
SecNDP: Secure Near-Data Processing with Untrusted Memory

Wenjie Xiong∗§, Liu Ke∗†§, Dimitrije Jankov‡, Michael Kounavis∗, Xiaochen Wang∗, Eric Northup∗, Jie Amy Yang∗,
Bilge Acun∗, Carole-Jean Wu∗, Ping Tak Peter Tang∗, G. Edward Suh∗⋄, Xuan Zhang†, Hsien-Hsin S. Lee∗

∗Meta, †Washington University in St. Louis, ‡Rice University, ⋄Cornell University
wenjiex@fb.com, ke.l@wustl.edu, dj16@rice.edu,

{michaelkounavis, xiaochenwang, digitaleric, amyyang, acun, carolejeanwu, ptpt, edsuh}@fb.com,
xuan.zhang@wustl.edu, leehs@fb.com

Abstract—Today’s data-intensive applications increasingly
suffer from significant performance bottlenecks due to the
limited memory bandwidth of the classical von Neumann
architecture. Near-Data Processing (NDP) has been proposed
to perform computation near memory or data storage to
reduce data movement for improving performance and energy
consumption. However, the untrusted NDP processing units
(PUs) bring in new threats to workloads that are private and
sensitive, such as private database queries and private machine
learning inferences. Meanwhile, most existing secure hardware
designs do not consider off-chip components trustworthy. Once
data leaving the processor, they must be protected, e.g., via
block cipher encryption. Unfortunately, current encryption
schemes do not support computation over encrypted data
stored in memory or storage, hindering the adoption of NDP
techniques for sensitive workloads.

In this paper, we propose SecNDP, a lightweight encryption
and verification scheme for untrusted NDP devices to perform
computation over ciphertext and verify the correctness of
linear operations. Our encryption scheme leverages arithmetic
secret sharing in secure Multi-Party Computation (MPC) to
support operations over ciphertext, and uses counter-mode
encryption to reduce the decryption latency. The security of
the encryption and verification algorithm is formally proven.
Compared with a non-NDP baseline, secure computation with
SecNDP significantly reduces the memory bandwidth usage
while providing security guarantees. We evaluate SecNDP for
two workloads of distinct memory access patterns. In the
setting of eight NDP units, we show a speedup up to 7.46× and
energy savings of 18% over an unprotected non-NDP baseline,
approaching the performance gain attained by native NDP
without protection. Furthermore, SecNDP does not require any
security assumption on NDP to hold, thus, using the same
threat model as existing secure processors. SecNDP can be
implemented without changing the NDP protocols and their
inherent hardware design.

Keywords-Security and Privacy, Near-Data Processing, Cryp-
tography, Privacy-Preserving Machine Learning

I. INTRODUCTION

The classical von Neumann architecture separates com-
putation from data storage. However, memory and inter-
connect bandwidth have not been able to keep up with
the scaling out and scaling up of the processor cores,
hitting the (in)famous memory wall [77]. For data-intensive

§ The first two authors contributed equally to this work.

Bus Snooping

Cold Boot attack

Security
boundary

NDP
PU

Encryption
Engine

Processor

Near-Data
Processing (NDP)

Processing Unit (PU)

……

NDP
PU

Backdoor/Trojan

Figure 1. Threat model of SecNDP.

applications with high parallelism and localized memory
accesses, memory bandwidth has become a major perfor-
mance bottleneck. Therefore, techniques such as near-data
processing (NDP) offer much promise in both performance
and energy consumption by offloading computation to main
memory (i.e., DRAM) [8], [10], [24], [36], [44] or even
storage [45], [64], [76]. In Samsung’s Aquabolt-XL (HBM2-
PIM), for example, addition and multiplication operators are
supported in DRAM [46].

At the same time, many data-intensive applications work
on sensitive data, such as queries on private databases (e.g.,
medical history, user information) and machine learning in-
ference using private models (e.g., models that need IP pro-
tection [17] or may reveal the private training dataset [68]).
As more computation is outsourced to the cloud, sensitive
workloads are becoming more susceptible to cyber and
physical attacks. In addition to the pursuit of better perfor-
mance and lower energy, guaranteeing security and privacy
is now considered a first-class citizen in designing future
computing systems. To protect the confidentiality and/or
integrity of program execution, secure hardware systems
designed with a Trusted Execution Environment (TEE) [1],
[2], [4], [14], [73] have been proposed and implemented
in commercial processors to enforce protection. All of these
secure hardware designs consider off-chip components to be
untrusted (in Figure 1) – be it a TEE design in CPU [14],
[73], CPU and GPU [75], or other accelerators [11], [33].
In this threat model, off-chip memory needs to be encrypted
for confidentiality and a message authentication code (MAC)
for each data block in memory needs to be computed and
checked for integrity.

However, such existing memory protection mechanisms
prevent the adoption of NDP in a TEE, because the NDP

1

Processing Units (PUs) only have access to encrypted data,
a.k.a., ciphertext. One may apply homomorphic encryp-
tion (HE) [23], [59] to enable computations over ciphertext.
However, the state-of-the-art HE incurs at least four orders
of magnitude performance slowdown [60]. The overhead
of HE is too high to let NDP outperform a TEE without
NDP. Another approach for secure NDP is to include the
NDP PUs inside the TEE [5], [9]. However, this approach
requires trusting multiple hardware vendors, an extra key
exchange protocol, and hardware components on the NDP
PUs, resulting in an undesirably large attack surface for the
trusted computing base (TCB). There is no existing practical
solution to achieve secure NDP for untrusted memory.

In this paper, we propose SecNDP – a lightweight en-
cryption and verification scheme for a secure processor
to use untrusted NDP. SecNDP uses a secure Multi-Party
Computation (MPC) protocol [20] between the processor
and the untrusted memory, where a block cipher generates
the processor’s share of secret on-chip without additional
off-chip accesses. Like MPC, SecNDP encryption supports
addition and scale multiplication efficiently. Like counter-
mode encryption [72], SecNDP has low decryption latency
with only one adder on the performance critical path.
Furthermore, SecNDP introduces a verification tag based
on a linear checksum [42] to verify the correctness of the
results from the untrusted NDP PU. To efficiently imple-
ment SecNDP, we propose architectural support in a secure
processor. The SecNDP design only requires relatively small
changes in the processor while leaving the NDP protocols
and hardware intact. SecNDP’s performance and accuracy
are evaluated through detailed cycle-level simulations us-
ing two real-world data-intensive workloads, deep learning
recommendation inference and medical data analytics. The
results show that SecNDP is up to 7.46× faster while using
18% less memory energy compared to the unprotected non-
NDP baseline, approaching the performance and energy
efficiency of native NDP without protection. The following
summarizes the key contributions:
• We propose the first encryption and verification

schemes that enable practical and provably secure com-
putation in untrusted NDP.

• We tailor-design the SecNDP architecture, to demon-
strate low decryption and verification latency, and low
area and power overhead on the processor. The design
does not modify NDP PUs and protocols.

• We demonstrate SecNDP’s performance benefits and
accuracy on two real-world data-intensive use cases.

II. THREAT MODEL

SecNDP is to be used with a TEE design. We follow
the threat model of a typical TEE, shown in Figure 1.
The processor (CPU, GPU, or an accelerator) is trusted and
considered secure, i.e., there is no hardware backdoor. An
attacker cannot observe or manipulate the internal state of

the processor. We assume an attacker’s software co-located
in the processor cannot access protected data (directly or
through side channels) within the processor. A privileged
attacker may access unencrypted data in memory. Data buses
are susceptible to passive eavesdropping and unauthorized
modifications. For volatile memory such as DRAM, the
attacker can conduct a cold-boot attack [29] to dump the
memory content. For non-volatile memory, the attacker can
unplug the storage to access and modify the content. The
NDP processing units (PUs) are untrusted. NDP PUs may
have a backdoor or a Trojan to leak data or return a malicious
computation result.

III. BACKGROUND

A. Near-Data Processing (NDP)

For data-intensive applications, such as machine learn-
ing [10], [36], [44], [51], [76], similarity search [47], data
base [35], graph processing [6], and stencil computing [70],
memory bandwidth has become the major performance
bottleneck. Many of such workloads deal with vectors and
matrices and conduct linear operations, which is our focus.

Depending on the data reuse rate, moving data from
memory or storage to CPU for computation is ineffi-
cient [69]. Many prior works propose near-memory pro-
cessing using 3D/2.5D-stacked DRAM technology (such as
HMC/HBM) [7], [38], [43], [57]. Accelerators inside the
data buffer devices in a commodity DIMM are also proposed
to support large-scale workloads [8]. For specific workloads
such as sparse embedding operations in recommendation
models, tailor-designed light-weight NDP systems are pro-
posed to leverage rank-level parallelism with higher speedup
potential [10], [36], [37], [44]. In addition to near-memory
processing, near-storage processing is proposed to process
data near storage with larger capacity [45], [64], [76]. With
the accelerated development of 3D stacking and emerging
memory technologies compatible with CMOS process [49],
[52], productizing NDP on a computing platform is closer
to reality than ever [7], [37], [43], [46].

B. TEEs and Memory Protection

In hardware-based TEE designs, such as AEGIS [73],
Mi6 [14], as well as commercial solutions including Intel
SGX [4], AMD SEV [1], and ARM TrustZone [2], off-
chip memory is untrusted. Off-chip data must be encrypted
for confidentiality protection and data integrity needs to
be verified.
Confidentiality Protection with Counter-Mode Encryp-
tion. In counter-mode encryption [42], [54], [72], a data
block (e.g., a cache line) is eXclusive-ORed (XOR) with
a One-Time Pad (OTP) (Figure 2(a)). The OTP is an
encrypted counter xe generated using a block cipher such
as Advanced Encryption Standard (AES) with the address
of the data block and a unique version number v as inputs.
The cipher uses the processor’s secret key K. The security

2

Retrieved
plaintext:
𝑥𝑝

𝑥!′ = 𝑀𝐴𝐶"(𝑥#, 𝐴𝑑𝑑𝑟, 𝑣)

pass:fail

(b) Retrieved
MAC:	𝑥"

=?
x ∈ ℤ(2𝑤)

Random𝑟 ∈ ℤ/𝑄ℤ
𝑥$ = 𝑟%
𝑥& = 𝑥 − 𝑟% 𝑥$,

𝑥&,y ∈ ℤ(2𝑤)

𝑦$

𝑦&

Untrusted
Worker 1

Untrusted
Worker 2

To compute:
z = a ∗ x + b ∗ y

z1 = a ∗ x1 +b ∗ y1

Client

(c)

z2 = a ∗ x2 +b ∗ y2

(a)

Plaintext:
𝑥𝑝

𝑥' = 𝐸𝑛𝑐"(𝐴𝑑𝑑𝑟, 𝑣)
𝑥(= 𝑥#⊕𝑥'

Ciphertext:
𝑥#

a.k.a., “One time pad (OTP)”
or “encrypted counter”

c) Secure Multi-party Computation (MPC)a) Counter Mode Encryption b) Integrity Verification using MAC

𝑥' = 𝐸𝑛𝑐"(𝐴𝑑𝑑𝑟, 𝑣)
𝑥(= 𝑥𝑝 −𝑥'

Block cipher
(d)

Plaintext:
𝑥𝑝 ∈ ℤ(2𝑤)

Ciphertext:𝑥#
Untrusted NDP

Processor (TEE)

𝑦$ = 𝑟)
𝑦& = y− 𝑟)

Figure 2. (a) Counter mode encryption. (b) Integrity verification using MAC. (c) Arithmetic secret sharing in secure MPC. (d) Proposed
SecNDP.

of the counter-mode encryption relies on the uniqueness
of the version number v for each address. If the version
number is reused for multiple plaintext blocks at the same
address, the attacker can learn the relationship between the
plaintext blocks.

When the processor fetches a data block from memory,
the OTP can be computed using the address and the version
number in parallel with the data access. When the ciphertext
is returned, only one XOR with the OTP is needed for
decryption. Counter-mode encryption is widely used for
memory protection due to its functional parallelism resulting
in lower latency [67], [72].
Integrity using Message Authentication Codes (MACs).
To detect an unauthorized modification, a keyed message
signature, a.k.a., Message Authentication Code (MAC), is
stored in memory for each data block. When the processor
fetches a data block from memory, its MAC is also fetched.
Independently, we use the secret key to compute the MAC
to see if it matches with the retrieved one (Figure 2(b)).
Without the secret key, the probability that an attacker
generates the corresponding MAC for an altered message is
negligible. Thus, any change in data from memory will result
in a MAC mismatch. To prevent attacks from replaying stale
data values or copying valid data from a different address
with valid MAC, the address Addr and version number v are
also incorporated into the MAC. The integrity verification
passes only when both the Addr and v also match. To
protect the integrity of the version numbers v, these values
are kept on-chip or protected with an integrity tree [62].
To protect both confidentiality and integrity, authenticated
encryption with associated data (AEAD) schemes such as
the AES GCM mode [54] and the AES CWC mode [42]
are designed to use one secret key to both encrypt data and
generate a MAC.
Linear Checksum and MACs. A hash function or check-
sum maps messages into short outputs. A universal hash
has the property that the probability of any given pair
of messages having the same checksum is small. Such a
universal hash function can be used as the building block for
a MAC. Linear Modular Hashing [30] is an almost universal
hash function suitable for a fast software or hardware
implementation. It is applicable to variable-sized data and
used in fast message authentication, such as the AES CWC
mode [42]. In this paper, we use a linear modular hash not
only for its performance but also to leverage its linearity to
verify linear operations in NDP.

