
An Optimized 3D-Stacked Memory Architecture
by Exploiting Excessive, High-Density TSV Bandwidth

Dong Hyuk Woo Nak Hee Seong Dean L. Lewis Hsien-Hsin S. Lee
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332

{dhwoo, nhseong, dean, leehs}@ece.gatech.edu

ABSTRACT
Memory bandwidth has become a major performance bottleneck
as more and more cores are integrated onto a single die, demand-
ing more and more data from the system memory. Several prior
studies have demonstrated that this memory bandwidth problem
can be addressed by employing a 3D-stacked memory architec-
ture, which provides a wide, high frequency memory-bus interface.
Although previous 3D proposals already provide as much band-
width as a traditional L2 cache can consume, the dense through-
silicon-vias (TSVs) of 3D chip stacks can provide still more band-
width. In this paper, we contest that we need to re-architect our
memory hierarchy, including the L2 cache and DRAM interface,
so that it can take full advantage of this massive bandwidth. Our
technique, SMART-3D, is a new 3D-stacked memory architecture
with a vertical L2 fetch/write-back network using a large array
of TSVs. Simply stated, we leverage the TSV bandwidth to hide
latency behind very large data transfers. We analyze the design
trade-offs for the DRAM arrays, careful enough to avoid compro-
mising the DRAM density because of TSV placement. Moreover, we
propose an efficient mechanism to manage the false sharing prob-
lem when implementing SMART-3D in a multi-socket system. For
single-threaded memory-intensive applications, the SMART-3D ar-
chitecture achieves speedups from 1.53 to 2.14 over planar designs
and from 1.27 to 1.72 over prior 3D designs. We achieve simi-
lar speedups for multi-program and multi-threaded workloads on
multi-core and multi-socket processors. Furthermore, SMART-3D
can even lower the energy consumption in the L2 cache and 3D
DRAM for it reduces the total number of row buffer misses.

1. INTRODUCTION
Memory bandwidth, shared by processor cores, GPGPUs, and

accelerators, is looming as a major bottleneck for scaling up the
performance of modern applications. As more cores are integrated
onto a single die [4, 14, 37, 51], the demand for memory band-
width will grow to unprecedented levels. To alleviate this issue, ar-
chitects have replaced the traditional, intensely contested and con-
gested front-side bus with new interfaces such as integrated mem-
ory controllers, AMD’s HyperTransport, and Intel’s QuickPath In-
terconnect. In spite of these innovations, the bandwidth available to
future processor will continue to be restricted by the limited num-
ber of pins in the processor’s package. According to the ITRS,
the number of package pins will not grow much in the coming
decade—due to cost and power constraints— and most of these
additional pins will be delivering power, not data. Therefore, new
architectural innovations must be discovered.

One promising solution to this problem is the 3D stacked-DRAM

architecture [3, 15, 23, 24, 25], in which the processor cores and
main memory are integrated into a single chip stack. Most pro-
posed architectures simply consider the 3D memory to be another
level in the cache hierarchy [3], but a recent study demonstrated
that a quad-core processor could have as many as sixteen layers of
DRAM stacked on top of it without exceeding the maximum ther-
mal limit [24]. In this study, each DRAM layer contained 1GB of
memory for a total of 16GB in the stack, more than enough storage
to act as the entire main memory for netbook, laptop, and desktop
systems. In fact, at 4GB of memory per core, this is even enough
memory for most servers; top-of-the-line servers will require ad-
vanced liquid-cooling systems to allow for additional DRAM lay-
ers. Given this volume of storage capacity, the reduced access la-
tency, and the increased memory bandwidth, stacked DRAM is an
excellent candidate for a main system memory [15, 23, 24, 25] in
future-generation many-core processors.

Prior studies of 3D stacked memory architectures for increasing
memory bandwidth can be grouped into three categories: (1) in-
creasing the memory bus width [15, 23, 24, 25], (2) increasing the
frequency of the memory bus and controller [23, 25], and (3) im-
plementing more memory channels [24]. By implementing a mem-
ory bus as wide as a cache line that operates at the core’s clock fre-
quency, prior proposals have demonstrated that a 3D stacked mem-
ory architecture can provide the maximum bandwidth that the L2
cache can consume. In other words, the maximum usable mem-
ory bandwidth can be achieved with only a few hundred through-
silicon-vias (TSVs) between the processor and memory layers (e.g.,
512 TSVs for a 64B L2 cache line). This observation suggests
that TSV technology is unnecessary because existent system-in-
a-package (SiP) processes, which can create a few thousand die-
to-die wirebond connections, is sufficient for implementing such a
small memory bus.

However, this conclusion relies on one basic assumption: mini-
mizing memory traffic will ensure the best performance. This is a
reasonable assumption in a traditional system where main memory
is far from the processor, residing somewhere out on the mother-
board. However, in a 3D chip stack where memory is on top and
quickly accessible, this assumption needs serious reconsideration.
We hypothesize that by increasing memory traffic, and thus bet-
ter utilizing the massive bandwidth afforded by high-density TSVs,
we can provide useful data in the cache hierarchy more often, sig-
nificantly improving performance. In other words, instead of de-
signing a traditional von Neumann bottleneck-aware processor that
minimizes memory traffic, we should design a 3D-aware system
that exploits the massive memory bandwidth of a 3D memory-on-
chip system.

In this paper, we will demonstrate our hypothesis with a new 3D-

aware memory design. In particular, our system leverages the im-
mense bandwidth of a TSV interconnect to eliminate the trailing-
edge effect, a detrimental side-effect of skinny memory buses that
must be occupied for many cycles to transfer a memory block. As
a side benefit, our 3D stacked DRAM is also simpler to design than
traditional DRAM. Overall, our technique is a very simple design
with very high effectiveness, more than halving program execution
time on the average.

2. BACKGROUND AND RELATED WORK
2.1 3D IC Stacking Technology

3D integration is a promising new manufacturing technology that
allows multiple layers of active silicon to be stacked one on top of
the other. The layers are integrated together with TSVs; these vias
are short, fast, and dense, allowing for an incredibly high inter-layer
bandwidth that simply cannot be matched by other existent tech-
nologies like MCMs or SiPs. For example, state-of-the-art TSV
manufacturing will be able to produce approximately 4µm2 vias on
a pitch of 4µm in 2011 [1]. That is several millions of TSVs in one
square centimeter. 3D integration also allows for the integration
of disparate technologies like CMOS, DRAM, and analog circuits
into a single, tightly-coupled chip stack. With such a high con-
centration of fast connections, the individual layers behave almost
as though they were a single layer; that is, inter-layer connections
have electrical characteristics similar to standard intra-layer wires,
so designers do not have to worry about the excessive loading or
transmission-line effects that plague in-package and board-level
wiring. At the same time, circuit quality is improved because each
layer is manufactured in its own highly-optimized manufacturing
process. DRAM arrays are manufactured in a DRAM-optimized
process and control logic in a high-speed-CMOS-optimized pro-
cess; no need to compromise the quality of either circuit type as is
presently done for monolithic integration processes like eDRAM [28].

2.2 3D Architectures
Computer architects have been busily exploring new opportuni-

ties in the integration of disparate manufacturing technologies [3,
15, 18, 23, 24, 25, 26, 34, 42, 51, 52, 54]. Some of them [15, 23,
24, 25] have focused on how a processor can benefit from enor-
mous memory bandwidth that a 3D-stacked memory can provide,
but most of them have not properly addressed how we should re-
architect our current memory architecture to take full advantage
of the 3D-stacked memory architecture. The only exception is
PicoServer [15], which eliminated an L2 cache to improve sys-
tem throughput. Note that their target application is throughput-
sensitive, Tier-1 server applications, which justified their choice of
using a 3D DRAM and trading the L2 area for more cores for trans-
actional applications; in contrast, our work focuses on more tradi-
tional latency-sensitive, single-threaded applications. Other studies
also exploited the benefit of TSVs [16, 19, 27, 53], but the band-
width was used for an on-chip network among caches or routers.

2.3 The Effect of Limited Memory Bandwidth
To say that the memory bandwidth problem has heavily affected

cache design is a severe understatement. Although caches are de-
signed for reducing off-chip bandwidth, Goodman observed that
a processor with a cache often consumes higher bandwidth than
a processor without one when an application lacks spatial local-
ity [13]. Based on this observation, he proposed a cache design that
chiefly exploits temporal locality by using extremely small cache
lines. On the other hand, Smith pointed out that a larger cache line
is preferable for a system that can provide higher bandwidth [38].

Nonetheless, a larger cache line may aggravate the false sharing
problem; several compiler and hardware techniques have been pro-
posed to address this [8, 9, 10, 11, 46]. Toward this issue, Torrellas
et al. also found that the high miss rate of a large-line cache is due
mainly to poor spatial locality, not false sharing [47].

