the DZC does better. For instance, CoolCount can capture energy saving oppor-

tunities at finer granularity while DZC can exploit the hidden opportunities where zero bytes are

embedded in the middle of a data word. Based on this observation, we propose a hybrid compres-

sion scheme which employs both DZC and CoolCount and exploits all possible opportunities in a

dynamic manner.

The operations occurring in the CoolPression cache for reads and writes are illustrated by the

flow-charts in Figure 57(a) and Figure 57.

On each cache write, one circuit will count the leading 0’s or 1’s, while another circuit counts

how many bytes of the data are zero. These circuits and their energy impact are detailed in Sec-

tion 7.3. The results are compared to determine which scheme is better. If the CoolCount is better,

the CE bit is turned on, all the ZIB’s are cleared and the CoolCount scheme is followed. If DZC is

found better, the CE bit is cleared, the corresponding ZIB’s are enabled and the DZC is used. For

reading data from the cache, after address decoding is completed, the CE bit, the most significant
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(b) Write Data to Cache.

Figure 57. Flowchart for Reading and Writing Data to the CoolPression Cache.

6 bits and the ZIBs are read in the first cycle of the cache read. The CE bit enables the Coolcount

decoder shown in Figure 58 which uses the count bits to precharge the least significant 64 - count

bits before the start of the second cycle. If the CE bit is disabled, the ZIBs are used to precharge

only the relevant "byte" lines. The precharged bit lines are read in after the end of the second cycle

and properly appended with zero or one bits to form the final data.

7.3 CoolPression Implementation
Figure 58 illustrates the schematic of our logic circuits for an efficient implementation for counting

the leading 0’s or 1’s. For illustration purposes, the circuit shown in Figure 58(b) is a stripped-

down version using a 8-to-3-line priority encoder for an 8-bit data set. Depending on the data size

supported by the targeted ISA, for example, the CoolCount circuit will have a 64-to-6-line priority

encoder for a 64-bit data set. Note that as shown in the schematic, the adjacent bits of the data are

XORed together and fed into the priority encoder. This design is to determine when the data first

changes from 0 to 1 or from 1 to 0, as we scan the bits from the most significant bit. The position

of this bit is reported by the priority encoder. The number of leading zeroes or ones is obtained by

negating the above result.

Figure 58(a) illustrates the decoding circuits to enable only the required bitlines depending on
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Figure 58. Decoding/Encoding Logic Circuits.

the number of leading 0’s or 1’s. The circuit illustrated is again for 8-bit data only. The CoolCount

circuits will be scaled for a 64 bit data set. The output of the decoding circuit are used to disable

the Bitline Precharge signal using the Precharge Control Transistor as shown in the Figure 58(a).

This mechanism allows only the required bitlines to precharge, when reading or writing compressed

lines to the cache. We explain the overheads in terms of delay and extra power consumed for the

CoolPression circuit in the following sub-section.

7.3.1 Overheads

Delay Overheads: To consider the effect of delay overheads we note that the decoding circuit
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Figure 59. Impact on IPC.

Figure 58(a) is extremely simple, a tiny overhead compared to the cache array, and the delay asso-

ciated with it is minimal. Since reading is a two stage process as shown in Figure 57(a), we assume

that a L1 cache read would take 2 cycles instead of one, even though we could have headroom

to customize the entire read into one cycle for a lower frequency processor. The 2 cycle latency

can be easily pipelined by dividing the cache access into address decoding and data transfer stage.

This disadvantage is also omnipresent in other cache compression schemes [70, 114]. This is an

indispensable overhead in any cache compression since extra time is always needed for ascertaining

whether the data were compressed prior to being stored. Figure 14 studies the effect if a 2-cycle

pipelined Instruction and Data Cache is to be designed against a single cycle uncompressed cache.

It is observed that the average IPC can be degraded by 7.8% for a 35% savings in energy consump-

tion of the cache. The processor architects have to weigh the trade-off when making such a design

decision. The delay associated with the Priority Encoder, is in the order of 6 gate delays. Neverthe-

less, since the delay is only associated with a write and not a read, it will be hidden in practice in

the interval between a write and the next read of the same cache line.

Power Overheads: The majority of the delay and energy consumption associated with the

CoolCount circuit is caused by the Priority Encoder (PE). The PE design used for this study is
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an energy efficient high speed PE design taken from [117]. The reported power numbers have

been scaled down to the current process technology parameters using standard technology scaling

rules [80]. The cache energy consumption numbers were reported using Wattch. All numbers cited

are for 0.1µm technology. The CoolPression circuit only consumes 0.1% of the 64KB cache power

as reported by Wattch.