C. Secure Multi-Party Computation (MPC)

One popular approach to outsource sensitive workloads
to untrusted workers is to use secret sharing [20], [55].
MPC secret sharing splits a secret into multiple shares
and distributes them to workers. Each worker performs
computation over its share locally. Assuming the workers
will not collude, it is information-theoretically impossible
for each worker to recover the secret from its share. SecNDP
let the TEE hold one share and the memory hold another
share, and thus, do not require the non-collusion assumption
to hold among NDP PUs.

Arithmetic secret sharing [20], [55] is one of the most
widely used secret sharing schemes. Let Z(2we) denote the
integer ring of size 2we . The shares are constructed such that
the sum of all shares is equal to the original secret value x ∈
Z(2we). Figure 2(c) shows arithmetic sharing between two
workers. Each worker holds a share of x, where shares are
denoted by x1 ∈ Z(2we) and x2 ∈ Z(2we), and x = x1+x2.
Arithmetic secret sharing enables ciphertext-to-ciphertext
additions and additions/multiplications by constants over
ciphertext. For example, to compute z = a ∗ x+ b ∗ y, each
worker performs an addition on their respective shares of x
and y. In the end, the client collects the two partial results
z1 and z2, and adds them together to obtain the final result.
Compared to HE schemes on high-dimensional rings [60],
the operations for each worker are simple and lightweight.
This is with arithmetic secret sharing.

All the operations of arithmetic sharing are in the integer
ring Z(2we). Thus, if the original data are in a floating-point
format, they must be quantized into fixed-point numbers
or integers. For machine learning models, previous studies
have shown that quantization does not have significant
impact on the accuracy of certain ML models [31], [41],
[74]. More recently, MPC in floating-point arithmetic has
also been explored [27], but such evaluation is outside the
scope of this work.

IV. SECNDP ENCRYPTION AND VERIFICATION
SCHEMES

In this section, we describe an arithmetic encryption and
verification scheme. The encryption supports computation
over ciphertexts while providing confidentiality guarantees.
The verification scheme further protects the integrity of
data using extra data tags. The encryption scheme can
be used alone without verification, or with verification for
stronger security.

3

Verification
Tag

First wt bitsEnck(01||addr_P||v) s

Pi,0*sm + Pi,1*sm-1 +… Pi,m-1*s mod q Ti

Wc–bit Counter block

…Ei,1Ei,0

(00||addr_Pi,0||v)

Ei,l-1

Enck

(10||addr_Pi||v)

First
wt bits

…

CTi

mod 2we mod 2we mod 2we

Verification Tag Generation

ETi

…

mod 2we

…

(0||addr_Pi,m-l||v)

Enck

Pi,0 Pi,1 … Pi,l-1 … Pi,m-1

Ci,0 Ci,1 … Ci,l-1 … Ci,m-1

Input

mod q

Cipher
text

Pi

Ci

Ei,m-1

Enck

En
cr

yp
tio

n

Figure 3. Diagram of the proposed arithmetic encryption and
verification tag generation scheme. Here, l is the number of data
elements in a data block of the block cipher size (i.e., l = wc/we).
⊖ represents subtraction in the ring Z(2we). Ei,j is the j-th OTP
substring associated with row i.

A. Preliminaries and Notations

We use vector-matrix multiplication as an example op-
eration as it is the most critical and widely-used kernel
in machine learning and other data-intensive applications.
Section VI-A introduces two use cases that use variants of
vector-matrix multiplication. Our scheme can be generalized
for other operations as well. We use P to denote the plaintext
of a 2-D matrix of size n×m, Pi,j to denote a element in
the array, p or Pi to denote a row vector in P , and a to
denote a vector of dimension n. Each element in p and a
is an integer (or a fixed point number) of width we. We
assume we to be a power of 2 and smaller than a cache
line size. We use E(K,X) to denote the output of a wc-bit
block cipher (e.g., AES) that encrypts a wc-bit message X
using a wK-bit secret key K. The elements of the matrix
are also considered as consisting of chunks that are wc bits
long. Each chunk contains l← wc/we elements.

B. SecNDP Arithmetic Encryption

SecNDP arithmetic encryption is a combination of arith-
metic secret sharing and counter-mode encryption, as shown
in Figure 2 (d). The scheme details are depicted in Algo-
rithm 1 and Figure 3. First, the plaintext P will be divided
into cntc binary strings (chunks) of size wc. The starting
physical address of each chunk and the version number v
will be used as the input to the block cipher, which generates
an OTP using a standard block cipher (e.g., AES). The
concatenation of all cntc OTP blocks (e0, e1, ...) will have
the same number of bits as the plaintext P .

Then, the plaintext P and the concatenation of all the
OTP blocks e are divided into binary strings of size we.
The j-th strings are denoted by pj and ej , respectively.
The ciphertext cj is the plaintext pj subtracted by the
corresponding OTP block ej in the ring Z(2we). We name
the scheme “Arithmetic Encryption Scheme”, because the

Algorithm 1: Arith. Encryption, Arith-E(K,P,Addr)

1 Inputs: P , K, Addr; //Addr is the address of P
2 v ← V(); //unique version, also considered padded with zeros
3 cntc ← size(P)/wc; //number of blocks of block cipher size
4 for i = 0 to cntc − 1 //each data block
5 do
6 Addri ← Addr+i×(wc/8); //addr. of block i in bytes
7 eAddri ← E(K, 00||Addri||v); //OTP of block i
8 for j = 0 to (wc/we)− 1. //for every we-bit element
9 do

10 ej ← eAddri [j×we : (j +1)×we]; //OTP of element j
11 pj ← P [Addri+j×we:Addri+(j+1)×we];
12 cj ← pj − ej mod 2we ; //ciphertext of element j
13 end
14 CAddri ← c0|| . . . ||cwc/we−1; //concatenating ciphertexts
15 end
16 Return concatenation of all CAddri ;

ciphertext cj and the OTP block ej can be seen as the
arithmetic shares of the secret pj .

C. Computation over Ciphertext in SecNDP

After the arithmetic encryption completes, each of the
processor and the NDP device holds an arithmetic share
of the secret. They can then follow the standard MPC
protocol [20], [55] to conduct computation. With arithmetic
secret sharing, additive operations such as addition and
multiplication with a non-private scale are lightweight. In
this paper, we demonstrate how to perform a multiplication
with a non-private vector.

Figure 4 (a) shows an example of a non-private vector
a multiplied with a private matrix P . In the initialization
step (T0), the matrix P is encrypted by Alg. 1 and the
resulting ciphertext C is stored in untrusted memory or data
storage. When there is a vector a to compute a× P (T1 in
Figure 4), the untrusted NDP will compute a×C. The NDP
operation is exactly the same as the one in the unprotected
scenario. Meanwhile, the processor will use the address and
the version number v to generate the OTP blocks E for
the entire plaintext P and compute a × E. In the end, the
NDP PU sends its share of result back to the processor, and
the processor adds the two shares for the final result.1 The
encryption scheme has the property that E + C = P , and
thus res = Cres + Eres = a× C + a× E = a× P .

D. Comparing SecNDP with TEE and Unprotected NDP

Vector-matrix multiplication in a TEE and unprotected
NDP are also shown in Figure 4. All of them have the
initialization step (T0) that initializes data and loads data
to memory. In the TEE and SecNDP, the data is encrypted
before being loaded to memory. Regarding the computations
performed, when compared to a TEE baseline, SecNDP

1Note that all the operations are in the ring Z(2we), and thus, overflow
could happen. However, overflow can be detected by our verification
scheme.

4

Ci

×aires =

Processor (TEE)

Encryption
Engine

b) TEE

×res =

c) Unprotected NDP

Ei×

× CTi×

res = Cres + Eres mod 2we

CTres=

Eres=

Cres=

ETi×ETres=

Tres = hK(res)
Tres = CTres+ETresmod q?pass:fail

Verification (Optional)

Processor (TEE)

a) SecNDP

meta-data
trans.

ai

ai
ai

ai

Pi

ai

Encryption
Engine

data
trans.

data
trans.

data
trans.

T0. init.

Encryption
Engine

T1. Computation (Query a)

T0. init.

Ci

Pi

Encryption
Engine

T1. Computation (Query a)

CTi Ci

Ci

PiPi

T0. init. T1. Computation (Query a)

Pi

Pi

MAC MAC

addr,v

addr,v

Figure 4. Vector-matrix multiplication in SecNDP, TEE, and
unprotected NDP. NDP and SecNDP significantly save memory
bandwidth usage, which is the bottleneck for data-intensive work-
loads. Green boxes indicate encrypted or protected content. Blue
boxes show the verification tags.

only needs to transfer the results back to the processor, and
thus reduces memory bandwidth usage and saves energy.
When there are multiple NDP PUs, they can access memory
and perform the computations in parallel to improve perfor-
mance. However, since both the processor and NDP need
to compute on their own share of secret, SecNDP does not
save computation on the processor side. Nonetheless, for
data-intensive workloads, memory bandwidth, rather than
computation, is the main bottleneck. Hence, performance
can be significantly improved by SecNDP over the non-
NDP baseline.

Compared to an unprotected NDP, the off-chip operations
and the required data movement are exactly the same. Hence,
there is no modification in the NDP implementation needed
to support SecNDP. For decryption and verification, the
OTP (Eres) and verification tag (ETres

) computations can
be done in parallel with the NDP operations. Only one
extra final addition is added to the performance critical path
(more details in Section V-E3), which results in negligible
performance overhead.

E. Security of the Arithmetic Encryption

The arithmetic encryption applies two-party arithmetic
secret sharing between the TEE and the memory, with the
TEE’s share of secret (i.e., OTP) generated from a block
cipher. If an attacker can distinguish cj (in Alg. 1) from
a random number, an oracle can be built to break the
block cipher. The security is similar to that of counter-mode
encryption [42], [54]2.

2We have the proof and formal definitions in the appendix of the full
paper at https://eprint.iacr.org/2021/1642.

Let ED(K,Addr, v) denote the randomized encryption
systems E(K,D||Addr||v). The secret key K∈{0, 1}wK is
drawn from the uniform distribution. D is a binary string,
which can be one of ‘01’, ‘00’ or ‘10’ (in Alg. 1, 2, and 3,
respectively). We consider that version values v∈{0, 1}wv

are drawn from distribution V() and padded with zeros.
Version numbers are not in the control of any adversary
but drawn by algorithms 1, 2 and 3. Let Adv

ED()
|Q| be the

distinguishing advantage3 associated with ED() and query
budget |Q|, where version values are unique per distinct
input and not in the control of the distinguisher.

Theorem 1 (Arithmetic Encryption is Secure). Let
Arith-E(K,P,Addr) be the arithmetic encryption system
of Alg. 1. Let also AArith-E(),Qe

CPA be an adaptive cho-
sen plaintext adversary with query budget |Qe| attacking
Arith-E(K,P,Addr), where plaintext is P , Addr. Then, the
advantage of this adversary is bounded in the following way:

Adv(AArith-E(),Qe

CPA) ≤ 1

2wK
+Adv

E00()
|Q|′ (1)

where |Q|′=m·n·we

wc
· |Qe|.

The version number v should be generated securely and
have its integrity protected. We will discuss how v is
managed in Section V-A. The security level depends on
the key size wK and the block cipher. Block ciphers such
as AES are considered to be well designed pseudo-random
permutations, and their encryption output is practically in-
distinguishable from random output. Thus, if E00() is based
on AES, Adv

E00()
|Q|′ is negligible.

F. SecNDP Verification

Since the NDP is not trusted, the secure processor also
needs to verify the correctness of the computation (including
overflow). Here, we propose a verification scheme for linear
operations. We use a MAC-then-encrypt strategy [61] to
construct a verification tag. In the case of linear operations,
we choose Linear Modular Hashing [30], [42] as the MAC
(hK() in Alg. 2) and apply SecNDP arithmetic encryption
to encrypt the resulting MAC (in Alg. 3 and Figure 3). Here,
q is a big prime number, e.g., 2127−1 which is wt bits long.
The memory side stores a verification tag CTi

for each row
vector Pi in P .

To verify the computation results, the secure processor
computes a MAC of the result using the secret key and
matches that with the retrieved MAC, similar to memory
integrity protection in Figure 2(b). Here, the NDP and the
processor need to compute together to retrieve the MAC
leveraging arithmetic encryption. Specifically, as shown in
Figure 4 (a), the NDP computes the result of a vector multi-
plication over the encrypted checksums to get an encrypted

3Distinguishing advantage of block cipher ED() is the probability that
an attacker can distinguish the output of ED() from a truly random output,
i.e., breaking the block cipher.

5

Algorithm 2: Linear Checksum, hK(Pi)

1 Inputs: K, Pi, Output: Ti

2 P ← matrix containing Pi; paddr(P)← Address of P ;
3 v ← V(); //version padded with zeros, drawn once for P
4 s← first wt bits of E(K, 01||paddr(P)||v);
5 Return Ti ←

∑m−1
j=0 Pi,j × s(m−j) mod q;

Algorithm 3: Encrypted MAC, el-MAC(K, Pi, Addri)
1 Inputs: K, Pi, Addri //Address of Pi, Output: CTi

2 Ti ← hK(Pi); //linear checksum, coming from Alg. 2.
3 v ← V(); //version padded with zeros, drawn once for P
4 ETi ← first wt bits of E(K, 10||paddr(Pi)||v); //OTP for tag
5 Return CTi ← Ti − ETi mod q; // ciphertext of tag;

tag CTres = a × CT . The processor computes ETres =
a × ET , and CTres

+ ETres
will be used as the retrieved

MAC. Due to the linearity of hK , hK(res) = hK(a×P) =
a× hK(P) = a× (CT + ET) = CTres

+ ETres
holds.

