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Abstract. This paper presents a nmew security architecture for protect-
ing software confidentiality and integrity. Different from the previous
process-centric systems designed for the same purpose, the new archi-
tecture ties cryptographic properties and security attributes to memory
instead of each individual user process. The advantages of such a mem-
ory centric design are many folds. First, it provides a better security
model and access control on software privacy that supports both selective
and mized tamper resistant protection on software components from het-
erogeneous sources. Second, the new model supports and facilities tamper
resistant secure information sharing in an open software system where
both data and code components could be shared by different user processes.
Third, the proposed security model and secure processor design allow soft-
ware components protected with different security policies to inter-operate
within the same memory space efficiently. Our new architectural support
requires small silicon resources and its performance impact is minimal
based on our experimental results using commercial MS Windows work-
loads and cycle based out-of-order processor simulation.

1 Introduction

Recently, there is a growing interest in creating tamper-resistant/copy protection
systems that combine the strengths of security hardware and secure operating
systems to fight against both software attacks and physical tampering of soft-
ware [2,3,6,7,11-13]. Such systems aim at solving various issues in the security
domain such as digital rights protection, virus/worm detection, intrusion pre-
vention, digital privacy, etc. For maximum protection, a tamper-resistant/copy
protection system should provide protection against both software and hardware
based tampering including duplication (copy protection), alteration (integrity
and authentication), and reverse engineering (confidentiality).

Many the aforementioned copy protection systems achieve protection by en-
crypting the instructions and data of a user process with a single master key.
Although such closed systems do provide security for software execution, they
are less attractive for real world commercial implementations because of the gap
between a closed tamper-resistant/copy protection system and real world ap-
plications that are mostly multi-domained where a user process often consists
of components coming from heterogeneous program sources with distinctive se-
curity requirements. For instance, almost all the commercial applications use
statically linked libraries and/or dynamically linked libraries (DLL). It is quite
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natural that these library vendors would prefer a separate copy protection of
their own intellectual properties decoupled from the user applications. Further-
more, it is also common for different autonomous software domains to share and
exchange confidential information at both the inter- and intra- process levels.
The nature of de-centralized development of software components by different
vendors makes it difficult to enforce a process centric protection scheme.

Traditional capability-based protection systems such as Hydra [1] and CAP [4]
although provide access control on information, they were not designed for tam-
per resistance to prevent software duplication, alternation, and reverse engineer-
ing. Specifically, they do not address how access control interacts with other
tamper resistant protection mechanisms such as hardware based memory en-
cryption and integrity verification.

In this paper, we present a framework called MEmory-centric Security Archi-
tecture or MESA to provide protection on software integrity and confidentiality
using a new set of architectural and OS features. It enables secure information
sharing and exchange in a heterogeneous multi-domain software system. The
major contributions of our work are summarized as follows:

e We presented and evaluated a unique memory-centric security model for
tamper resistant secure software execution. It distinguishes from the exist-
ing systems by providing better support for inter-operation and information
sharing among software components in an open heterogeneous multi-domain
software system.

e We introduced architecture innovations that allow efficient implementation
of the proposed security model. The proposed secure processor design incor-
porates and integrates fine-grained access control of software components,
rigorous anti-reverse engineering, and tamper resistance.

e We discussed novel system mechanisms to allow heterogeneous program com-
ponents to have their own tamper resistant protection requirements and still
to be able to inter-operate and exchange information securely.

The rest of the paper is organized as follows. Section 2 introduces MESA
which is extended in Section 3 that details each MESA component. Evaluation
and results are in Section 4. Discussion of related work is presented in Section 5
and finally Section 6 concludes.

2 Memory-centric Security Architecture

In this section, we overview our Memory-centric Security Architecture (MESA).
Using novel architectural features, MESA enables high performance secure in-
formation sharing and exchange for a multi-security domain software system.
Figure 1(a) shows MESA and its operating environment.

Now we present MESA from system perspective. One critical concept of
MESA is the memory capsule. A memory capsule is a virtual memory segment
with a set of security attributes associated with it. It is an information container
that may hold either data or code or both. It can be shared by multiple processes.
For example, a DLL is simply a code memory capsule. A set of security attributes
are defined for each memory capsule besides its location and size. These secu-
rity attributes include security protection level, one or more symmetric memory
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Fig. 1. Memory-centric Security Architecture (MESA)

encryption keys, memory authentication signature, accesses control information,
etc. For each process, the secure OS kernel maintains a list of memory capsules
and their attributes as process context. During software distribution, software
vendors encrypt the security attributes associated with a memory capsule using
the target secure processor’s public key. The secure processor authenticates and
extracts the security attributes using the corresponding private key. A secure
processor never stores security attributes in the exposed physical RAM without
encryption protection.

