
Hercules: Heterogeneity-Aware Inference Serving for At-Scale
Personalized Recommendation

Liu Ke∗†, Udit Gupta∗‡, Mark Hempstead�, Carole-Jean Wu∗, Hsien-Hsin S. Lee∗, Xuan Zhang†

∗Meta, †Washington University in St. Louis, ‡Harvard University, �Tufts University

Abstract—Personalized recommendation is an important
class of deep-learning applications that powers a large collec-
tion of internet services and consumes a considerable amount of
datacenter resources. As the scale of production-grade recom-
mendation systems continues to grow, optimizing their serving
performance and efficiency in a heterogeneous datacenter is
important and can translate into infrastructure capacity saving.
In this paper, we propose Hercules, an optimized framework
for personalized recommendation inference serving that targets
diverse industry-representative models and cloud-scale hetero-
geneous systems. Hercules performs a two-stage optimization
procedure — offline profiling and online serving. The first stage
searches the large under-explored task scheduling space with a
gradient-based search algorithm achieving up to 9.0× latency-
bounded throughput improvement on individual servers; it also
identifies the optimal heterogeneous server architecture for
each recommendation workload. The second stage performs
heterogeneity-aware cluster provisioning to optimize resource
mapping and allocation in response to fluctuating diurnal loads.
The proposed cluster scheduler in Hercules achieves 47.7%
cluster capacity saving and reduces the provisioned power by
23.7% over a state-of-the-art greedy scheduler.

I. INTRODUCTION

The ability to predict user preference and provide mean-
ingful experience is important for internet services, such as
search engines, social networks, online retail and content
streaming [5], [13], [14], [31]. Deep learning (DL)-based
personalized recommendation models are the algorithmic
engines that power these important services with high pre-
diction accuracy and deliver quality user experiences [24].
In order to capture fast-evolving data features, we have
witnessed a variety of recommendation model innovations
in the past few years [15], [16], [19], [27], [42]. Among
other vision and language models often implemented with
FC layers, CNN, or RNN, the deep learning recommen-
dation systems at datacenters exhibit a number of unique
workload characteristics and system requirements—model
diversity, cloud-scale system heterogeneity, and time-varying
load patterns—requiring an application-specific solution for
execution efficiency [34].

Model Diversity. Depending on specific use cases, rec-
ommendation models are constructed differently for a wide
variety of services. In 2019, Facebook had a few hundred
recommendation models running concurrently in its data-
center fleet for inference serving [36]. Moreover, the rec-

Diurnal Load Query Size

DLRM-RMC1

DIN

DLRM-RMC3

MT-WnD

DIEN

DLRM-RMC2

Mem-
dominated

region

Compute-
dominated

region

Avg Mem Byte per query Heterogenous DC Servers
Avg C

om
pute Flop per query

Cluster
Manager

Type-1 Type-2 Type-3

SLA- & HW-aware
Parallelism Config.

Heterogeneity-aware
Sever Allocation

One Server

Task
Parallelism

Figure 1. (Left) The compute and memory footprint of the industry-scale
recommendation models varies significantly across use cases demanding
distinct solutions; (Right) the cluster-level and server-level scheduling
challenges that require schedulers to adapt system configurations and load
variations. One box means one physical server. The different number of
nodes in one physical server indicates the various parallelism configuration
depending on model/server type to satisfy the SLA target.

ommendation models can evolve rapidly to support new use
cases and achieve higher prediction accuracy. Such diverse
algorithmic structures result in a varying spectrum of per-
formance bottlenecks that fundamentally defy a “one-size-
fits-all” solution. In Figure 1(left), the compute (y-axis) and
memory intensity (x-axis) of state-of-the-art recommenda-
tion models can vary by one to two orders-of-magnitude. For
instance, Google’s MT-WnD [42] and Facebook’s DLRM-
RMC3 [27] are dominated by dense feature processing with
wide FC layers, whereas Alibaba’s DIN [16] and DIEN [15]
are dominated by attention units with FC and RNN layers,
both consuming large computing resources. In contrast,
Facebook’s DLRM-RMC1, RMC2 [27] are dominated by
sparse feature processing that show lower compute intensity
but higher memory bandwidth demand.

Cloud-scale System Heterogeneity. A wide variety of
system architectures can co-exist in modern datacenter fleets.
Two primary reasons contribute to the increasing level of
system heterogeneity. First, system upgrades occur periodi-
cally, resulting in generations of servers with different micro-
architectures [21]. Second, domain-specific accelerators are
increasingly deployed in datacenters to maximize execu-
tion efficiency [4], [18]. Deep learning (DL) accelerators,
such as Nvidia GPUs, Google TPUs [29], Facebook Kings
Canyon [23], [28], Alibaba Hanguang [38], have been de-
ployed to supplement traditional CPU-only industry-scale
datacenters. In addition to compute-centric accelerators,
near-memory processing (NMP) solutions [7], [25], [26],
[39], [40] have also been proposed to accelerate the memory-

1

bounded operations which are specific to recommendation
models. This landscape of increasingly heterogeneous sys-
tems calls for heterogeneity-aware resource management
infrastructures.

Time-varying Load Patterns. Recommendation models
are deployed across web services that exhibit timing-varying
load patterns. This dynamism manifests at both the server
level and the cluster level as illustrated in Figure 1. For
individual servers, the query arrival pattern follows the Pois-
son distribution of query arrival rate and displays a distinct
heavy-tail distribution of query sizes [37]. Meanwhile, at the
cluster level, we observe highly-fluctuating and synchronous
diurnal loads for different recommendation services at the
granularity of a day. This diurnal load pattern is typical
for user-facing services [24]. The dynamically-changing
conditions require the schedulers operating at different levels
to quickly adapt and respond to the load variations.

Model diversity, system heterogeneity, and load variation
converge prominently in the design and optimization of
recommendation inference serving systems—a significant
consumer of cloud computing resources. The combination
of the aforementioned factors poses new challenges to at-
scale recommendation inference execution and scheduling
across datacenter fleets. A task scheduler must intelligently
partition/allocate the model execution to satisfy the strict
tail-latency targets set by the Service Level Agreement
(SLA). Yet the optimal scheduling decision is highly model-
and hardware-dependent, and requires an efficient search
mechanism to fully explore the large scheduling space across
the model-, operator- and data-parallelism dimensions for all
SLA targets. Existing task scheduler designs [32], [33], [37],
[41] lack the capability to traverse this full parallelism space.

