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Abstract— As the application of deep learning continues to
grow, so does the amount of data used to make predictions.
While traditionally big-data deep learning was constrained by
computing performance and off-chip memory bandwidth, a new
constraint has emerged: privacy. One solution is homomorphic
encryption (HE). Applying HE to the client-cloud model allows
cloud services to perform inferences directly on clients’ encrypted
data. While HE can meet privacy constraints it introduces
enormous computational challenges and remains impractically
slow on current systems.

This paper introduces Cheetah, a set of algorithmic and
hardware optimizations for server-side HE DNN inference. Chee-
tah proposes HE-parameter tuning and operator scheduling
optimizations, which together deliver up to 79× speedup over
the state-of-the-art. However, HE inference still falls short of
real-time inference speeds by nearly four orders of magnitude.
Cheetah further proposes an accelerator architecture to under-
stand the degree of speedup hardware can provide and whether
it can bridge HE’s real-time performance gap. We evaluate
several DNNs and find that privacy-preserving HE inference
for ResNet50 can approach real-time speeds with a 587mm2

accelerator dissipating 30W in 5nm.

I. INTRODUCTION

Deep learning lies at the heart of many modern services
and applications, and is one of the most widely used methods
to process personalized data. These models have become so
successful and computationally efficient that deep learning
is now integral to everyday life. However, as such services
become ever-intricately woven into our lives, there is growing
demand for privacy-preserving machine learning—a daunting
task that this paper seeks to address.

Several techniques exist that offer privacy for deep learn-
ing inference that trade off the degree of security delivered
versus computational efficiency. Generally, these techniques
deliver security via system implementation or mathematical
guarantees. Implementation-based methods include (i) moving
computation to edge devices, i.e., local computation [56], [73],
and (ii) trusted execution environments (TEEs), e.g., SGX [10],
[15], [62]. Both methods achieve security by monitoring and
restricting data usage via a combination of software and hard-
ware implementations. In contrast, methods offering provable
mathematical guarantees provide a theoretically-quantifiable
level of privacy. Such solutions include (i) differential privacy

TABLE I: Generalization of privacy-preserving techniques.

Solution Security Limitation

Local System Edge performance; leaks model
TEE System Performance; side-channels
DP Statistical Applications; utility-privacy tradeoff

MPC Cryptographic Communication bandwidth
HE Cryptographic Compute

(DP) [4], [13], [18], [21], (ii) secure multi-party compute
(MPC) [33], [37], [50], [51], and (iii) homomorphic encryption
(HE) [7], [29], [32], [55]. Table I summarizes the techniques
and limitations of each with respect to wide-scale deployment.

Each of the above solutions have differing limitations.
Local execution offers individual users improved security, but
there is risk of sensitive information leaking or being stolen
through the model, plus model-privacy concerns for service
providers [63]. TEEs have been shown to be vulnerable to side-
channel attacks, e.g., [15]. DP offers statistical privacy levels
quantified via privacy loss ε but imposes an abstruse trade-off
between ε and data utility [20]. Moreover, while DP has seen
success in training [12], [47], its application to inference is
an open question. MPC also delivers cryptographically-strong
privacy guarantees. However, MPC performance is limited
by communication bottlenecks [37], [42], [51], which require
consideration of network-protocol and technology levels, or
redesigning neural architectures [28], [41].

This paper focuses on homomorphic encryption (HE) to en-
able privacy-preserving deep learning inference, or HE infer-
ence. The key strength of HE is that it offers cryptographically-
strong privacy guarantees, but these guarantees come at the
cost of massive computational overheads. These overheads
are so high that existing state-of-the-art implementations of
HE inference [29], [32], [55] are still five to six orders of
magnitude slower than unencrypted, or plaintext, inference
speed running on a CPU. To put this in perspective, the current
state-of-the-art HE inference solution (Gazelle [33]) takes
800ms for a single MNIST inference. These computational
overheads are so extreme that prior research has yet to consider
modern datasets and models, e.g., ImageNet and ResNet50, as
even MNIST is currently beyond the realm of feasibility. In
this paper, we propose a set of optimizations to substantially
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Fig. 1: The Cheetah optimizations and system design. Speedup achieved for ResNet50 is reported in red.

reduce this performance gap and show that HE can approach
real-time performance levels when running on large custom
hardware accelerators.

High-performance HE inference requires addressing three
key challenges. First, at the algorithmic level, HE has con-
figurable parameters that trade performance (i.e., HE operator
latency) and “computational budget,” canonically know as the
noise budget in HE literature. This HE noise budget limits the
amount of computation (i.e., number of HE operations) that
can be applied to encrypted data while still allowing for correct
decryption. When tuning HE parameters for performance, e.g.,
using smaller data types, the noise budget can be exceeded and
cause the computation (i.e., decryption) to fail. The second
challenge is how computations are scheduled and mapped to
HE primitives. HE only supports a limited set of operators
(e.g., add and multiply) that applications must be expressed
as, and each operator increases noise differently. Therefore,
noise-aware operator schedules can significantly improve per-
formance by reducing accumulated noise, enabling higher-
performing HE parameters to be used. The final challenge is
the sheer number of computations HE inference entails. As we
show, addressing this challenge requires hardware acceleration
and leveraging the extreme degrees of parallelism in both
DNNs and HE operators.

To address these challenges, this paper presents Cheetah: a
set of optimizations (Figure 1) to speedup HE-based privacy-
preserving machine learning inference by combining algo-
rithmic optimizations and hardware acceleration. We assume
Gazelle [33], the state-of-the-art, as our baseline. Our contri-
butions are as follows:

First, we propose HE-PTune (Section IV), which is an
analytical model that tunes HE parameters. HE-PTune au-
tomatically identifies the highest-performance HE parameter
settings that satisfy noise budget constraints by tuning HE
parameters based on the needs of each layer in a deep
neural network model. HE-PTune’s parameter tuning yields
performance benefits of up to 11.7× for VGG16 and 5.5× for
ResNet50 over the state-of-the-art.

Second, we propose a new schedule for dot product op-
erations called Sched-PA to minimize the consumption of
noise budget and improve performance. Sched-PA is a partial-
aligned dot product schedule, which exploits the insight that
the order of HE operations significantly impacts performance
and noise budget. This allows Sched-PA to achieve a maximum
additional speedup of 10.2× (5.2× harmonic mean) and,
including HE-PTune, a combined speedup of up to 79.6×

(13.5× harmonic mean) over the state-of-the-art.
Third, we propose a hardware accelerator architecture to

accelerate HE inference leveraging the abundance of paral-
lelism and opportunities for specialization. We begin by pro-
filing HE kernels using a CPU software implementation [57].
The results indicate where cycles are spent and are used
to perform an Amdahl’s law-like study to provide insight
into the orders of speedup each kernel requires to approach
real-time latency. Next we implement each kernel in custom
hardware and comprise them into a parameterized accelerator
for processing HE inferences. Exploring the design space of
possible design reveals a Pareto frontier, which we analyze
to understand tradeoffs and conclude the feasibility of HE for
private inference.