Another important concept is principle. A principle is an execution context
smaller than a process. It is defined as the execution of secure code memory
capsules having the same security property within a user process. Principles are
associated with memory capsules. They can be considered owners of memory
capsules. Based on the associated principles and security protection levels, ac-
cess control of memory capsules can be carried out. An active principle is a
currently executing principle. When an active principle accesses some memory
capsule, the access will be checked. If the active principle is allowed to access
the memory capsule, the access will be granted, otherwise, security exception of
access violation will be raised. Note that the principle in MESA is different from
the principle defined in capability system such as [1] and [4].

MESA allows different keys been used to protect separate memory capsules
and enforces access control during program execution. However, the scenarios
of fine-grained dynamic information sharing frequently happens during program
execution. For example, 1) An application calls OS services such as fwrite, fread
and passes pointers to data buffer owned by the application; 2) An application
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calls OS and system services to get a pointer to data structures owned by the
OS or system libraries; 3) A principle calls a routine of another principle and
the caller requires the callee to either operate or modify some data content in a
data memory capsule it owns.

2.1 Secure Capsule Management

Most functionality of the secure capsule management is achieved by a secure OS
kernel. Among the major services provided by the secure kernel are, process and
principle creation, principle authentication, principle access control.

First, during a process creation, the secure OS kernel will create a list of
memory capsules associated with the process. The secure kernel creates applica-
tion process from the binary images provided by software vendors. Each binary
image may contain one or more protected code and data sections, each one
with its own security attributes. Security attributes of binary images for the
application, middleware, and system shared libraries are set independently by
their corresponding vendors. The secure kernel creates a secure memory capsule
context based on the binary images. Each memory capsule represents an instan-
tiation of either a code module or data module and is uniquely identified with a
randomly generated ID. For DLLs, a different capsule is created with a different
ID when it is linked to a different process. However note that the code itself is
not duplicated. It is simply mapped to the new process’s memory space with a
different capsule entry in the capsule context table.

Execution of a process can be represented as a sequence of executing prin-
ciples. Heap and stack are two types of dynamic memory that a principle may
access. Privacy of information stored in the heap and stack is optionally pro-
tected by allocating private heap and stack memory capsule to each principle.
Another choice is to have one memory capsule to include both protected code
image and memory space allocated as private heap and stack. When execution
switches to a different principle, the processor’s stack pointer is re-loaded so
that it will point to the next principle’s private stack. Details of private stack
are presented in the subsection of intra-process sharing.

With the concept of private heap, it comes the issue of memory management
of private heaps associated with each principle. Does each principle require its
own heap allocator? The answer is no. Heap management can be implemented
in a protected shared system library. The key idea is that with hardware sup-
ported protection on memory integrity and confidentiality, the heap manager can
manage usage of each principle’s private heap but cannot tamper its content.

To provide a secure sharing environment, support for authenticating prin-
ciples is necessary. MESA supports three ways of principle authentication. The
first approach is to authenticate a code memory capsule and its principle through
a chain of certification. A code memory capsule could be signed and certificated
by a trusted source. If the certification could be verified by the secure kernel,
the created principle would become a trusted principle because it is certified by
a trusted source. Another approach is to authenticate a principle using a public
key supplied by software vendors. This provides a way of private authentication.
The third way is to certify principle using secure processor’s public key. For ex-
ample, application vendors can specify that the linked shared libraries must be
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certified by the system vendors such as Microsoft and the middle-ware image
must be certified by the known middle-ware vendors. Failure of authenticating

a code image will abort the corresponding process creation.