As shown in Figure 4(a), our verification scheme asso-
ciates a tag CTi with each row of the matrix. Like other
memory integrity protection schemes, our scheme requires
extra memory to store the verification tag. However, because
the tag is for each row, the tag is relatively small compared
to the data when the matrix has large row sizes. Furthermore,
we use arithmetic encryption for tags. Thus, NDP computes
and returns the tag of the result CTres = a × CT , and
not all the tags of the rows that participate in the vector
matrix multiplication operation, reducing the memory band-
width requirement.

G. Security of the Verification

The security of the verification scheme is derived from
the fact that the verification tags are always encrypted on the
memory side and s remains to be a secret to the untrusted
memory. In order to generate the valid verification tag for a
new value, an attacker needs to correctly guess s. Replay
attacks are prevented by including a version number in
the MAC (Alg. 2).

Theorem 2 (Integrity of the Weighted Summation). Let
ws-MACK(P,Addr) and ws-VerifyK(C,Addr) be the MAC
and verification oracles associated with the weighted sum-
mation operation (i.e., vector matrix multiplication). Let also
Aws-MAC(),Qs,Qv

MAC be a standard MAC adversary, playing a
MAC forgery game on weighted summation oracles. Qs is
the set of sign queries issued by the MAC adversary. Qv is
the set of verification queries issued by the same adversary.
Then, the probability that this adversary can successfully
create a forgery is bounded in the following way:

Adv(Aws-MAC(),Qs,Qv

MAC) ≤ m · |Qv|
q

+

|Qv| · (Adv
E00()
|Q|00 +Adv

E01()
|Q|01+1 +Adv

E10()
|Q|10+n)

(2)

where |Q|00 = n·m·we

wc
· |Qs|, |Q|01 = |Qs|+ |Qv|, |Q|10 =

n · (|Qs|+ |Qv|), and q is the prime found in the definition
of Algorithms 2 and 3.

The security level depends on the prime number q, number
of queries served |Qs|, |Qv|, the dimensions of the matrix
in terms of number of rows n and columns m, and the
security of block ciphers E00(), E01() and E10(). We choose
a prime number q that is the largest prime number in
2wt . For example, we use wt = 127 and q = 2127 − 1,
considering both security and performance. If we consider
a 1024-dimension matrix row, we can serve 253 queries
without changing key, while maintaining a security level
higher than 64 bits.

V. ARCHITECTURAL SUPPORT FOR SECNDP

The SecNDP scheme can be applied to any TEE (CPU,
GPU, ASIC accelerator, etc.) and work with any untrusted
near-memory or near-storage processing hardware. In this
section, we describe a SecNDP architecture and design for
a computing platform supported by a TEE-enabled processor
with near-memory processing.
Baseline NDP Architecture: Figure 5 depicts the compo-
nents supporting NDP in a dual in-line memory module
(DIMM). NDP architecture support (blue boxes) comprises
of an NDP protocol (i.e., NDP commands), CPU ISA
extensions for issuing NDP packets, and NDP PUs on
the memory side. NDP PUs can compute and access their
memory region in parallel. For example, the Rank-NDP PUs
run in parallel to access the memory within their DRAM
rank simultaneously and perform computations to obtain
the intermediate results. Therefore, the peak compute and
memory throughput of the NDP grows with the number
of ranks. Each NDP PU contains registers to hold its
intermediate results. Multiple register allow multiple NDP
operations to overlap without sending intermediate results
back to a CPU. For workloads that need to store a number
of intermediate results simultaneously, the number of NDP
PU registers can become the bottleneck and more registers
can improve performance.
ISA extensions for NDP: The processor issues special
instructions that offload NDP packets to the memory con-
troller, which then dispatches NDP commands (Figure 5) to
the NDP PUs. There are two types of NDP instructions (and
the corresponding commands): NDPInst that controls the
arithmetic computation, and NDPLd that loads the value in
an NDP register from and to the processor. NDPInst has
all the operands for issuing an NDP command, including
a data address, the operation Op to be carried out, vector
size vsize, data size dsize, an immediate operand value
Imm, and source/destination register IDs RegID. Figure 5
also shows the value in an NDP command for vector-matrix
multiplication a×P . With this instruction, an NDP command
will be issued to let an NDP PU first multiply each element

6

Core

L1/L2

…

Memory Controller

Core

L1/L2
LLC Offloading

NDP packets

NDP-DIMM NDP-DIMM

NDP-Cmd

NDP-extension

DRAM access

NDP PU NDP-Cmd
Rank0.NDP-Cmd Rank1.NDP-Cmd

Rank-NDP PU Rank-NDP PU

SecNDP Engine

TLB TLB

Security Boundary = processor ArthEnc, SecNDPInst, SecNDPLd

Re
q.

 b
uf

.

AES Engine

AES Engine

from cache

to mem

dec.
buf.

Re
q.

 b
uf

.

Re
sp

. b
uf

.

Enc?

OTP PU
+

Re
sp

. b
uf

.

…

Y: addr, v

to cache

from mem

Op,
we

e, we

Veri.

cmd Daddr NDP Op
ACT/RD/PRE Rank, BG, BA, Row, Col Add/Mul vsize dsizeImm RegID

NDP-
Cmd:

CPU Inst:
NDPInst, NDPLd

Reg.

wem aipaddr(Pi) Mul dest

SecNDP-Inst

Add/Mul vsize dsize Imm NDPRegID addr v veri?SecNDPInst:
vsize dsize addr v veri?ArthEnc:

Add/Mul vsize dsize Imm NDPRegID addrNDPInst:

CPU
Inst:

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

Figure 5. Micro-architecture design for SecNDP. Blue boxes show
the components of baseline NDP. Greens boxes show the new
components enabling SecNDP.

in the row vector at paddr(Pi) by ai and add the result
to the value at the destination register. After adding all the
row vectors, the register will hold the final result. In the
end, NDPLd is issued to load the results from the NDP PU
register back to the processor.

A. SecNDP Architecture Overview

The green boxes in Figure 5 show the components sup-
porting SecNDP. There are two main components: new Sec-
NDP instructions and a SecNDP engine. Note that SecNDP
does not change the NDP operations. The NDP commands
and NDP PUs remain unchanged.

For efficient version number storage, there are a number
of existing solutions [56], [78]. In this paper, we let version
values v be managed by trusted software inside the TEE.
The integrity of v is then protected by the processor’s TEE.
The software ensures that v is not reused for the same
address. However, a memory region can share the same
version number [56]. For NDP workloads such as machine
learning, many data structures are read-only or are updated
in big chunks. A single data chunk only needs a single
version number. Managing the version numbers by software
is flexible and efficient, although letting software manage v,
comes with the need for new instructions.

B. SecNDP ISA Extensions

The newly proposed instruction ArithEnc is for the
initial arithmetic encryption and verification tag generation.
It has all the operands needed for encryption. SecNDPInst

is for NDP computation over ciphertext. Its format is sim-
ilar to NDPInst (see Figure 5). Compared to NDPInst,
SecNDPInst has two extra fields: the version number v
and one extra bit indicating whether verification is needed.
In the micro-architecture, extra fields in data buffers are
required to pass v to the encryption engine. The changes
are similar to how NDPInst operands are offloaded to
the memory controller. The new instruction SecNDPLd
is similar to NDPLd, but will also verify the data when
loading the data.

C. SecNDP Engine

Since SecNDP is a scheme based on the counter-mode
encryption, the encryption engine will be similar to that
found in the existing secure hardware. The SecNDP engine
is located near the memory controller in the processor.

1) Encryption Engine: The Encryption Engine has a
secret key K and takes the address paddr and version v
as inputs. For SecNDPInst, the encryption engine will
generate an OTP, i.e., the processor’s share of secret E
in Figure 4. Thus, the number of AES engines should be
chosen to match the NDP memory throughput (evaluated in
Section VII-A).

2) OTP PU: SecNDP needs this processor enhancement
to compute on its share of secret, i.e., E in Figure 4.
The operations in the OTP PU are the same as the NDP
operations. Thus, the OTP PU is designed to have the same
number of registers and the same logic as NDP PUs. The
OTP PU will simply take the NDP commands (paddr, we,
m, a) and replicate the operations. At the end of the com-
putation, the OTP PU and the NDP PU will each hold their
arithmetic share of the secret in their register. Usually, NDP
is supported by a lightweight processing unit. Likewise, the
complexity of the OTP PU will also be lightweight. For
example, for a vector-matrix multiplication, it only needs an
integer ALU. The throughput of the OTP PU should match
that of the encryption engine.

3) Verification Engine: For verification, a MAC (Alg. 2)
is generated from data vectors. Thus, a verification engine
is a part of the SecNDP Engine.

Comparing the SecNDP engine to a conventional encryp-
tion engine in a TEE, only the OTP PU and the final adder
is new. SecNDP would also require more encryption engines
depending on the NDP throughput. Because we let software
in a TEE manage the version numbers, SecNDP saves the
logic and storage for managing version numbers.

D. Verification Tag Storage and Operation

To store verification tags, extra memory space is required.
As with conventional memory integrity protection choices,
there are three options. (1) Ver-coloc: co-locating the tag
with data. When software allocates memory for data, it also
allocates extra space for the verification tag next to the
data. With co-location, the data and tag are likely to be

7

within the same DRAM row, saving memory access time
and energy. (2) Ver-sep: allocating tags separately from the
data. At the boot-up time or TEE loading time, a system
can allocate a designated physical address region to store
tags. The advantage of this option is that the software binary
layout does not need to be changed for verification. (3) Ver-
ECC: storing the tags in an ECC chip, and storing the
ECC bits in separate memory space [63]. Both data and
its tag are fetched in one memory access, while ECC bits
are fetched only when corruption is detected. The advantage
is that it co-locates the tag with data and fully utilizes the
bandwidth of commercial hardware. The disadvantage is that
the ECC chip has a fixed capacity and is not flexible for
different vector and tag sizes. Also, the SecNDP scheme
only verifies the final computation result over a potentially
large memory region. If the verification fails, all the ECC
of related memory regions need to be checked.

When an NDP operation is to be verified, the NDP needs
to compute on the tags. The operation on the data vector
(ai ×Ci) will also apply to the tag (ai ×CTi

), as shown in
Figure 4(a). There are two possible designs. The SecNDP
Engine can issue an extra NDP instruction to compute the
tag. Another possible design is to extend each operation.
Instead of operation on a vector (a × Ci), an operation on
a vector and a tag a × [Ci|CTi

] is conducted. The second
design needs to change the NDP PU logic to have extended
registers. Note that the computation for tags is in a prime
field. If we choose q = 2127− 1, the computation is similar
to standard integer arithmetic, but has extra logic when an
overflow is incurred [13].

E. Implementation of SecNDP Instructions

1) ArithEnc: The AES engines use paddr and v
to generate the OTPs. Each plaintext data value is then
subtracted by its OTP bits (following Alg. 1) and written
back to memory like a cache line flush. If the verification bit
is set, a MAC (Alg. 2) is computed in the verification engine,
and the encryption engine uses paddr, m, v to encrypt the
tag (Alg. 3).

2) SecNDPInst: The memory controller passes the
operands to the SecNDP Engine and also issues NDP
commands. As shown in Figure 4(a), the OTP PU and the
NDP PU perform the same computation on the OTP and
the ciphertext, respectively. The intermediate results will be
in the corresponding registers in the OTP PU and the NDP
PU. If verification is needed, extra computation on the tag
is performed as described in Section V-D.

3) SecNDPLd: On the SecNDPLd instruction, the
value in the desired NDP PU register is loaded to the
resp. buf. in the processor (see Figure 5). The value of
the corresponding register in the OTP PU register is loaded
to dec. buf. and added to the value from NDP. Only
one adder is on the critical path when the encrypted result
is returned to the processor core. If verification is needed,

+ output

Q
ue

ry
 in

di
ce

s:

i0

i1

Em
b.

 ta
bl

e:

Example SLS Operation (PF=3)[
]

Pqi,1 … Pqi,m scalei biasi

Pi,1 … Pi,m

i2

Row-wise quantization

32-bit 32-bit

8-bit 8-bit

Pi,j=Pqi,j*scalei+biasiW
ei

gh
ts

:

a0

a1

[
]a2

*a0
*a1
*a2

Figure 6. (Left) Embedding table lookup (SLS operation) in deep
learning recommendation model. (Right) Row-wise quantization to
reduce memory footprint.

the data result is further passed to the Verification Engine
to compute the checksum. Meanwhile, the tag is obtained
by adding the intermediate tag in the OTP PU and the NDP
PU. If the tag matches the checksum of the data result, the
verification passes. Otherwise, the verification fails and an
interrupt will be triggered. The verification can be in the
critical path (1–2 cycle), or can be speculated [48].

VI. EVALUATION METHODOLOGY

A. Workloads

We use two categories of representative NDP use cases.
The first one is deep learning recommendation infer-
ence [28], [58], which exhibits sparse and irregular memory
access patterns. The second one is data analytics for bio-
medical applications, which perform accesses over contigu-
ous memory regions. A pooling factor (PF) denotes the level
of data aggregation, i.e., the ratio of the raw data size to the
size of the computed result.
(1) Deep Learning Recommendation Inference: Recom-
mendation models, such as Deep Learning Recommendation
Model (DLRM) [58] are structured to take advantage of
both continuous and categorical features of individual users.
In addition to continuous feature processing using fully-
connected (FC) layers commonly found in deep learning, the
categorical features are captured by large embedding tables
with sparse lookup and pooling operations.