We find Cheetah can produce designs that approach real-
time inference speeds through combining algorithmic opti-
mizations and custom hardware. In the case of ResNet50,
and adhering to practical area limitations [65], we estimate
an accelerator of 587mm2 and 30W in a 5nm technology
node can process HE inference with a latency of 198ms
(Section VII). Ignoring practical fabrication restrictions, a
1173mm2 chip would process inferences in 101ms, matching
CPU performance and meeting real-time requirements, which
we assume to be 100ms as used in certain applications [66].
We conclude that while HE for neural inference is exception-
ally computationally intensive the substantial parallelism and
amenability of HE and DNNs to hardware acceleration puts
real-time private inference within reach.

II. OVERVIEW AND ASSUMPTIONS

A. System Setup

A typical deep learning system setup is shown in the gray
box of Figure 1. A client generates data and sends it to
the cloud. The cloud performs inference and the result is
returned to the client. The most direct way to apply HE is for
the client to encrypt the data, the cloud processes the entire
inference using HE, and the encrypted result is returned to the
client. Unfortunately, this approach has two drawbacks: (1) HE
cannot readily process nonlinear functions (without incurring
prohibitively large penalties) and (2) many computations in
DNNs requires a relatively large HE noise budget, which
necessitates larger encryption parameters, resulting in poor
performance. This effect is exacerbated by deeper networks.

A classic solution is to combine multiple cryptographic
solutions, as done before in [37], [39], [42], [46], [54], and
partition inferences across them. The typical approach is to
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Fig. 2: Overview of how data is processed using BFV homomorphic encryption.

execute linear operators (FC/CNNs) on the cloud using ei-
ther homomorphic encryption (Gazelle [33]) or secret-sharing
(MiniONN [37]), and non-linear functions on the client with
Yao’s garbled circuit (GC). This partition works quite well
as GCs incur small computational overhead [5], [71] while
the cloud can leverage powerful servers to handle the large
processing load of HE/secret sharing. In this paper, we take
Gazelle as our baseline as it is the fastest known implemen-
tation of private inference and uses HE, which is the focus of
Cheetah.

In Gazelle, the client encrypts data to be processed and
sends it to the cloud. The cloud applies a single linear layer
(e.g., convolution) to the input using HE. ReLU and pooling
functions are computed on the client using a GC. The GC is
configured by the cloud and sent to the client along with the
encrypted linear layer outputs. The client then decrypts the
outputs and processes them using the GC. Note that allowing
the client to observe the original outputs after decryption can
leak the cloud’s private model weights (knowing the inputs and
outputs of a linear function would make it trivial to steal the
cloud’s model). To prevent this, the cloud obscures the actual
activation values (both input and output) by adding random
numbers to each, i.e., the client receives encrypted activation
input also obfuscated with random numbers. After decryption,
the client runs the GC, which includes a subtraction circuit
to remove the added random numbers securely (recovering
original values), an non-linear functions (ReLU or pooling),
and finally an addition to obscure the plaintext output value
and protect model weights. Once GC evaluation completes,
the masked output is re-encrypted by the client and sent to
the cloud. On the cloud, the random numbers added to the
activation are removed via HE subtraction and the following
linear layer is computed (using HE). The HE-MPC cycle
repeats for each layer of the deep network.

Note that in homomorphic encryption, decryption resets the
HE noise budget. Therefore, systems like Gazelle address both
issues associated with nonlinear computation and limitations
of HE noise budget. However, the computational overheads
of HE—the focus of this paper—remain prohibitive. Cheetah
addresses the HE compute bottleneck, which is an architec-
ture/hardware problem, but the proposed optimizations for
HE are more generally applicable to other solutions beyond
Gazelle. Solving the communication/network bottleneck is
beyond the scope of this paper. We expect contributions on
the algorithmic (e.g., different MPC-based solutions [23],
[43], [46]) and technology (e.g., 5/6G) front to help. There-
fore, Cheetah assumes the same communication overheads
as Gazelle. Whenever discussing HE performance results,

it is always with respect to the server-side HE inference
computation.

B. Threat Model

The threat model assumed by Cheetah is the same as
in Gazelle [33], and similar to other two-party compute
(2PC) solutions including DeepSecure [51], MiniONN [37],
and SecureML [42]. The model assumes the client/user and
cloud are honest but curious, i.e., each agent follows the
protocol precisely but may try to infer information. Under this
assumption, Cheetah preserves the privacy of both the clients’
data and cloud’s model weights. For more details, see [33].

Note that the protocol does leak some information about
the model. Because ReLU and pooling layers are performed
by the client, the client can learn the number and shape of
each layer. The model weights values, however, are not leaked.
It is possible to obscure this information (e.g., pad tensor
dimensions and add null layers), but they are not considered
here and left as future work. Cheetah focuses on improving
users privacy while protecting the cloud’s models (considered
IP today [72]) from model-stealing attacks [63].

III. BACKGROUND

This section provides a brief introduction to HE and the
BFV scheme [22]. For a complete description see [8], [22].

A. Homomorphic Encryption: The Basics

HE is a privacy-preserving encryption technique that en-
ables computation over encrypted data, which was first shown
to be possible by Gentry [24]. Since its discovery, many
algorithmic improvements have been made to improve per-
formance [6], [8], [9], [22], [25]–[27]. Modern HE schemes
such as BFV allow adds and multiplies between encrypted data
and derive security from the hardness of the Ring Learning
With Error (RLWE) problem [38]. In BFV, noise is added
during plaintext encryption and accumulates over successive
ciphertext computations. If the aggregate noise exceeds a
noise budget threshold, decryption fails. This noise budget
is a function of the HE parameters and defines how many
computations can occur before decryption fails. HE schemes
of this type are called Leveled HE (LHE). In contrast, fully
homomorphic encryption (FHE) schemes enable an arbitrary
number of computations. FHE schemes can be built from LHE
schemes via bootstrapping [22], [24]. Bootstrapping reduces
the noise in the ciphertext but is expensive to implement,
so most applications focus on LHE. We do not consider
bootstraping and therefore use LHE; throughout this paper we
refer to this LHE BFV scheme as HE for simplicity.

28



TABLE II: BFV parameters.

Parameter Description

n Polynomial degree (vector length)
t Plaintext (pt) modulus
q Ciphertext (ct) modulus

Wdcmp Weight (pt) decomposition base
Adcmp Activation (ct) decomposition base

σ2 Variance of noise added for encryption (fixed)

B. BFV: Relatively Efficient HE

BFV [22] is a relatively efficient LHE scheme; Figure 2
shows an overview of the process. In BFV, data is encoded
as a plaintext polynomial that is then encrypted as a pair of
ciphertext polynomials. Ciphertexts are then input as operands
to addition and multiplication operations during evaluation.
The resulting ciphertexts from evaluation are decrypted to
plaintext and finally decoded to individual scalars. Polyno-
mials are implemented as integer vectors, where the vector
length (polynomial degree) and bit-width (coefficient size) are
set by HE parameters. BFV parameters (listed in Table II) must
be carefully tuned as they affect computational efficiency and
security.