2.2 Intra Process Sharing

Intrinsic

Parameters

Explanation

sec_malloc(s,id)

s: size; id: principle id

allocate memory from a principle’s private heap

sec_free(p)

p: memory pointer

free memory to its owner’s private heap

sec_swap_stack
(addr)

addr: address

switch the active stack pointer to another
principle’s private stack. Addr points to a
location of the target principle. Save <active
stack pointer, active principle id> to the stack
context table

sec_get_id
(name)

name: capsule name

get id of a principle (secure kernel service)

sec_push_stack_ptr()

read the current executing principle’s stack
pointer from the stack context table and push it
into its private stack

sec_save_ret_addr
(addr)

addr: address

assign addr to a return address register (RAR)

sec_return()

assign RAR to PC and execute

sec_add_sharing_ptr
(p, s, id, rw)

p: pointer; s: size;id:
principle id ; rw:
access right

allow target principle (id) to access memory
region [p, p+s) with access right rw, return a
security pointer that can be passed as function
parameter (secure kernel service)

sec_remove_ptr
)

p: security pointer

remove access right granted to security pointer
p

sec_save_security_ptr
(reg, addr)

reg: register holding
security pointer ;
addr:_address

save security pointer to memory

sec_load_security_ptr
(reg, addr)

reg: register holding
security pointer ;

load security pointer from memory

addr: address

Fig. 2. MESA Security Intrinsics

There are many scenarios that pointers need to be shared by multiple prin-
ciples. One principle calls a routine of another principle and passes pointers to
data belonging to a confidential data memory capsule. In this scenario, infor-
mation security will be violated if the callee’s function attempts to exploit the
caller’s memory capsule more than what is allowed. For instance, the caller may
pass a memory pointer, mp and length len, to the callee and restricts the callee
to access only the memory block mp[0, len-1]. However, the callee can spoil this
privilege and try to access to the memory at mp/-1]. This must be prevented.
Passing by value may solve the problem but it is less desired because of its cost on
performance and compatibility with many popular programming models. MESA
facilitates information sharing using explicit declaration of shared subspace of
memory capsules. The owner principle of a memory capsule is allowed to add
more principles to share data referenced by a pointer that points to its mem-
ory capsule. However, the modification is made on a single pointer basis. The
principle can call sec_add_sharing_ptr(addr, size, principle_p) intrinsic to declare
that principle_p is allowed to access the data in the range [addr, addr+size]. The
declaration is recorded in a pointer table. Dynamic access to the memory cap-
sule is checked against both the memory capsule context and the pointer table.
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// CALLER SIDE

push ebp //save stack frame pointer
sec_swap_stack addr_of_my_middle_foo

// stack pointer switched to the callee’s stack
// caller’s esp saved to the context table
push 0x10; // input parameter

call my_middle_foo

//push return PC to the callee’s stack

pop ebp //get stack frame pointer back

// application: my_app

// middleware: my_middle as DLL
void* p;

unsigned int my._id, middle_id;
security void* sp;

int ret;

// CALLEE SIDE
sec_push_stack_ptr
ebp = esp //ebp stack frame pointer

my_id = sec_get_id("my_app”);
p = sec_malloc(0x20, my_id);

mld_dlc‘ld o scc_gc_t_ld( my-middle”); rl = [ebp + 4] //return address

sp = sec_add_sharing_ptr(p, 0x20, S ddi v1 //s allor’s ret
middle_id, RD|WR); sec_save_ret_addr rl //save caller’s return

esp = [ebp]

sec_swap._stack rl

// restore stack pointer to the caller’s stack

// callee’s esp saved to the context table

sec_return //return to the caller

//return to the caller by loading return PC

ret = my-middle_foo(sp, 0x10);
sec_remove_ptr(sp);

;e.c_free(p) ;

(a) Printer Sharing (b) Securely Maintain Correct Stack
Behavior

Fig. 3. Cross Principle Function Call

After the pointer is consumed, it is removed from the pointer table by another
intrinsic sec_remove_ptr(addr). This mechanism allows passing pointers of either
private heap or private stack during a cross-principle call.

Aside from the above two intrinsics, MESA also proposes other necessary in-
trinsics for managing and sharing secure memory capsules as listed in Figure 2.
Note that these security intrinsics are programming primitives not new instruc-
tions. Although a hardware implementation of MESA can implement them as
CISC instructions, yet it is not required.

Figure 3(a) illustrates how to securely share data during a function call us-
ing MESA’s security intrinsics. There are two principles. One is “my_app” and
the other is a middleware library called “my_middle”. “my_app” allocates a 32-
byte memory block from its own private heap by calling sec_malloc(0x20, my_id).
Then it declares a sharing pointer p using intrinsic sec_add _sharing_ptr that grants
principle “my_middle” read/write access to the memory block pointed by p. The
intrinsic call returns a security pointer, sp. After declaring the security pointer,
principle “my_app” calls my_middle_foo() of principle “my_middle”, passes the se-
curity pointer and another input argument. Inside my_middle_foo(), codes of prin-
ciple “my_middle” can access the private memory block defined by the passed se-
curity pointer sp. After the function returns control back to principle “my_app”,
“my_app” uses intrinsic sec_remove_ptr to remove the security pointer thus re-
voking “my_middle”’s access to its private memory block. In addition to passing
shared memory pointers, during the cross-principle call, program stack has to
securely switch from the caller’s private stack to the callee’s private stack using
stack-related security intrinsics.
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Stack Context