To tackle these modern challenges, we propose a
comprehensive optimization framework named Hercules—
heterogeneity-aware recommendation using latency- and
energy-conscious scheduler—tailor-designed for at-scale
neural recommendation inferences. To the best of our knowl-
edge, it is the first work that jointly optimizes for model
diversity, system heterogeneity, and dynamic load patterns
with a seamlessly integrated scheduler design at both the
individual server and the cluster levels. Hercules tackles
cross-layer scheduling for latency-critical workloads at the
datacenter scale—a problem not only central to efficient
serving of heterogeneous recommendation inference but
also generalizable to broader DL frameworks and at-scale
inference scheduling. Optimization in Hercules is performed
in two stages. In the offline profiling stage, Hercules ex-
haustively explores the parallelism space for task schedul-
ing and derives an efficiency tuple for all permutations
of the workload/server type pairs. In the online serving
stage, Hercules performs heterogeneity-aware provisioning
at the cluster level using the efficiency tuple to solve the
constrained optimization problem, minimizing the datacenter
resource cost. Our work makes the following contributions:

• We formulate the wide design space into a con-
strained optimization problem and propose an efficient
search method that effectively explores the parallelism
space and identifies an optimal execution setting for
heterogeneity-aware cluster scheduling.

• We identify the under-explored parallelism space for
task scheduling, achieving 1.03× to 9× latency-
bounded throughput improvement over a state-of-the-
art SLA-aware scheduler with DeepRecSys [37] for
CPU and Baymax [32] for accelerator on individual
servers.

• With real system measurement, Hercules can achieve
up to 47.7% cluster capacity and 23.7% provi-
sioned power saving over state-of-the-art greedy sched-
ulers [8], [9], leading to higher cluster-level resource
efficiency.

II. BACKGROUND AND RELATED WORKS

A. Industry-scale Recommendation Services

Diverse Recommendation Models. DL-based recom-
mendation models are widely used to improve the quality
of user experiences for internet services. In 2019, recom-
mendation inferences consumed roughly 80% of the total
machine learning cycles at Facebook [36], with similar
trends observed by Google, Alibaba, and Amazon [1], [5],
[31]. Figure 2(a) shows a typical recommendation model
consisting of a SparseNet with memory-intensive sparse
operations on embeddings and a DenseNet with compute-
intensive operations. Our study uses six recommendation
models [15], [16], [27], [42] summarized in Table I rep-
resenting the predominant model architectures employed by
popular services in industries.

Dynamically-varying Working Set Sizes. The query size
of recommendation inference represents the number of items
to be ranked for a user [37] and is heavily dependent on the
user’s interaction with the web service. Figure 2(b) shows
the query size histogram from a production recommender
system, typically varying between 10 and 1000. Moreover,
the number of the embedding entries in one embedding
lookup and pooling operation exhibits large variance and
high dependence on the sparse features. Figure 2(c) pro-
vides an example distribution of pooling factors across 15
embedding tables in 500 production inference queries. At-
scale recommendation services face unique task scheduling
challenges that arise from the dynamic variation and a heavy
tail of the working set size.

Diurnal Load of Recommendation Services. To serve
billions of users around the world, datacenters maintain a
large fleet of servers to handle the peak load at any given
time. The arrival queries per second of recommendation
services follow a diurnal pattern [24]. Figure 2(d) shows
the real temporal loads of two recommendation services
arriving at industry datacenters and their synchronous di-
urnal pattern. For both services, all four datacenters reach

2

Dense
Features

Emb
1

One-hot Lookup
(Gather)

Emb
M1…

Bot-FC

Emb
1

Multi-hot Lookup&Pooling
(Gather-and-Reduce)

Emb
M2…

×
w[1] w[M2]

Features Interaction

Predict-FC

Prediction-Task[1]

……
Multi-Tasks

Emb
1

Multi-hot Lookup
(Gather)

Emb
M3…

SparseN
et

D
enseN

et

Attention (FC, RNN)

Predict-FC

Prediction-Task[N]

×+ +

(a) (c) (d)

Fr
eq

ue
nc

y

Query Size

p75 p95 p99

Heavy-tail of query sizes

Emb ID

Po
ol

in
g

Fa
ct

or

(b)

Figure 2. (a) General recommendation model architecture; (b) Query sizes distribution of recommendation inference; (c) Pooling factor distribution of
15 embedding tables in 500 inference queries; (d) Diurnal load of two real industry services of four datacenters over one week period in March 2021.

Table I
STATE-OF-THE-ART PRODUCTION-SCALE RECOMMENDATION MODELS CONFIGURATIONS

Models Services
SparseNet

Attention
DenseNet

of Embs Emb Size Lookups Pooling Bottom-FC Predict-FCProd Small
DLRM-RMC1 Social Media ∼10 × 1M - 5M 1M 20 - 160 Yes - 256-128-32 256-64-1
DLRM-RMC2 Social Media ∼100 × 1M - 5M 1M 20 - 160 Yes - 256-128-32 512-128-1
DLRM-RMC3 Social Media ∼10 × 10M - 20M 1M 20 - 50 Yes - 2560-512-32 512-128-1

MT-WnD Video 26 3 - 40M 1M 1 No - - N×(1024-512-256)
DIN E-commerce 3 0.1M - 600M 0.1M - 1M 1, 100 - 1000 No FC - 200-80-2

DIEN E-commerce 3 0.1M - 600M 0.1M - 1M 1, 100 - 1000 No GRU - 200-80-2

…

CPU Thread

Predict-FC

Bot-FC
…

Embs[1:M]

Model
𝐺!

Ta
sk

C
o-

lo
ca

tio
n

Sub-Queries

Queries
(Arrival Rate, Query Size)

Queries
Fused Queries

Batch SizeQ
ue

ry
D

is
pa

tc
he

r

Task Scheduler

DDR-DIMM

Accelerator

Interconnect

Core
LLC

Core
LLC

Core
LLC

Core
LLC

Core
LLC

Core
LLC

PC
Ie

PC
Ie

Memory ControllerHost

NMP-DIMM

Local Mem

Se
rv

er
A

rc
hi

te
ct

ur
e …

DL-Framework CPU/Accelerator Backend Runtime

Op
Worker

Op
Worker

Op
Worker

Accel. Thread

…

CPU Thread

…

Op
Worker

Op
Worker

Op
Worker

Accel. Thread

SparseNet 𝐺" DenseNet 𝐺#

Embs[1:M] Bot-FC
Predict-FC

Model
𝐺!

Model Partition

Op-Parallelism

Figure 3. Overall system stack in data-center scale recommendation
inference. The task scheduler manages co-location of recommendation
models across multi-core CPUs and accelerators by co-designing solutions
based on characteristics of the workload, query dispatcher, and underlying
server architecture.

peak/valley loads around similar times. Moreover, the two
distinct services also display synchronous diurnal patterns.
This synchronous diurnal pattern across datacenters and
services leads to >50% fluctuation from the aggregated
loads between peak and off-peak times. The unbalanced
peaks with high amplitudes can result in imprudent over-
provisioning of resources to satisfy the peak load yet poor
utilization of the allocated resources off peak.