Core BFV Parameters (n, t, q): Plaintext polynomials are
elements of the ring: Rt = Zt [x]/(xn + 1), where the degree
of the polynomial is less than n (a power of 2). Polynomial
coefficients are integers in Zt (integers in the range (− t

2 ,
t
2 ]). t

is called the plaintext modulus as all HE operations are taken
modulo t in the plaintext space. Setting t requires profiling the
application to ensure enough bits are used for correctness and
no more, as over provisioning causes unnecessary slowdown.

Similarly, the two polynomials of a ciphertext are in Rq =
Zq[x]/(xn + 1), where q is the ciphertext modulus. The ratio
between q and t determines the noise budget, which sets the
number of HE operators that can be computed per ciphertext
before decryption fails. The ratio between n and q for a given
variance (σ2) of Gaussian noise added for encryption sets the
security strength of the HE scheme (see [22] for details).

Encoding (Packing) Data to Polynomial: When proper HE
parameters are used (i.e., t is prime and t ≡ 1 mod 2n),
a property of the ring Rt enables a form of algorithmic
parallelism. Here, each plaintext polynomial in Rt and, hence,
the ciphertext, can be packed with n data. This means that each
HE addition or multiplication can actually perform an n-way
parallel element-wise computation. With packing, each scalar
data is tied to a slot, and slots can be thought of as individual
elements in the integer array. Packing significantly improves
HE performance; n is typically on the order of thousands and
the benefits of packing are proportional [60].

Polynomial Representations: Polynomials are represented in
two spaces—coefficient and evaluation. The coefficient repre-
sentation is how polynomials are typically represented, e.g.,
∑

n−1
i=0 αixi. The evaluation space is analogous to the frequency

domain of time-domain signals. Similar to FFT, efficient
conversion between the two is done via the Number Theoretic
Transform (NTT) [9], [60]. Cheetah keeps polynomials in the
evaluation space and converts to coefficient space only as

TABLE III: Impact on Noise of basic BFV operations.

Noise Bound after Each Operation

Noise (v0) in fresh ct0 2nB2 (B = 6σ)
HE Add(ct0,ct1) v0 + v1 (additive)
HE Mult(pt,ct0) nlptWdcmpv0/2 (multiplicative)
HE Rotate(ct0) v0 + lctAdcmpBn/2 (additive)

needed for operations like decomposition (see below). Using
the evaluation space as a default representation reduces the
number of NTTs needed for homomorphic CNN/FC. Note that
applying NTT to ciphertexts does not affect noise.

1) Operations of BFV: BFV consists of three operators:
HE Add, HE Mult, and HE Rotate. Recall that the
HE Add and HE Mult operate on vectors of packed
data, so they are effectively SIMD-add and SIMD-multiply
operations. Note that the underlying implementations of
HE Add and HE Mult consist of many modular arithmetic
calculations, different from a single-cycle integer add or
multiply computation. Table III shows the amount of noise
introduced by each operator, which depends on BFV parameter
values. B is the bound of the noise added during encryption
while vi represents the initial noise in ciphertext cti. The
remaining parameters (lpt , lct , Wdcmp, and Adcmp) are for
decomposition, defined in Section III-B2.

HE Add: Two ciphertexts can be added homomorphically
by summing each ciphertext coefficient followed by a modulo
operation. I.e., a resulting coefficient outside the range Zq
is reduced to be in Zq. Reduction is implemented as a
comparison and subtraction to keep the performance overhead
low. Each HE Add operation increases noise additively.

HE Mult: BFV supports both ct-ct and pt-ct multipli-
cation. Cheetah uses pt-ct multiplication to multiply plain-
text weights by encrypted activations. Pt-ct multiplication is
achieved by multiplying evaluation space ciphertext polyno-
mials by the evaluation space plaintext polynomial containing
weights on a per-element basis. Performance is limited by the
modular reduction required for each polynomial coefficient
of output. Cheetah uses Barret reduction (see Section IV-A).
HE Mult operations increases noise multiplicatively.

HE Rotate: BFV supports slot rotation within a packed
polynomial to enable computation between data in different
slots. Since HE Add and HE Mult are element-wise oper-
ations, computations like dot products require HE Rotate to
align partial products and implement the reduction (see Sec-
tion V-A). HE Rotate is computationally expensive with
many steps, and increases noise additively. We refer the reader
to [9], [67] for details.

2) Polynomial Decomposition: Decomposition is used to
segment polynomials into multiple components with smaller-
valued coefficients. The key idea is that HE operations over
smaller coefficient polynomials reduces noise growth. To en-
able this, Cheetah has two parameters for polynomial decom-
position: Wdcmp and Adcmp (Table II), which defines the base
that polynomials are decomposed to. Decreasing decomposi-
tion base increases the number of decomposed polynomials
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TABLE IV: HE-PTune performance models.

CNN HE Mult HE Rotate

n≥ w2 lptcico f 2
w/cn cico f 2

w/cn
n < w2 lpt(2cn−1)cico f 2

w (2cn−1)cico( f 2
w−1)

FC HE Mult HE Rotate

n≥ ni,n≥ no lptnino/n nino/n−1+ log(n/no)
n≥ ni,n < no lptnino/n (ni−1)no/n
n < ni,n≥ no lptnino/n (no + log(n/no))ni/n
n < ni,n < no lptnino/n (n−1)nino/n2

which decreases operator noise growth but increases the total
amount of compute. Once decomposed operators complete,
resulting segments are summed to get the final result.

HE Rotate requires ciphertext decomposition, otherwise
a single operation can exceed the noise budget. The de-
composition base Adcmp is used to factor ciphertext poly-
nomials into multiple smaller-magnitude polynomials when
HE Rotate is applied. We denote lct ≈ logAdcmp

(q) as the
number of polynomials with base Adcmp resulting from the
decomposition. Since HE Rotate noise increase is additive,
with decomposition noise increase by an additive factor pro-
portional to Adcmp and the increase in number of polynomial
operations lct .

HE Mult also benefits from decomposition to reduce
noise. For neural networks, we use HE Mult with decom-
position to compute the partial products since weights are
presented in plaintext. Using a decomposition base Wdcmp, the
plaintext polynomial can be decomposed into lpt ≈ logWdcmp

(t)
polynomials. The resulting HE Mult with decomposition re-
quires lpt polynomial multiplications to implement but reduces
noise growth by a factor of around t/(lptWdcmp).