Module Stack Pointer
Caller 0x12485670 200000
Callee 0Oxabc21339 800000

Callee’s stack

Caller’s stack
800000
Input,0x10
200000 EBP Return Addr
ESP =800000 K= [EBP ]
Local Vars

Snapshot of Both Caller and Callee’s Stacks After
Execution Switches to the Callee

Fig. 4. Snapshot of Stacks After a Cross-Principle Call

To show how private stacks are protected during cross-principle call, we show
what happens at assembly level when “my_app” calls my_middle_foo() and the
exit code of my_middle_foo() in Figure 3(b). The assembly code uses x86 instruc-
tions and MESA intrinsics. In the example, the caller switches stack pointer to
the callee’s private stack using sec_swap_stack intrinsic. Input addr is either a
function entry address or return address if the intrinsic is used to switch stack
pointer from the callee’s private stack to the caller’s. MESA maintains a table of
stack pointer context for all the running principles. When sec_swap_stack(addr)
is executed, it will save the current active stack pointer as a <principle, stack
pointer> pair and set the active stack pointer to the target principle’s. Then
it pushes values to the callee’s stack memory capsule. When the callee’s stack
capsule requires information to be encrypted, the pushed stack values will be
encrypted using the callee’s key. Since the caller and the callee use different
stacks, to maintain compatibility with the way how stack is used for local and
input data, the callee uses sec_push_stack_ptr intrinsic at the function entry point
to push its stack pointer from the context table into its private stack. Figure 4
shows both the caller and the callee’s stacks after the discussed cross-principle
call. When execution switches back from “my_middle” to “my_app”, the callee
copies the returned value to the caller’s stack capsule. Since the return PC ad-
dress is saved in the callee’s private stack (happens during execution of function
call instruction after stack swap), the callee has to read the return address and
put it into a temporary register using sec_save_ret_addr. Then the callee switches
the stack pointer to the caller’s. Finally, the callee executes sec_return intrinsic
that assigns the returned address stored in the temporary register to the current
program counter. In the case where a large amount of data need to be returned,
the caller could reserve the space for the returned value on its stack by declaring
a security pointer pointing to its stack and passes it to the callee.

Note that MESA protects against tampering on the target principle’s stack by
only allowing one principle to push values to other principle’s stack. A principle
can not modify another principle’s stack pointer context because only the owner
principle can save the active stack pointer as its stack pointer context according
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to the definition of sec_swap_stack. Explicitly assigning values to the active stack
pointer owned by a different principle is prohibited.

2.3 Inter Process Sharing - Shared Memory

MESA supports tamper-resistant shared memory through access control by the
secure kernel. In MESA, each memory capsule can be owned by one or more
principles as shown in Figure 1(b). Access rights (read/write) to a secure mem-
ory capsule could be granted to other principles. For secure sharing, the owner
principle specifies the access right to be granted only to certain principles that
are authenticated. Using this basic secure kernel service, secure inter-process
communication such as secure shared memory and secure pipe can be imple-
mented. For example, assume that P1 and P2 are two user principles belonging
to different processes that want to share memory in a secure manner. Principle
P1 can create a memory capsule and set a sharing criteria by providing a public
authentication key. When principle P2 tries to share the memory created by P1,
it will provide its credential, signed certificate by the corresponding private key
to the secure kernel. The secure kernel then verifies that P2 can be trusted and
maps the capsule to the memory space of P2’s owning process.

3 Architectural Support for MESA

In this section, we discuss the architectural support for MESA. Inside a typical
secure processor, we assumed a few security features at the micro-architectural
level that incorporate encryption schemes as well as integrity protection based on
prior art in [2, 7, 6]. In addition, we introduce new micro-architecture components
for the MESA including a Security Attribute Table (SAT), an Access Control
Mechanism (ACM), and a Security Pointer Buffer (SPB). Other new system
features are also proposed to cope with MESA in order to manage the security
architecture asset.