Many prefetching techniques have also been proposed to en-
hance performance. For this study, we chose to use the Global His-
tory Buffer (GHB) stride prefetcher in one of our baselines since
the GHB scheme was shown to be the most efficient among many
prefetchers [33]. A technique that shares a certain resemblance
to the fetching policy used by our 3D memory hierarchy is re-
gion prefetching [6, 20, 44, 49, 41]. However, this prefetching
method requires complex hardware additions in both the processor
and the memory controller (e.g., insertion and scheduling policies)
with sophisticated compiler analysis. Furthermore, they still suf-
fer from the trailing-edge effect on the memory bus for fetching
large memory blocks. In other words, if a demand fetch request is
made during a region prefetch, it must be delayed until the pending
region transfer is finished. In this paper, we will show that the high-
density TSV bus will fundamentally eliminate the trailing-edge ef-
fect once and for all without any of these complicated hardware
control mechanisms or software development overheads.

3. 3D DRAM-AWARE PROCESSOR:
OPPORTUNITIES AND CHALLENGES

Although 3D memory can provide a huge amount of bandwidth,
prior proposals have not fully exploited it for single-thread applica-
tions. For example, given a four-issue, three-operand 32-bit CISC
machine, the worst-case memory requirement will be 48 bytes (4×
3× 4 bytes) per cycle. In this case, any prior 3D DRAM proposals
can easily satisfy this bandwidth demand [23, 24, 25]. However,
a TSV array can provide as much as 1Tb/sec, given one million
TSVs running at 1GHz. Such a bus would be greatly under-utilized
when running even the worst single-threaded applications.

There is an old saying: “Bandwidth problems can be cured with
money. Latency problems are harder because the speed of light is
fixed—you can’t bribe God.” In this work, we will contend this
old saying and quench the latency problem by fully exploiting the
potential of TSVs. In particular, we induce many large data trans-
fers to exploit lots of spatial locality. Essentially, we prefetch entire
4KB pages while maintaining a normal 64B line size in the caches
for short access latencies and efficient coherence management. It
is well known that a large cache line is effective in reducing miss
rates [20, 35, 44]. Unfortunately, it also presents several draw-
backs. First, the narrow off-chip bus creates the trailing-edge ef-
fect, which often degrades the performance of both the requesting
processor [5] and the other processors sharing the bus in the sys-
tem [38]. Second, using a larger line size may pollute the cache
due to more conflict misses in a fixed-capacity cache [38]. Finally,
larger line sizes may worsen the false sharing problem. As we will
demonstrate, we can use 3D integration and a revised DRAM de-
sign to eliminate the trailing-edge penalty of large memory fetches.
At the same time, the impact of conflict misses is reduced by the
shorter latency of our technique. We also show that performance
degradation due to false sharing can be minimized in a multi-socket
system.

3.1 Revisiting Line Size Effect Without Off-
Chip Pin Count Constraint

First we revisit the effect of cache line size on modern applica-
tion performance in order to better understand why a re-architecting
for 3D stacked memory is needed. We consider a cache line size

 0

 2

 4

 6

 8

 10

 12

 4
09

6

 1
02

4

 2
56 6

4

M
PK

I

Line size

450.soplex

32KB

64KB

128KB
256KB

(a) Group 1: 19 programs

 0

 2

 4

 6

 8

 10

 12

 4
09

6

 1
02

4

 2
56 6

4

M
PK

I

Line size

400.perlbench

32KB
64KB

128KB

256KB

(b) Group 2: 9 programs

 0

 5

 10

 15

 20

 4
09

6

 1
02

4

 2
56 6

4

M
PK

I

Line size

462.libquantum

32KB - 8MB

(c) Group 3: 7 programs

 0

 2

 4

 6

 8

 10

 4
09

6

 1
02

4

 2
56 6

4

M
PK

I

Line size

403.gcc

32KB

64KB

128KB

(d) Group 4: 3 programs

 0

 10

 20

 30

 40

 50

 60

 4
09

6

 1
02

4

 2
56 6
4

M
PK

I

Line size

436.cactusADM

32KB

64KB

128KB

(e) Group 5: 1 program

 0

 5

 10

 15

 20

 25

 4
09

6

 1
02

4

 2
56 6
4

M
PK

I

Line size

473.astar

32KB
64KB

4MB
8MB

(f) Group 6: 1 program

 0
 2
 4
 6
 8

 10
 12
 14
 16

 4
09

6

 1
02

4

 2
56 6
4

M
PK

I

Line size

471.omnetpp

32KB

64KB

(g) Group 7: 1 program

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 4
09

6

 1
02

4

 2
56 6
4

M
PK

I

Line size

mst

1MB

2MB
4MB

(h) Group 8: 1 program
Figure 1: MPKIs of Cache Memories of Different Capacities and Line Sizes

ranging from 64B to 4KB (the size of a page, the maximum line
size without software modification), much larger than those in prior
studies [13, 38], and a cache capacity from 32KB to 8MB. For ap-
plications, we use memory traces taken from forty-two applications
from the SPEC2006int, SPEC2006fp, Olden, and NU-MineBench
benchmark suites. Figure 1 plots the misses per thousand instruc-
tions (MPKI) as a function of line size. Each curve represents a
particular cache capacity. For brevity, we categorized applications
with similar MPKI behavior into eight groups and show only one
application per group.

Figure 1(a) shows the MPKI of 450.soplex, which represents
nineteen applications (Group 1). When the cache is small (e.g.,
32KB), this group’s MPKI initially decreases but then quickly in-
creases as the line size grows. These results confirm the common
wisdom of the cache pollution effect. Importantly, though, we
find this wisdom does not hold for very large caches. Instead, the
number of misses continues to decrease with increasing line size
for a cache exceeding a certain capacity (256KB for 450.soplex).
Therefore, once the cache memory becomes sufficiently large, ca-
pacity misses are no longer a problem and spatial locality rules the
day. Even more interestingly, the MPKI of a small cache with a
large line size is much lower than that of a large cache with a small
line size. For example, in Figure 1(a), the MPKI of a 256KB cache
with a 4KB line is lower than that of an 8MB cache with a 64B line.

In stark contrast to Group 1, the MPKI of Group 2 in Figure 1(b)
monotonically increases with line sizes. However, MPKI is only
sensitive to the line size of a small cache; beyond a certain capacity
(512KB for 400.perlbench) the MPKI metric levels off. This phe-
nomenon likely occurs because the working set necessarily fits into
a sufficiently large cache. In contrast, the MPKI of Group 3 de-
creases with line size in Figure 1(c). Clearly, they do not have good
temporal locality but instead have very good spatial locality; thus, a
larger cache line is always beneficial. Group 4 in Figure 1(d) shows
that the line size matters only for small caches. Finally, the remain-
ing four applications have unique characteristics. The MPKI of

436.cactusADM (Figure 1(e)) increases as the line size increases.
Similarly, the MPKI of 473.astar (Figure 1(f)) increases as the
line size increases when the cache is large (1MB to 4MB). These
are mainly due to very poor spatial locality. In contrast, 471.om-
netpp (Figure 1(g)) and mst (Figure 1(h)) both interestingly show
that a 4KB line size works well enough for sufficiently large caches
(e.g., 1MB or 2MB) when compared to the 64B baseline.

In summary, most modern applications will benefit from a smaller
L1 cache line size,1 but a larger cache line is found to be help-
ful for a much larger L2 cache. Interestingly, the maximum line
size, an entire page (4KB), is found to be very effective in a large
cache. In general, these results, based on today’s complex appli-
cations, are consistent with observations made on very old, simple
programs [38]. Unfortunately, such a large line is not practical in
a traditional processor because the trailing-edge effect negates any
gain from the reduced miss rate (demonstrated in Section 4). How-
ever, it is very attractive in a 3D stacked memory architecture be-
cause the extremely wide TSV bus can eliminate all trailing-edge
effect and its associated penalty.

3.2 Leveraging the Additional Dimension to
Implement a Wide Bus

Although enlarging the line size to 4KB helps reduce the miss
rate, it may degrade the overall performance if it significantly in-
creases the access latency. To estimate this, we used Cacti 5 [45] to
estimate the access latency of an eight-way 1MB cache for differ-
ent line sizes. Unfortunately, we found that access latency increases
almost linearly with the line size. Therefore, it will not be wise to
expect an overall performance improvement by simply enlarging
the line size.