IV. HE-PTUNE: MODELS & PARAMETER TUNING

HE parameter selection is a major source of complex-
ity (i.e., setting n, t,q,Wdcmp, Adcmp), where proper selection
strikes a balance between noise budget and performance. A
greater noise budget enables more computations per ciphertext
but slower HE operators. Existing solutions rely on over-
provisioning noise budgets, resulting in suboptimal perfor-
mance. This section proposes HE-PTune: analytical perfor-
mance and noise models for HE DNN operators to maximize
performance via fine-grained parameter tuning. Tuning param-
eters with HE-PTune delivers up to a 11.7× speed up over the
state-of-the-art.

A. Performance Modeling

HE-PTune’s performance model analytically derives the
total number of underlying integer multiplications per layer.
(Recall that the HE operator HE Mult consists of many
integer multiplications.) Most HE operators resolve to multi-
plication operations and ones that do not have run-times either
strongly correlated or dominated by those that do. Performance
models for CNN and FC layers are built by first capturing all
HE and NTT operations. Then all operations are reduced to the
total number of underlying integer multiplication operations.

TABLE V: Noise models for CNN and FC layer.

CNN Output Noise

n≥ w2 f 2
wciηMv0 +ηAci( f 2

w−1+(cn−1)/cn)
n < w2 (2 fw−1) fwciηMv0 +ηAci(2 fw +1)( fw−1)

FC Output Noise

n≥ ni niηMv0 +ηA(ni−1)
n < ni niηMv0 +ηAni(n−1)/n

1) Modeling CNNs: CNN layers are parameterized as
(w, fw,ci,co), where w2 and f 2

w represent the size of input
image and weight filter, and ci and co denote the number
of input and output channels. Encryption parameters fol-
low the notation defined in Table II. Effective modeling of
HE Mult and HE Rotate counts requires consideration
of two cases: 1) the ciphertext slot count is greater than an
input image (i.e., n≥ w2), and 2) the ciphertext slot count is
less than an input image (i.e., n < w2). We use cn to model the
relationship between ciphertext slots and input image size. cn
is defined as the number of input image channels per ciphertext
(i.e., n/w2) in the first case and the number of ciphertexts per
input image channel (w2/n) in the second. Table IV shows
how each case counts the number of HE operations per CNN
layer.

HE Rotate operations require both polynomial multipli-
cation and NTTs. Precisely, assuming a ciphertext decom-
position base Adcmp, 2lct multiplications and lct + 1 NTT
(lct ≈ logAdcmp

q) are required per HE Rotate. Each n-point
NTT entails n logn/2 butterflies. Cheetah uses Harvey’s but-
terfly (3 integer-multiplications per butterfly). HE Mult does
not require NTTs as in Cheetah the default polynomial
representation is the evaluation space. Each HE Mult re-
quires two element-wise modular multiplications between the
two polynomials, resulting in 2n modular multiplications per
HE Mult. Cheetah uses Barrett reduction [34], which uses
five integer-multiplications per reduction.

2) Modeling FCs: A similar process is repeated to model
FC layers. The required number of integer multiplications
per HE Mult and HE Rotate operations is the same
in both CNN and FC, the only difference is the number
of HE Mult and HE Rotate counts. Here, an FC layer
is parameterized as (ni,no), where ni and no represent the
number of input and output activations. The required number
of HE Mult and HE Rotate for all possible cases are
summarized in Table IV.

B. Noise Modeling

Once CNN/FC layers are implemented as HE operations
(see Section V-A), noise growth can be modeled using the
equations in Table III. We developed a model for layer noise
as a function of both HE (n, t,q,Wdcmp,Adcmp) and DNN
( fw,w,ci,co for CNN and ni,no for FC) parameters. Note that
directly applying the equations in Table III estimates noise
in the worst case. The worst case is very rare (see below)
and causes unnecessarily slow HE parameters to be selected.
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Fig. 3: Comparison of HE-PTune and Gazelle using AlexNet. Blue dots are HE configurations modeled by HE-PTune. The
red star is Gazelle’s configuration and the green star is the optimal found by HE-PTune. Layer5 and Layer0 show the best and
worst configuration for Gazelle with respect to utilized noise budget. HE-PTune’s speedup for all layers on the right.

To overcome this, we develop practical noise estimations
for HE operators and provide a theoretical analysis of the
decryption failure rate. We also note that all prior work on
high-performance HE [11], [29], [33] sets HE parameters
using heuristics, providing high-likelihoods for success but not
guaranteeing it.

Cheetah builds a theoretically-motivated, empirically-
derived noise model that minimizes computational overheads
for a targeted probability of success. We observe that added
encryption noise is sampled from an independent bounded
discrete Gaussian (IBDG) distribution with variance σ2, and
if Xi’s are IBDG with variance σ2

i , then ∑i αiXi is also IBDG
with variance ∑i α2

i σ2
i . As the noise grows multiplicatively in

HE Mult and additively in HE Add and HE Rotate, we
can compute the variance of the output noise after each layer
under the independence assumption, which was validated in
[19]. Then, since the output noise (Y ) is IBDG with standard
deviation (σY ), the probability of decryption failing is bound
by Pr(|Y | ≥ q/(2t)) ≤ 2exp(−q2/(4t2σ2

Y )). We use these
equations to derive an output noise threshold for a probability
of correct decryption. Therefore, instead of using worst-case
bounds and guaranteeing correct decryption, our noise model
uses the scaled expressions given in Table III. Cheetah uses a
scaling factor c such that the decryption failure rate is provably
less than 10−10, which is negligible as it is much lower than
the DNN’s misclassification rate.

The noise models are given in Table V. Here, v0 is the
initial noise for the input ciphertext, ηM is the noise due to
HE Mult, and ηA is the growth factor from HE Rotate.
By dividing q

2t by the output noise (and taking the log), the
remaining noise budget in bits is given. When the budget
is negative, decryption fails; when positive, it fails with
probability ≤10−10.

C. HE Parameter Space Exploration

Using a single set of HE parameters for all DNN layers
results in poor performance, as HE parameters are provisioned
for the worse case layer noise. Using HE-PTune’s models for
noise and performance, parameters can be readily tuned on
a per-layer basis. HE-PTune takes layer hyperparameters as
input and outputs optimal HE parameters found via a design
space exploration. Because the model is analytical, a vast
parameter space can be explored in a matter of minutes.

Examples of HE parameter space exploration are given in
Figure 3 for AlexNet on ImageNet. Each blue dot is unique
set of HE parameters modeled with HE-PTune to estimate
computation and remaining noise budget. Red stars indicate
parameters used by Gazelle and green stars show the optimal
point found using HE-PTune. Gazelle uses the same sets of
HE parameters for all layers. Of all layers in the model, Layer
5 has the smallest remaining noise budget, and it follows that
the speedup between Gazelle and Cheetah is the lowest for
this layer (see bars in Figure 3). Using HE-PTune, empirical
results show using a single set of parameters is inefficient
and unnecessary. The highest Cheetah speedup is in Layer 0,
where Gazelle has an excess noise budget of 4.6 bits whereas
HE-PTune finds a configuration leaving only 1 bit of noise
budget. Improvements come from tailoring parameters to the
requirements of each layer.