3.1 Security Attribute Table

Secure memory capsule management is the heart of MESA. Most of the func-
tionality for secure memory capsule management is implemented in the secure
OS kernel that keeps track of a list of secure memory capsules used by a user
process. Security attributes of frequently accessed secure memory capsules are
cached on-chip in a structure called Security Attribute Table (SAT). Figure 5
shows the structure of a SAT attached to a TLB. Each entry stores a set of secu-
rity attributes associated with a secure memory capsule. The crypto-key of each
SAT entry is used to decrypt or encrypt information stored in the memory cap-
sule. The secure kernel uses intrinsic sec_SATId(addr) to load security attributes
from the memory capsule context stored in memory to SAT. The crypto-keys in
the memory capsule context are encrypted using the secure processor’s public
key. The secure processor will decrypt the keys when loading them into the SAT.

A secure memory capsule could be bound to one or many memory pages of
a user process. When the entire user virtual memory space is bound to only
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TLB (iTLB or dTLB)

TLB Entry SAT index
TLB Entry SAT index
TLB Entry SAT index
TLB Entry SAT index

Security Attribute Table

VId Bit | Encryption Key | Authentication Signature D Control Bits
VId Bit | Encryption Key | Authentication Signature ID Control Bits

Vid Bit | Encryption Key | Authentication Signature D Control Bits

[Use Encryption Bit [ Use Autt ion Bit ]

Fig. 5. Security Attribute Table (SAT) and TLB

one secure memory capsule, the model is equivalent to a process-centric security
model. As Figure 5 shows, each TLB entry has an index to SAT for retrieving the
security attributes of its corresponding memory page. During context switches,
the secure kernel authenticates the process’s memory capsule context first, then
loads security attributes into SAT. SAT is accessed for each external memory
access. For a memory access missing in the cache, data in the external memory
will be brought into the cache, decrypted using the encryption key in the SAT
and its integrity verified against the root memory authentication signature, also
stored in the SAT using hash tree [7]. On-chip caches maintain only plaintext.
SAT is also accessed when data is evicted from the on-chip caches. The evicted
data will be encrypted using keys stored in the SAT and a new memory capsule
root signature will be computed to replace the old root signature.

If the required security attributes could not be found in the SAT, a SAT
fault is triggered and the secure kernel will take over. First, the secure kernel
flushes the cache, then load the required security attributes into the SAT. The
SAT indexes stored in the TLB are also updated accordingly.

3.2 Access Control Mechanism

Efficient hardware-based access control plays a key role for protecting memory
capsules from being accessed by un-trusted software components. It is impor-
tant to point out that having software components or memory capsules encrypted
does not imply that they can be trusted. Adversaries can encrypt a malicious
library and have the OS to load it into an application’s virtual space. The en-
crypted malicious library despite encrypted can illegally access confidential data.

Access management is achieved by associating principles with memory cap-
sules they can access. The information is stored in a table. Based on the security
requirements, the secure processor checks the table for every load/store opera-
tion and the operation is allowed to be completed only if it does not violate any
access restraint. To speed up memory operations, frequently accessed entries of
the rule table can be cached inside the processor by an Access Lookup Cache
(ALC). Entries of ALC are matched based on the current executing principle’s
ID and the target memory capsule’s ID. To avoid using a CAM for ALC imple-
mentation, executing principle’s ID and the target memory capsule’s ID can be
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XORed as the ALC index shown in Figure 6. For a memory operation and ID
tuple <running principle ID, memory capsule ID, rd, wr>, if a matching ALC
entry can not be found, an ALC miss exception will be triggered and program
execution will trap into the secure kernel. The secure kernel will check the com-
plete access control table to see whether a matching entry can be found there.
If an entry is found, it will be loaded into the ALC. Failure to find an entry in
both the ALC and the complete access control table implies the detection of an
illegal memory operation. Upon detection of such an operation, the secure kernel
will switch to a special handling routine where proper action will be taken either
terminating the process or nullifying the memory operation.