Embedding tables are organized as a set of potentially
millions of vectors of dimension m. An embedding table
lookup operation (i.e., SparseLengthsSum or SparseLength-
sWeightedSum (SLS) operation in Caffe2 [3]) performs a
weighted summation for a set of vectors. As illustrated in
the left part of Figure 6, an SLS query consists of a list of
indices [i0, i1, ..., iPF−1] and a weight vector a of dimension
PF. The result of the pooling is a vector of dimension m and
each element of the vector is resj =

∑PF−1
k=0 aik × Pik,j .

The embedding operations in recommendation models often
access irregular indices from large tables, impeding the
memory performance that further limits the overall service
throughput. Previous studies showed that NDP can signif-
icantly speed up embedding lookups in recommendation
models [36], [76].

In our evaluation, we offload the embedding table lookup
(i.e., SLS operations) to NDP and the rest of the model runs
on a CPU. We consider the recommendation models as the

8

Table I
PARAMETERS OF DLRM MODELS IN EVALUATION

bottom FC top FC # Emb. total Emb. size
RMC1-small 256-128-32 256-64-1 8 1GB
RMC1-large 256-128-32 256-64-1 12 1.5GB
RMC2-small 256-128-32 256-128-1 24 3GB
RMC2-large 256-128-32 256-128-1 64 8GB

service provider’s intellectual property (IP), while the val-
ues containing users’ private information in the embedding
tables as the data that need to be protected.

Memory footprint optimization by quantization. For
efficiency, the values in the embedding tables are often
quantized to a smaller bit width [21]. For example, in row-
wise quantization, a vector of 32-bit values can be quantized
into a vector of 8-bit integers with a scale and bias per
row (Figure 6 right). When the vector is queried, each
value in the vector is multiplied by the scale and then
the bias is added to recover the original value (Pi,j =
Pqi,j×scalei+ biasi). Proper quantization schemes reduce
memory footprint while keeping the model accuracy [21].

However, when the row-wise quantization is applied, for
each computation there is an extra multiplication with scale
(Pqi,j × scalei), making computation over ciphertext less
efficient. Thus, we propose and evaluate table-wise and
column-wise quantization schemes, where the scale and the
bias are assigned on a per-table or a per-column basis.
With table-wise and column-wise quantization, the SLS
operation can be first performed without per-row scale, i.e.,
resqj =

∑PF−1
k=0 aik × Pqik,j . In the last step, the per-

table or per-column scale and bias are used to get the final
result, i.e., resj = resqj × scalej + biasj . The total size
of the per-column or the per-table scale and the bias is
much smaller than the table size. With the table-wise or
column-wise quantization, the vector-matrix multiplication
can be directly applied to quantized values. For performance
evaluation, we assume the scale and bias for quantization
can be cached in the processor, and thus, the table-wise and
column-wise quantization have the same performance.

Recommendation Model Parameters. For performance
evaluation, we use DLRM models with the representative
model parameters in Table I. Each embedding table row has
m = 32 elements. We also consider a different quantization
scheme that quantizes 32-bit values into 8-bit values (i.e.,
2 cache lines into about 0.5 cache line per vector.) We
use a randomly-generated query trace with PF = 40 and
80, and a query trace from a production model with a
pooling factor PF ranging from 50 to 100. For encryption
and replay attack prevention, each embedding table uses a
version number, and the enclave software manages at most
64 version numbers. For model accuracy evaluation, we
use a production-scale recommendation model consisting of
hundreds of embedding tables with production data set.
(2) Medical Data Analytics. The second use case we
consider here is data analytics over a private data set. To
study whether a certain disease is related to certain genes,

Table II
SIMULATION PARAMETERS AND CONFIGURATIONS

DRAM Parameters
DDR4-2400MHz, rank size=8GB, tRC=55, tRCD=16, tCL=16, tRP=16,

tBL=4, tCCD S=4, tCCD L=6, tRRD S=4, tRRD L=6, tFAW=26

AES Encryption Engine Parameter [22]
Throughput = 111.3Gbps, i.e., 1.15ns per 128-bit block.

statistical hypothesis tests need to be performed. Consider
a data set containing the expression level for m = 10000
genes of n = 500, 000 patients (e.g., [16]). This is used to
compute the test statistics (e.g., p-value of t-test [71]), and
the summation (or average) of the gene expression level of
patients and non-patients.

The data set contains sensitive medical information (e.g.,
the gene expression level) and needs to be protected. We
store the data set in the memory after encryption. When
researchers want to study a certain disease, they query the
data set by giving a list of patient IDs in the data set, and let
the NDP unit compute the summation. A query is comprised
of a list of patient IDs which are used for aggregating their
gene expression level. Usually the queried patient IDs are
not sparse.

Database Parameters: In performance simulation, we
consider a database with m = 1024 genes and conduct
summation over PF = 10, 000 patients (40MB in total).

B. Evaluation Setup

SecNDP Performance Simulation. Based on the simula-
tion framework in [36], we built a cycle-level simulation
framework with the following components: (1) a physical
addresses mapping module, (2) an NDP packet generator,
(3) an encryption engine, and (4) an NDP DIMM consisting
of DRAM devices, arithmetic units, and control logic. We
use Ramulator [40], a cycle-level DRAM simulator, for the
DRAM devices. Table II summarizes the parameters and
configurations.

During the simulation, we emulate the packet generation
and scheduling steps taken by the software stack and the
memory controller. First, we apply a standard page mapping
method [26] to generate the physical addresses from a trace
of embedding lookups by assuming that the OS randomly
selects free physical pages for each logical page frame. This
physical address trace is then fed to Ramulator.

We implemented a cycle-level NDP module on top of Ra-
mulator including the logic in the NDP PU. The NDP rank
parameter denotes the number of Rank-NDP PUs in the
system, and the parameter NDP reg denotes the number of
registers per NDP PU. To evaluate the NDP latency, the
packet generator divides the physical memory requests into
packets of NDP commands that are then sent to the cycle-
level simulator. NDP activates all ranks under the memory
channel. For every NDP packet, the NDP commands are
dispatched to the parallel ranks and the latency is bounded
by the slowest rank. The total latency of NDP also includes

9

Figure 7. Performance of unprotected non-NDP baseline (in blue), unprotected NDP (in red), and SecNDP-Enc with different numbers
of AES engines (in green). For SLS 8-bit quantization, (row quan) denotes the result of the row-wise quantization scheme, and the other
bars are for both the column-wise and table-wise quantization schemes5. With a sufficient number of AES engines, encryption in SecNDP
shows the same speedup as unprotected NDP.

the DRAM cycles during initialization to configure memory-
mapped control registers and a cycle in the final stage to
transfer the sum/partial-sum to the processor using NDPLd.

To evaluate the throughput of the AES engine and the
OTP PU, we use the performance number of a fully
pipelined AES design [22]. We assume the addition and
multiplication on the counter block are pipelined cycle-by-
cycle after AES encryption. Combining the off-chip NDP
latency and the encryption engine throughput, we estimate
the throughput of SecNDP. The final throughput is the
smaller one of the NDP throughput and the OTP throughput.
Whole System (TEE + SecNDP) Evaluation. In some
cases, only part of the computation will be offloaded to
SecNDP (NDP portion). The remaining part will be executed
in the CPU TEE (CPU portion). To estimate the performance
slowdown of the CPU portion and to establish a CPU
TEE performance reference, we measure the execution time
on two Intel machines with SGX enclaves [4]. One is an
Intel Xeon E-2288G CoffeeLake (CFL) CPU, with 168MB
SGX EPC, 16MB L3, and 32GB DRAM. The other one is
an Intel Xeon Platinum 8370C IceLake (ICL) CPU, with
96GB SGX EPC, 48MB L3, and 192GB DRAM. When the
workload fits in caches (e.g., the CPU portion of DLRM),
SGX ICL has about 5% slowdown. To evaluate the end-
to-end performence, we ran the whole model on the ICL
machine to obtain the execution time breakdown between
the CPU portion and the NDP portion, and use the speedup
(or slowdown) of each portion to evaluate the execution time.
Arithmetic Precision and Application Accuracy. We apply
a quantization scheme to a production-scale model and use a
production dataset with 40K samples to evaluate the model
accuracy. The accuracy is presented using Logloss [21], a
widely used loss function for prediction models.
Power and Area. We use the memory trace from our
performance simulation setup and DRAMPower tool [18]
to estimate the DRAM chip energy. We use CACTI-IO [34]

5As discussed in Section VI-A-(1), because we cache the scale and
bias for quantization in the processor, the column-wise and the table-wise
quantization schemes have the same speedups. Hence, we display one bar
for both the column-wise and table-wise quantization in the middle group
of SLS 8bit quan. The (row quan) bars represent the original row-wise
quantization scheme in the baseline and unprotected NDP scenarios.

Table III
SECNDP SPEEDUP AGAINST UNSECURED BASELINE AND SGX.

RMC1-
small

RMC1-
large

RMC2-
small

RMC2-
large

Data
Analytics

unprotected non-NDP 1x 1x 1x 1x 1x
unprotected NDP 2.46x 3.11x 4.05x 4.44x 7.46x

SGX-CFL 0.0038x 0.0037x N/A N/A 0.1738x
SGX-ICL (no int. tree) 0.59x 0.60x N/A N/A 0.57x

SecNDP 2.36x 3.02x 3.95x 4.33x 7.46x

to evaluate the energy between the DRAM chip and the
NDP PU (located inside DIMM’s buffer chip) and the energy
of DIMM IO. To estimate the energy and the area of the
SecNDP engine, we refer to an AES design [22] and use
model in [66] for the OTP PU and the verification engine
at 45nm process node.

VII. EVALUATION RESULTS

In this section, we evaluate the performance (in execution
time), precision, energy, and area of the SecNDP architec-
ture. The results show the performance and energy con-
sumption of the SecNDP approach and that of unprotected
NDP. The precision loss in SecNDP shows negligible impact
on the accuracy of the recommendation model. The area
overhead of the SecNDP engine is also small.

A. Performance Evaluation

Overall End-to-End Performance. Table III illustrates the
performance of SecNDP compared with the non-NDP base-
line and Intel SGX. By leveraging eight NDP PUs, SecNDP
demonstrates 2.3x to 4.3x speedup for end-to-end DLRM
models with batch size=256 and 7.46x for the medical data
analytics. The performance of SecNDP is close to that of
an unprotected NDP as also shown in the table. Meanwhile,
using SGX shows considerable slowdown (Table III). This is
because the working set sizes of the workloads do not fit in
on-chip caches. Due to the malloc size limit by the current
SGX library, we could only run RMC1 in SGX. We observe
6x–300x slowdown for the CFL SGX enclave6, and 1.8x
– 2.6x slowdown for the ICL SGX enclave7. For SecNDP,

6CFL processors rely on an integrity tree to protect against replay attacks,
and thus only support a limited number of protected memory pages, causing
frequent page swapping in this case.

7ICL processors do not have integrity tree for replay attack prevention.

10

Figure 8. Percentage of NDP packets for SLS operations bottle-
necked by decryption bandwidth for confidentiality protection of
SecNDP.

Table III shows the performance with the verification scheme
(Ver-ECC) that stores tags in the ECC chip. We will present
the performance of unprotected NDP and SecNDP with
various verification schemes (introduced in Section V-D) in
more detail next. Overall, SecNDP demonstrates significant
performance improvement over a CPU TEE without NDP.
NDP Performance - Unprotected. The red bars in Figure 7
summarize the performance of the SLS operations (NDP
portion of DLRM) using different quantization schemes and
that of the data analytics workload across different NDP set-
tings (NDP rank, NDP reg). For SLS operations, quantiza-
tion provides 17–27% speedup for all row-wise (row quan),
column-wise, and table-wise quantization in both the NDP
and non-NDP settings. This is because the embedding tables
are smaller after quantization. Further, with more NDP rank
and NDP reg, NDP tends to have higher speedup. More
NDP rank allows more parallel memory accesses. More
NDP reg allows more intermediate SLS results, making the
workload among the NDP PU more evenly distributed. For
NDP rank=8 and NDP reg=8, the speedup reaches 5.59x
without quantization, and 6.89x with quantization. The data
analytics workload exhibits more regular memory access
patterns that are distributed evenly across all the NDP rank
PUs. Thus, it results in higher performance speedup (up to
7.46x) than irregular SLS operations. Also, since there is
only one resulting sum, more NDP reg does not help further
for the data analytics workload.
NDP Performance - Encryption-Only. We evaluate the
performance of SecNDP over different numbers of AES
engines (Figure 7). When there is only a small number
of AES engines, the decryption becomes the performance
bottleneck. As the number of AES engines increases, the
speedup reaches that of the unprotected NDP in all settings,
indicating that the performance bottleneck eventually shifts
to the memory bandwidth.

Figure 8 shows the percentage of NDP packets that is
bottlenecked by the AES bandwidth for SLS operations. If
the workload has enough parallelism and no NDP PU is
idle, more NDP rank require more AES engines to match
the NDP throughput. For example, when NDP rank=8, we
need ten AES engines to match the memory throughput in
the burst mode for the system setting in Table II. However,
in practice, applications may not be able to fully utilize the

Figure 9. Speedup of various SecNDP encryption and verification
schemes with NDP rank=8, NDP reg=8.

Figure 10. Percentage of NDP packets for SLS operations bottle-
necked by decryption bandwidth with NDP rank=8, NDP reg=8.

peak memory bandwidth and less AES engines may be suf-
ficient. For example, Figure 8 shows that eight AES engines
are enough to match the NDP throughput for roughly 70%
of the NDP packets for SLS operations without quantization.
Quantization can also significantly reduce the number of
AES engines needed; with quantization, only about one third
of the AES engines are needed. This is because less OTP is
required for the decryption.
NDP Performance - Encryption+Verification. We evaluate
three design options for SecNDP’s verification tags (Ver-
coloc, Ver-sep, and Ver-ECC in Section V-D), and assume
the NDP PUs have enough bandwidth to process tags. We
use a 128-bit tag for each vector. Figure 9 shows the perfor-
mance results of NDP rank=8 and NDP reg=8 with twelve
AES engines. For the data analytics workload, because the
row vector size m is greater than that of SLS, and the 128-
bit tag is relatively small compared to data, the verification
overhead is small. Figure 10 presents the percentage of the
NDP packets bottlenecked by the decryption operation for
SLS operations.