HE-PTune also eases finding functional HE parameter set-
tings in the first place. Recall that any point where the noise
budget is exceeded fails to decrypt. Of all the points evaluated
in the design space search, over 99% have a negative remaining
noise budget and will not work. Finding HE parameters is
difficult, further motivating HE-PTune.

We validated HE-PTune using different CNN and FC lay-
ers used in popular DNNs, including: LeNet-300-100 and
LeNet5 for MNIST [36], and AlexNet [35], VGG16 [59], and
ResNet50 [31] for ImageNet [53]. Each layer is tested using
a variety of HE parameters with no consideration of noise
budget to explore the parameter space. Execution times are
collected by implementing each CNN/FC layer in the SEAL
HE library [57] and measuring its performance on a Xeon
server. The remaining noise budget is collected after each run
using SEAL’s internal measuring capability and API. Overall,
we find that due to the underlying randomness of the noise, the
noise model shows slightly larger error than the performance
model. However, this is acceptable as the worst-case errors are
within 1 bit in the low-remaining noise budget region of the
space.

V. PARTIAL-ALIGNED SCHEDULING

This section introduces a new dot product schedule, named
Sched-PA, to improve HE performance on FC and CNN layers.
Recall that each HE primitive has different run-time and addi-
tive noise trade-offs (Section III) and the overheads of different
primitive schedules are not associative so order of operations
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Fig. 4: How Cheetah implements CNNs using Sched-PA. Sources of inter-kernel parallelism (IKP) are labeled.
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Fig. 5: Sched-IA (input-aligned) versus Sched-PA (partial-
aligned) dot product schedules. Cheetah uses Sched-PA to
improve performance of CNN and FC layers.

matters. Operation orderings with less noise are beneficial as it
enables higher-performance via more computationally efficient
HE parameters.

A. Sched-PA: Partial-Aligned Dot Products

The key challenge for implementing HE dot products is
optimizing how data is packed into polynomial slots and
the relative order of operations. Computing a dot product
in HE requires all three primitives: HE Mult, HE Add,
and HE Rotate. Partial products are computed using an
HE Mult operation between a ciphertext (encrypted ac-
tivation) and a plaintext (model weights). Each partial is
accumulated with a series of HE Add operations to reduce
the final output. The challenge is that HE operations only
support computation between aligned polynomial slots. This
means that when polynomial A and B are multiplied (resulting
in C), C[i] = A[i]×B[i], ∀i ∈ [0,n). To properly reduce each
of the partials of a dot product, the slots in C must be aligned
to use the correct values.

Prior work aligns the inputs before performing multiplica-
tion, referred to here as an input-aligned schedule (Sched-
IA) [30], [33]. In Sched-IA, the input ciphertext is first
aligned, or rotated, to the correct output slot, and plaintext
weights are packed appropriately. The post-rotation ciphertext
and plaintext are then multiplied, resulting in a dot product
partial (ciphertext). Resulting partial ciphertexts can be readily
accumulated to compute the final value.

Cheetah proposes a new dot product implementation
called Sched-PA (see Figure 4, 5). Our key insight is that
HE Mult increases noise by a multiplicative factor ηM
(≤ nlptWdcmp/2) whereas HE Rotate is additive ηA. In
Sched-PA, the initial input ciphertext is always kept in its
original order. Weights are again packed into a plaintext
polynomial and aligned with ciphertext slots to compute the
correct partial product via HE Mult. Finally, resulting partial

product ciphertexts are aligned such that the partial slot
matches the correct output slot. Figure 5 also shows Sched-PA
compared to the other approach.

The benefit stems from noise accumulation in chained
HE operations. Recall that v0 and ηA represent the initial
input ciphertext noise and additive noise from HE Rotate,
respectively. Thus, a dot product using the partial aligned
schedule experiences a noise growth of ηMv0+ηA. In contrast,
the Sched-IA dot product first rotates then multiplies, resulting
in noise growth of ηM(v0 + ηA), significantly larger than
Sched-PA. Saving noise enables HE-PTune to identify higher
performance HE parameter settings, ultimately resulting in
performance benefit.

B. Implementing Low-Noise Convolution

Figure 4 shows an example of how CNNs are implemented
in HE using Sched-PA. FC layers follow precisely the same
steps as CNNs, as the core primitives are also dot products.
First, the input activation ciphertext (Acts) is encoded by
placing adjacent pixels from the client’s image sequentially
in polynomial slots. This ordering eases partial ciphertext
alignment. Next, CNN filter weights (Filter) are encoded
into plaintext polynomials. Each activation-weight polynomial
is multiplied with HE Mult to compute the partials. The
resulting partial polynomials are then rotated to align par-
tial slots to the proper output-neuron slot. Finally, with all
partials computed and aligned, the ciphertexts are reduced
with HE Add. Note how polynomial slots allow multiple
output neurons to be computed in single ciphertext. This
algorithmic parallelism provides substantial performance and
memory savings for HE as without it, each thousand degree
polynomial would only compute a single output neuron.

The zeros found in weight plaintext slots (e.g., PT0) ensure
the correct computation. For example, the red slot in Figure 4
shows how accumulation works. After f0 is multiplied to D6
in the first HE Mult, the result is rotated right 6 times to
be accumulated in the red slot (C12). When this rotation is
performed, D19 aligns to slot 0, however f0D19 should not
be accumulated in the output of slot 0 (i.e., C0). Selectively
adding zeros in the plaintext slots avoids this boundary case.

C. Evaluation Results

The effectiveness of Sched-PA is evaluated using five
standard CNN models. HE-PTune is employed to maximize
benefits and tune HE parameters on a per-layer basis. Multiple
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Fig. 6: Per-benchmark speedup achieved by Cheetah using HE-
PTune and Sched-PA. Speedup is relative to Gazelle [33].

experiments are run to show the benefits of HE-PTune and
Sched-PA independently and relative to Gazelle.

The results for each model are shown in Figure 6. Overall,
the Cheetah optimizations substantially outperform Gazelle.
Using the harmonic mean, 2.98× speedup comes from HE-
PTune alone (5.25× ignoring MNIST). Sched-PA provides an
additional speedup of 5.20× (6.11× ignoring MNIST) for a
total mean performance improvement of 13.5× and maximum
of 79.5× over Gazelle (30.3× mean without MNIST).

Significant performance overheads are incurred by Gazelle
as Sched-IA requires substantial ciphertext and plaintext de-
composition. Each time a polynomial is decomposed to reduce
noise, the number of polynomials that must be computed
grows proportionately. In ResNet50, Cheetah’s optimizations
result in a ciphertext decomposition base of 8 to 16 more
bits. A higher ciphertext decomposition bases result in fewer
decomposed polynomials for HE Rotate, and substantial
performance improvements. With Sched-PA, Cheetah avoids
all plaintext decomposition.