B. Task Scheduling on Individual Servers

System Stack. To serve recommendation inferences, the
system stack consists of three abstract layers—task sched-
uler, deep learning (DL-)framework, and server architecture.
As shown in Figure 3, the task scheduler manages the co-
located inference threads on server-grade CPUs and accel-

erators. The DL-framework acts as an interface between the
task scheduler and the underlying hardware devices. Typical
DL-based models can be represented as computation graphs
in DL frameworks such as PyTorch [3] and Caffe2 [2]. The
model can then be launched as a whole end-to-end computa-
tion graph Gm by one inference thread, referred to as model-
based scheduling in this paper. It can also be partitioned
into multiple sub-graphs, for example, a SparseNet Gs and
a DenseNet Gd, and launched by two inference threads in a
pipelined fashion. Each inference thread activates one graph
executor instantiated by the DL-framework. Based on the
operator dependency defined by the computation graph, the
graph executor launches the operators in order, and parallel
operator workers can be assigned to one graph executor to
launch independent operators in parallel.

Parallelism Space. Supported by the system stack, the
task scheduler exploits a large parallelism space, includ-
ing model-, operator (op-), and data-parallelism. Model-
parallelism represents the number of parallel inference
threads, either the end-to-end model Gm inference threads
in model-based scheduling or the sub-graphs (e.g., Gs and
Gd) inference threads with model partition and pipelining.
On multi-core CPUs, the inference threads are statically
assigned to the physical cores without hyperthreading. On
accelerators, the inference threads are launched concurrently
on a single accelerator, as model co-location. For example,
Nvidia MPS (Multi-Process Service) scheduling [30] enables
concurrent sharing of a GPU among multiple tasks. Op-
parallelism represents parallel operator workers assigned
to one inference thread and is only feasible on multi-core
CPUs, where one physical core is allocated for one operator
worker. Data-parallelism represents the inference batch size
configured to serve the incoming queries in parallel. On
multi-core CPUs, each large inference query is split into

3

multiple sub-queries and the query dispatcher distributes
sub-queries to the parallel inference threads. On accelerators,
the inference queries are fused into one large batch to launch
in parallel, referred to as query fusion.

SLA-aware Scheduling. For latency-critical recommen-
dation workloads, the three dimensions of parallelism result
in a large exploration space for the task scheduler to select
the optimal parallelism configuration and maximize the
throughput while satisfying the strict SLA latency target.
Since the optimal parallelism configuration is highly model-
and hardware-dependent, a comprehensive and efficient ex-
ploration of parallelism space is needed for every permuta-
tion of the workload/server architecture pair.

Previous works [11], [43], [44] explored model partition
and pipelining for DNN training on GPU clusters. These
methods, however, cannot be directly applied to inference
serving, as the performance metric of training is different
from inference which needs to meet SLA latency targets.
Moreover, model partitioning of DNN training across GPUs
leverages large batch sizes to achieve high resource uti-
lization. It takes advantage of the pre-determined nature
of inputs in training to form large input batches, but such
opportunity is unavailable in inferences with dynamic arrival
patterns where large batches can lead to long queuing delay.

On the other hand, SLA-aware scheduling mechanisms
were proposed to exploit batching (i.e., data-parallelism)
and model co-location (i.e., model-parallelism) on multi-
core CPUs [37] and accelerators [32], [33], [37], [41] to
provide tail-latency guarantees. Baymax [32] performs QoS-
aware management of the co-located tasks on accelerators
by kernel reordering. DeepRecSys [37] is the most rele-
vant method studying DL-based recommendation workloads.
LazyBatching [41] proposes fine-grain node-level batching,
which is orthogonal to this work. As our characterization
will demonstrate in Section III, the coverage of the paral-
lelism space explored in these prior works remains limited,
leaving large room for performance optimization.

C. Cluster Scheduling at Datacenter Scale

To manage a heterogeneous cluster, the cluster scheduler
first classifies workloads with respect to heterogeneity based
on the workload’s performance on distinct server config-
urations. It then determines and allocates the appropriate
number of available best-matching servers to the incoming
loads.

Workload Classification. To predict and rank work-
load performance on different server architectures, previous
works rely on detailed offline profiling [22] or online analyt-
ical prediction [8]. Although low-level metrics such as CPU
utilization, instructions per second (IPS), and interference of
shared resources can be used for workload classification [8],
[9], [17], [22], these methods do not translate universally
to server architectures that employ abundant heterogeneous

accelerators. Instead, high-level metrics, such as the achiev-
able latency-bounded throughput (QPS) for latency-critical
workloads, are more representative and are able to capture
performance across different server configurations.

Scheduling Policy. Once the workloads are accurately
classified and ranked, prior work applies a greedy sched-
uler [8], [9] which always picks the available best-
performing servers. Then, the number of the servers to be
activated is dynamically determined by the transient diurnal
loads. During peak traffic, if the number of highest-ranked
servers is not sufficient, the scheduler will start allocating
lower-ranked servers for enough capacity to serve the in-
coming loads. Similarly, during off-peak time, the scheduler
first releases the amount of servers based on the descending
order of servers’ rankings. This greedy approach, however,
lacks well-formulated global objectives, and therefore is not
guaranteed to achieve cost minimization, as revealed by our
investigation in Section III-C.

III. CHARACTERIZATION

We perform an in-depth characterization of task schedul-
ing and cluster scheduling on recommendation inference
workloads. The analysis uncovers several previously un-
tapped performance optimization opportunities, and quan-
tifies the limitation of existing scheduling methods. We
construct an SLA-aware task scheduler—DeepRecSys [37]
to exploit the data-parallelism across general-purpose CPUs
and Baymax [32] to explore the model co-location on GPU-
based accelerators—as the baseline. We use the hill-climbing
algorithm in [37] searching for the optimal scheduling
configuration on both CPUs and GPUs that maximizes
latency-bounded throughput. We observe that the potential
benefits come from the extensive exploration of the addi-
tional scheduling design spaces among CPUs, accelerators
and heterogeneous-aware cluster manager. We also find
that the thorough exploration of the additional scheduling
space provides up to 1.35× (CPUs) and 3.58× (GPUs)
improvement on latency-bounded throughput and 1.33×
(CPUs) and 2.11× (GPUs) savings on energy efficiency
in individual servers. Moreover, our scheduler can save the
global cluster capacity by up to 41.6% and the provisioned
power by up to 11.4%. All system configurations used in
this characterization are listed in Table II (Section V).

A. Host-side (CPU) Task Scheduling

First, we explore the benefits of task scheduling on multi-
core CPUs by exploiting model- and op-parallelism. To
explore the parallelism space, we compare two configura-
tions running on a CPU-T2 server type Intel Xeon processor
with 20 physical cores (see Table II). The first configuration
represents DeepRecSys [37] with fixed 20 inference threads
and 1 core per thread (20×1) while the second one uses 10
inference threads × 2 cores per thread (10×2). As shown in
Figure 4, DeepRecSys can satisfy a tight SLA latency target

4

Th
ro

ug
hp

ut
 (Q

PS
)

En
er

gy
 E

ffi
ci

en
cy

(Q
PS

/W
)

20 threads x 1 core per thread (DeepRecSys) 10 threads x 2 cores per thread

64

128
256

512

64

128
256 512

Av
g

C
PU

 U
til

 (%
)

SLA Latency Target (ms) SLA Latency Target (ms) SLA Latency Target (ms)
(a) (b) (c)

Figure 4. Host-side (a) latency-bounded throughput (QPS), (b) energy
efficiency (QPS-per-Watt) and (c) average CPU utilization of DLRM-
RMC1.