To explain the latency increase, we review the common cache
subarray design employed by Cacti [50]. Large cache arrays are
often subdivided into smaller subarrays to minimize latency and
power. Figure 2 illustrates the layout of a cache bank that has been
1Throughout this paper, we use 64B line size for the L1 cache.

partitioned into multiple subbanks (four in this case). Each subbank
is also partitioned into multiple mats (four in the figure), wherein
all arrays in a single mat share predecoding logic. Each mat is con-
nected to the cache interface using an H-tree distribution network,
also shown in Figure 2. For cache read, write, fill, and write-back
operations, addresses and data are routed through the H-tree be-
tween the cache controller interface and the target subbank (the
figure illustrates a line written into four mats of a subbank from the
controller using white arrows). The complete cache access latency
depends both on the number of subarrays in a row and in a column.
For example, an eight-way 1MB cache with large 4KB lines con-
sists of thirty-two rows and 32,768 columns. Such a highly skewed
layout fails to balance the length of horizontal and vertical wires in
the H-tree. Furthermore, a 4KB-line cache requires an extremely
wide H-tree network resulting in a long signaling delay. Clearly,
simply enlarging the cache line size up to 4KB is not a good design
choice.

subbank mat

subarray

Cache controller

32B

16B

64B

H-tree

Figure 2: Cache Subarray Design
So instead of enlarging the line size, we chose to implement a

fetch size which is different from the line size, (e.g., fetching a
4KB page upon a miss into sixty-four 64B cache lines). Note that
using different line and fetch sizes has been investigated, such as
next N -line prefetching [39, 40]. However, Przybylski found that
the optimal fetch size depends on the latency and the width of a
memory channel [35]. Furthermore, he found that the overhead of
fetching a memory block larger than a line, incurring a trailing-
edge effect penalty, renders such aggressive fetching useless in the
memory systems of the early 90s. But a couple years later, Temam
and Jegou were able to exploit larger recent cache sizes by propos-
ing the Virtual Line Scheme to fetch a page into a secondary cache
for improving numerical applications [44]. Despite of the trailing-
edge effect, the large secondary cache alleviated the cache pollution
problem. Of course, the increased memory traffic of these schemes
has been a big concern for these fetch policies, so software-directed
schemes were also proposed to work around the bus contention is-
sue. More recently, integrated memory controllers ave made re-
gion prefetching feasible [20, 49], in which a processor (with help
from the compiler) monitors the status of a memory channel and
prefetches a page only when the channel is idle. This necessarily
complicates both hardware and compiler design. It is now time,
given the unprecedented bandwidth of emerging 3D-stacking tech-
nology, to revisit these aggressive fetching scheme.

The first fetching policy we evaluate is fetching a 4KB page in
one transfer, buffering it, and then filling each 64B chunk through a
64B-wide H-tree network in the L2 cache. This policy aligns with
our observation that a smaller line is desirable for L1 and a larger
one for L2. As shown in Section 3.1, fetching 4KB lines to large
L2 caches substantially reduces L2 MPKI, so optimizing the H-
tree for L1 miss latency (i.e., 64B-wide H-tree) makes much more

Memory

Controller

Layer

Processor

Layer

n Layers of DRAM

A subbank

of a 64-subbank L2 cache

A subbank

of an MSHR and

a write-back buffer

TSVs A branch of

H-tree network

One subarray

Figure 3: SMART-3D Memory Hierarchy: Implementing a
64B-Wide Bus with TSVs directly on top of Each L2 Subbank

sense than optimizing for the latency of comparatively infrequent
L2 misses.

Unfortunately, filling 4KB over a 64B H-tree incurs a trailing-
edge penalty in the L2 cache itself (instead of the memory bus) be-
cause we can write only one 64B chunk of data each cycle. In other
words, filling 4KB of data will consume sixty-four cycles of the L2
cache bandwidth, preventing the processor from accessing the L2
cache for a significant period of time. Note that, such intra-cache
trailing-edge effects are also a problem for prior schemes [20, 44,
49]. To overcome this, we propose SMART-3D, a Stacked Memory-
Aware, Rich TSV-enabled 3D memory hierarchy, which uses a con-
ventional, planar 64B H-tree for read and write operations from the
L1 and a vertical 4KB bus for cache fill and write-back operations
to the 3D main memory. To realize such design, we place a sec-
ond CMOS layer between the processor and the DRAM stack (Fig-
ure 3); this layer contains a memory controller, an L2 miss status
handling register (MSHR), and an L2 write-back buffer. In order to
provide 4KB of data without trailing-edge penalties, we partition
the L2 cache, L2 MSHR, and write-back buffer into sixty-four sub-
banks each, allowing for sixty-four simultaneous 64B operations
between the L2 and 3D memory. These sixty-four buses are im-
plemented directly on top of each subbank with TSVs, connecting
each L2 subbank with its respective subbank of the MSHR and that
of the write-back buffer. In this cache design, a read or a write
operation uses the conventional H-tree network, while a fill or a
write-back operation uses the new TSV bus as shown in the figure.
Filling a 4KB page into sixty-four subbanks in this way requires
interleaving of cache sets, which in turn necessitates some modifi-
cation to the predecoding logic.

However, from the Cacti analysis, our sixty-four subbank design
slightly underperforms the optimal number of subbanks for the four
L2 sizes we simulated. As shown in Table 1, the access latency of
our 64-subbank cache will be about one or two cycles slower (given
a 3GHz clock) than an optimal cache.

Table 1: The Access Latency of the 8-Way Cache (Cacti 5)
Capacity 1MB 2MB 4MB 8MB

Optimal latency (ns) 1.75 1.95 2.65 4.56
(The optimal # of subbanks) (4) (4) (8) (16)

The latency of 2.20 2.53 3.17 5.0164-subbank cache (ns)

This new SMART-3D memory design has several interesting im-
plications. The first is related to the data eviction policy. As we

fetch sixty-four cache lines simultaneously, we can choose the evic-
tion victim at a 64B or 4KB granularity. We name these two poli-
cies the local LRU policy and the global LRU policy. We simulated
both policies and found that the results are application-specific.
Significantly though, we found that the MPKI difference between
these two is negligible. The biggest MPKI difference is approxi-
mately 0.33. Because the local LRU policy can generate write-back
traffic for sixty-four different lines, each potentially to a different
page, we opt for the global LRU policy, simplifying the design of
our MSHR and write-back buffer. In particular, upon an L2 miss,
the L2 cache controller needs to check the centralized control ar-
ray of the MSHR and the write-back buffer instead of checking
sixty-four different control bit arrays. Effectively, we use a conven-
tional associative lookup process but distributed data arrays. Fur-
thermore, choosing the global LRU policy allows us to reduce the
size of the tag array, similar to Sector Cache [22, 31].

The next issue is invalidation traffic in an inclusive L2 cache.
If the inclusion property is maintained between the L1 and L2, an
eviction from the L2 will invalidate the same line, if exists, in the
L1. In our SMART-3D design, one L2 eviction may yield up to
sixty-four invalidations in the L1. Fortunately, as we will show
in Section 4, the effect of such invalidations is insignificant. In this
paper, we assume that each L2 line maintains an inclusion bit [48]
to minimize the amount of unnecessary eviction traffic sent to the
L1.

The third issue is the tight coupling between each L2 bank and its
associated memory controller. Such coupling necessitates an archi-
tecture in which all cores on the chip share multiple L2 cache banks
through some interconnect network, as shown in Figure 4. Such an
architecture is widely used in commercial multi-core products [17],
GPGPUs [21] and a recently proposed 3D memory system [24].

L2 Cache
Bank 0

L2 Cache
Bank 0

L2 Cache
Bank 1

L2 Cache
Bank 1

Memory
Controller 0

Memory
Controller 0

Memory
Controller 1

Memory
Controller 1

On-chip Interconnection

Core 0Core 0 Core 1Core 1 Core 2Core 2 Core 3Core 3

Off-chip
Inter-

connec-
tion

DRAMDRAM DRAMDRAM DRAMDRAM DRAMDRAMDRAMDRAM DRAMDRAM DRAMDRAM DRAMDRAM

L2 Cache
Bank 0

L2 Cache
Bank 0

L2 Cache
Bank 1

L2 Cache
Bank 1

Memory
Controller 2

Memory
Controller 2

Memory
Controller 3

Memory
Controller 3

On-chip Interconnection

Core 4Core 4 Core 5Core 5 Core 6Core 6 Core 7Core 7

DRAMDRAM DRAMDRAM DRAMDRAM DRAMDRAM

L2 Cache
Bank 0

L2 Cache
Bank 0

L2 Cache
Bank 1

L2 Cache
Bank 1

Memory
Controller 2

Memory
Controller 2

Memory
Controller 3

Memory
Controller 3

On-chip Interconnection

Core 4Core 4 Core 5Core 5 Core 6Core 6 Core 7Core 7

DRAMDRAM DRAMDRAM DRAMDRAM DRAMDRAMDRAMDRAM DRAMDRAM DRAMDRAM DRAMDRAM

Figure 4: Overall System Architecture

3.3 Novel DRAM Design Issues
In addition to cache design issues, we also carefully evaluated

the design of the DRAM layers because our SMART-3D requires
32kbits of TSVs and the area of each TSV is non-trivial (2µm ×

2µm with 4µm pitch according to ITRS projection for 2011 [1]).
Furthermore, we do not want to compromise the density of each
DRAM array accommodating the TSVs.

First of all, we assume a 256Mbit DRAM array tile (32nm) that
consists of 2

14 rows where each row has 2
14 bits. We also assume

that the height of each DRAM tile is extended by 40% for sense
amplifiers while the width of it is extended by 20% for a row de-
coder. The first design shown in Figure 5(a) is based on a standard
DRAM design where each tile has a row decoder and a column
decoder. For this design, we carefully matched the TSV pitches
with the width of DRAM tile and found that only 256 TSVs are
allowed within the given width of a DRAM tile. In other words,
to support 32k TSVs, we need 16 × 8 tiles (Figure 5(a)), which
amounts to 29.36mm × 12.58mm in area (including TSV area
overhead). In this design, we use the white space on our memory
controller layer to route from the distributed memory TSVs into

the center of a chip to connect to the TSVs going to the cache on
the processor die as shown in Figure 3. In this design, multiple
ranks can be implemented vertically by sharing the same TSV bus
across the several DRAM layers. However, we found that, in this
DRAM design, an L2 miss will look up 128 DRAM tiles simul-
taneously, potentially consuming a considerable amount of power.
Note that the current off-chip DRAM design also necessitates such
multiple array lookup due to a large off-chip pin pitch compared to
the width of each DRAM chip. For example, to form a 64b data
bus, we need eight DRAM chips in a DRAM module where each
DRAM chip outputs eight bits. In this configuration, eight different
DRAM chips form one DRAM rank. Thus, upon a request, eight
DRAM chips are accessed in parallel.