As shown in Figure 9, without quantization, Ver-coloc and
Ver-sep show lower speedup because of the extra memory
accesses for the tags. Ver-sep shows more performance
degradation because tags and data are not co-located, in
other words, an additional DRAM row buffer activation is
required. Ver-ECC has the same speedup as the encryption-
only (Enc-only) case as no extra DRAM access is required.
As shown in the left part of Figure 10, Ver-ECC needs more
AES engines to match the bandwidth requirement.

With quantization, the embedding vector size becomes
shorter than a cache line and the corresponding tags cannot
fit in the ECC chip; Ver-ECC does not work. Hence, we only
show the results for Ver-coloc and Ver-sep in Figure 9. With
Ver-coloc, one cache line fetch can retrieve both data and tag,
and thus the performance is close to Enc-only. But Ver-coloc

11

Figure 11. (Top) Normalized execution time in SecNDP with
NDP rank=8. The breakdown execution time of NDP portion (–
NDP) and the CPU TEE portion (–CPU) of the workloads is shown
in the stacked bar. (Bottom) Recommendation inference speedup
for different batch sizes in SecNDP.

Table IV
ACCURACY OF DIFFERENT QUANTIZATION SCHEMES

LogLoss LogLoss degradation

32-bit floating point 0.64013 0
32-bit fixed point 0.64013 −3.6 ∗ 10−10

table-wise quantization (8-bit) 0.64059 0.07%
column-wise quantization (8-bit) 0.64027 0.02%

still cannot reach the performance of Enc-only, because with
the tag present, the data is not aligned with the cache line
boundary. In some cases, two contiguous cache lines are
still needed. Compared to Enc-only, Ver-coloc requires more
AES engines to decrypt the tag in parallel with the data.
Ver-sep leads to about 40% performance degradation over
Enc-only, because two separate cache lines are accessed
instead of one. Even though Ver-sep does not change an
application’s memory layout and can support a variety of
tag sizes, it has the worst performance. Co-locating tags and
data either in ECC or in the memory has better performance
but requires a more complicated system implementation.
End-to-End Execution Time Breakdown. Figure 11
presents the breakdown of the end-to-end execution time and
how the performance speedup scales with different batch
sizes. Here, we present the speedup with NDP rank=8,
NDP reg=8, and PF=80 for SLS operations without quan-
tization. For batch size=256, compared with the insecure
non-NDP baseline, SecNDP achieves an end-to-end model
inference speedup, ranging from 2.3x to 4.3x. The results
include the slowdown of CPU portion in TEE. SecNDP
provides higher speedup for larger batch sizes, while SGX
does not scale with batch sizes.

B. Impact of Arithmetic Precision on Application Accuracy

Like in MPC, we only support integer and fixed point
operations in SecNDP. To assess the impact of data type
precision, we evaluate the accuracy impact from the preci-
sion change [32]. We perform the model accuracy evaluation
using production-level recommendation models [36]. As
shown in Table IV, using 32-bit fixed-point values for the
embedding has a negligible impact on the Logloss. Further-

Table V
MEMORY ENERGY CONSUMPTION OF SECNDP (PJ/BIT)

DIMM DIMM
IO SecNDP Engine Normd. Mem.

Energy (PF=80)
unprotected non-NDP 27.42×PF 7.3×PF 0 100%
unprotected NDP 27.42×PF 7.3 0 79.2%

non-NDP Enc 27.42×PF 7.3×PF 0.5×PF 101.5%
SecNDP Enc 27.42×PF 7.3 0.9×PF 81.83%
SecNDP Enc+ver 30.85×PF 8.2 1.01×PF+1.72 92.09%

more, using 8-bit table-wise or column-wise quantization
leads to similar, negligible Logloss degradation (<0.07%).
The accuracy results suggest that SecNDP can provide sig-
nificant speedup with security guarantee, while maintaining
the desired model accuracy requirement.

C. Energy and Area Overhead

In addition to performance improvement, NDP also saves
energy by reducing the amount of data transfer between the
processor and DIMM. Table V summarizes the energy con-
sumption of memory (including IO) and the SecNDP engine.
The non-NDP Enc row shows the energy consumption of a
TEE without NDP. Although SecNDP requires extra compu-
tation in OTP PUs, the energy consumption of OTP PUs is
insignificant compared to the overall memory power savings.
When PF=80, SecNDP saves memory system energy by
18% with encryption only and by 8% with verification.
In addition, there will be additional energy savings on the
processor cache hierarchy, because less data is moved in and
out of the caches. The area overhead of SecNDP is estimated
to be 1.625 mm2 at 45nm node if we use 10 AES engines
which match the throughput of OTP PUs and the verification
engine. The energy/area overheads can be further reduced
with more advanced process nodes.

VIII. RELATED WORK

Many cryptographic schemes have been proposed to pro-
tect the confidentiality of sensitive workloads on untrusted
platforms, such as HE [15], [19], [23], [53], [59], [60] and
MPC [20], [55]. However, HE incurs about several orders
of magnitude performance overheads [60]. Thus, deploying
HE in untrusted NDP does not outperform the TEE base-
line without NDP. MPC has better performance than HE,
however, the security of MPC relies on the assumption that
the untrusted nodes do not collude, which is not realistic
in many system settings. To further verify the correctness
of computations results, non-interactive verifiable computa-
tion [25], [50] and probabilistically checkable proofs [12],
[65] are proposed, but their computation complexity is still
too high to be practical for secure outsourcing.

Hardware-based TEE is an alternative solution to protect
both confidentiality and integrity of workloads. Analyzing
the memory protection of Intel SGX, Vessels [39] showed
that deep learning workloads suffer from significant perfor-
mance degradation, and proposed data movement optimiza-
tions. To improve the performance of TEE for data-intensive
workloads, untrusted accelerators can be leveraged [31],

12

[74]. Slalom [74] proposed using arithmetic secret sharing to
offload secure computations from a TEE to untrusted GPUs.
However, the TEE still needs to store its share of secret in
memory and pre-compute the results in an offline phase.
Thus, Slalom moves computation from online to offline, but
does not reduce computation or memory usage. DarKnight
[31] proposed a blinding scheme to offload batched deep
learning workloads to untrusted GPU. However, DarKnight
cannot protect weights in the accelerator. Another solution
is to also trust the accelerators and include the accelerators
in the TEE. For memory, previous studies [5], [9] proposed
protocols to encrypt and obfuscate the traffic on the memory
bus. However, InvisiMem [5] still incurs significant perfor-
mance, energy and memory space overhead. In addition,
such solution not only requires trusting multiple hardware
vendors, but also requires coordination and standardization
among the vendors. SecNDP is the first work to demonstrate
how untrusted off-the-shelf NDP units can be used for
secure computation.

IX. CONCLUSION

The recent progress in near-data processing generates a lot
of interest in using NDP to alleviate the memory bandwidth
bottleneck for data-intensive applications. However, there is
a lack of feasible techniques that protect the confidentiality
of off-chip data while taking advantage of NDP. In this
paper, we present SecNDP, a lightweight encryption and
verification scheme that supports NDP over ciphertext and
verifies the correctness of NDP results. With a sufficient
number of AES engines, our evaluation on two workloads
shows that SecNDP can match the speedup delivered by
unprotected NDP. Our energy evaluation shows SecNDP
saves memory energy by reducing the data transfer on the
memory bus. The SecNDP scheme enables a TEE in the
presence of untrusted memory to leverage the performance
and energy benefits of NDP securely.

ACKNOWLEDGMENTS

The authors would like to thank Muhammad Umar, Henry
Wang, Shankaran Gnanashanmugam, Jihang Li, Yuchen
Hao, and Haixin Liu for their help in evaluating recom-
mendation system in Intel SGX, and thank Brian Knott,
Hao Chen, Chuan Guo for their suggestions. The authors
would also like to thank the anonymous reviewers for their
insightful comments and suggestions. Liu Ke and Xuan
Zhang were partially supported by NSF CCF-1942900.

REFERENCES

[1] “AMD Secure Encrypted Virtualization (SEV),” https://
developer.amd.com/sev/.

[2] “Arm TrustZone Technology,” https://developer.arm.com/ip-
products/security-ip/trustzone.

[3] “Caffe2,” https://caffe2.ai/.

[4] “Intel Software Guard Extensions(SGX),” https:
//www.intel.com/content/www/us/en/architecture-and-
technology/software-guard-extensions.html.

[5] S. Aga and S. Narayanasamy, “InvisiMem: Smart memory
defenses for memory bus side channel,” in International Sym-
posium on Computer Architecture (ISCA), 2017, p. 94–106.

[6] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable
processing-in-memory accelerator for parallel graph process-
ing,” in International Symposium on Computer Architecture
(ISCA), 2015, p. 105–117.

[7] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled
Instructions: A Low-Overhead, Locality-Aware Processing-
in-Memory Architecture,” in International Symposium on
Computer Architecture (ISCA), 2015, pp. 336–348.

[8] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim,
“Chameleon: Versatile and Practical Near-DRAM Accelera-
tion Architecture for Large Memory Systems,” in Interna-
tional Symposium on Microarchitecture (MICRO), 2016, pp.
1–13.

[9] A. Awad, Y. Wang, D. Shands, and Y. Solihin, “ObfusMem:
A low-overhead access obfuscation for trusted memories,” in
International Symposium on Computer Architecture (ISCA),
2017, p. 107–119.

[10] Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Da Eun Shim,
Sung-Kyu Lim, Hyesoon Kim, “FAFNIR: Accelerating
Sparse Gathering by Using Efficient Near-Memory Intel-
ligent Reduction,” in International Symposium on High-
Performance Computer Architecture (HPCA), 2021, pp. 908–
920.

[11] S. Banerjee, P. Ramrakhyani, S. Wei, and M. Tiwari,
“SESAME: Software defined enclaves to secure inference
accelerators with multi-tenant execution,” arXiv preprint
arXiv:2007.06751, 2020.

[12] M. Bellare, S. Goldwasser, C. Lund, and A. Russell, “Effi-
cient probabilistically checkable proofs and applications to
approximations,” in Proceedings of the twenty-fifth annual
ACM symposium on Theory of computing, 1993, pp. 294–
304.

[13] D. J. Bernstein, “Floating-point arithmetic and message
authentication,” 2000. [Online]. Available: http://cr.yp.to/
papers.html#hash127.

[14] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and
S. Devadas, “MI6: Secure Enclaves in a Speculative Out-of-
Order Processor,” in International Symposium on Microarchi-
tecture (MICRO), 2019, p. 42–56.

[15] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully ho-
momorphic encryption without bootstrapping,” in Innovations
in Theoretical Computer Science (ITCS), 2012, pp. 309–325.

[16] C. Bycroft, C. Freeman, D. Petkova, G. Band, L. T. Elliott,
K. Sharp, A. Motyer, D. Vukcevic, O. Delaneau, J. O’Connell
et al., “The UK biobank resource with deep phenotyping and
genomic data,” Nature, vol. 562, no. 7726, pp. 203–209, 2018.

[17] R. Cammarota, I. Banerjee, and O. Rosenberg, “Machine
Learning IP Protection,” in Proceedings of the International
Conference on Computer-Aided Design (ICCAD), 2018.

[18] K. Chandrasekar, B. Akesson, and K. Goossens, “Improved
power modeling of ddr sdrams,” in 2011 14th Euromicro
Conference on Digital System Design, 2011, pp. 99–108.

[19] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” in Annual
International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT), 2017.

13

[20] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” in
Annual Cryptology Conference (CRYPTO), 2012, pp. 643–
662.

[21] Z. S. Deng, J. Park, P. T. P. Tang, H. Liu, J. Yang, H. Yuen,
J. Huang, D. S. Khudia, X. Wei, E. Wen, D. Choudhary,
R. Krishnamoorthi, C.-J. Wu, N. Satish, C. Kim, M. Naumov,
S. Naghshineh, and M. Smelyanskiy, “Low-precision hard-
ware architectures meet recommendation model inference at
scale,” IEEE Micro, 2021.

[22] P.-K. Dong, H. K. Nguyen, and X.-T. Tran, “A 45nm high-
throughput and low latency aes encryption for real-time
applications,” in 2019 19th International Symposium on Com-
munications and Information Technologies (ISCIT), 2019, pp.
196–200.

[23] J. Fan and F. Vercauteren, “Somewhat practical fully homo-
morphic encryption.” IACR Cryptol. ePrint Arch., vol. 2012,
p. 144, 2012.

[24] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S.
Kim, “NDA: Near-DRAM Acceleration Architecture Lever-
aging Commodity DRAM Devices and Standard Memory
Modules,” in International Symposium on High-Performance
Computer Architecture (HPCA), 2015, pp. 283–295.

[25] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifi-
able computing: Outsourcing computation to untrusted work-
ers,” in Annual Cryptology Conference (CRYPTO). Springer,
2010, pp. 465–482.

[26] M. Gorman, “Understanding the Linux virtual memory man-
ager,” 2004.

[27] C. Guo, A. Hannun, B. Knott, L. van der Maaten, M. Tygert,
and R. Zhu, “Secure multiparty computations in floating-point
arithmetic,” arXiv preprint arXiv:2001.03192, 2020.