Op Worker 1

(a)

DenseNet (Bottom-FC) SparseNet DenseNet (Predict-FC)

(b)

ReLU/
Sigmoid

Concat Idle

FC

SLS

DLRM-RMC1 DLRM-RMC2 DLRM-RMC3 MT-WnD DIN DIEN
(c)

La
te

nc
y

Br
ea

kd
ow

n
(%

) SparseNet Ops DenseNet Ops Idle

Op Worker 1

Op Worker 2

DenseNet (Bottom-FC) DenseNet (Predict-FC)

Figure 5. Host-side inference of DLRM-RMC1 with (a) single operator
worker per thread and (b) two parallel operator workers per thread. (c)
Latency breakdown of the 6 models (batch size = 256) with 1, 2, 3 and 4
parallel operator workers per thread

with smaller batch sizes while the 10×2 configuration can
leverage the op-parallelism and reduce interference with half
co-located inference threads, improving the latency-bounded
throughput and energy efficiency by up to 35% and 33%,
respectively. Furthermore, while low-level metrics [8], [10],
[22] such as CPU utilization are commonly used to measure
compute efficiency, Figure 4(c) shows that CPU utilization
is not directly correlated to the DL inference performance.
This suggests that high-level metrics (e.g., latency-bounded
throughput and power consumption) are more indicative
than low-level metrics (e.g., CPU utilization) for workload
classification in later cluster scheduling steps.

In addition to exploiting model-parallelism, we find that
there is significant room for performance improvement by
balancing op-parallelism. While the 10×2 configuration
outperforms the 20×1 configuration, it suffers from low
CPU utilization as shown in Figure 4(c). This is a result of
overheads from host-side inference operators’ dependency
and imbalanced workload distribution among the parallel
operator workers. Figure 5(a) and (b) show the operator
latencies of a single operator worker versus two parallel
operator workers for DLRM-RMC1. As can be seen, the
inference thread with two parallel operator workers results
in long idle time. In Figure 5(a), only one operator worker
is allocated for the inference thread to process operators se-
quentially. For two workers in Figure 5(b), due to operators’
dependency, the Predict-FC cannot start before the Bottom-
FC and the SparseNet finish, leaving one operator worker
idle. Figure 5(c) shows that as the number of parallel workers
increases, the idle cycles increase linearly for all six models.
The idle cycles range from 25% to 74% with 2 to 4 parallel
operator workers.

Insights: under-exploration of parallelism dimension and
workload imbalance in model-based scheduling leave sig-

Th
ro

ug
hp

ut
 (Q

PS
)

SLA latency target (ms) SLA latency target (ms)
(a) (b)

En
er

gy
 E

ffi
ci

en
cy

(Q
PS

/W
)

DLRM-RMC3
MT-WnD
DIN

(4, 9.1)

(1, 42.7)

(1, 27.3)

(# of co-located models,
avg # of queries per batch)

(1, 1)
(1, 1)

(1, 1)

No model co-location, no query fusion (DeepRecSys)
Model co-location (Baymax)
Model co-location & query fusion

(3, 1)

Figure 6. Latency-bounded (a) throughput and (b) energy efficiency (b) of
three recommendations models (DLRM-RMC3, MT-WnD, DIN) with three
accelerator-side task scheduling policies: no model co-location and no query
fusion (DeepRecSys), only model co-location (Baymax), and both model
co-location and query fusion. Both model co-location and query-fusion
provide significant performance and efficiency benefits over the baseline
approaches.

Query Fusion Limit
(a)

Queuing Data Loading Model Inference GPU Utilization

Nofusion
500
1000
2000
4000
6000

La
te

nc
y

Br
ea

kd
ow

n
(%

)
Query Fusion Limit

(b)

Nofusion
500
1000
2000
4000
6000

Query Fusion Limit
(c)

Nofusion
500
1000
2000
4000
6000

G
PU

 U
til

iz
at

io
n

(%
)

Figure 7. Breakdown of latency between queuing delay, data-loading,
model inference, also GPU utilization for (a) DLRM-RMC3, (b) MT-WnD,
(c) DIN.

nificant rooms for further improvements in latency-bounded
throughput (QPS) and energy efficiency (QPS-per-Watt).

B. Accelerator-side Task Scheduling

Next, we investigate the scheduling opportunities on the
accelerator side. Due to accelerators’ limited memory ca-
pacity (16GB in Nvidia V100), the model-based schedul-
ing [32], [37] method does not scale to large recommen-
dation models; therefore, only the smaller versions of the
models in Table I are used for characterization. Here, model-
parallelism manifests as model co-location by increasing the
number of co-located inference threads on a single accelera-
tor, and data-parallelism manifests as query fusion by merg-
ing multiple queries into one batch processed in parallel. As
shown in Figure 6, we evaluate three parallelism configura-
tions: (1) DeepRecSys [37] with no model co-location and
no query fusion, (2) Baymax [32] with model co-location
only, (3) an approach we contrived combining both model
co-location and query fusion. Using DLRM-RMC3, MT-
WnD, and DIN models, we observe that model co-location
in Baymax improves the latency-bounded throughput by
up to 1.66×/1.03×/1.36× and energy efficiency by up to
1.19×/1.02×/1.06× over DeepRecSys. The joint exploration
of model co-location and query fusion reveals additional
performance improvement. We observe a latency-bounded
throughput improvement of up to 2.95×/7.87×/6.0× and
energy efficiency improvement of up to 2.29×/3.14×/3.36×
over Baymax.

Distinct from the performance interference observed on
multi-core CPUs, the performance of hardware accelerators

5

Pr
ov

is
io

ne
d

Po
w

er
(K

W
)

(b)

(a) (c)

NH Scheduler
Greedy Scheduler

Prioritize-aware
Scheduler

RMC1 RMC2

Lo
ad

s
(K

-Q
PS

)

RMC1

RMC2

CPU CPU+
NMP

CPU+
GPU

CPU CPU+
NMP

CPU+
GPU

En
er

gy
 E

ffi
ci

en
cy

(Q
PS

/W
)

En
er

gy
 E

ffi
ci

en
cy

(Q
PS

/W
)

1.75x

2.04x

1.59x

1.98x
1.7--
11.4%

11.3--
41.6%

Figure 8. (a) The latency-bounded energy efficiency of DLRM-RMC1
and RMC2 on the three server types. (b) Loads of DLRM-RMC1 and
RMC2; (c) Provisioned power budget of heterogeneity-oblivious (NH),
greedy scheduler from [8], [9], and prioritize-aware scheduler.

is often degraded by the queuing delay from waiting for
multiple queries to form one batch and PCIe bandwidth
contention from data loading between the host and the
accelerators. More specifically, Figure 7 shows the latency
breakdown of the queuing delay and the other two pipelined
stages (data loading and model inference) for three models
with one single inference thread on one Nvidia V100.
For DLRM-RMC3, 65–83% of the end-to-end latency is
contributed by data loading to transfer a large number of
sparse indices for multi-hot embedding operations. This
results in long GPU idle times and low utilization at ∼25%.
MT-WnD and DIN are better at keeping the GPU busy as
the one-hot embedding lookup in MT-WnD incurs lower
overhead in data loading and the Attention-Net in DIN is
compute-intensive, mitigating the data loading overhead.