VI. PROFILING HE INFERENCE

HE-PTune and Sched-PA significantly improve the perfor-
mance over the state-of-the-art [33], e.g., 55.6× for ResNet50.
However, with these optimizations alone HE inference is still
3-4 orders of magnitude slower than plaintext inference, i.e.
unencrypted inference on a CPU. To better understand per-
formance bottlenecks we profile a software implementation of
HE inference and compute the speedup needed from hardware
acceleration.

We implement ResNet50 in HE using the SEAL library [57].
Using Cheetah to tune parameters and maximize performance,
one HE inference takes 970 seconds on an Intel Xeon E5-2667
server. The same unencrypted inference (on the same server)
takes 100 milliseconds using Keras [14]. Since SEAL only
supports CPUs, we perform profiling on the CPU platform.
Below we benchmark NTT running on a GPU.

Profiling results are summarized in the pie chart of Fig-
ure 7. Notice that only a few kernels dominate perfor-
mance (HE Mult, HE Add, HE Rotate, and NTT).
HE Rotate in Figure 7 does not include NTT as this is
shown separately. Of the four, NTT is the primary bottleneck
taking 55.2% (535 seconds) of the run time. The SEAL profile
also contains a long-tail of small functions, labeled ”Other”
in Figure 7. We note that most of the ”Other” function time
is in construction/destruction.

NTT 
( 55.2% )

Rotate
( 31.8% )

Mult  
   ( 10.3% )

Add ( 2.2% )Other
( 0.5% )

Total time: 970 seconds

(a) Time breakdown

NTT 
( 16,384x )

Rotate 
( 8,192x )

Mult 
( 4,096x )

Add 
( 4,096x )

(b) Speedup Needed

Fig. 7: Profiling results for ResNet50 and speedup needed by
each kernel to match real-time inference latency.

Fig. 8: NTT GPU speedup over CPU.
Using the profiling results, we compute the speedup needed

from each HE kernel to achieve real-time inference latency.
Figure 7 shows the results of an Amdahl’s law-like limits
study of how various speedup factors impact overall run time.
The x-axis shows the speedup factor applied to each kernel
function (note the log scale); the final speedup factor for each
kernel is the speedup needed (e.g., 16,384 for NTT). The y-
axis shows absolute latency. From left to right, the plot shows
how the total inference latency decreases as each theoretical
speedup factor is applied to each function. Kernel speedup
is applied successively where the run time from the most
aggressive speedup factor is taken as the base for the next
function. The horizontal red line indicates the 100ms real-time
inference latency target.
Speeding up HE with GPUs: One way to improve kernel
performance is with GPUs. To understand the the limitations of
HE on GPUs, we benchmark NTT, the primary HE bottleneck,
using the cuHE library [16] on an NVIDIA 1080-Ti GPU.
GPU speedup is reported for different NTT batch sizes (1 to
1024) and vector lengths n = 16K, 32K, and 64K (Figure 8). At
larger batch sizes (512/1024), the speedup saturates at 120×.
The nvprof profiler shows that for a batch size of 512, the GPU
is utilized with 70% warp occupancy and 85% warp execution
efficiency.

Other first order limitations to performance likely derive
from (a) non-native, long integer data types requiring emula-
tion, (b) modular arithmetic, which adds branch instructions
and over 10 compute instructions per multiplication. Despite
the two orders of magnitude speedup, GPUs fall well short of
the improvements required to reach real-time speeds.

VII. HE INFERENCE ACCELERATOR ARCHITECTURE

This section proposes a general accelerator architecture for
HE inference to bridge the remaining performance gap.

A. Accelerator Architecture

The proposed accelerator architecture is shown in Figure 9.
At a high level, it is composed of ciphertext (CT) processing
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Fig. 10: DSE for NTT; Pareto frontier in red.
engines (PEs) that receive data from a PCIe-like streaming in-
terface and buffer intermediary results in SRAMs (Figure 9a).
Hierarchically, PEs are composed of partial processing lanes
or Lanes, and a partial reduction network, which implement
the HE dot product (Figure 9b). Lanes are further decomposed
into individual HE operators (Figure 9c).

1) PEs (Output Neuron Engines): Our architecture is de-
signed to maximize performance and parallelism by being
output-stationary. Each PE processes a single ciphertext of
output neurons and all compute-memory resources necessary
for the output are local to the PE; the number of PEs is
parameterized. When there are more output neurons per layer
(Parallel Output CTs) than physical PEs, we time multiplex
the computation across multiple PE executions. The PEs are
connected to input and output buffers used to route data to
and from the host. These buffers constitute small SRAMs as
they only handle communication, all state and intermediates
are local to PEs.

The internals of the PE contain partial processing lanes and
reduction networks. Each PE contains an Input CT buffer to
store a copy of activation CTs locally, SRAM for rotation
keys, a relatively small SRAM for weights, a set of partial
processing lanes, a partial reduction network, and output CT
SRAM. Each Lane is capable of processing a unique dot
product partial; the number of lanes is parameterizable. Lanes
within a PE operate in lockstep to enable reuse of twiddle
factor SRAMs required for NTTs. The partial reduction net-
work is configured based on the number of partials computed
in parallel (i.e., number of Lanes). Input CT SRAMs are
provisioned with enough capacity to double buffer inputs with
sufficient bandwidth to feed all Lanes.

2) Lanes (Partial Engines): Lanes are the backbone of the
accelerator and implement the HE operators. In Figure 9c, HE

kernel blocks are denoted in red. Intermediary SRAMs, shown
in blue, are used to store results between HE kernels. We use
SRAMs instead of off-chip DRAM for intermediary results
because of the high internal bandwidth required within NTT
modules to support high degrees parallelism. In the worst case,
each NTT kernel requires 13 GiB/s of bandwidth; each lane
contains multiple NTTs and each PE contains many lanes.
Aside from the NTT kernels, which have a strided memory
access pattern, all operations within a Lane can be made
streaming (i.e, no SRAMs needed after kernels). This allows
the architecture to save SRAM resources. The NTT activation
decomposition factor Adcmp introduces a parametrizable degree
of inter-NTT parallelism within a Lane. For high-performance,
enough lanes are allocated to execute all decomposed values
in parallel.

The lane architecture shows the datapath and kernel de-
pendencies to compute a single partial dot product. Both
input polynomials (CT[0] and CT[1]) are first multiplied by
plaintext weights using the HE Mult operator, outputting
partial polynomials. The datapaths diverge as the BFV scheme
splits the compute asymmetrically between partial[0] and
partial[1]. HE Rotate is applied to perform polynomial slot
alignment. For partial[1], inverse NTT (INTT), decomposition,
NTT, and composition units are applied. The datapath for
partial[1] splits after the INTT computation in order to im-
plement ciphertext decomposition. Recall that decomposition
reduces noise growth; however, the trade-off manifests here as
additional compute requirements. Fortunately, the additional
computations can be parallelized (note the multiple NTT and
SIMDmult units). Each decomposed polynomial is then run
through a parallel NTT block to return to the evaluation
domain where the rotation key is applied using parallel SIMD-
mult accelerators. These decomposed, rotated polynomials
are then composed and combined with swapped partial[0] to
produce the aligned partial that is fed to the partial reduction
network in the PE, which consists of SIMDadd units.