We evaluated a second design option shown in Figure 5(b). In
this design, we place all TSVs in the middle of the DRAM die. In
other words, 128 tiles share a common TSV bus in the center. The
width of eight DRAM tiles will accommodate 2048 TSVs, thus 16
rows are needed to place all 32K TSVs. Using the same method
of estimation, this design consumes approximately 29.36mm ×

12.77mm. Similarly, we can build multiple ranks by vertically
stacking these DRAM layers, all sharing the same TSV bus. Be-
cause the row buffer in each tile is 2KB (214 bit), only two tiles
are selected upon an L2 miss, and no column address (i.e., CAS se-
lect) and column mux will be required. This design requires global
routing in the DRAM layer, but we only enable two DRAM tiles
upon an L2 miss, saving a significant amount of power over the
first design.

The third option is a variation of the second design as shown
in Figure 5(c). In this design, we split one DRAM layer of the sec-
ond design into four layers. Each of them uses only their portion
of 8kbits of TSVs for data transfer, but all of them still need space
for accommodating 32kbits of TSVs. Clearly, this design requires
a larger overall space (four layers combined) but reduces the foot-
print of individual die (14.68mm × 6.68mm). Furthermore, wire
length between each tile and the TSVs decreases compared to the
second design.

3.4 Support for Multi-Socket Platforms
One very interesting problem created by SMART-3D is poten-

tial exacerbation of the false sharing problem. Note, this is not a
problem for a single-die multi-core SMART-3D processor as it still
has an L1 with 64B lines and the L2 is shared. Yet false sharing
could become worse in a multi-socket SMART-3D system. As Fig-
ure 4 shows, each quad-core socket has its own memory controller
and 3D DRAM. In essence, the aggregated DRAM from these two
sockets form a non-uniform memory access (NUMA) machine.
Data are freely shared and moved across DRAM located in dif-
ferent sockets. For a SMART-3D processor, fetching a page from
remote memory will suffer from the trailing-edge effect because
of the requisitely narrow inter-socket communications bus. Also,
the probability of having falsely-shared data will be significantly
higher given the L2 line size, potentially creating a performance-
crushing ping-pong effect between the two processors.

To address this issue, we propose an adaptive SMART-3D de-
sign2 that suppresses the page-fetching policy (1) if the target page
is mapped to the memory space of a remote socket or (2) if any
line of the target page is cached in the L2 on a remote socket. De-

2The line management in SMART-3D is similar to subblocking
techniques [2, 8, 10], but, instead of invalidating subblocks within
a line, our adaptive fetching scheme uses the same principle to sup-
press prefetching multiple 64B L2 lines from main memory. Our
technique can be used with the subblocking techniques although it
is not evaluated in this paper.

256Mb DRAM array

per tile

Private

256 TSVs

per tile
16 x 2048 shared TSVs

(a) (b) (c)

32 x 1024

shared TSVs

Figure 5: Different DRAM Designs. (a) Private TSVs per Tile, (b) Shared TSVs, and (c) Folded DRAM with Shared TSVs

Table 2: Baseline Processor Configurations
Clock frequency 3.0 GHz
Processor model 14-stage, OoO, 4-wide fetch/issue/retire

ROB size 192
Physical register file size 128 (INT) / 128 (FP)

Branch predictor Hybrid (16K global / local / meta tables), 2K BTB, 32-entry RAS
L1 I cache 2-port 2-way, 64B-line, 32KB, LRU, 1-cycle, 8-entry MSHR
L1 D cache 2-port 4-way, 64B-line, 32KB write-back, LRU, 2-cycle latency, 1-cycle throughput, 8-entry MSHR

Unified L2 cache 2-port 8-way, 64B-line, 1MB inclusive write-back, LRU, 6-cycle latency, 1-cycle throughput, 8-entry MSHR

Memory 2D Base 350-cycle minimum latency, 8B-wide bus, 800MHz double data rate bus, 12.8GB/sec
3D Base 250-cycle minimum latency, 64B-wide bus, 3GHz, 192GB/sec

tecting the first condition is easy because an L2 cache just needs to
test whether the requested physical address is in its local memory
space. On the other hand, to detect the second condition, we adopt
a page-level counting Bloom filter similar to RegionScout [29] or
Page Sharing Table [12]. Upon allocating or deallocating a 64B
line, the page-level counting Bloom filter is updated to keep its
counter values consistent with the corresponding cache tag array.

Now we describe the miss handling process of our proposed
scheme. Note that the line size we employ is 64B, not 4KB, so all
coherence messages are handled at that granularity. Furthermore,
without loss of generality, we assume the MESI protocol. Upon an
L2 miss, the L2 finds a victim page using the global LRU policy,
allocates space (sixty-four 64B lines), and creates MSHR entries
for any line not already cached. The miss generates a typical MESI
protocol message, triggering lookups in other L2 caches (we use an
inclusive cache for simplicity). When a processor receives this co-
herence request, it looks up both its L2 and its page-level counting
Bloom filter, responding with the conventional MESI message as
well as the 1-bit datum from the filter.

Once all responses reach the requesting processor, this processor
will execute the appropriate memory fetch as detailed next. Case
1: the required page is mapped to the local memory and no part
of the page is being shared. The entire page is fetched into the re-
questor’s L2 (just as in the single-processor case). The requested
line is marked Exclusive (read) or Modified (write) while the other
sixty-three lines are marked Exclusive. Case 2: the requested line
is mapped to local memory and not shared, but the Bloom filter
bit from at least one remote processor indicates that at least one
line from the page is cached. The requestor fetches only the re-
quested line from local memory and places it in its L2. Case 3:
the requested line is mapped to remote memory. This line alone
is placed in the local L2. Case 4: another processor delivers the
requested line. This line alone is placed in the local L2.

Should a new demand miss be generated to the same page while
a previous miss is still being processed, we have designed our adap-

tive SMART-3D to perform as follows: (1) If the previous miss is
waiting for coherence responses from other processors, this new
demand miss generates a conventional coherence message. (2) If
the previous miss is already fetching the entire page from the main
memory, then this new miss request just waits for this page to be
fetched. (3) If the previous miss is fetching a 64B line alone, then
this new miss request initiates a second, separate miss handling
process.

Finally, the requesting processor may itself receive a request
message from a second requester that may happen to request (1)
a line from a page that is waiting for the Bloom filter data of other
processors, or (2) a line from a page that is already being fetched
from main memory. In (1), the initial requester gives up attempting
to fetch an entire page and instead settles for a single line. In (2),
the initial requester responds to the second requester after it has
completed caching the target line.

Clearly, an adaptive SMART-3D cache will often fail to fetch an
entire page, leaving invalid lines. These lines effectively reduce the
capacity of the L2 cache, a downside of our adaptive scheme. In our
design, if a page is partially allocated and the L2 cache encounters a
miss to an invalid line in this partial page, the L2 cache initiates the
conventional miss handling process for the missing 64B line and
fills the line either from other processors or from the main memory.

4. EVALUATION

4.1 Simulation Framework
We evaluate our SMART-3D using SESC [36]. To evaluate single-

threaded applications on a single-core processor and multiple ap-
plications on a multi-core system, we used the SPEC2006, NU-
MineBench, and Olden benchmark suites. To evaluate multi-threaded
applications on both single- and a dual-socket multi-core systems,
we use the SPLASH-2 benchmark. We have excluded applications
that fail to cross-compile or use unsupported system calls.

We compare our SMART-3D architecture against several other

5.
6

5.
9

6.
0

6.
6

5.
4

6.
7

0.0

1.0

2.0

3.0

4.0

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

42
9.

m
cf

44
5.

go
bm

k

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
3.

xa
la

nc
bm

k

41
0.

bw
av

es

41
6.

ga
m

es
s

43
3.

m
ilc

43
5.

gr
om

ac
s

43
6.

ca
ct

us
AD

M

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
7.

de
al

II

45
0.

so
pl

ex

45
3.

po
vr

ay

SPECint2006 SPECfp2006

Sp
ee

du
p

4.
2

0.0
1.0

2.0
3.0

4.0

45
4.

ca
lc

ul
ix

45
9.