Insights: Accelerators like GPUs also benefit from con-
current exploration of model co-location and query fusion,
achieving 7.87× throughput and 3.36× energy efficiency im-
provement over a state-of-the-art scheduler, yet they cannot
accommodate large models due to limited memory capacity.

C. Heterogeneity-aware Cluster Scheduling

Resources in datacenters are often over-provisioned to
satisfy peak load, and one important goal of improving
cluster efficiency is to reduce the amount of over-provisioned
power. As introduced in Section II, prior works [8], [9]
proposed heterogeneity-aware provisioning to dynamically
activate the needed number of best-matching servers for
current loads. To compare and contrast different cluster
scheduling schemes, we consider a heterogeneous cluster
consisting of three types of servers, CPU-only, CPU+NMP,
and CPU+GPU (server type T2, T3 and T7 in Table II) and
assume their respective availability is 70, 15 and 5. The
cluster is set up to serve workloads of DLRM-RMC1 and
DLRM-RMC2.

Our characterization looks at the performance of
two existing cluster scheduling schemes from [8],
[9]—the heterogeneity-oblivious (NH) scheduler and the
heterogeneity-aware greedy scheduler. First, workload clas-

sification is performed to rank the available server types
according to their latency-bounded throughput/energy ef-
ficiency. Given the SLA target of 20ms and 50ms for
RMC1 and RMC2, the server candidates are ranked as
CPU+NMP>CPU+GPU>CPU for both workloads based
on energy efficiency (QPS/W) as shown in Figure 8(a).
During online serving, the workloads follow the diurnal
pattern as shown in Figure 8(b) and each has a peak
load of 50K. The NH scheduler does not consider system
heterogeneity and randomly assigns the available servers for
the incoming loads, whereas the greedy scheduler assigns
the highest-ranked available servers, achieving provisioned
power saving by 41.6% at peak and 21.5% on average.
However, the greedy policy randomly divides the highest-
ranked CPU+NMP servers between RMC1 and RMC2 and
thus misses additional optimization opportunity. As shown
in Figure 8(a), CPU+NMP achieves higher energy effi-
ciency improvement on RMC2 over RMC1. More provi-
sioned power can be saved by prioritizing the allocation of
CPU+NMP servers to RMC2. This observation leads us to
construct the priority-aware scheduler which can achieve
additional power saving of 11.4% at peak and 4.2% on
average over a greedy scheduler, as illustrated in Figure 8(c).

Insights: Despite being heterogeneity-aware, the state-
of-the-art greedy scheduler fails to correctly arbitrate the
server allocation when multiple workloads compete for the
same server types, resulting in sub-optimal solution.

IV. HERCULES DESIGN

A. Overview of Hercules Optimization Framework

The key insights unraveled by our characterization guided
the design of the Hercules optimization framework. Hercules
consists of two main stages: offline profiling and online
serving. During offline profiling, we aim to maximize the
efficiency of recommendation workload execution on indi-
vidual servers, and record an efficiency tuple for all work-
load/server type pairs; this workload classification metric
is used subsequently to guide the cluster scheduler during
online serving. As illustrated in Figure 9(a), Hercules takes
the recommendation model in the form of a computation
graph Gm and its corresponding SLA latency target SLAm.
The offline profiling is performed by evaluating every server
candidate Th for model Gm. First, for every Gm and Th

pair, a hardware-(HW-)aware model partition is performed
to satisfy the memory capacity constraint in hardware for
large recommendation models; then the SLA-aware task
scheduling exploration is performed to achieve the maxi-
mal latency-bounded throughput while satisfying the SLA
latency target. As shown in Figure 9(b), the latency-bounded
throughput and measured peak power (QPSm,h, Powerm,h)
are recorded as the efficiency tuple to quantitatively classify
the available server architectures for each workload. Also,
the offline measured peak power Powerm,h is used as the
provisioned power budget for the online allocated servers.

6

Server Candidates
CPU

DDR

CPU

NMP

CPU

DDR

GPU

……

Rec. Model
Computation Graph 𝐺!:#

Load
Generator

Constraint:
Latency Target 𝑆𝐿𝐴!:#

HW-aware Model
Partition &
Pipelining

Operator Fusion

Offline Profiling

Real-time 𝑙𝑜𝑎𝑑!:#(𝑡)

SLA-aware
Parallelism

Space
Exploration

Online Serving

Constraint:
Provisioned
Power Limit

Optimal
Model

Partition

Server 𝑇!:#
- Model 𝐺!:$
QPS, Power

Ranking

Server 𝑇$
SLA- & Power-

aware
Parallelism Space

Exploration

Real-time
Queries

Op-Parallelism
Model-Parallelism
Data-Parallelism

Task Scheduling Space

Model
Partition × Gradient-based

Searching

Inference
Executor
Server 𝑇%

Measured
Tail-Latency,
QPS, Power

Scheduling
Candidate

Latency
Target
𝑆𝐿𝐴!

Provision
Power
𝑃𝑜𝑤𝑒𝑟",!

Model 𝐺! Model 𝐺% Model 𝐺&

Server 𝑇!
𝑄𝑃𝑆!,!
𝑃𝑜𝑤𝑒𝑟!,!

𝑄𝑃𝑆!,'
𝑃𝑜𝑤𝑒𝑟!,'

𝑄𝑃𝑆!,(
𝑃𝑜𝑤𝑒𝑟!,(

Server 𝑇%
𝑄𝑃𝑆',!
𝑃𝑜𝑤𝑒𝑟',!

𝑄𝑃𝑆','
𝑃𝑜𝑤𝑒𝑟','

𝑄𝑃𝑆',(
𝑃𝑜𝑤𝑒𝑟',(

Server 𝑇&
𝑄𝑃𝑆(,!
𝑃𝑜𝑤𝑒𝑟(,!

𝑄𝑃𝑆(,'
𝑃𝑜𝑤𝑒𝑟(,'

𝑄𝑃𝑆(,(
𝑃𝑜𝑤𝑒𝑟(,(

Workload Classification

(a) (b) (c)

Model 𝐺!