[28] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen,
D. Brooks, B. Cottel, K. Hazelwood, M. Hempstead, B. Jia,
H.-H. S. Lee, A. Malevich, D. Mudigere, M. Smelyanskiy,
L. Xiong, and X. Zhang, “The architectural implications
of facebook’s dnn-based personalized recommendation,” in
International Symposium on High-Performance Computer
Architecture (HPCA), 2020, pp. 488–501.

[29] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and
E. W. Felten, “Lest We Remember: Cold-Boot Attacks on
Encryption Keys,” Commun. ACM, vol. 52, no. 5, p. 91–98,
May 2009.

[30] S. Halevi and H. Krawczyk, “MMH: Software message
authentication in the gbit/second rates,” in Fast Software
Encryption, 1997, pp. 172–189.

[31] H. Hashemi, Y. Wang, and M. Annavaram, “DarKnight: An
accelerated framework for privacy and integrity preserving
deep learning using trusted hardware,” in International Sym-
posium on Microarchitecture (MICRO), 2021, pp. 212–224.

[32] N. J. Higham, Accuracy and Stability of Numerical Algo-
rithms, 2nd ed. Society for Industrial and Applied Mathe-
matics, 2002.

[33] W. Hua, M. Umar, Z. Zhang, and G. E. Suh, “GuardNN:
Secure DNN Accelerator for Privacy-Preserving Deep Learn-
ing,” arXiv preprint arXiv:2008.11632, 2020.

[34] N. P. Jouppi, A. B. Kahng, N. Muralimanohar, and V. Srinivas,
“Cacti-io: Cacti with off-chip power-area-timing models,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, pp. 1254–1267, 2014.

[35] Y. Kang, Y.-s. Kee, E. L. Miller, and C. Park, “Enabling cost-
effective data processing with smart SSD,” in Symposium on

Mass Storage Systems and Technologies (MSST), 2013.
[36] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,

A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee, M. Li,
B. Maher, D. Mudigere, M. Naumov, M. Schatz, M. Smelyan-
skiy, X. Wang, B. Reagen, C.-J. Wu, M. Hempstead, and
X. Zhang, “RecNMP: Accelerating personalized recommen-
dation with near-memory processing,” in International Sym-
posium on Computer Architecture (ISCA), 2020, pp. 790–803.

[37] L. Ke, X. Zhang, J. So, J.-G. Lee, S.-H. Kang, S. Lee, S. Han,
Y. Cho, J. H. Kim, Y. Kwon, K. Kim, J. Jung, I. Yun, S. J.
Park, H. Park, J. Song, J. Cho, K. Sohn, N. S. Kim, and H.-
H. S. Lee, “Near-Memory Processing in Action: Accelerating
Personalized Recommendation with AxDIMM,” IEEE Micro,
2022.

[38] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopad-
hyay, “Neurocube: A Programmable Digital Neuromorphic
Architecture with High-Density 3D Memory,” in Interna-
tional Symposium on Computer Architecture (ISCA), 2016,
pp. 380–392.

[39] K. Kim, C. H. Kim, J. J. Rhee, X. Yu, H. Chen, D. J. Tian,
and B. Lee, “Vessels: Efficient and scalable deep learning
prediction on trusted processors,” in Symposium on Cloud
Computing (SoCC), 2020, pp. 462–476.

[40] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and
extensible DRAM simulator,” in IEEE Computer architecture
letters, vol. 15, no. 1, 2015, pp. 45–49.

[41] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta,
M. Ibrahim, and L. van der Maaten, “CrypTen: Secure multi-
party computation meets machine learning,” in Proceedings
of the NeurIPS Workshop on Privacy-Preserving Machine
Learning, 2020.

[42] T. Kohno, J. Viega, and D. Whiting, “CWC: A high-
performance conventional authenticated encryption mode,”
in International Workshop on Fast Software Encryption.
Springer, 2004, pp. 408–426.

[43] Y.-C. Kwon, S. H. Lee, J. Lee, S.-H. Kwon, J. M. Ryu, J.-
P. Son, O. Seongil, H.-S. Yu, H. Lee, S. Y. Kim, Y. Cho,
J. G. Kim, J. Choi, H.-S. Shin, J. Kim, B. Phuah, H. Kim,
M. J. Song, A. Choi, D. Kim, S. Kim, E.-B. Kim, D. Wang,
S. Kang, Y. Ro, S. Seo, J. Song, J. Youn, K. Sohn, and
N. S. Kim, “25.4 A 20nm 6GB Function-In-Memory DRAM,
Based on HBM2 with a 1.2TFLOPS Programmable Comput-
ing Unit Using Bank-Level Parallelism, for Machine Learning
Applications,” in International Solid-State Circuits Confer-
ence (ISSCC), 2021, pp. 350–352.

[44] Y. Kwon, Y. Lee, and M. Rhu, “TensorDIMM: A Practical
Near-Memory Processing Architecture for Embeddings and
Tensor Operations in Deep Learning,” in International Sym-
posium on Microarchitecture (MICRO), 2019, pp. 740–753.

[45] J. H. Lee, H. Zhang, V. Lagrange, P. Krishnamoorthy,
X. Zhao, and Y. S. Ki, “SmartSSD: FPGA Accelerated Near-
Storage Data Analytics on SSD,” IEEE Computer Architec-
ture Letters, vol. 19, no. 2, pp. 110–113, 2020.

[46] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon,
S. Lee, K. Lim, H. Shin, J. Kim, O. Seongil, A. Iyer,
D. Wang, K. Sohn, and N. S. Kim, “Hardware Architecture
and Software Stack for PIM Based on Commercial DRAM
Technology : Industrial Product,” in International Symposium
on Computer Architecture (ISCA), 2021, pp. 43–56.

[47] V. T. Lee, A. Mazumdar, C. C. del Mundo, A. Alaghi,
L. Ceze, and M. Oskin, “Application codesign of near-data
processing for similarity search,” in 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS),
2018, pp. 896–907.

14

[48] T. S. Lehman, A. D. Hilton, and B. C. Lee, “PoisonIvy: Safe
speculation for secure memory,” in International Symposium
on Microarchitecture (MICRO), 2016, pp. 1–13.

[49] H. Li, T. F. Wu, S. Mitra, and H.-S. P. Wong, “Resistive RAM-
centric computing: Design and modeling methodology,” IEEE
Transactions on Circuits and Systems I: Regular Papers,
vol. 64, no. 9, pp. 2263–2273, 2017.

[50] B. Libert, T. Peters, M. Joye, and M. Yung, “Linearly ho-
momorphic structure-preserving signatures and their applica-
tions,” Designs, Codes and Cryptography, vol. 77, no. 2, pp.
441–477, 2015.

[51] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao,
“Processing-in-memory for energy-efficient neural network
training: A heterogeneous approach,” in International Sym-
posium on Microarchitecture (MICRO), 2018, pp. 655–668.

[52] Q. Liu, B. Gao, P. Yao, D. Wu, J. Chen, Y. Pang, W. Zhang,
Y. Liao, C.-X. Xue, W.-H. Chen, J. Tang, Y. Wang, M.-F.
Chang, H. Qian, and H. Wu, “33.2 a fully integrated analog
reram based 78.4tops/w compute-in-memory chip with fully
parallel mac computing,” in International Solid- State Circuits
Conference, 2020, pp. 500–502.

[53] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly
multiparty computation on the cloud via multikey fully homo-
morphic encryption,” in Symposium on Theory of computing
(STOC), 2012, pp. 1219–1234.

[54] D. A. McGrew and J. Viega, “The security and performance
of the galois/counter mode (GCM) of operation,” in Progress
in Cryptology (INDOCRYPT), 2005, pp. 343–355.

[55] P. Mohassel and P. Rindal, “ABY3: A mixed protocol frame-
work for machine learning,” in Conference on Computer and
Communications Security (CCS), 2018, p. 35–52.

[56] S. Na, S. Lee, Y. Kim, J. Park, and J. Huh, “Common
counters: Compressed encryption counters for secure GPU
memory,” in International Symposium on High-Performance
Computer Architecture (HPCA), 2021, pp. 1–13.

[57] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim,
“GraphPIM: Enabling Instruction-Level PIM Offloading in
Graph Computing Frameworks,” in International Symposium
on High-Performance Computer Architecture (HPCA), 2017,
pp. 457–468.

[58] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sun-
daraman, J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G.
Azzolini et al., “Deep learning recommendation model for
personalization and recommendation systems,” arXiv preprint
arXiv:1906.00091, 2019.

[59] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in International conference on
the theory and applications of cryptographic techniques.
Springer, 1999, pp. 223–238.

[60] B. Reagen, W.-S. Choi, Y. Ko, V. T. Lee, H.-H. S. Lee,
G.-Y. Wei, and D. Brooks, “Cheetah: Optimizing and ac-
celerating homomorphic encryption for private inference,”
in International Symposium on High-Performance Computer
Architecture (HPCA), 2021, pp. 26–39.

[61] P. Rogaway, “Authenticated-encryption with associated-data,”
in Conference on Computer and Communications Security
(CCS), 2002, pp. 98–107.

[62] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Us-
ing address independent seed encryption and bonsai merkle
trees to make secure processors os-and performance-friendly,”
in International Symposium on Microarchitecture (MICRO),
2007, pp. 183–196.

[63] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and

M. K. Qureshi, “Synergy: Rethinking secure-memory design
for error-correcting memories,” in International Symposium
on High Performance Computer Architecture, 2018, pp. 454–
465.

[64] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De,
Y. Jin, Y. Liu, and S. Swanson, “Willow: A User- pro-
grammable SSD,” in Symposium on Operating Systems De-
sign and Implementation (OSDI), 2014, pp. 67–80.

[65] S. T. Setty, R. McPherson, A. J. Blumberg, and M. Walfish,
“Making argument systems for outsourced computation prac-
tical (sometimes).” in NDSS, vol. 1, no. 9, 2012, p. 17.

[66] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin:
A pre-rtl, power-performance accelerator simulator enabling
large design space exploration of customized architectures,” in
International Symposium on Computer Architecture (ISCA),
2014, pp. 97–108.

[67] W. Shi, H.-H. S. Lee, M. Ghosh, C. Lu, and A. Boldyreva,
“High efficiency counter mode security architecture via pre-
diction and precomputation,” in International Symposium on
Computer Architecture (ISCA), 2005, pp. 14–24.

[68] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Member-
ship Inference Attacks Against Machine Learning Models,” in
2017 IEEE Symposium on Security and Privacy (SP), 2017,
pp. 3–18.

[69] G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk,
R. Jordans, H. Corporaal, and A.-J. Boonstra, “Near-memory
computing: Past, present, and future,” Microprocessors and
Microsystems, vol. 71, p. 102868, 2019.

[70] G. Singh, D. Diamantopoulos, C. Hagleitner, S. Stuijk, and
H. Corporaal, “NARMADA: Near-memory horizontal diffu-
sion accelerator for scalable stencil computations,” in 2019
29th International Conference on Field Programmable Logic
and Applications (FPL), 2019, pp. 263–269.

[71] Student, “The probable error of a mean,” Biometrika, pp. 1–
25, 1908.

[72] G. E. Suh, D. Clarke, B. Gasend, M. Van Dijk, and S. De-
vadas, “Efficient memory integrity verification and encryp-
tion for secure processors,” in International Symposium on
Microarchitecture (MICRO), 2003, pp. 339–350.

[73] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. De-
vadas, “AEGIS: Architecture for tamper-evident and tamper-
resistant processing,” in ACM International Conference on
Supercomputing 25th Anniversary Volume, 2003, p. 357–368.

[74] F. Tramèr and D. Boneh, “Slalom: Fast, verifiable and private
execution of neural networks in trusted hardware,” in Interna-
tional Conference on Learning Representations (ICLR), 2019.

[75] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted
execution environments on gpus,” in Symposium on Operating
Systems Design and Implementation (OSDI), Oct. 2018, pp.
681–696.

[76] M. Wilkening, U. Gupta, S. Hsia, C. Trippel, C.-J. Wu,
D. Brooks, and G.-Y. Wei, “RecSSD: Near Data Processing
for Solid State Drive Based Recommendation Inference,”
in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2021, pp. 717–729.

[77] Wm. A. Wulf and Sally A. McKee, “Hitting the memory wall:
implications of the obvious,” in ACM SIGARCH Computer
Architecture News, vol. 23, no. 1. ACM, 1995, pp. 20–24.

[78] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Soli-
hin, “Improving cost, performance, and security of memory
encryption and authentication,” in International Symposium
on Computer Architecture (ISCA), 2006, p. 179–190.

15

APPENDIX

A. Preliminaries and more Definitions

Definitions of the notations used in the paper are shown
in Table VI.

Table VI
NOTATIONS

Symbol Definition

P plaintext, is a 2-D array of n×m, i.e., n vectors
of dimension m.

P [addl : addr] plaintext block between physical address addl
and addr , include addl and exclude addr

Pi the ith vector in the plaintext.
Pi,j the jth element in vector Pi.
we Bit width of element in P
wA Bit width of addresses
A address of corresponding plaintext
wK Bit width of the secret key
K processor secret key, wK bit
wc block cipher size, 128 for AES
E(K,X) A block cipher {0, 1}wK × {0, 1}wc →

{0, 1}wc

paddr() the starting physical address of data in bytes
size() the size of data in bits
v version number of the plaintext
wv Bit width of version, it should be less than

wc − 37, considering 38-bit address and 2-bit
for encrypting tag

C Ciphertext. Size is the same as plaintext
PF pooling factor for summation
wt Bit width of verification tag
q a prime number, ≈ 2wt

Ti checksum of vector Pi
CTi

encrypted checksum of vector Pi
x||y concatenation of x and y

x
$←− X uniformly sampling, i.e., selecting at random an

element from X and assigning it to x.