G
em

sF
DT

D

48
1. wr
f

48
2.

sp
hi

nx
3 bh

bi
so

rt

em
3d m
st

pe
rim

et
er

po
we

r

tre
ea

dd ts
p

Ba
ye

si
an

EC
LA

T

fu
zz

y-
km

ea
ns

km
ea

ns

Sc
al

Pa
rC

se
m

ph
y

SV
M

-R
FE

ut
ilit

y-
m

in
e Al
l

M
em

or
y

in
te

ns
iv

e

SPECfp2006 Olden NU-MinBench Geomean

Sp
ee

du
p

2D-GHB (1MB) 2D-VLS (1MB) 3D Base (1MB) 3D-GHB (1MB) SMART-3D (1MB) Perfect L2

Figure 6: Performance Improvement of Single-Threaded Applications

machines. The parameters for the 2D and 3D baseline processors
are listed in Table 2. We enumerate all the machine models in the
following bullets. Based on these machine models, we also varied
the sizes of cache capacity as detailed subsequently. Their access
latencies were estimated using Cacti 5 [45] and are listed in Ta-
ble 3.
• 2D Base: A barebones 2D processor with off-chip DRAM mod-

ules. Its system parameters are listed in Table 2.
• 2D-GHB: A 2D Base with a PC/CS Global History Buffer (GHB)

prefetcher [30]. The size of the GHB prefetch buffer is 32KB.
• 2D-VLS: A 2D Base processor with Virtual Line Scheme that

employs and fetches 4KB cache lines [44].
• 3D Base: A barebones 3D processor with DRAM layers stacked

directly atop [23, 25]. The parameters are listed in Table 2. This
model also assumes a reduced memory latency of a true-3D
memory [24].

• 3D-GHB: A 3D Base with a PC/CS GHB prefetcher [30]. The
size of the GHB prefetch buffer is 32KB.

• SMART-3D: Our Stacked Memory-Aware, Rich TSV-enabled
3D processor.

Table 3: Access Latency of an 8-Way Cache (in cycles of a 3GHz
clock, U: unused in this paper)

64 128 256 512 1 2 4 8 16
KB KB KB KB MB MB MB MB MB

Optimal $ U U U U 6 6 9 15 22
64-subbank $ 5 6 6 6 7 8 10 16 U

Note that we aggressively assume the memory bus of 3D Base
runs at core clock frequency with cache-line size width and is fully
pipelined [23, 25]. Thus, 3D Base can return one cache line back to
the L2 on per-core-clock cycle basis. As we will show later, such an
aggressive design makes the utilization of the bus very low. Given
this observation, we did not further evaluate an even more aggres-
sive mechanism using multiple channels, which also burdens the
area of having multiple memory controllers. However, note that our
proposal can support multiple channels as shown in Figure 4, thus
orthogonal to such multiple channel implementations. In addition
to such aggressive bandwidth model, we assumed a 30% reduction

0%

20%

40%

60%

80%

100%

42
9

46
2

47
1

47
3

48
3

41
0

43
3

43
6

43
7

45
0

45
9

48
2

em
3d m
st

pe
rim

et
er

tre
ea

dd ts
p

SV
M

-R
FE

BW
 U

til
iz

at
io

n

2D Base
2D-VLS
3D Base
SMART-3D

Figure 7: Bandwidth Utilization of Memory-Intensive Apps

in memory latency for 3D Base to imitate the benefit gained by
using a true-3D memory model [24].

4.2 Single-Core Performance

4.2.1 Overall Performance Evaluation
First, we report the speedup of various machine models in Fig-

ure 6 for all single-thread benchmark programs. Each bar shown
was normalized to the 2D Base model (=1.0). The Memory-intensive
category is the collection of those applications with more than 1.5x
speedup on the Perfect L2 model. As shown, the benefit of simple
DRAM stacking (3D Base) is rather limited for single-thread appli-
cations. The average speedup of 3D Base is only 1.25x and 1.12x
for Memory-intensive applications and All, respectively. Further,
it only achieved 44.1% (Memory-intensive) and 67.4% (All) of the
performance of the ideal Perfect L2 model. On the other hand, the
average speedup of our SMART-3D is 2.14x (Memory-intensive)
and 1.46x (All), capturing 75.9% (Memory-intensive) and 88.1%
(All) of the Perfect L2 performance. As shown, 3D Base can be
improved with a prefetcher (bars shown in 3D-GHB); however,
even with this area investment, the speedup is only about half what
SMART-3D achieves. Fair-capacity results will be discussed later.
Another noteworthy point is that, as explained previously, the ac-
cess latency of the SMART-3D 64-subbank cache is one cycle longer
(seven cycles total) than that of 3D Base. In spite of this penalty, it
still achieves much higher performance than 3D Base. Also shown
are the results of a 2D-VLS machine (Virtual Line Scheme [44])

5.
9

5.
0

0.0

1.0

2.0

3.0

4.0

42
9.

m
cf

46
2.

lib
qu

an
tu

m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
3.

xa
la

nc
bm

k

41
0.

bw
av

es

43
3.

m
ilc

43
6.

ca
ct

us
AD

M

43
7.

le
sl

ie
3d

45
0.

so
pl

ex

45
9.

G
em

sF
DT

D

48
2.

sp
hi

nx
3

em
3d m
st

pe
rim

et
er

tre
ea

dd ts
p

SV
M

-R
FE

G
eo

m
ea

n
(a

ll)

G
eo

m
ea

n
(M

I)

Sp
ee

du
p

3D Base w/ 64KB L1
3D-GHB w/ 1MB L2
3D Base w/ 2MB L2
SMART-3D w/ 1MB L2

Figure 8: Performance and Area Comparison

5.
9

5.
9

5.
9

5.
9

5.
2

5.
9

6.
0

6.
7

5.
4

6.
6

0.0
1.0
2.0

3.0
4.0
5.0

42
9.

m
cf

46
2.

lib
qu

an
tu

m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
3.

xa
la

nc
bm

k

41
0.

bw
av

es

43
3.

m
ilc

43
6.

ca
ct

us
AD

M

43
7.

le
sl

ie
3d

45
0.

so
pl

ex

45
9.

G
em

sF
DT

D

48
2.

sp
hi

nx
3

em
3d m
st

pe
rim

et
er

tre
ea

dd ts
p

SV
M

-R
FE

G
eo

m
ea

n
(a

ll)

G
eo

m
ea

n
(M

I)

Sp
ee

du
p

3D Base (1MB) SMART-3D (128KB)
SMART-3D (256KB) SMART-3D (512KB)
SMART-3D (1MB) SMART-3D (2MB)
Perfect L2

All normalized to 2D Base (1MB)

Figure 9: Performance Evaluation of Cache Size Sensitivity for SMART-3D

that fetches a page upon an L2 miss. The original VLS work as-
sumed one-cycle and two-cycle latencies for the L1 and L2. The
latter is no longer appropriate for the sheer size of modern L2 and
was updated to six cycles. As shown in Figure 6, 2D-VLS, in fact,
degrades performance by 8.1% on average due to the trailing-edge
penalties. These results demonstrate that a conventional architec-
ture with restricted memory bandwidth cannot utilize a 4KB line
size even when the workloads have good spatial locality. To fur-
ther understand this issue, Figure 7 plots bandwidth utilization for
memory-intensive applications. In fact, 2D-VLS nearly saturates
its maximum bandwidth in the majority of applications. The figure
also shows that the bandwidth provided by 3D Base is more than
enough for single-thread applications (no application is bandwidth-
bound). Finally, SMART 3D also shows low bandwidth utilization
in the figure although it generates more data traffic on the mem-
ory bus. This is simply because the overall bandwidth provided by
the TSV bus is massive, compared to the amount of data fetched.
This also suggests that there is plenty of room on the TSV bus to
fulfill larger data demand when running multiple applications on a
multi-core system.

One drawback of SMART-3D is the increase in conflict misses as
mentioned earlier. However, we found that 473.astar and 436.cac-
tusADM are the only two memory-intensive applications with an
increased MPKI (by 17.7% and 158.9%). That is why their SMART-
3D speed-ups are lower than those for 3D Base in Figure 6. Note
that these applications could be optimized for SMART-3D by re-
grouping the data to enhance page-level locality.

Lastly, we must consider that SMART-3D may generate more L1
invalidations as an inclusive-cache machine. In our experiments,
we found the number of L1 invalidations is very small compared
to the number of L1 accesses (2.6% in the worst case, 471.om-
netpp). That is, when a line is evicted from the L2, there is a
good chance that all the corresponding L1 lines have already been
evicted from the L1 cache. Further, we also examined the increase
in the L1 miss rate due to such invalidations. In most applications,
the L1 miss rate is barely affected. 436.cactusADM suffers the
most, but still the L1 miss rate increases by only 1.4%. On average,
the L1 miss rate is increased by just 0.04%, skewed, obviously, by
436.cactusADM.