7.4 Energy Savings and Performance Implications of Coolpression
We integrated the CoolPression technique into SimpleScalar to quantify the energy savings. The

processor model is similar to an Alpha 21264. Wattch and Cacti were used to model total cache

energy dissipation in each application and the energy consumed in each cache array. A two level

cache was used and our technique was applied to both levels. We simulated SPECint2000, each for

1 billion instructions.

Figure 60(a) shows the energy consumption in a 16K direct mapped L1 data cache using the

CoolCount, DZC and the hybrid CoolPression schemes, taking a word size of 64 bits. All the results

are normalized to the baseline cache with no compression. We observe that the DZC and CoolCount

are on par within 3% savings, and there is no obvious trend as to which one is better. Since the

CoolPression scheme can dynamically choose the better technique, the energy savings are better

for CoolPression. The CoolPression beats the DZC from 3 to 15%. In overall, the CoolPression

provides an energy savings of 36% over the baseline cache. Figure 60(b) illustrates a similar analysis

on a 16K L1 Instruction cache which shows that the CoolPression generates considerable savings

even though it is not as significant as the data cache. One reason for lower energy savings in the

Icache is that the data in the Icache consists of instructions whose encodings would have a higher

entropy in terms of the distribution of 0’s and 1’s, while data, mostly, show a large number of

small positive and negative numbers, i.e., many consecutive 0’s and 1’s, for integer programs. Our

technique did not show any substantial improvement for the unified L2 cache since there are very

few accesses to the L2 cache in the benchmarks we studied, and the L2 energy consumption is

largely dominated by the leakage energy due to its size.

In Figure 61, we plot the energy consumption for 32 KB and 64KB L1 Dcache and Icache,

showing CoolPression reduces cache energy by as much as 50%. It is observed that the CoolPression
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(a) Norm. Energy in a 16KB L1 D-Cache. (b) Norm. Energy in a 16KB L1 I-Cache.

Figure 60. Norm. Energy in a 16KB L1 D- and I-Cache.

Figure 61. Norm. Energy in a 32k/64k L1 I/D-Cache.

cache gives substantial energy savings for the larger caches. In addition, what we do not show due

to space contraint is that the CoolPression also consistently provides more saving than the DZC

and the CoolCount when applied alone. The trend is similar to what was shown in Figure 60(a)

and Figure 60(b).

7.5 Summary
In this chapter, we presented CoolPression, a hybrid hardware-based data compression mechanism

that reduced energy consumption in caches by eliminating unnecessary bitline switchings. Cool-

Pression consists of a dynamic zero compression technique with a novel CoolCount scheme to

exploit both byte and bit-level compressibility. The CoolPression scheme is system transparent in

the sense that the rest of the system does not change their interface with the CoolPression cache.

The CoolCount circuitry used a small amount of hardware to encode data stored in the cache, and
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succeeded in reducing the energy consumption by a significant amount. Based on our simulation

results using SPECint2000, the CoolPression improves dynamic energy consumption by more than

35% against a baseline cache, while having energy savings ranging from 5 to 15% compared to the

dynamic zero compression or CoolCount applied individually.

The novel encoding scheme discussed in this chapter may be extended to save energy at all

places wherever data is being transferred. Some important locations that may be considered are the

pipeline latches. We may consider using this technique for data transfer from L2 cache to memory

and memory to the disk. Effects of reducing the bus transfer power at certain places, where we

would encode the data using this scheme and transfer only the required data, gating-off the other

bits may also be considered.

Although dynamic power consumption is an important problem for L1 Caches, a major con-

cern for modern microprocessor designers is the leakage power consumption of L2 or higher-level

caches. The following chapter describes in detail a leakage power reduction technique especially

suited for multiprocessor systems.
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CHAPTER 8

CONCLUSIONS

This dissertation presented several techniques to identify redundancy in several aspects of memory

operation and eliminate those redundancies to save energy and improve performance. Most of

the techniques involved introduction of lightweight hardware structures in the memory hierarchy

to help capture and eliminate redundant memory operations. In this chapter, we summarize the

contributions made by this dissertation, analyze their impact in modern computing platforms, and

enumerate a few areas where this work may be extended.