VIII. EXPERIMENTAL RESULTS

This section presents the design space exploration results
of the parameterized accelerator architecture. We split sources
of hardware speedup into two parts: intra- and inter-kernel
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parallelism. Intra-kernel parallelism refers to speedup achieved
leveraging parallelism within a kernel (e.g., NTT) in hard-
ware whereas inter-kernel parallelism is realized by allocated
multiple instances of the same hardware kernel (e.g., three
NTT accelerator units) to process independent inputs simul-
taneously. We show that by combining Cheetah’s algorithmic
optimizations with large-scale custom hardware, HE inference
can approach real-time performance.

A. Methodology

Design space exploration consists of sweeping vari-
ous accelerator microarchitectural parameters. Each kernel
(HE Mult, HE Add, and HE Rotate–which is split into
Swap, INTT, Decompose, NTT, SIMDMult, and Compose)
is built using Catapult HLS 10.3d [1] and synthesized with
a commercially-available 40nm standard cell library targeting
400 MHz. For each kernel we evaluate hundreds of design
points to explore different design tradeoffs and identify opti-
mal implementations. Each kernel accelerator’s microarchitec-
ture is parameterized by memory bandwidth (or I/O in the case
of streaming kernels), datapath parallelism (i.e., hardware loop
unrolling), and pipelining (i.e., initiation-interval). We estimate
power, performance, and area using Catapult’s output RTL and
power analysis flows. We use a commercial SRAM compiler
to compile each SRAM dimension used across different design
points due to different memory tiling factors.

Based on these kernel design sweeps, we select Pareto
optimal points and use them to further identify optimal HE
accelerator designs using a simulator for the architecture
presented in Figure 9, see Section VII for details. The simu-
lator takes HE parameter settings and user defined accelera-
tor microarchitectural parameters (HE kernel implementation,
number of PEs, and number of lanes) as input. We swept PEs
per accelerator from 2-1024 and lanes per PE from 4-8192.
Area is estimated based on architectural parameters alone
while power and latency are derived through simulating layers
running on the modeled hardware. To estimate performance
and power for an input DNN, each layer is represented
as the number of input/output ciphertexts and partials per
output ciphertext. The simulator then maps and multiplexes
the number of output neuron ciphertext to available PEs and
partials to Lanes to derive hardware activity factors and energy
consumption. Combining multiplexing and activity factors
with HLS latency and power results estimates accelerator
performance. The overall performance of a full inference is
modeled on a per-layer granularity; this is because after each
layer’s linear computations, activations are sent to the client
for ReLU and Pooling.

To capture the benefits of technology scaling, we report
power and area estimates for 5nm using foundry-reported
scaling factors. Specifically, we use 0.2× power and 0.22×
area to scale from 40nm to 16nm, based on [44], [45], [64],
[68]. From 16nm to 5nm, the power and area scaling factors
are 0.28× and 0.17×, using [58] and recent data from [70].
Together, the power and area scaling factors (40nm to 5nm)
are 0.056× and 0.038×, respectively.

B. Evaluation Results
1) Intra-Kernel Parallelism: We begin by first sweeping

each kernel’s microarchitectural parameters in HLS to explore
the design space and understand the power-latency trade-offs
of intra-kernel parallelism. An example design space Pareto
frontier for NTT is shown in Figure 10. Recall that these
frontiers are used as the cost model for the larger architecture,
whose sweeps consider the power-latency tradeoffs of each
kernel to estimate HE inference accelerator characteristics.

Speedup is computed relative to the SEAL library imple-
mentation of kernels running on a 3GHz Intel Xeon (Skylake)
server. We observe modest speedups of individual kernels,
with a maximum of 40× and averaging roughly 10× across
designs. The HE Add and HE Mult kernels provide sub-
stantial parallelism as the underlying computation consists of
element-wise modular additions and multiplications, which are
easily parallelized. The HE Rotate (Swap, Decompose,
Compose) and NTT kernels contain a mix of sequential
dependencies and code regions easily parallelized, such as the
element-wise multiplications and butterfly computations. The
key takeaway is that intra-kernel parallelism can improve HE
performance by roughly one order of magnitude.

2) Inter-Kernel Parallelism: Fortunately, DNNs and HE
contain abundant parallelism across kernel calls. With the ex-
ception of kernel dependencies within a Lane and the reduction
of partial products in PEs, partials and output neurons can be
executed in parallel by allocating more hardware resources.

For example, consider CNN Layer6 in ResNet50 ( fw = 3,
w = 64, ci = co = 64). If each ciphertext contains a single
input channel (n = 4096), then all partial products can be
computed with 36,864 HE Mult and HE Rotate parallel
kernel invocations. The partial products for these layers cannot
be parallelized since HE Mult must be performed before
HE Rotate under Sched-PA. In HE Rotate, domain
conversion from evaluation to coefficient using INTT must
be done before decomposition, but the NTT to convert back
the domain of decomposed polynomials can be parallelized.
As a result, we find that the degree of parallelism that can be
exploited at the Lane and PE level is on the order of thousands
for ResNet50. The key takeaway is that application inter-
kernel parallelism exposes two to three orders of magnitude
performance improvement.

3) Lane and PE DSE: When combined, inter-kernel and
intra-kernel parallelism can be exploited to bridge the remain-
ing 3-4 order of magnitude speedup needed to approach real-
time inference performance. We conduct a design space explo-
ration of accelerator microarchitecture parameters to evaluate
whether these designs leveraging these degrees of parallelism
are practical with respect to fabrication constraints [65]. The
sweeps consider each kernel’s power-latency Pareto frontier of
designs, number of Lanes per PE, and PE’s per accelerator.

Figure 11 shows the results from the design space explo-
ration of ResNet50. The power-latency Pareto points identified
in the left-most subplot shows the ideal architectures when
designing an accelerator tuned for ResNet50. The Pareto
frontier provides insight into the hardware cost-per-ms tradeoff
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of inference latency. For ResNet50, we find the Pareto optimal
design point dissapates 30W of power and takes 587mm2 for
ResNet50, which are within practical (albeit high) fabrication
limits and not uncommon for datacenter coprocessors [61].

The low power density is due to aggressive SRAM tiling to
meet the high internal bandwidth targets for NTT units. Upon
further analysis, we find that the 128×60 bit SRAM sizes
have a bit density that is ≈ 2.5× worse than larger 1024×60
SRAMs, which results in low power density. We also note
that the 400 MHz clock target is low for a 5nm technology,
furthering reducing power density. When scaling from 40nm
to 5nm we did not scale frequency to be conservative, any
frequency scaling would improve estimated results.