Data Address Current Running

Principle ID Register
Physical Register File
TLB (iTLB or dTLB) Register Entry | VId Bit | SPC index
M nit Register Entry | VId Bit | SPC index
TLB Entry SAT index femory Unt v .
TLB Entry SAT index Register Entry Vid Bit | SPC index
Current Principle wr
ID Register
Security Attribute Table rd SPB index
VId Bit_| Encryption Key | Authentication Signature | ID__| Control Bits |Adr|
Vid Bit_| Encryption Key | Authentication Signature | | ID__| Control Bits Secure Pointer Buffer
s Vid Bit Low Addr High Addr D Rd | wr [ Cntrl
Vid Bit Low Addr High Addr D Rd | Wr |Cntrl
Data Pt
L * Vid Bit Low Addr High Addr D Rd | Wr | Cntrl
[ xoR }wvd[ID1]ID2 |—
Tag Pain Access Lookup
Cache
‘ Address Check ‘
Cache Line | Pass Bit
Access Allowed
Cache Access Cache Result
OR
L=

Fig. 7. Security Pointer Buffer
Fig. 6. Information Access Control Mech-
anism

To minimize performance impact of ALC lookup on cache access, ALC check-
ing can be conducted in parallel with storing information into the cache, thus
incurs almost no performance loss since stores are typically not on the critical
path. As shown in Figure 6, there is one pass bit in each cache line indicating
whether the stored data yet passes access control security checking. When data
is written to a cache line, the bit will be clear. When ALC lookup returns a hit,
the bit will be set. To guarantees that a secure memory capsule is not updated
by instructions whose principles do not have write access right, cache lines with
the checked bit clear are inhibited from being written back to the memory. Fur-
thermore, read access to a cache line with the check bit set is stalled until the
bit is set. The performance impact of the above mechanism on cache access is
minimal because as our profiling study indicates the interval between the same
dirty line access is often long enough to hide the latency of ALC lookup.

3.3 Security Pointer Buffer

MESA requires tracking shared pointers in a security pointer table. To improve
performance, values of the pointer table are cached in an on-chip Security Pointer
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Buffer (SPB) shown in Figure 7. Each entry records the low and high address
of the shared memory region and the principle ID that is granted temporary
access right. A new programming data type, security pointer is required. The
difference between a security pointer and a regular pointer is that aside from the
address value, security pointer also maintains other information for identifying
the declared pointer such as an index to the SPB, see Figure 7. If a memory
address held by a register is added to the SPB, the involved register will be
tagged with the index of the added entry in the SPB and a security pointer valid
bit is set. When the register value is assigned to another register, the index is
also passed. When a null value is assigned to the register, the valid bit is cleared.
When address stored in a security pointer is used to access memory and its valid
bit is set, the associated index is used to retrieve the corresponding entry in the
SPB. The memory address is compared against the memory range stored in the
SPB, and ID of the running principle is also compared with the ID stored in
the corresponding SPB entry. If the memory address is within the range, the
principle IDs are identical, and the type of access (read/write) also matches,
the memory reference based on the security pointer is accepted. Otherwise, a
security pointer exception will be raised.

Security pointer exception is raised only when memory access is issued using
a valid security pointer and there is a mismatch in the SPB. The exception is
handled by the secure kernel. There are two possible reasons for a SPB access
failure. First, the entry may be evicted from the SPB to the security pointer
table and replaced by some other security pointer definition. In this case, a valid
entry for that security pointer can be found in the security pointer table stored
in the external memory. If the access is found to be consistent with some se-
curity pointer declaration, it should be allowed to continue as usual. Second,
the security pointer declaration is reclaimed and no longer exists in both the
SPB and the security pointer table. This represents an illegal memory reference.
Execution will switch to a secure kernel handler on illegal memory reference
and proper action will be taken. Two new instructions, sec_save_security_ptr and
sec_load_security_ptr are proposed to support save/load security pointers in phys-
ical registers to/from the external memory. SPB and security pointer definition
table are part of the protected process context. They are securely preserved
during process context switch.

3.4 Integrity protection under MESA

The existing integrity protection schemes for security architectures are based on
an m-ary hash/MACtree [7]. Under the memory-centric model in which infor-
mation within a process space is usually encrypted by multiple encryption keys,
the existing authentication methods cannot be directly applied. Toward this,
we generalize the integrity protection tree structure. We first protect individual
memory capsules with their own hash/MAC (message authentication code) tree,
and then, a hierarchical hash/MAC tree is constructed over these capsule-based
hash/MAC trees. To speed up integrity verification, frequently accessed nodes
of the hash/MAC trees are cached on-chip. When a new cache line is fetched,
the secure processor verifies its integrity by inserting it into the MAC/hash tree.
Starting from the bottom of the tree, recursively, a new MAC or hash value is
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computed and compared with the internal MAC/hash tree node. The MAC/hash
tree is always updated whenever a dirty cache line is evicted from the secure pro-
cessor. The secure processor can automatically determine the memory locations
of MAC/hash tree nodes and fetch them automatically during integrity check
if they are needed. Root of the MAC/hash tree is preserved securely when a
process is swapped out of the processor pipeline.