4.2.2 Performance and Area Comparison
So far, we have assumed a non-blocking L2 with an 8-entry

MSHR, but for SMART-3D, we require more area to keep eight
64B lines in each bank of our 64-subbank MSHR. The area of our
64-bank MSHR, approximately 32KB, is sixty-four times larger
than that in the baseline. To perform fair comparison in terms of
area cost, we considered the following processor models in Fig-
ure 8: (1) 3D Base with 64KB data L1, (2) 3D Base with 32KB
GHB prefetch buffer, (3) 3D Base with an enlarged 2MB L2 (con-
servative comparison), and (4) SMART-3D. Note that the areas are
not exactly the same but close. All base cases have a 1MB L2.
We normalize the performance to that of 2D Base. For the GHB
machine, a GHB prefetcher maintains 256-entry global history and
fetches four lines (a prefetch depth of four) to its dedicated 32KB
prefetch buffer. For brevity, we show results for memory-intensive
applications only but report the averages for all applications in Fig-
ure 8. On average, expanding the L1 data cache to 64KB (3D Base
w/ 64KB L1) and using a GHB (3D-GHB w/ 1MB L2) improves
the performance by 12.1% and 31.2%, repsectively. More inter-
estingly, the performance improvement for 3D Base w/ 2MB L2
falls in between at 18.0% while SMART-3D w/ 1MB L2 is 46.1%.
These results show that just enlarging the L2 is not worth the area
cost; a considerable portion of the extra capacity stores data is not
reused.

4.2.3 Evaluation of Cache Size Sensitivity
In this section, we experiment a variety of L2 sizes for SMART-

3D. A larger cache will reduce conflict misses but requires a longer
access latency as shown in Table 3. Figure 9 shows the speedup
numbers for SMART-3D on an eight-way L2 from 128KB to 2MB.
We also show 3D Base as a reference point. As with Figure 8,
results are normalized to 2D Base. As shown, SMART-3D with
a 256KB L2 outperforms 3D Base with a, much larger, 1MB L2
in most cases (excepting 473.astar, 436.cactusADM, and SVM-
RFE). In the case of 462.libquantum and 450.soplex, SMART-
3D with 256KB L2 achieves speedups of 5.90x and 4.38x, respec-
tively. Moreover, SMART-3D with a 256KB L2 performs almost
as well as Perfect L2 for 437.leslie3d, perimeter, treeadd, and
tsp. When raising the cache capacity to 512KB, 1MB, and 2MB,

0.0

1.0

2.0

3.0

4.0

5.0

410 459 410 462 410 473 429 450 429 473 433 437 433 450 436 450 436 462 436 483 437 483 450 482 459 462 462 473 462 482 462 483 Geomean

Sp
ee

du
p

3D Base (2MB) 3D Base (4MB)
3D-GHB (4MB) SMART-3D (1MB)
SMART-3D (2MB)

All normalized to 2D Base (2MB)

(a) 2-Core System (Baseline: 2D Base with 2MB)

0.0

1.0

2.0

410 429
459 482

410 433
436 483

410 437
473 482

410 450
471 482

410 462
471 482

429 437
471 482

429 437
473 483

429 459
471 483

429 471
473 482

433 436
471 473

433 450
459 471

433 450
462 483

433 462
473 482

436 437
462 483

436 437
471 473

437 462
482 483

Geomean

Sp
ee

du
p

3D Base (4MB) 3D Base (8MB)
3D-GHB (8MB) SMART-3D (2MB)
SMART-3D (4MB)

All normalized to 2D Base (4MB)

(b) 4-Core System (Baseline: 2D Base with 4MB)

Figure 10: Performance Improvement of Multi-Program Workloads on a Multi-Core Processor

0.0

1.0

2.0

3.0

4.0

2C 4C 8C 2C 4C 8C 2C 4C 8C 2C 4C 8C 2C 4C 8C 2C 4C 8C 2C 4C 8C 2C 4C 8C 2C 4C 8C 2C 4C 8C 2C 4C 8C 2C 4C 8C 2C 4C 8C

barnes cholesky fft fmm lu ocean radiosity radix raytrace volrend water-n2 water-sp Geomean

Sp
ee

du
p

2D Base (nMB) 3D Base (nMB)
SMART-3D (nMB) Perfect L2

4.
5

4.
7

6.
4

6.
6

Figure 11: Performance Improvement of Multi-Threaded Workloads on a Multi-Core Processor

the SMART-3D will achieve 73.9%, 75.8%, and 77.4% of the per-
formance of Perfect L2.

4.3 Multi-Core Performance
Next, we evaluate the performance of a multi-core processor

that is running several single-threaded applications simultaneously.
Here, we assume similar the same processor models as in Table 2
except that the L2 cache is shared among cores as shown in Fig-
ure 4. Since simulating all permutations of all forty-two applica-
tions in the suites is impractical, we formed sixteen groups. Each
group contains randomly selected memory-intensive applications
from SPEC2006. Figure 10 shows the simulation results of these
groups on a two-core and four-core system. In these experiments,
the L2 size varies depending on the number of cores. The baseline
(=1.0) is a 2D Base machine with nMB L2 where n is the number
of cores. We also conducted experiments for the following configu-
rations: (1) 3D Base with an nMB cache, (2) 3D Base with a 2nMB
cache, (3) 3D Base with a 2nMB cache and a GHB prefetcher, (4)
SMART-3D with a 0.5nMB cache, and (5) SMART-3D with an
nMB cache.

As shown in Figure 10(a), on a two-core system, the SMART-3D
with a 2MB L2 outperforms all other models except 436.cactu-
sADM / 450.soplex and 436.cactusADM / 483.xalancbmk. As
explained earlier, 436.cactusADM has very bad spatial locality,

so its performance is degraded with our scheme. However, when it
is scheduled with 462.libquantum, the overall performance is still
improved mainly due to the improvement of 462.libquantum. In
many cases, even a 1MB L2 SMART-3D can outperform a 4MB
3D-GHB. On average, SMART-3D 1MB and 2MB achieves 2.31x
and 2.40x speedup for a two-core whereas the best performing al-
ternative, a 4MB 3D-GHB, only reaches 1.97x.

Similar trend is found in Figure 10(b) on four-core systems—a
smaller SMART-3D 4MB outperforms the larger 3D-GHB 8MB in
many cases. One outlier foursome was found: the performance of
429.mcf / 459.GemsFDTD / 471.omnetpp / 483.xalancbmk on
SMART-3D is lower than that on 2D Base even though each shows
a decreased L2 MPKI when run individually on a single-core sys-
tem. Here, the cache contention among these applications resulted
in an overall performance degradation, suggesting a new cache par-
titioning strategy may be needed; this is beyond the scope of this
paper. On average, a SMART-3D 4MB machine improves perfor-
mance by 37.1% for a quad-core while a 3D-GHB 8MB improves
it by 35.6%. We also evaluated an eight-core system, but do not
show the results for lack of space. A SMART-3D 8MB which have
1.44x over the 1.42x achieved by a 3D-GHB 16MB.

Next we consider multi-threaded applications from the SPLASH-
2 benchmark suite. Here again we scale the L2 capacity with the
number of cores. Figure 11 shows the simulation results on a two-

Table 4: Relative Traffic of SMART-3D (Normalized to 3D Baseline)
Benchmark 429 462 471 473 483 410 433 436 437 450 459 482 em3d mst peri- tree- tsp SVM-

meter add RFE
L2 fill 4.77 1.01 27.98 75.60 22.38 1.00 5.91 158.98 1.62 3.05 17.04 2.19 3.64 38.51 1.03 1.04 1.06 59.38

L2 write-back 8.10 1.00 6.00 55.51 38.35 1.00 4.69 182.38 1.83 2.05 3.48 2.33 53.28 1.95 1.00 1.01 1.05 52.27
Row miss 0.20 0.10 0.98 1.51 1.11 0.15 0.31 3.56 0.09 0.10 0.49 0.28 1.63 0.90 0.31 0.02 0.05 0.98

, four-, and eight-core processor. Our SMART-3D outperforms
both 2D Base and 3D Base, especially for memory-intensive ap-
plications. Although our proposed scheme often degrades perfor-
mance when running fmm and water-n2, which are computation-
intensive, our design generally improves the performance of multi-
threaded applications.

4.4 Dual-Socket Performance
To evaluate our Adaptive SMART-3D design as proposed in Sec-

tion 3.4, we performed simulations for a dual-socket system. Be-
cause our simulation infrastructure does not support a multi-level
coherence protocol, we simply model a two-socket single-core sys-
tem connected through an off-chip bus. We assume write-through
L1 caches and use the MESI protocol between the L2 caches on
different sockets. For the perfect L2, we assumed that every single
access to the perfect cache is a cache hit regardless of whether the
line is shared with or modified by other processor. We use binary
files compiled by a conventional compiler that is not optimized for
NUMA architectures, and our OS allocates a newly-requested page
to the memory space of the requesting processor.

As shown in Figure 12, our Adaptive SMART-3D improves the
performance of memory-intensive applications well. For exam-
ple, our design achieves 3.63x speedup for ocean. Not surpris-
ingly, it is also found that our scheme may degrade performance for
computation-intensive applications, 20% degradation in the worst
case (raytrace). We carefully reviewed the results and found that
the L2 miss rate had increased from 0.4% to 0.8% on one socket
and from 0.32% to 1.06% on the other socket (one reason why
the L2 miss rate is so low is that our L1 is write-through, so a
lot of write-through traffic accounts for L2 hits.) Since raytrace
is compute-bound, even a small increment in L2 miss rate turns
out to be a significant impact to the overall performance. Further-
more, we profiled the memory trace for raytrace and found that
59% of pages are shared between these two processors. However,
out of sixty-four cache lines in each page, only 7.56 cache lines are
actually shared on average. This indicates a need for a SMART-
3D-aware compiler to aggregate the shared lines to minimize un-
necessary misses.