8.1 Summary of Contributions
First, we identified redundancy in the DRAM refresh operation and presented a simple, low cost

technique using time-out counters to eliminate the redundancies and save power in DRAMs. This

technique does not involve any change in the interface between the memory controller and the

DRAM, making it highly feasible. All additional hardware goes in the memory controller that con-

trols and issues the needed refresh operations. The work demonstrates that many refresh transactions

are indeed redundant for their corresponding rows were recently accessed due to cache misses. This

technique saved up to 25% and on an average 12.13% of the energy consumed in DRAMs. Mod-

ern computing systems like CMP, CMT, SMP and SMT would try to exploit MLP and would have

increasing number of threads trying to access memory. In this case, the Smart Refresh technique

will be instrumental in saving energy as it is very light-weight and would increase the bandwidth

availability and reduce energy consumption for refresh operations in DRAMs. The emerging 3D die

stacked ICs will enable the accesses to the DRAM at a much lower latency. Also, AMD’s licensing

of ZRAM technology indicates that future AMD processors may use DRAM type memory using

SOI technology for their caches. Apart from having redundancy in DRAM refresh operations, the

memory hierarchy also has redundancy in the way data is stored in the caches.

The next contribution of this dissertation was to identify redundant data in caches support-

ing muli-level-inclusion. We presented a new, low-overhead architectural technique called Virtual-

Exclusion to save leakage energy in higher level caches that simultaneously provided guaranteed
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Multi-Level Inclusion property for correct operations of cache coherence protocols and saved leak-

age energy more effectively. Our technique showed that a significant leakage energy savings of up

to 46% in an 8-processor SMP and 35% for an 8-way multicore architecture can be achieved. We

envision that such a practical and easy-to-implement technique will be very useful in saving leakage

energy for the cache-coherent multicore, multiprocessor systems.

The techniques explained in the previous two paragraphs exploited different forms of redun-

dancies in the memory hierarchy to reduce energy consumption. For DRAMs, redundant refresh

operations were eliminated to reduce DRAM power. In a cache, redundancies were identified in

the data storage, the Multi-Level Inclusion policy, and the snooping protocol to reduce dynamic

and leakage power. The subsequent techniques, in contrast, add a new hardware structure called

the “counting Bloom filter”(CBF) to the memory hierarchy. The CBF in contrast to the previously

employed techniques exploits redundancies in the method of accessing a memory location in con-

ventional caches. This is the main emphasis of the authors research, and the following paragraphs

summarize the contributions of using counting Bloom filters in reducing cache energy.

Counting Bloom filters provide a signature of the cache and prevent redundant cache lookups.

In this thesis we presented a new segmented design for the counting Bloom filters to perform energy

management at the microarchitectural level and evaluates its effectiveness in reducing energy. As

shown in our experiments, the segmented Bloom filter technique is an efficient microarchitectural

mechanism for reducing the total processor energy consumption. A significant part of the total

processor energy including L2 dynamic cache energy, L1, L2 and processor static energy can be

saved in a system where the multi-level cache hierarchy assumed does not maintain inclusion prop-

erty. Also,the segmented design is shown to provide even higher energy-efficiency if the multi-level

cache hierarchy implements inclusive behavior. This is because the segmented design provides the

opportunity to make the bit vector for the L2 Cache accessible before the L1 cache access and allows

for detection of misses much earlier in the memory hierarchy. The segmented counting Bloom filter

is capable of filtering out more than 89% of the L2 misses, causing a 30% reduction in accesses

to the L2 cache. This results in a saving of more than 33% of L2 dynamic energy. The results

also demonstrated that the overall system energy can be reduced by up to 9% using the proposed

segmented Bloom filter.
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We also demonstrated that the segmented Bloom filter can be efficiently used as a way estima-

tion technique and saves much more energy than the prior Way Halting technique. We showed that

our technique can be efficiently used in all levels of the cache hierarchy obtaining substantial energy

savings of up to 70% using Way Guard in both instruction and data L1 caches, and up to 65% for

an unified L2 cache.

As future applications demand more memory and shrinking feature sizes allow more one-die

transistors, processors would be inclined to have larger caches with higher associativity. Having

these longer latency, higher associative caches will provide further opportunities for the segmented

design to facilitate microarchitectural energy management earlier in the memory hierarchy and the

Way Guard technique to save lookup energy. Therefore, cache miss detection and way estimation

techniques in general and the segmented filter design presented in this thesis will play a key role in

energy management for future microprocessors.