In Figure 3, we show the diagram of a vector and matrix
multiplication. Algorithms 4 and 5 are the algorithms
that compute weighted summation of rows in matrix P
(i.e., vector a times a subset of rows in P) and verify
the result. In the algorithm description that follows, it is
assumed that only a subset of elements from the input
matrix P participate in the multiplication, as indicated by in-
dex sets [i0, i1, ..., iPF−1] and [j0, j1, ..., jPF−1]. The steps
performed on the processor vs NDP are shown separately
in different columns. The communication between the two
entities is denoted by long arrows.

B. Proof of Correctness

Theorem A.1 On the correctness of the weighted summa-
tion: Value res computed in step 15, Alg. 4, satisfies the
equality res = (

∑PF−1
k=0 ak × Pik,jk) mod 2we .

Proof: From the Encryption in Alg. 1, for any i and
j, we have Ci,j = Pi,j − ei,j mod 2we , and thus, Pi,j =

Ci,j + ei,j mod 2we . Thus,

res = cres + eres mod 2we (3)

= [

PF−1∑
k=0

ak × Cik,jk +

PF−1∑
k=0

ak × eik,jk] mod 2we (4)

= [

PF−1∑
k=0

ak × (Cik,jk + eik,jk)] mod 2we (5)

= (

PF−1∑
k=0

ak × Pik,jk) mod 2we (6)

Theorem A.2 On the correctness of the weighted summation
verification: If all the parties in Alg. 5 follow the protocol,
and for all j ∈ [0,m−1],

∑PF−1
k=0 ak×Pik,j does not exceed

2we , then the equality Tres = CTres
+ETres

mod q holds.
Proof: From the encryption flow of Alg. 1, for any

i and j, we have Ci,j = Pi,j − ei,j mod 2we . From
the OTP generation flow of Alg. 3, CTi

= Ti − ETi

mod q. All elements in P are integrity protected using
the same entity s, which is equal to the first wt bits
of E(K, 01||paddr(P)/wc||version). Hence, as shown in
Alg. 5:

LHS = Tres =

m−1∑
j=0

resm−jj mod q (7)

=

m−1∑
j=0

(

PF−1∑
k=0

ak × Pik,j mod 2we)× sm−j mod q

(8)

Meanwhile,

RHS = CTres
+ ETres

mod q (9)

= [(

PF−1∑
k=0

ak × CTk
) + (

PF−1∑
k=0

ak × ETk
)] mod q (10)

= [

PF−1∑
k=0

ak × (CTk
+ ETk

)] mod q

= [

PF−1∑
k=0

ak × Tk] mod q (11)

= [

PF−1∑
k=0

ak × (

m−1∑
j=0

Pik,j × sm−j)] mod q (12)

= [

PF−1∑
k=0

(

m−1∑
j=0

ak × Pik,j × sm−j)] mod q (13)

= [

m−1∑
j=0

(

PF−1∑
k=0

ak × Pik,j)× sm−j] mod q (14)

16

Let overflowj
∆
= ⌊(

PF−1∑
k=0

ak × Pik,j)/2
we⌋. (15)

RHS = [

m−1∑
j=0

(

PF−1∑
k=0

ak × Pik,j mod 2we

+ overflowj × 2we)× sm−j] mod q (16)

= [

m−1∑
j=0

(

PF−1∑
k=0

ak × Pik,j mod 2we)× sm−j] mod q

+ [

m−1∑
j=0

(overflowj × 2we)× sm−j] mod q (17)

= Tres + [

m−1∑
j=0

(overflowj)× sm−j]× 2we mod q

(18)

= LHS + [
m−1∑
j=0

(overflowj)× sm−j]× 2we mod q

(19)

If there is no overflow, then for all j, overflowj = 0.
Hence, LHS = RHS.

C. Security Proof

We begin our security analysis with the definition of
the distinguishing advantage of a cryptographic system. We
modify the standard definition to include the number of
issued queries as a property of the advantage.

Definition A.1 Distinguishing advantage for a randomized
system: Let S() : {0, 1}win → {0, 1}wout denote a random-
ized system associated with inputs of length win and outputs
of length wout, and R() a truncated output random oracle,
associated with the same input and output lengths. Let also
AF()

Q denote any randomized polynomial time algorithm
which issues queries from a set Q of cardinality |Q| to any
system F() : {0, 1}win → {0, 1}wout , and outputs one of
0 or 1. The distinguishing advantage for system S() and
truncated output random oracle R() associated with number
of queries |Q| is defined as:

Adv
S()
|Q| = max

A,Q
|Pr[AS() ⇒ 1]− Pr[AR() ⇒ 1]| (20)

Definition A.2 Distinguishing advantage for randomized
encryption systems tweaked by a version field: Let
E(K,X) : {0, 1}wc × {0, 1}wK → {0, 1}wc be a
block cipher associated with input X ∈ {0, 1}wc , key
K ∈ {0, 1}wK , and ciphertext Y ∈ {0, 1}wc . Let wA

and wv be address and version lengths. Let E00(K,A, v),
E01(K,A, v) and E10(K,A, v), denote the randomized
encryption systems E(K, 00||A||v||0wc−wA−wv−1),
E(K, 01||A||v||0wc−wA−wv−1) and

E(K, 10||A||v||0wc−wA−wv−2), where E00(),E01(),E10() :
{0, 1}wA ×{0, 1}wv × {0, 1}wK → {0, 1}wc . A ∈ {0, 1}wA

is the address input in these systems. K ∈ {0, 1}wk

is the encryption key, which is drawn from the
uniform distribution, K

$← K0, and secret to any
randomized polynomial time algorithm issuing queries
to E00(),E01(),E10(). Version v ∈ {0, 1}wv is a cipher
tweak, which is also randomized, drawn from distribution
V(), where V() is not necessarily uniform. The version
field is in the control of systems E00(),E01(),E10() and
not in the control of the algorithms that issue queries to
E00(),E01(),E10(). On every distinct query received by
E00(),E01(),E10(), systems E00(),E01(),E10() produce a
different tweak v drawn from distribution V(), and use this
tweak to compute an output for the received query. The
only restriction imposed on V() is that no two encryption
operations performed by any of E00(),E01(),E10(), with
the same input A, is tweaked by the same v ← V(). We use
a Boolean parameter dis ∈ {true, false} to denote whether v
is disclosed to the algorithms querying E00(),E01(),E10()
or not. When parameter is dis is omitted, it is implied that
dis = true. The distinguishing advantage associated with
each of the randomized encryption systems E00(), E01()
and E10() and number of queries |Q| is defined as:

Adv
ED(), dis
|Q| =

max
A,Q,V(),

same input queries are
on a different v←V()

|Pr[AED() ⇒ 1, dis]− Pr[AR() ⇒ 1, dis]|

(21)
where D is one of ‘00’, ‘01’, or ‘10’, and A is any
randomized polynomial time algorithm as in Definition A.1.

The security of our proposed systems is established in the
standard adaptive chosen plaintext and MAC adversaries.
The games which these adversaries play are given in the
definitions below.

Definition A.3 Adaptive chosen plaintext adversary attack-
ing the encryption system Arith-E(): Let Arith-E(K,P,A) :
{0, 1}m×n×we × {0, 1}wA × {0, 1}wK → {0, 1}m×n×we be
the encryption system defined by Algorithm 1, where P is
the matrix input, m, n and we are length parameters defined
in Section IV-A, A is an address value of length wA and
K ∈ {0, 1}wK is the encryption key. The version input is
omitted as this is not in the control of an adversary, but
instead drawn from distribution V() by Arith-E() on every
distinct encryption operation. An adaptive chosen plaintext
adversary AArith-E(),Q

CPA is defined as a randomized polynomial
time algorithm which issues |Q| adaptive chosen queries
to encryption system Arith-E() from a set Q = {Q[i] ←
(P [i], A[i]), i ∈ [0, |Q| − 1]}, and observes the responses
C [i] ← Arith-E(K,P [i], A[i]). Furthermore, depending on
the value of a Boolean parameter dis, the algorithm may

17

Algorithm 4: Weighted Summation
∑PF−1

k=0 ak × Pik,jk mod 2we

1 Processor Bus NDP

2 Inputs: K, P , [i0, i1, ..., iPF−1], [j0, j1, ..., jPF−1], [a0, a1, ..., aPF−1]
3 Output: res
4 C ← Arith-E(K,P, paddr(P)) // Initial Encryption using Algorithm 1
5 Processor sends encrypted matrix C to NDP C−−−−−→ NDP receives C

6 Processor requests for a weighted summation of elements of C NDPSum−−−−−−−→ NDP receives the request
7 Cres ←

∑PF−1
k=0 ak×Cik,jk mod 2we

8 // Processor generates OTP for Pik,jk
9 for k = 0 to PF − 1 do

10 idxk ← (paddr(Pik,jk)× 8 mod wc)/we;
11 v ← version associated with the encryption of matrix P drawn by Algorithm 1;
12 Eik,jk ← E(K, 00||paddr(Pik,jk)||v)[idxk × we : (idxk + 1)× we]

13 Processor receives Cres from NDP
Cres←−−−−−−−

14 Eres ← (
∑PF−1

k=0 ak × Eik,jk) mod 2we // Computes OTP for result
15 res← Cres + Eres mod 2we

16 Return res

Algorithm 5: Verification of Vector Weighted Summations resj =
∑PF−1

k=0 ak × Pik,j mod 2we for all j ∈ [0,m− 1]

1 Processor Bus NDP

2 Inputs: K, paddr(P), [i0, i1, ..., iPF−1], [a0, a1, ..., aPF−1]
3 Output: pass or fail
4 Processor requests Cresj ,∀j ∈ [0,m− 1]

5 Processor receives Cresj

Cresj←−−−− Cresj ← (
∑PF−1

k=0 ak × Cik,j) mod 2we

6 resj ←
∑PF−1

k=0 ak × Pik,j mod 2we for all j ∈ [0,m− 1]

7 // resj values are computed from steps 8-12 and 14-16 of Alg.4
8 v ← version associated with the linear checksum of P , drawn by Algorithm 2;
9 s←first wt bits of E(K, 01||paddr(P)||v);

10 Tres ←
∑m−1

j=0 resj × sj mod q;
11 v ← version associated with the enc. linear checksum of P , drawn by Algorithm 3;
12 for k = 0 to PF − 1 do
13 ETk

← first wt bits of E(K, 10||paddr(Pk)||v);

14 ETres ← (
∑PF−1

k=0 ak × ETk
) mod q;

15 Processor receives CTres // CTk
values have been computed using Alg. 2, 3

CTres←−−−− CTres ← (
∑PF−1

k=0 ak × CTk
) mod q

16 Return pass if Tres = CTres − ETres mod q else fail

or may not have access to the version values v returned
from V() as part of the game. The algorithm succeeds if,
in the end of the game, the algorithm can produce a value
K0 ∈ {0, 1}wK which is equal to the encryption key K. The
advantage of this adversary is defined as:

Adv(AArith-E(),Q,dis
CPA) = Pr[K0 ← AArith-E(),Q

CPA ,K0 = K |

dis, C [0] = Arith-E(K,P [0], A[0]), . . . ,

C [|Q|−1] = Arith-E(K,P [|Q|−1], A[|Q|−1])]

(22)

In the definition and security analysis that follows we
will omit the sequences [i0, ..., iPF−1] and [a0, ..., aPF−1]
passed as input to Algorithms 6 and 7 for the sake of
simplicity. These sequences are considered constant and our
proof holds for any such sequences.
Definition A.4 MAC Adversary attacking the weighted sum-

mation algorithm: Let ws-MACK(P,A) : {0, 1}n×m×we ×
{0, 1}wA ×{0, 1}wK → {0, 1}m×we+wt be the sign or-
acle defined by Algorithm 6 and ws-VerifyK(C, A): {0,
1}m×we+wt × {0, 1}wA × {0, 1}wK → {pass, fail} the
verification oracle of Algorithm 7 returning one of pass
or fail. P is the matrix row input, n, m, and we are
length parameters defined in Section IV-A, A is an address
value of length wA and K ∈ {0, 1}wK is the key value
used by the sign and verification oracles. The response
coming from oracle ws-MACK() is a bit string of length
m×we+wt and consists of the responses Cres0 , . . . Cresm−1

and CTres returned from Algorithm 6. C is a bit string of
the same length m × we + wt consisting of the values
Cres0 , . . . Cresm−1

and CTres
which are passed as input

to algorithm 7. A MAC adversary Aws-MAC(),Qs,Qv,dis
MAC is

defined as a randomized polynomial time algorithm which
has access to oracles ws-MAC() and ws-Verify(), but not
to the key value K, submits |Qs| adaptive chosen sign

18

Algorithm 6: Weighted Summation Sign Oracle, ws-MACK(P , Addr, [i0, i1, ..., iPF−1], [a0, a1, ..., aPF−1])
1 Inputs: K, P , Addr, [i0, i1, ..., iPF−1], [a0, a1, ..., aPF−1] //Addr is the address of P
2 Output: Cres0 , . . . , Cresm−1 , CTres

3 Execute steps 4, 5 of Algorithm 4 m times on inputs K, P , [i0, i1, ..., iPF−1], [j, . . . , j], and [a0, a1, ..., aPF−1], ∀j ∈ [0,m− 1];
4 Execute Algorithms 2 and 3 on inputs K and P to produce values CTk

;
5 Execute steps 15 of Algorithm 5 on inputs [i0, i1, ..., iPF−1], and [a0, a1, ..., aPF−1];
6 Cres0 , . . . , Cresm−1← values returned from step 5 of Algorithm 5;
7 CTres ← value returned from step 15 of Algorithm 5;
8 Return Cres0 , . . . , Cresm−1 , CTres ;