0.0

1.0

2.0

3.0

4.0

ba
rn

es

ch
ol

es
ky fft

fm
m lu

oc
ea

n

ra
di

os
ity

ra
di

x

ra
yt

ra
ce

vo
lre

nd

wa
te

r-n
2

wa
te

r-s
p

G
eo

m
ea

n

Sp
ee

du
p

2D Base (1MB each)
3D Base (1MB each)
SMART-3D (1MB each)
Perfect L2

4.3

Figure 12: Performance Improvement of Multi-Threaded
Workloads on Two Processors in a Different Socket

4.5 Energy Consumption Analysis
The power consumed by switching a TSV is several orders of

magnitude lower than an off-chip I/O pin [32]. In other words, be-

cause of power supply and packaging constraints, it is simply im-
possible, in a conventional 2D system, to bring in an entire page at
once (to eliminate the trailing-edge effect) by adding enough pins.
We simply cannot afford the required power before we put in a de-
sirable number of pins on package.

With respect to the 3D baseline design, we found an interest-
ing trade-off between the 3D baseline and our SMART-3D. Table 4
shows the relative traffic of SMART-3D normalized to 3D Base
when running a memory-intensive application on a single-core pro-
cessor with a 1MB L2 cache and 64-bank 4GB DRAM. Clearly, our
new fetching scheme may bring in unwanted data. However, we
also found that the total number of row buffer misses (i.e., DRAM
array look-ups) of our SMART-3D is much lower than that of the
3D baseline in the majority of the cases, leading to potential energy
advantage using SMART-3D. The low row buffer hit rate of the
3D baseline can simply be attributed to its multiple access streams
going to different rows of a memory bank. Even if these accesses
have good spatial locality, two (or more) memory streams can be
issued to different rows alternately in the same memory bank, caus-
ing row buffer misses all the time. On the other hand, in SMART-
3D, each L2 miss and its induced write-back collapse these other-
wise finer-grained accesses (64B each) into one larger transaction
(4KB), thereby reducing the total number of row buffer misses.

Our simulation results show that the average row buffer hit rate
of memory-intensive applications in 3D Base is 55.05%. This sug-
gests that we only use two 64B lines before closing a DRAM row
even though other cache lines in this row buffer may be accessed in
a near future. In contrast, SMART-3D fetches an entire row into the
L2 cache, eliminating potentially redundant DRAM array lookups
(note that aggregate row buffer capacity is usually smaller than the
capacity of L2 cache).

To evaluate the energy implication, we modeled energy con-
sumption of an L2 cache using Cacti 5 [45] (Table 5). For the
energy model of the SMART-3D cache, we modeled our cache as
writing and reading all sixty-four subbanks for fill and write-back
operations, respectively. We also conservatively modeled the en-
ergy consumed by the TSVs for fill and write-back operations by
extracting TSV capacitance using Synopsys Raphael [43]. Inter-
estingly, in a conventional subarray-based cache design, most of
the energy is consumed in the H-tree network, not in the subbanks.
Consequently, the energy consumed by a fill or a write-back oper-
ation in our 64-subbank cache is not high.

Table 5: Energy Values from Cacti 5 (nJ) (including TSV En-
ergy for SMART-3D cache)

Read Write Fill Write-back
Baseline (8-way 1MB) $ 0.28 0.27 0.27 0.28

SMART-3D (64-subbank 8-way 1MB) $ 0.30 0.32 0.53 0.83

Additionally, we used Cacti 5 to model the energy consump-
tion of commodity DRAM arrays. We modeled each tile as 32nm
256Mb array as explained in Section 3.3 and found that each tile
consumes 34.85 nJ upon a row buffer miss. The DRAM architec-
ture of 3D Base assumes each tile has their own private 256-bit
TSV. Hence, it requires two DRAM tile accesses to obtain a 64B

429.
mcf

462.
libquantum

471.
omnetpp

473.
astar

483.
xalancbmk

410.
bwaves

433.
milc

436.
cactusADM

437.
leslie3d

450.
soplex

459.
GemsFDTD

482.
sphinx3

em3d mst perimeter treeadd tsp SVM-
RFE

4.79

3D
 B

as
e

SM
AR

T-
3D

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
la

tiv
e

En
er

gy

DRAM array lookup
Wires on a DRAM layer
TSVs for DRAM bus
L2 Write-back
L2 Fill
L2 Write
L2 Read

Figure 13: Dynamic Energy Consumption of L2 Cache, DRAM Bus, and DRAM Arrays

line. We also modeled the energy consumption of the wires con-
necting each DRAM tile to the TSVs in the middle of each die
using the global interconnect model of the Predictive Technology
Model [7]. Here, we assumed that each DRAM layer is 1GB as
shown in Figure 5(c). Based on these assumptions, we estimated
that these wires consume 0.32 nJ and 20.78 nJ upon a DRAM ac-
cess for 3D Base and SMART-3D, respectively. Furthermore, we
modeled the energy consumption of the TSVs between the mem-
ory controller layer and four DRAM layers (4GB). Upon a DRAM
access, we estimated that 3D-Base and SMART-3D consume 0.02
nJ and 1.34 nJ in these TSVs, respectively.

Figure 13 shows the dynamic energy breakdown with respect
to the L2 cache, DRAM bus, and DRAM arrays when running
memory-intensive applications on a processor with a 1MB L2 cache
and 64-bank 4GB DRAM. As shown in the figure, a large amount
of energy is consumed by the DRAM arrays when we run memory-
intensive applications. As explained previously, because SMART-
3D reduces the number of row buffer misses, it saves a lot of en-
ergy in many applications. However, when we run an applica-
tion that does not have good spatial locality, e.g., 473.astar and
436.cactusADM, SMART-3D consumes a large amount of energy
in DRAM bus (due to more L2 misses and larger data transfer upon
an L2 miss) and in DRAM arrays (due to more row buffer misses).
On average (geomean), we found that these three components of
SMART-3D consume 47% of energy of 3D-base. We also per-
formed another estimation with a shared TSV design for 3D Base,
i.e., fetching 64B from one DRAM tile, and found that these three
components of SMART-3D consume 80% of energy of 3D Base.

5. CONCLUSION
In this paper, we demonstrated that simply stacking main mem-

ory on top of a processor die does not exploit the full potential
of 3D-IC technology; in particular, it falls short on improving the
performance of single-thread applications. Toward this goal, we re-
architected the L2 cache and its interface to the 3D stacked DRAM,
proposing SMART-3D to ameliorate latency by exploiting the ex-
cessive, high-density bandwidth of TSV between the processor last-
level cache and the 3D DRAM. Upon each L2 miss, the SMART-
3D architecture fetches an entire page of data but keeps the caches
organized by 64B lines to avoid complicating coherency. We also
proposed an adaptive SMART-3D design to mitigate the false shar-
ing problem in a multi-socket system. Finally, we analyzed the de-
sign trade-off for the DRAM interface without compromising the
DRAM density with the TSV placement. We evaluated SMART-
3D with single-threaded, multi-programmed, multi-threaded, and
multi-socket workloads, and we found that our design improves
performance significantly. On average, for single-threaded memory-
intensive applications, the speedups range from 1.53 to 2.14 com-

pared to a conventional 2D architecture and from 1.27 to 1.72 com-
pared to prior 3D-stacked memory designs. Furthermore, as our
analysis showed, SMART-3D can even lower the energy consump-
tion in the L2 cache and 3D DRAM for it reduces the total number
of row buffer misses.

6. ACKNOWLEDGMENT
This research is supported in part by an NSF grant CCF-0811738

and the Center for Circuit and System Solutions (C2S2), a research
center under Focus Center Research Program sponsored by Semi-
conductor Research Corporation. The authors would also like to
thank anonymous reviewers and Dae Hyun Kim at Georgia Tech
for their comments and assistance on the final version of the pa-
per.

7. REFERENCES
[1] International Technology Roadmap for Semiconductors, 2007.
[2] C. Anderson and J. Baer. Two Techniques for Improving

Performance on Bus-Based Multiprocessors. In Proceedings of the
International Symposium on High Performance Computer
Architecture, 1995.

[3] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H.
Loh, D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed,
J. Rupley, S. Shankar, J. Shen, and C. Webb. Die Stacking (3D)
Microarchitecture. In Proceedings of the International Symposium on
Microarchitecture, 2006.

[4] S. Borkar. Thousand core chips: a technology perspective. In
Proceedings of the 44th Design Automation Conference, 2007.

[5] D. Burger, J. Goodman, and A. Kägi. Memory Bandwidth
Limitations of Future Microprocessors. In Proceedings of the
International Symposium on Computer Architecture, 1996.

[6] J. Cantin, M. Lipasti, and J. Smith. Stealth Prefetching. In
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, 2006.