4 Performance Evaluation

4.1 Simulation Framework

We used TAXI [9] as our simulation environment. TAXI includes two compo-
nents, a functional open-source Pentium emulator called Bochs capable of per-
forming full system simulation, and a cycle-based out-of-order x86 processor
simulator. Bochs models the entire platform including Ethernet device, VGA
monitor, and sound card to support the execution of a complete OS and its
applications. We used Windows NT 4.0 SP6 as our target. Both Bochs and
the simulator were modified for MESA. Proposed enhancement such as SAT,
ALC, and SPB were modeled. We measure the performance under two encryp-
tion schemes, XOM/Aegis-like scheme and our improved scheme called M-Tree.
The XOM/Aegis scheme uses block cipher (triple-DES and AES) for software
encryption. In our evaluation, we selected AES as one encryption scheme. The
other scheme is based on stream cipher which can be faster than block ciphers
as the crypto-key stream can be pre-computed or securely speculated [5].

Since we have no access to the Windows source codes, simplification was taken
to facilitate performance evaluation. Software handling of the MESA architec-
ture was implemented as independent interrupt service routines. These routines
maintain the SAT, ALC, and SPB using additional information on memory cap-
sules provided by the application. Executing process is recognized by matching
CR3 register (pointing to a unique physical address of process’s page table) with
process context.

To model the usage of MESA, we assume that the application software and
the system software are separately protected. The system software includes
all the system DLLs mapped to the application space including kernel32.dll,
wsock32.dll, gdi32.dll, ddraw.dll, user32.dll, etc. The middleware libraries, if
used, are also separately protected. Note that all the system libraries mentioned
above are linked to the user space by the OS and they are invoked through
normal DLL call. To track the data exchanged among the application, middle-
ware DLLs, and system DLLs, dummy wrapper DLLs are implemented for the
DLLs that interface with the application. These dummy DLLs are API hijackers.
They can keep track of the pointers exchanged between an application and the
system and update the security pointer table and the SPB accordingly. Usage
of dynamic memory space such as heap and stack are traced and tagged. The
assumption is that each protected code space uses its own separate encryption
key to guarantee privacy of its stack and dynamically allocated memory space.
Application images are modified using PE Explorer tool so that they will link
with the wrapper DLL functions.
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[ Parameters [ Values i Parameters [ Values |
Fetch/Decode width 8 Issue/Commit width 8
L1 I-Cache DM, 8KB, 32B line L1 D-Cache DM, 8KB, 32B line
L2 Cache 4way, Unified, 32B line, 512KB L1/L2 Latency 1 cycle / 8 cycles
MAC tree cache size 32KB RM cache size 8KB
I-TLB 4-way, 256 entries D-TLB 4-way, 256 entries
SHA256 latency 80ns / 80ns ALC latency 1 cycle
SPB size 64, random replacement SPB latency 1 cycle
Table 1. Processor model parameters

Table 1 lists the architectural parameters experimented. A default latency of
80ns for both SHA-256 and AES were used for the cryptographic engines in the
simulation assuming that both units are custom designed. Seven NT applications
were experimented: IE6.0, Acrobat Reader 5.0, Windows Media Player 2, Visual
Studio 6.0, Winzip 8.0, MS Word, and Povray 3. The run of IE includes fetching
webpages from yahoo.com using Bochs’s simulated Ethernet driver. The run of
Visual Studio includes compilation of Apache source code. Winzip run consists
of decompressing package of Apache 2.0. Our run of Media Player includes play
of a short AVI file of Olympics figure-skating. The input to Acrobat Reader is
an Intel IA64 system programming document. The run includes search for all
the appearance of the keyword ”virtual memory”. The run of MS Word consists
of loading an IEEE paper template, type a short paragraph, cut/paste, and
grammar checking. The run of Povray renders the default image.