Model 𝐺%

Model 𝐺&

𝑙𝑜𝑎𝑑!(𝑡)

Cluster
Manager

𝑙𝑜𝑎𝑑%(𝑡)

𝑙𝑜𝑎𝑑&(𝑡)

CPU × 𝑁!
Busy (On)
Busy (On)

Idle (On)
…
Off

CPU-GPU × 𝑁&
Busy (On)
Busy (On)

Idle (On)
…
Off

CPU-NMP × 𝑁%
Busy (On)
Busy (On)

Idle (On)
…
Off

Model 𝐺!
Model 𝐺'
Model 𝐺(Heterogenous

-aware
Provision

Memory Capacity

Figure 9. (a) Hercules two-stage optimization flow; (b) Workload classification table; (c) Heterogeneous-aware provision.

During online serving, initial setup is first performed by
running the SLA- and power-aware task scheduling explo-
ration to ensure accurate profiling with the real-time queries.
Two constraints must be satisfied here—the SLA latency
target (SLAm) is met and the power consumption is within
the provisioned power budget Powerm,h. The efficiency
tuple is also updated in real-time to reflect the measured
performance QPSm,h with real-time query loads. With the
quantitative workload classification, we formulate the cluster
provision as a constrained optimization problem for a global
resources cost minimization objective. The right amount of
best-matching servers are dynamically allocated satisfying
the incoming diurnal loads.

B. Gradient-guided Task Scheduling Exploration

Recommendation inference on an individual server needs
to satisfy three constraints: hardware resource, SLA latency,
and provisioned power budget. Therefore, Hercules performs
HW-aware model partition to comply with the available
memory capacity and parallelism space exploration to meet
the SLA latency and power constraint.

HW-aware Model Partition and Pipelining. Given
the sheer size of production-scale recommendation models,
model partition is performed before they can feasibly be
executed on the accelerators of limited memory capacity.
First, we found that more than 95% of the model memory
footprint comes from the embedding tables in SparseNet
Gs. DenseNet Gd only consumes a few MBs and can be
easily held on the accelerators. Prior studies showed that the
temporal locality of indices in production traces is present
among embedding accesses [6], [25]. In Figure 10(a), we
propose a locality-aware embedding partition method to
identify the hot embedding entries, ranked by the access
frequency, to form hot embedding tables. The number of
entries in the hot embeddings is determined by the capacity
budget per thread, memory capacity / model co-location.
Hence, the original model graph Gm is partitioned into three
sub-graphs: DenseNet Gd, SparseNet with full embedding
tables Gs, and Hot-SparseNet with hot embedding tables
Gs.hot. The operator fusion technique [35] is also performed
in this stage for element-wise operations.

The partitioned sub-graphs are launched by separate in-
ference threads in a pipelined manner using an intermediate

(a)
GPU::Model Thread

Predict-FC

Bot-FC
…

Hot-Embs[1:M]

CPU (S-D / Model) – Accelerator (Model)
Host-side

……
Accelerator-sideCPU::Sparse Thread

CPU::Dense Thread

GPU::Model Thread

CPU::Sparse Thread Queue

𝐺!.#$%+𝐺&

Sparse.Psum,
Indices

CPU::Model Thread

CPU::Model Thread

(𝐺')
……

𝐺!.#$%+𝐺&

CPU::Sparse Thread

SparseNet 𝐺!

GPU::Dense Thread

CPU (Sparse) – Accelerator (Dense)
Host-side

CPU::Sparse Thread
……

Accelerator-side

Queue

Pooled
Sparse.out

GPU::Dense Thread

DenseNet 𝐺&

CPU::Sparse Thread
(1, 2, 3, 4 op workers)

SparseNet 𝐺!

CPU::Dense Thread
(1 op worker)

DenseNet 𝐺&

Multi-Core CPU (S-D pipelining)

CPU::Dense Thread

……

CPU::Sparse Thread
……

Pooled
Sparse.Out

Queue

Locality-aware
Emb Partition

Hot Embs

Mem
Capacity

Hot ID

Inference
Queries

Hot Embedding
Profiling

SLS.Indices

Em
be
dd
in
g

Pa
rt
iti
on
er

…
Embs[1:M]

SparseNet 𝐺!
…

Hot-Embs[1:M]

Hot-SparseNet 𝐺!.#$%Predict-FC
Bottom-FC

DenseNet 𝐺&

Su
b-
gr
ap
h

Model
Co-location

Rec.
Model 𝐺'

(b) (d)

(c)

Figure 10. (a) Graph partition; (b) S-D pipeline scheduling on CPU
platform; (c) S-D pipeline scheduling on CPU-Accelerator platform; (d)
S-D pipeline scheduling or model-based scheduling on the host side and
model-based scheduling on the Accelerator side.

queue as the communication channel. Mapping the sub-
graphs to the hardware devices is model- and hardware-
dependent. Hercules considers both the baseline model-
based scheduling and the partitioned sparse-dense (S-D)
pipeline scheduling. Different model mapping scenarios
emerge when applying the two types of scheduling to CPU-
only and CPU-Accelerator.

On CPU systems, model-based scheduling launches the
entire model Gm. But according to the characterization
shown in Sec III-A, the operator dependency can incur
imbalanced workload allocation among the parallel operator
workers. The idling of operator workers can be reduced
by separating SparseNet Gs (no operator dependency) and
DenseNet Gd (with operator dependency), which is referred
to as S-D pipeline scheduling. In Figure 10(b), parallel
operator workers are assigned to each sparse thread to speed
up the execution of embedding operations, while a single
operator worker is assigned to each dense thread. Here,
communication overhead is taxed to transfer the pooled
sparse embedding output.

On CPU-Accelerator, there are three variants derived
from the two model scheduling methods. First, S-D pipeline
scheduling can be applied by dispatching SparseNet Gs to
the host and DenseNet Gd to the accelerator as depicted
in Figure 10(c). An alternative mapping is shown in Fig-
ure 10(d) which dispatches the combined Hot-SparseNet
and DenseNet, Gs.hot+Gd, to the accelerator as model-based
scheduling. In this mapping, the host runs the SparseNet Gs

threads for the embedding entries excluding Gs.hot and then
sends the partial sum (Psum) and the remaining embedding

7

1 core per task 2 cores per task 3 cores 4 cores

Batc
h s

ize

Pe
ak

 P
ow

er
 (W

)

of co-located tasks × # cores per task

TDP = 175W

(c) (f)

Ta
il-

La
te

nc
y

(m
s)

of co-located tasks × # cores per task
Batc

h s
ize1 core per task 2 cores per task 3 cores 4 cores

42.3% 59.1% 62.9%

Th
ro

ug
hp

ut
 (Q

PS
)

of co-located tasks × # cores per task

1 core per task 2 cores per task 3 cores 4 cores

Batc
h s

ize

Data-parallelism
𝑃!"(𝐷)

Model-, Data-parallelism
𝑃!"(𝑀 + 𝐷)

Model-, Op-, Data-parallelism
𝑃!"(𝑀 + 𝐷 + 𝑂)

10.5% 19.6%
+4.3%

of co-located tasks

Th
ro

ug
hp

ut
 (Q

PS
)

of co-located tasks

Ta
il-

La
te

nc
y

(m
s)

(a) (d)

of co-located tasks

Pe
ak

 P
ow

er
 (W

) TDP = 300W

(b) (e)

Model-, Data-parallelism
𝑃!"(𝑀 + 𝐷)

3 candidatesStart
1 2 3 4

No fusion
500
1000
2000
4000
6000

Ba
tc

h
si

ze

1 2 3 4
No fusion
500
1000
2000
4000
6000

Ba
tc

h
si

ze

1 2 3 4
No fusion
500
1000
2000
4000
6000

Ba
tc

h
si

ze

Figure 11. Model-based scheduling of DLRM-RMC1 on (a-c) CPU
and (d-f) accelerator. Considering all three parallelism dimensions—data,
model, and operator—widens the design space, improving latency-bounded
throughput and energy efficiency.