[7] Y. Cao, T. Sato, M. Orshansky, D. Sylvester, and C. Hu. New
paradigm of predictive MOSFET and interconnect modeling for early
circuit simulation. In Proceedings of the IEEE Custom Integrated
Circuits Conference, pages 201–204, 2000.

[8] Y. Chen and M. Dubois. Cache Protocols with Partial Block
Invalidations. In Proceedings of Seventh International Parallel
Processing Symposium, 1993.

[9] C. Dubnicki and T. LeBlanc. Adjustable Block Size Coherent
Caches. In Proceedings of the International Symposium on Computer
Architecture, 1992.

[10] M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and
P. Stenström. The Detection and Elimination of Useless Misses in
Multiprocessors. In Proceedings of the International Symposium on
Computer Architecture, 1995.

[11] S. Dwarkadas, P. Keleher, A. Cox, and W. Zwaenepoel. Evaluation of
Release Consistent Software Distributed Shared Memory on
Emerging Network Technology. In Proceedings of the International
Symposium on Computer Architecture, 1993.

[12] M. Ekman, P. Stenström, and F. Dahlgren. TLB and Snoop
Energy-Reduction using Virtual Caches in Low-Power
Chip-Multiprocessors. In Proceedings of the International
Symposium on Low Power Electronics and Design, 2002.

[13] J. R. Goodman. Using cache memory to reduce processor-memory
traffic. In Proceedings of the International Symposium on Computer
Architecture, 1983.

[14] J. H. Kelm, D. R. Johnson, M. R. Johnson, B. Tuohy, N. Crago,
A. Mahesri, S. S. Lumetta, M. I. Frank, and S. J. Patel. Rigel: An
Architecture and Scalable Programming Interface for a 1000-core
Accelerator. In Proceedings of the International Symposium on
Computer Architecture, 2009.

[15] T. Kgil, S. D’Souza, A. Saidi, N. Binkert, R. Dreslinski, T. Mudge,
S. Reinhardt, and K. Flautner. PicoServer: Using 3D Stacking
Technology To Enable A Compact Energy Efficient Chip
Multiprocessor. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2006.

[16] J. Kim, C. Nicopoulos, D. Park, R. Das, Y. Xie, V. Narayanan,
M. Yousif, and C. Das. A Novel Dimensionally-Decomposed Router
for On-Chip Communication in 3D Architectures. In Proceedings of
the International Symposium on Computer Architecture, 2007.

[17] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way
Multithreaded SPARC Processor. IEEE micro, 25(2):21–29, 2005.

[18] D. L. Lewis and H.-H. S. Lee. Architectural Evaluation of 3D
Stacked RRAM Caches. In IEEE International 3D System
Integration Conference, 2009.

[19] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan, and
M. Kandemir. Design and Management of 3D Chip Multiprocessors
Using Network-in-Memory. In Proceedings of the International
Symposium on Computer Architecture, 2006.

[20] W. Lin, S. Reinhardt, and D. Burger. Reducing DRAM Latencies
with an Integrated Memory Hierarchy Design. In Proceedings of the
International Symposium on High Performance Computer
Architecture, 2001.

[21] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA
Tesla: A Unified Graphics and Computing Architecture. IEEE Micro,
28(2):39–55, 2008.

[22] J. S. Liptay. Structural Aspects of the System/360 Model 85, Part II:
The Cache. IBM Systems Journal, 7(1):15–21, 1968.

[23] C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari. Bridging the
Processor-Memory Performance Gap with 3D IC Technology. IEEE
Design & Test of Computers, 22(6):556–564, 2005.

[24] G. Loh. 3D-Stacked Memory Architectures for Multi-core
Processors. In Proceedings of the International Symposium on
Computer Architecture, 2008.

[25] G. Loi, B. Agrawal, N. Srivastava, S. Lin, T. Sherwood, and
K. Banerjee. A Thermally-Aware Performance Analysis of Vertically
Integrated (3-D) Processor-Memory Hierarchy. In Proceedings of the
43rd Annual Conference on Design Automation, 2006.

[26] N. Madan and R. Balasubramonian. Leveraging 3D Technology for
Improved Reliability. In Proceedings of the International Symposium
on Microarchitecture, 2007.

[27] N. Madan, L. Zhao, N. Muralimanohar, A. Udipi,
R. Balasubramonian, R. Iyer, S. Makineni, and D. Newell.
Optimizing Communication and Capacity in a 3D Stacked
Reconfigurable Cache Hierarchy. In Proceedings of the International
Symposium on High Performance Computer Architecture, 2009.

[28] R. E. Matick and S. E. Schuster. Logic-based eDRAM: Origins and
rationale for use. IBM Journal of Research and Development,
49(1):145, 2005.

[29] A. Moshovos. RegionScout: Exploiting Coarse Grain Sharing in
Snoop-Based Coherence. In Proceedings of the International
Symposium on Computer Architecture, volume 32, page 234. IEEE
Computer Society; 1999, 2005.

[30] K. Nesbit and J. Smith. Data Cache Prefetching Using a Global
History Buffer. In Proceedings of the International Symposium on
High Performance Computer Architecture, 2004.

[31] H. Olnowich. Set associative sector cache, Jan. 8 1985. US Patent
4,493,026.

[32] R. Patti. 3D-ICs: The Evolution and Direction of a New Technology,

IEEE International 3D Systems Integration Conference. 2009.
[33] D. G. Perez, G. Mouchard, and O. Temam. MicroLib: A Case for the

Quantitative Comparison of Micro-Architecture Mechanisms. In
Proceedings of the International Symposium on Microarchitecture,
2004.

[34] M. Petracca, B. G. Lee, K. Bergman, and L. P. Carloni. Photonic
NOCs: System-Level Design Exploration. IEEE MICRO, 29(4),
2009.

[35] S. Przybylski. The Performance Impact of Block Sizes and Fetch
Strategies. In Proceedings of the International Symposium on
Computer Architecture, 1990.

[36] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos. SESC simulator,
January 2005. http://sesc.sourceforge.net.

[37] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa,
E. Grochowski, T. Juan, and P. Hanrahan. Larrabee: a Many-Core
x86 Architecture for Visual Computing. In SIGGRAPH ’08: ACM
SIGGRAPH 2008 papers, 2008.

[38] A. Smith. Line (block) Size Choice for CPU Cache Memories. IEEE
Transactions on Computers, 36(9):1063–1076, 1987.

[39] A. J. Smith. Sequential Program Prefetching in Memory Hierarchies.
IEEE Computer, 1978.

[40] A. J. Smith. Cache Memories. ACM Comput. Surv., 14(3):473–530,
1982.

[41] S. Somogyi, T. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.
Spatial Memory Streaming. In Proceedings of the International
Symposium on Computer Architecture, 2006.

[42] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen. A novel architecture of
the 3D stacked MRAM L2 cache for CMPs. In Proceedings of the
International Symposium on High Performance Computer
Architecture, 2009.

[43] Synopsis. “Raphael”. http://www.synopsys.com.
[44] O. Temam and Y. Jegou. Using Virtual Lines to Enhance Locality

Exploitation. In Proceedings of the International Conference on
Supercomputing, 1994.

[45] S. Thoziyoor, N. Muralimanohar, J. Ahn, and N. Jouppi. CACTI 5.1.
HP Laboratories, Palo Alto, Technical Report, 20, 2008.

[46] J. Torrellas, M. Lam, and J. Hennessy. Shared Data Placement
Optimizations to Reduce Multiprocessor Cache Miss Rates. In
Parallel Processing: International Conference: Selected Papers.,
1990.

[47] J. Torrellas, M. Lam, and J. Hennessy. False Sharing and Spatial
Locality in Multiprocessor Caches. IEEE Transactions on
Computers, 43(6):651–663, 1994.

[48] W.-H. Wang, J.-L. Baer, and H. M. Levy. Organization and
Performance of a Two-Level Virtual-Real Cache Hierarchy. In
Proceedings of the International Symposium on Computer
Architecture, 1989.

[49] Z. Wang, D. Burger, S. Reinhardt, K. McKinley, and C. Weems.
Guided Region Prefetching: A Cooperative Hardware/Software
Approach. In Proceedings of the International Symposium on
Computer Architecture, volume 30, 2003.

[50] S. Wilton and N. Jouppi. An Enhanced Access and Cycle Time
Model for On-Chip Caches. Digital WRL Research Report 93/5,
1994.

[51] D. H. Woo, J. B. Fryman, A. D. Knies, M. Eng, and H.-H. S. Lee.
POD: A 3D-Integrated Broad-Purpose Acceleration Layer. IEEE
Micro, July/August, 2008.

[52] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie. Hybrid
Cache Architecture with Disparate Memory Technologies. In
Proceedings of the International Symposium on Computer
Architecture, 2009.

[53] Y. Xu, Y. Du, B. Zhao, X. Zhou, Y. Zhang, and J. Yang. A
Low-Radix and Low-Diameter 3D Interconnection Network Design.
In Proceedings of the International Symposium on High Performance
Computer Architecture, 2009.

[54] W. Zhang and T. Li. Microarchitecture soft error vulnerability
characterization and mitigation under 3d integration technology. In
Proceedings of the International Symposium on Microarchitecture,
2008.