Algorithm 7: Weighted Summation Verification Oracle, ws-VerifyK(Cres0 , ..., CTres
, Addr, [i0, ..., iPF−1],

[a0, ..., aPF−1])
1 Inputs: K, Cres0 , . . . , Cresm−1 , CTres , Addr, [i0, . . . , iPF−1], [a0, . . . , aPF−1];
2 Output: pass fail;
3 Execute Algorithm 5 on inputs K, Addr, [i0, . . . , iPF−1], and [a0, . . . , aPF−1];
4 Use inputs Cres0 , . . . , Cresm−1 and CTres instead of the values returned from NDP in steps 4-5 and 15 of Algorithm 5;
5 pass fail ← value returned from Algorithm 5 in step 16;
6 Return pass fail;

queries and |Qv| adaptive chosen verification queries to
oracles ws-MAC() and ws-Verify() respectively in any order,
and observes the oracle responses. Queries come from
sets Qs = {Q[i]

s ← (P [i], A[i]), i ∈ [0, |Qs| − 1]} and
Qv = {Q[i]

v ← (C[i], a[i]), i ∈ [0, |Qv| − 1]}. Sign oracle
responses have the form C[i] ← ws-MACK(P [i], A[i]) for
all i ∈ [0, |Qs| − 1]. Verification oracle responses have the
form b[i] ← ws-VerifyK(C[i], a[i]) for all i ∈ [0, |Qv| − 1].
The algorithm succeeds if, in the end of the game, the al-
gorithm can produce verification inputs (C[r], a[r]) such that
ws-VerifyK(C[r], a[r]) = pass and the verification input C[r]
has not been returned from a sign query before. Depending
on the value of the Boolean parameter dis, the adversary
may or may not have access to version values. The advantage
of this adversary is defined as:

Adv(Aws-MAC(),Qs,Qv,dis
MAC) =

Pr[(C[r], a[r]) ← Aws-MAC(),Qs,Qv,dis
MAC ,

∄ j ∈ [0, |Qs| − 1] : (ws-MACK(P [j], A[j]) = C[r]∧

a[r] = A[j]), ws-VerifyK(C[r], a[r]) = pass |

C[0] = ws-MACK(P [0], A[0]), . . . ,

b[0] = ws-VerifyK(C[0], a[0]), . . .]
(23)

The security of the arithmetic encryption and weighted
summation verification algorithms is established by the next
two theorems. These theorems are the same as Theorems 1
and 2 of Sections IV-B and IV-F, respectively. In these
sections, parameter dis is omitted for the sake of simplicity.
In the presentation that follows dis is present:

Theorem A.3 On the security of arithmetic encryption:
Let Arith-E(K,P,A) be the arithmetic encryption system
of Definition A.3. Let also AArith-E(),Q,dis

CPA be the adaptive

chosen plaintext adversary of the same definition. Then, the
advantage of this adversary is bounded in the following way:

Adv(AArith-E(),Q,dis
CPA) ≤ 1

2wK
+Adv

E00(),dis
|Q|′ (24)

where |Q|′ ← m·n·we

wc
· |Q|.

Proof: To establish that the bound holds we first convert
the conditions C [i] = Arith-E(K,P [i], A[i]), i ∈ [0, |Q| − 1]
of relation (22) into an equivalent form that introduces
the output of encryption system E00(). We refer to the
version values used in the queries issued by the adversary
as v0, . . . , v|Q|−1:

Adv(AArith-E(),Q,dis
CPA) = Pr[K0 ← AArith-E(),Q,dis

CPA ,K0 = K |

dis, C [0][0 : we] = P [0][0 : we]

− E00(K,A[0]/wc, v0)[0 : we] mod 2we , . . . ,

C [|Q|−1][0 : we] = P [|Q|−1][0 : we]

− E00(K,A[|Q|−1]/wc, v|Q|−1)[0 : we] mod 2we ,

. . .]

(25)

By definition A.2, all invocations to oracle E00() in the
bound of relation (24), can be replaced by invocations to
a truncated output random oracle R() provided that the
correcting additive term Adv

E00(),dis
|Q|′ is introduced in the

bound. We note that there are |Q|′ invocations to E00().
Invocations that occur as part of the same adversary query
use the same version value, whereas invocations made as
part of different queries use different version values. This
is consistent with definition A.2 where version values are
considered drawn from an arbitrary distribution V() not
necessarily uniform, which satisfies the stated constraint.

19

Therefore, we establish that:

Adv(AArith-E(),Q,dis
CPA) ≤ Pr[K0 ← AArith-E(),Q,dis

CPA ,K0 = K |

R(A[0])[0 : we] = P [0][0 : we]

− C [0][0 : we] mod 2we , . . . ,

R(A[|Q|−1])[0 : we] = P [|Q|−1][0 : we]

− C [|Q|−1][0 : we] mod 2we , . . .] + Adv
E00(),dis
|Q|′

(26)

Next, we observe that all random oracle responses are statis-
tically independent from each other and from any other event
including the selection of key K. Therefore, all conditions
that involve random oracle responses can be removed from
the bound of (26):

Adv(AArith-E(),Q,dis
CPA) ≤ Pr[K0 ← AArith-E(),Q,dis

CPA , K0 = K]

+Adv
E00(),dis
|Q|′

(27)

We conclude the proof using the fact that the key K is drawn
from the uniform distribution:

Pr[K0 ← AArith-E(),Q,dis
CPA , K0 = K] =

1

2wK
(28)

Theorem 1 directly follows from combining (27) and (28).

Theorem A.4 On the security of weighted summation
verification: Let ws-MACK(P,A) and ws-VerifyK(C, A) be
the sign and verification oracles of Definition A.4. Let
also Aws-MAC(),Qs,Qv,dis

MAC be the MAC adversary of the same
definition. Then, the advantage of this adversary is bounded
in the following way:

Adv(Aws-MAC(),Qs,Qv,dis
MAC) ≤ m · |Qv|

q
+

|Qv| · (Adv
E00(),dis
|Q|00 +Adv

E01(),dis
|Q|01+1

+Adv
E10(),dis
|Q|10+n)

(29)

where |Q|00 ← n·m·we

wc
· |Qs|, |Q|01 ← |Qs|+ |Qv|, |Q|10 ←

n · |Qs| + |Qv|) and q is the prime found in the definition
of Algorithms 5 and 7.

Proof: A first step in the proof is to establish a bound
for the advantage of the MAC adversary F() if the responses
from all verification queries, but the final one (C[r], ar),
are equal to fail. This is essentially the probability that the
adversary succeeds the first time at query (C[r], a[r]):

F(Aws-MAC(),Qs,Qv,dis
MAC) =

Pr[(C[r], a[r]) ← Aws-MAC(),Qs,Qv,dis
MAC ,

∄ j ∈ [0, |Qs| − 1] : (ws-MACK(P [j], A[j]) = C[r]∧

a[r] = A[j]), ws-VerifyK(C[r], a[r]) = pass |

C[0] = ws-MACK(P [0], A[0]), . . . ,

ws-VerifyK(C[0], a[0]) = fail, . . .]

(30)

In the conditions of relation (30), oracles ws-MAC() and
ws-Verify() invoke oracles E00(), E01() and E10(). In fact,
there are |Q|00 ← (m·n·we

wc
) · |Qs| invocations to oracle

E00(), |Q|01 ← |Qs| + |Qv| invocations to oracle E01(),
and |Q|10 ← n · (|Qs| + |Qv|) invocations to oracle E10()
occurring. Invocations to E00() serve the purpose of per-
forming arithmetic encryption. This is done by Algorithm 1,
invoked by Algorithm 4 in step 4. Invocations to E01() serve
the purpose of computing the entity s. There is only one
invocation performed by each sign and verification query.
The invocation happens in line 4 of the invoked Algorithm
2 for sign queries, and line 9 of Algorithm 5 for verification
queries. Invocations to E10() serve the purpose of comput-
ing OTPs for linear checksums. There are n invocations
performed by each sign and verification query. Invocations
happen in line 4 of the invoked Algorithm 3 for sign queries,
and line 13 of Algorithm 5 for verification queries. As in
the proof of Theorem A.3, the invocations to these oracles
can be replaced by invocations to truncated output random
oracles R00(), R01() and R10(), provided that a corrective
additive term (Adv

E00(),dis
|Q|00 +Adv

E01(),dis
|Q|01 +Adv

E10(),dis
|Q|10) is

introduced in the bound of (30). Furthermore, as in the proof
of Theorem A.3., random oracle responses are statistically
independent from each other and from the verification check.
Therefore, all conditions in the bound or relation (30) can
be removed in the presence of the corrective additive term:

F(Aws-MAC(),Qs,Qv,dis
MAC) ≤

Pr[(C[r], a[r]) ← Aws-MAC(),Qs,Qv,dis
MAC ,

∄ j ∈ [0, |Qs| − 1] : (ws-MACK(P [j], A[j]) = C[r]∧

a[r] = A[j]), ws-VerifyK(C[r], a[r]) = pass] +

Adv
E00(),dis
|Q|00 +Adv

E01(),dis
|Q|01 +Adv

E10(),dis
|Q|10

(31)

We proceed with the proof estimating a bound for the
probability of the event ws-VerifyK(C[r], a[r]) = pass, when
C[r] has not been returned by a sign query and no conditions
are present. Once again, we replace the singe invocation
to E01() and the n invocations to E10(), which happen as

20

part of the verification check ws-VerifyK(C[r], a[r]) = pass,
with the same number of invocations to truncated output
random oracles R01() and R10() as above. It is not difficult
to see that, if in the check ws-VerifyK(C[r], a[r]) = pass,
Algorithm 7, and the invoked Algorithm 5 query truncated
output random oracles, then the probability of the event
ws-VerifyK(C[r], a[r]) = pass is the probability that a random
uniformly distributed entity s is congruent mod q to any of
the roots of a polynomial of degree m, also defined mod q.
As there can by at most m roots and s mod q is uniformly
distributed in the set [0, q − 1], it holds that:

F(Aws-MAC(),Qs,Qv,dis
MAC) ≤ m

q
+

Adv
E00(),dis
|Q|00 +Adv

E01(),dis
|Q|01+n +Adv

E10(),dis
|Q|10+1

(32)

where |Q|00 ← n·m·we

wc
· |Qs|, |Q|01 ← |Qs| + |Qv| and

|Q|10 ← n · |Qs|+ |Qv|) .
The bound of relation (32) depends only on the number

of queries in sets Qs and Qv and not on the queries
themselves. Furthermore, the bound is non-decreasing with
the number of queries in Qs, Qv . We introduce the notation
F(Aws-MAC(),Qs,Qv,dis

MAC)[i] to refer to the advantage of relation
(30), when the game of the adversary includes only queries
up to verification query i, for some i ≤ |Qv| − 1 and
verification query i is the output of the adversary. Since the
bound of relation (32) is non-decreasing with the number of
queries in Qs, Qv , it holds that:

F(Aws-MAC(),Qs,Qv,dis
MAC)[i] ≤ F(Aws-MAC(),Qs,Qv,dis

MAC) (33)

for every i ∈ [0, |Qv| − 1]. Furthermore:

Adv(Aws-MAC(),Qs,Qv,dis
MAC) ≤

|Qv|−1∑
i=0

F(Aws-MAC(),Qs,Qv,dis
MAC)[i]

≤ |Qv| · F(Aws-MAC(),Qs,Qv,dis
MAC)

(34)

Theorem A.4 follows directly from relations (32) and (34).
This concludes the proof and the analysis that establishes the
security of the arithmetic encryption and encrypted linear
checksum mechanisms.

D. Another Construction of Linear Checksum

Here we present another construction for Linear check-
sum. Instead of only using wt bits from the AES cipher
output as s in Alg. 2, we use all wc bits in the checksum s.

Algorithm 8: Linear Checksum with More Randomness
1 Inputs: K, Pi, paddr(P)
2 Output: Ti

3 v ← V() //drawn once for the matrix P
4 es = E(K, 01||paddr(P)||v) //v padded with zeros;
5 cnts = wc/wt

6 //we define every wt-bit substring of es
7 for k = 0 to cnts. do
8 sk = es[k × wt : (k + 1)× wt];
9 end

10 Ti ←
∑m−1

j=0 Pi,j × (s[(m−j) mod cnts])
⌊(m−j)/cnts⌋

11 Ti ← Ti mod q
12 Return Ti;

Proposition: This construction will change Theorem A.4,
where the quantity m

q in the bound must be replaced replaced
by the quantity m

cnts·q , which is lower.
Proof: Following similar steps, as in the proof

of Theorem A.4, we see that the verification check
ws-VerifyK(C[r], a[r]) = pass of relation (31) is now reduced
to an equation of the form:

m−1∑
j=0

Cj × (s[(m−j) mod cnts])
⌊(m−j)/cnts⌋ mod q = 0

(35)
for some entities Ci, j ∈ [0,m − 1], which are not
all zero, and substrings sk, k ∈ [0, cnts − 1]. Substrings
sk, k ∈ [0, cnts − 1] are random uniformly distributed, and
statistically independent of each other. Relation (35) is a
non-zero polynomial equation of degree at most m

cnts
for a

single substring sk. So, with the values of all other substrings
given, and by the fundamental theorem of algebra, equation
(35) has at most m

cnts
solutions for this substring sk. Thus,

out of the q possible sk values, at most m
cnts

satisfy (35) .
Consequently, the bound of Theorem A.4 must change and
the the quantity m

q in the bound must be replaced replaced
by the lower quantity m

cnts·q .

21