4.2 Performance Evaluation

ree ——— ¥QM-like E=== M-like ===

Mt il Mtree —— X(¢
MESA-Mtree exa MESA-XOM-like Mtree_app s XOM-like_app s

Fig.8. Normalized IPC Results with Fig.9. Normalized IPC Results for Selec-
MESA Support tive Protection

We first evaluate the performance of access control, and security pointer
table. We use a 32-entry SAT for storing keys and security attributes. This is
large enough to hold all the protected memory capsules in our study. The number
of entries in the security pointer buffer is 64. We evaluated three scenarios,
baseline where security protection is turned off, M-Tree protection on the whole
virtual space with one memory capsule, and protection using MESA.
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Performance results for all the applications are shown in Figure 8, in which
the TPC results were normalized to that of the baseline. On average, the M-Tree
lost 5% performance. When MESA is used, it further slows down by another
1%. Block cipher on average lost 13% performance and introducing MESA will
cause another 1.8% loss. Note that when the whole user space is protected as one
memory capsule (degenerated case), security pointer buffer and access control
are no longer providing any valuable service and could be turned off. There will
be no further performance loss under this scenario.

09t —
0.8}
0.7 +
0.6
05
04+t
03+t
02+t

0.1

MESA-Mtree_shared_mem —— User_shared_mem ===

Fig. 10. Normalized Throughput of Protected Inter-process Shared Memory for MESA
M-Tree under Different Shared Memory Sizes

One objective of MESA is to provide a secure environment so that software
components co-existing in the same space could be selectively encrypted and
protected. To evaluate the gain of selective protection, we selectively encrypt
only application and its supporting DLLs, leave all the system libraries (e.g.
gdi32.dll, wsock32.dll) un-encrypted. The normalized IPC normalized are shown
in Figure 9. For M-Tree, the performance gain is about 1.6% comparing with
encrypting everything in the memory space. This is substantial considering the
slowdown of M-Tree is merely 5%. For the block ciphers, the gain is 5.5%. This
means that by ensuring a secure environment for information sharing, MESA
could actually improve the overall system performance, especially for the block
cipher tamper resistant systems.

Another advantage of MESA is that it supports secure and high performance
shared memory for inter-process communication. Secure inter-process commu-
nication could not be naturally supported by process-centric tamper-resistant
system. The strong process isolation demands that information be either ex-
changed through secure socket or encrypted by software via a negotiated key
between the two involved processes. MESA supports protected shared memory
with almost no loss on performance. We used a micro-benchmark to evaluate the
performance of shared memory under MESA vs. a process-centric architecture.
A pair of Windows producer and consumer programs using shared memory were
written for this purpose. There are three scenarios, 1) the shared memory is
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not protected, which is used as the baseline; 2) the shared memory is protected
as an encrypted secure memory capsule; 3) the shared memory is protected by
applications themselves through a strong cipher (AES) with a separately nego-
tiated key by the producer and consumer. The pair of programs were simulated
in TAXI and throughput results were collected for the above three scenarios
under different size of shared memory. Figure 10 clearly shows the advantage of
MESA for supporting confidentiality and privacy of shared memory. For small
size shared memory, the loss of throughput is about 10%. But as the size of
shared memory grows, MESA protected shared memory performs almost as fast
as one without protection.

5 Related Work

Software protection and trusted computing are among the most important issues
in information security. Traditionally, the protections on software are provided
through a trusted OS. To improve the security model, some tamper resistant
devices are embedded into a computer platform to ensure the loaded OS is
trusted. A typical example of such endeavor is the TPM and the related OS. Al-
though these systems provide authentication services and prevent some simple
tampering on the application, they are not designed for protection of software
confidentiality and privacy against physical tampering. To address this issue,
new secure processor architecture, e.g. XOM and AEGIS, emerged. However, as
mostly closed system solutions, they too fail to address some very important
issues such as inter-operation between heterogeneous software components and
information sharing. MESA is also different from the information flow security
model such as RIFLE [8]. RIFLE keeps track of the flow of sensitive informa-
tion at runtime by augmenting software’s binary code. It prevents restricted
information from flowing to a less secure or un-trusted channel. MESA is de-
signed for a different purpose and usage model. The main purpose of MESA
is to mitigate some of the drawbacks associated with the whole process based
cryptographic protection of software instead of trying to solve the issue of secure
information flow. MESA is also significantly different from the memory protec-
tion model called Mondrian [10]. Memory capsules in MESA are authenticated
and encrypted memory spaces, concepts do not exist in Mondrian.

6 Conclusions

This paper describes MESA, a high performance memory-centric security ar-
chitecture that is able to protect software privacy and integrity against both
software and physical tampering. Different from the previous process-centric
tamper-resistant systems, our new system allows different software components
with different security policies to inter-operate in the same memory space. It
facilitates software vendors to devise their own protections on software com-
ponents therefore more flexible and suitable to open software system than the
previous process-centric protection approaches.
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