Th
ro

ug
hp

ut
 (Q

PS
)

1x1::1
2x1::1
4x1::1
6x1::2
8x1::3
10x1::3
12x1::3
14x1::3
16x1::3
18x1::2
1x2::1
2x2::1
4x2::2
6x2::3
8x2::3
1x3::1
2x3::1
4x3::2
6x3::2
1x4::1
2x4::1
4x4::2

Terminate!
Latency violation,

Terminate!
QPS decreasing,

of SparseNet tasks × # cores per SparseNet task :: # of DenseNet tasks

OpSpace Terminate!
QPS decreasing,

(a) (b)

Ba
tch

 si
ze

1x2
2x2
3x2
4x2
5x2
6x2
7x2
8x2
9x2

of co-located tasks
× # cores per task

10x2

CPU-side SparseNet

Th
ro

ug
hp

ut
 (Q

PS
)

GPU-side DenseNet

No QPS
improvement

1 2 3 4
No fusion
500
1000
2000
3000
4000

Ba
tc

h
si

ze

of co-located tasksBa
tc

h
si

ze

Terminate!
Latency violation,

QPS = 3516

Figure 12. Design space of balancing S-D pipeline scheduling on (a) CPU
and (b) CPU-accelerator platforms.

indices to the inference threads on the accelerator. Lastly, to
fully utilize the host-side resources, the cores that remain
available can perform either S-D pipeline scheduling or
model-based scheduling.

Convexity of Parallelism Space. Given every model
partition configuration, the task scheduler needs to determine
model-, op- and data-parallelism in the number of co-
located inference threads (m), the number of cores allocated
per thread (o), and the batch sizes (d). On CPUs, the three
parallelism spaces are evaluated, Psp(D), Psp(M +D) and
Psp(M + D + O) shown in Figure 11(a-c). Psp(D) is the
parallelism space considered in [37] which only sweeps
the batch sizes splitting the large queries and fixes the
number of inference threads and the number of cores per
thread with O(d) complexity. Psp(M + D) sweeps the
number of inference threads and the batch sizes and fixes
the number of cores per thread with O(m× d) complexity.
Psp(M +D +O) sweeps the number of inference threads,
the batch sizes, and the number of cores per thread with
O(m × d × o) complexity. Similarly, on the accelerators,
shown in Figure 11(d-f), Psp(M + D) sweeps the number
of co-located models and the maximum batch sizes fusing
queries. On both the CPU and the accelerator, the trends of
throughput/tail-latency/power in Psp(M +D) are convex.

Gradient-based Search. Considering the convexity ob-
servation of Psp(M+D), Hercules employs a gradient-based

Algorithm 1: Gradient-based Search
Data: SLA latency target L, Provisioned power budget P
Result: Scheduling Configuration
Initialize batch size, num of threads;
for (op-parallelism) in Psp(O) do

P(M+D) Space Search;
while do

Three candidates;
∇Latency[1:3] = Latencyt[1:3] − Latencyt−1;
∇QPS[1:3] = QPSt[1:3] − QPSt−1;
if (max(∇QPS) > 0) and (Latency < L) and

(Power < P) then
Throughput is increasing;
update to Configuration(max(Candidate));

else
Terminate search;

end
end
if Configuration[op-parallelism] is decreasing then

Terminate and return max(Configuration[Psp(O)])
end

end

search method to find the optimal parallelism from the expo-
nentially grown search space. The entire parallelism space,
denoted as Psp(M +D + O), combines all the parallelism
dimensions and is equal to Psp(O)×Psp(M+D). Here, the
operator parallelism space Psp(O) represents the possible
allocations of physical CPU cores for one inference thread.
As each core is one operator worker, this allocation can
range from one (minimum) to the total number of available
physical cores (maximum). As illustrated in Algorithm 1,
given a choice of op-parallelism in the set defined by
Psp(O), the gradient-based search is performed across the
remaining dimensions in Psp(M + D). It starts from the
origin point with minimal model co-location and minimal
batch size, as marked by the red hollow dot marked in
Figure 11(d). At the next step, there are three directions as
the candidate configurations, marked by the three red hollow
triangles: (1) increasing the batch size only, (2) increasing
the number of threads only, and (3) increasing both the
batch size and the number of threads. The gradients of tail-
latency and throughput of the three candidates relative to
the start point are calculated accordingly, represented by
the vectors ∇Latency[1:3] and ∇QPS[1:3]. Only candidates
that can meet the user-set SLA latency L and power P
constraints are considered valid, and Hercules picks the
one achieving the maximum throughput improvement as the
next location to move to. Considering the convexity of the
Psp(M +D) space, when the throughput results of all three
candidates are decreased from the current configuration,
the exploration is terminated and the current configuration
is reported as the optimum in Psp(M + D) for the cur-
rent op-parallelism. Finally, the outer-loop that searches
over Psp(O) is terminated when the peak throughput of

8

the current op-parallelism, Psp(O)[i], starts decreasing as
compared with the peak throughput in last op-parallelism,
Psp(O)[i− 1]. In this way, the gradient-based method finds
the global optimal configuration achieving the peak latency-
and power-bounded throughput across Psp(M +D +O).

Overall, to search the optimal task scheduling con-
figuration, Hercules performs the parallelism exploration
of Psp(M + D + O) for all possible model partition
strategies, include both model-based scheduling and S-D
pipeline scheduling. Figure 11 illustrates how the gradient-
based search finds the path to the peak latency-bounded
throughput and terminates when the SLA latency is violated
for the model-based scheduling on multi-core CPU and
GPU. Figure 12 shows the gradient-based search of S-D
pipeline scheduling. The gradient-based search determines
the allotment for SparseNet and DenseNet to reach S-D
pipeline’s equilibrium, terminated either by SLA latency
violation or decreased throughput. On CPU, as shown in
Figure 12(a), the throughput of each Psp(M+D) space first
rises and then falls when sweeping the number of threads
divided between SparseNet and DenseNet. The throughput
first climbs up by activating more parallel tasks, increasing
both parallelism of SparseNet and DenseNet threads. Then,
the throughput drops with unbalanced pipelining between
SparseNet and DenseNet threads. On CPU-accelerator, as
shown in Figure 12(b), the SparseNet threads are launched
on the host-side with Psp(M +D+O) space and DenseNet
threads are launched on accelerator with Psp(M+D). Since
the throughput of DenseNet on accelerator is bounded by
SparseNet on the host, following each move-step of host-side
search, the accelerator-side Psp(M+D) search is performed.
The accelerator-side search is terminated when no more
throughput improvement is observed. The overall search is
terminated on both the host and the accelerator upon SLA
latency violation.