To understand the limitations to efficiency and performance
of each Pareto design point, Figure 11 shows the Pareto
optimal design result for ResNet50 (AlexNet, VGG16, and
MNIST exhibit similar trends). Figure 11a shows six design
points on the Pareto frontier. Figure 11b and Figure 11c show
the breakdown of run time and area respectively for these six
design points. For extreme low-latency designs (Pareto points
0 and 1), results show that most of the design area goes into
small SRAMs that are required to support the high internal
bandwidth required by NTT units (discussed next). As a result,
this leads to impractically large area overheads.

Overall, the results in Figure 11b confirm NTT and re-
duction (HE Rotate) dominate HE accelerator computation
cost. Recall NTT is data intensive and has many small internal
SRAMs, which at extreme design points result in high power
and area usage. This is compounded by the sheer number of
NTT units that operate in parallel, making NTT computations
the largest overall area component. We note that even in
the most parallel design point considered, the accelerator is
compute bound (I/O utilization is only 12%) and NTT remains
the primary bottleneck. Moreover, we find that the input and
output SRAMs in the architecture do not incur as high of a
power and area cost. This means that the input duplication into
each PE to support output-stationary computation is relatively
inexpensive.

4) Accelerator Generality: Designing a fixed-size HE ac-
celerator for each DNN model is impractical. Instead, the
accelerator can be programmed to support different-sized
networks by multiplexing compute logic (PEs and Lanes)
to handle different DNN tensor shapes. To quantify the loss
associated with under utilized units stemming from imperfect

TABLE VI: Performance of running VGG16 and AlexNet on
PT-ResNet50 accelerator. Prt is partials per output CT.

Practical Match CPU
Model Lat. Area PEs-Lanes Lat Area PEs-Lanes Slowdown

ResNet50 198 587 4-512 101 1173 8-512 0%
VGG16 386 587 16-128 104 2347 32-256 113%
AlexNet 111 587 16-128 61 1174 32-128 26%

dimension matching, we measure performance loss for differ-
ent ImageNet models (AlexNet and VGG16) running on the
HE accelerator optimized for ResNet50.

Table VI shows each ImageNet model running on three
distinct architectures. The Practical column shows the highest
performing design achieved when respecting the reticle limit
of EUV fabrication [65]. Match CPU ignores these limits and
reports the chip area needed to match the performance of run-
ning a plaintext inference on the Xeon server, which coincides
with our mark for real-time performance with ResNet50 and
VGG16 at 100ms. The architecture of each design is reported
as PEs-Lanes, the number of PEs and Lanes per PE used by
the accelerator, respectively. Note that the NTT speedup of
ResNet50’s Match CPU design confirms the estimates from
Figure 7. The 8 PEs and 512 Lanes per PE provide 4,096
parallel Lanes. Then within each lane, NTTs run 1.5× faster
than the CPU and the three (out of the four) decomposition
NTTs run in parallel. Thus the total NTT speedup is: 8 × 512
× (3 × 3

4 + 1
4 ) × 1.5 = 15,360.

Slowdown shows the latency penalty incurred by AlexNet
and VGG16 when they are executed on ResNet50’s Match
CPU architecture compared to their optimal Match CPU
architectures. We find both experience considerable slowdown.
This is due to the choice of PE and Lane allocations and the
differences in layer dimensions. AlexNet and VGG16 layers
have a higher average number of output CTs per layer and
partials per output CT than ResNet50. The high number of
output CTs makes it straightforward to parallelize work across
PEs. However, ResNet50 is very structured given its use of
bottleneck layers, many of which have partials per output
ciphertext that are divisible by or less than 512, yielding high
Lane utilization within a PE. Conversely, VGG16’s partials
per output CT tend to fall just above multiples of 512, (e.g.,
34, 687, 1086) resulting in poor utilization. Thus, AlexNet and
VGG16 favor more PEs with fewer Lanes. Looking forward,
research of less rigid architectures is needed to improve design
efficiency.
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IX. RELATED WORK

A growing interest in privacy and machine learning has
resulted in a body of related work on developing cryptographic
solutions. Techniques can be categorized into two groups: HE
only [11], [29], [32], [55], or multiparty computation (MPC)-
based [33], [37], [50], [51]. While each has significantly
advanced the field all suffer from either accuracy loss due
approximation or high communication/computation overheads.

HE only techniques must address evaluating non-linear
functions (e.g., ReLU, MaxPool) using only available addition
and multiply operations. CryptoNets [29], CryptoDL [32], and
LoLa [11] propose replacing ReLU with low-order polynomi-
als that can readily be computed with HE primitives. However,
even with square activations [11], this requires very large
HE parameters (e.g., q ≈ 1000 [29], 440 bits [11], while
Cheetah uses 60) for an appropriate noise budget. Moreover,
approximate activation functions require re-training [11] and
can degrade accuracy [29]. Others propose accelerating HE
kernels with accelerators. NTT has been ported to FPGAs [48],
[52] and GPUs [2], [3], [17] to speedup polynomial multi-
plication. Raizi et al [49] propose HEAX to accelerate HE
kernels with FPGAs but only reports two orders of magnitude
speedup. While related, the results of HEAX are orthogonal to
the contributions of this paper; HEAX uses CKKS (Cheetah
uses BFV). Mostly, above works focus on ciphertext-ciphertext
multiplication (Cheetah uses ciphertext-plaintext), and targets
kernel acceleration (Cheetah focus on the application of DNN
inference and general chip architecture).

MPC-based schemes provide an alternative to approxima-
tion by combining HE with other security solutions, typically
garbled circuit (GC) [33], [37], [42], [46], [50], [51]. Among
them, Gazelle is considered the state-of-the-art [33]. Gazelle
uses HE for linear layers in the cloud and GC [69] for ReLU
and MaxPool on the client. This can significantly improve the
latency for small models but results in a severe computational
bottleneck in deep models (e.g., ResNet50). Cheetah takes
Gazelle as a baseline and focuses on reducing the significant
computational overheads of HE.

Other work assumes different threat models with non-
cryptographic solutions. E.g., [10], [62] use TEEs to isolate
private data from untrusted software. Others have looked
at limiting information leakage by adding noise (similar to
DP) [40]; this provides increased average-case privacy with
negligible loss in accuracy.

X. CONCLUSION

This paper presents Cheetah, a series of optimizations for
improving private inference performance using homomorphic
encryption. We develop algorithmic and schedule-based opti-
mizations, HE-PTune and Sched-PA, to provide up to a 79×
performance improvement over the state-of-the-art. Profiling
the optimized implementation using SEAL, we find the in-
ference performance is still four orders of magnitude slower
than real-time requirements. We then build hardware models
and conduct design space explorations of various accelerator

microarchitectures to understand the degree of speedup hard-
ware acceleration can deliver. Our estimates indicate that, with
a 587mm2 chip, a ResNet50 inference can be processed in
198ms, which is within a small constant factor of real-time
constraints for some classes of applications. Looking forward,
more research on flexible accelerator architectures for HE and
better NTT accelerator designs would improve results.
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