Other than estimating ways and predicting misses CBFs can also be used to detect synonyms in

virtual caches. Implementing virtual caches can accelerate L1 cache accesses while introducing the

synonym problem. Even though a synonym hit is an infrequent event, to guarantee correctness, the

processor still needs to perform additional lookups for all possible synonym locations upon each

L1 miss, thereby consuming more energy. In this thesis, we proposed Synergy, an early synonym

detection mechanism using counting Bloom filters. It was shown to be fast, effective, and consumed

lower energy. By tracking and checking the address signature in the CBFs, we were able to exclude

unnecessary lookups for addresses that were never accessed. Furthermore, we also analyzed the

overflow probability of counting Bloom filters using the probability theory, and proposed a novel

overflow-free Bloom filter design.

To evaluate Synergy, we performed thorough simulations using different sizes of both VIPT

and VIVT caches and different sizes of Bloom filters. Our full-system simulation results show that

Synergy can effectively reduce the total cache accesses by up to 40.7%. The dynamic energy con-

sumption and the overall energy consumption (including leakage energy) in the L1 can be reduced

by up to 38.9% and 38.2%, respectively.

The final contribution of this dissertation was to identify redundancy in data values moving in

the memory hierarchy. To eliminate the redundancy in data values, we present CoolPression, a
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hybrid hardware-based data compression mechanism that reduces energy consumption in caches by

eliminating unnecessary bitline switchings. CoolPression consists of a dynamic zero compression

technique with a novel CoolCount scheme to exploit both byte and bit-level compressibility. Like

the Smart Refresh technique, CoolPression is also system transparent in the sense that the rest of the

system does not change their interface with the CoolPression cache. The CoolCount circuitry used a

small amount of hardware to encode data stored in the cache, and succeeded in reducing the energy

consumption by a significant amount. Based on our simulation results using SPECint2000, the

CoolPression improves dynamic energy consumption by more than 35% against a baseline cache,

while having energy savings ranging from 5 to 15% compared to the dynamic zero compression or

CoolCount applied individually. The novel encoding scheme discussed in this dissertation may be

extended to save energy at all places wherever data is being transferred. Some important locations

that may be considered are the pipeline latches. We may consider using this technique for data

transfer from L2 cache to memory and memory to the disk. Effects of reducing the bus transfer

power at certain places, where we would encode the data using this scheme and transfer only the

required data, gating-off the other bits may also be considered.

8.2 Future Work
As processor designers continue to add more cores in a die, the major bottleneck to proper utilization

of the available computing resources will be the interconnect among the cores and also between the

cores and off-chip memory. The emerging many core processor is likely to have a hierarchical

interconnect design. At the top level, the many core processor will have a mesh network similar

to [111] [55] among clusters of processing elements. Each processing element will have a set of

two to four cores connected by a high speed bus or crossbar. Each core will have its local L1 and

L2 caches. The off-chip communication of such this many core die will be using the traditional

I/O pins at the chip’s periphery and also the through silicon vias (TSVs) to communicate with a

3D die stacked DRAM. In this section, we present a number of aspects of the research presented in

this dissertation that will be useful in improving performance and saving energy in the many core

processor of the future.

The refresh operation will become a major overhead for 3D die stacked DRAMs. The Smart
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Refresh technique will be invaluable to increase availability and reducing power of such systems.

Modern DRAM systems have temperature compensated self refresh mechanism, that adjusts the

refresh rate automatically with changes in DRAM temperature. The Smart Refresh scheme can be

adapted for DRAMs having TCSR by having a configuration register that is set to reflect the current

data retention deadline. A simple logic circuit will determine the frequency of counter updates

based on the data retention deadline set at the configuration register.

To reduce coherency communication between cores in a many core processor, the caches will be

inclusive [13]. Since a very large portion of the many core chip will be SRAM caches, the Virtual

Exclusion scheme explained in this dissertation will have significant opportunity to save leakage

energy.

The bandwidth of the interconnect in future many core systems will be a major performance

bottleneck. As this many core processor is likely to have a shared last level cache, the segmented

bloom filter may be used by individual cores to predict misses to the last level cache. Once a miss

is predicted the data will be accessed directly from memory bypassing the last level cache. This

will significantly reduce traffic in the interconnect between the cores and the shared last level cache.

Another opportunity to reduce traffic in the interconnect will be to use compression techniques like

CoolPression for all data transfers in the interconnect.

This dissertation presented several techniques to demonstrate that using lightweight hardware

structures for dynamic profiling of the memory reference stream can improve energy and perfor-

mance in the memory hierarchy. The significant energy and performance improvements demon-

strated by the techniques presented here suggest that this work will be of great value for designing

future computing platforms.
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