C. Goal-oriented Cluster Scheduling Optimization

To minimize the amount of provisioned power avoiding
over-provisioning and satisfy the global throughput goal, the
heterogeneity-aware cluster scheduler should dynamically
allocates the right amount of servers. Our characterization
in Section III-C shows the deficiency in the state-of-the-art
greedy scheduler to quantitatively prioritize the allocation
of the competing best-matching servers and suggests that a
numerical optimization objective is needed to guarantee the
global cluster resource cost minimization.

We formulate it as a constrained optimization problem
below. The optimization objective is to find the N1:H,1:M (t)
values which minimize the total provisioned power budget
shown in Equation (1). Nh,m(t) is the number of server
type Th assigned to workload Gm, and R is the over-
provision rate. QPSh,m and Powerh,m are the latency-
bounded throughput and provisioned power budget of work-
load Gm launching on server Th. Two constraints need to

be satisfied. First, for all workloads G1:M , the number of
assigned servers to workload Gm must satisfy the incoming
load loadm(t) of the workload at time t in Equation (2).
Second, the number of activated servers should not exceed
the capacity limit in Equation (3), where Nh is the amount
of available Th servers.

Minimize

M∑
m=1

(

H∑
h=1

(Nh,m(t)×Powerh,m)) (1), subject to

∀m ∈ [1..M],

H∑
h=1

(Nh,m(t)×QPSh,m) > loadm(t)(1+R%) (2),

∀h ∈ [1..H],

M∑
m=1

Nh,m(t) 6 Nh (3)

In Figure 9(c), the cluster manager keeps the efficiency
tuple of the latency-bounded QPS and the provisioned
power for every server Th and workload Gm pair, and
knows load1:M (t) for all workloads at the current time t.
After launching the optimization solver getting N1:H,1:M (t),
the cluster manager can activate/release servers and decide
which workload launched on the activated servers. The
dynamic provision is performed at coarse time-interval (10s
of minutes) to amortize the overhead of workload setup time
(10s of seconds). The over-provision rate R is set to handle
the load increment during this time-interval. R is estimated
by profiling history loads changes during the length of
time-interval. To solve the linear constraint problem, many
standard solution have been proposed, e.g., simplex and
interior-point [12].

V. EXPERIMENTAL METHODOLOGY

Hercules Implementation. We implement a prototype
cluster as depicted in Figure 13. One server in the cluster is
used as the cluster manager to determine server activation
or release. We use a trace-driven load generator to generate
inference requests following the query arrival characteristics
observed in production for the M workloads, load1:M (t)
(Section IV-C). The dynamic provision optimizer maintains
a lookup table for provisioned power (Power1:H,1:M) and
achievable throughput (QPS1:H,1:M), and a cluster state
table tracks the status of servers in the cluster. The cluster
manager runs an optimizer program that uses an interior-
point solver [12] to obtain the optimal allocation solution,
N1:H,1:M (t). Based on the cluster state, the cluster man-
ager identifies which servers should be activated/released
and which workload to launch. Each server in the cluster
launches the Hercules task scheduler extended from Deep-
RecSys [37]. The query generator loads the inference queries
and feeds them to the task scheduler. It then launches the
inference tasks written in Caffe2 [2] on CPUs and GPUs.

System Configuration. In our prototype cluster, we have
a limited number of available T1–T10 servers, denoted as

9

Cluster Manager

1 Server

Cluster State Table
ID Type Status Model
1 𝑇! On RMC1

…

Load Generator

Dynamic Provision
Optimizer

𝐺! … 𝐺"
𝑇!

𝑇#

…

𝑄𝑃𝑆!,!
𝑃𝑜𝑤𝑒𝑟!,!

𝑄𝑃𝑆!,#
𝑃𝑜𝑤𝑒𝑟!,#

𝑄𝑃𝑆$,#
𝑃𝑜𝑤𝑒𝑟$,#

𝑄𝑃𝑆%,!
𝑃𝑜𝑤𝑒𝑟%,!

…

…

…… …

𝑙𝑜𝑎𝑑!:"(𝑡)

𝑇! Servers
Busy

Busy

…

Off

𝑇" Servers
Busy

Busy

…

Off

…<On/Off,

W
orkload>

Query Generator
Offline Profiling

Queries

Task Scheduler

Caffe2

Q
uery

Cycle-level
NMP simulatorBatch Latency

Dummy SLS-
NMP Operator

Graph

Power Measurement
RAPL nvidia-smi

Real-system Evaluation

Energy

Throughput
Latency

DLRM-RMC1

DLRM-RMC2

DLRM-RMC3

MT-WnD

DIN

DIEN

Online Serving
Queries

Figure 13. Implemented cluster prototype including one cluster manager
server with load generator, dynamic provision optimizer and cluster state
table, and the different T1–TH servers given the availability constraints
N1–NH .

N1–N10. Table II summarizes the T1–T10 system configu-
rations. The various server types are constructed with a per-
mutation of different combinations of CPU+memory+GPU.
They represent the system heterogeneity at modern data cen-
ters. We include two generations of Intel Xeon processors:
CPU-T1 and CPU-T2 and two types of memory DIMMs:
DDR4 and a DIMM-based NMP solution [25]. NMP×N
represents N ranks in one memory channel to attain N×
rank-level parallelism. We also use two generations of NV
GPUs, P100 and V100, as DL accelerators. The NMPs and
GPUs are selected to represent diverse memory-centric and
compute-centric hardware acceleration approaches.

Evaluation Framework. All evaluations of server types
consisting only of CPU and GPU with DDR4 are performed
on real systems. To quantify the benefits provided by the
memory-centric NMP solutions, we follow the emulation-
based methodology adopted by earlier work [25], [39],
[40] that combines the performance of real systems (e.g.
CPU/GPU) with a cycle-level NMP simulator [25]. The
cycle-level NMP simulation of sampled inference queries is
performed in advance to record the embedding operators’
latency and energy in a lookup table (LUT). Thus, the
time-consuming simulation is avoided during real-system
evaluation to keep up with the real execution. The dummy
SLS-NMP operator is launched by setting the pooling factor
to 1 and taxing the latency from the LUT for the current
batch’s embedding operation. Its energy cost is sent to the
power measurement module. Throughput, tail-latency, and
power consumption are captured by the performance and
power monitor modules. These power measurements account
for all the system components. CPU and DDR4 powers are
read from Intel RAPL [20], and GPU power is measured by
Nvidia API nvidia-smi. These server-level performance and
power measurement can be extrapolated for rack-level study
based on the cluster composition.

VI. PERFORMANCE EVALUATION

In this section, we analyze various benefits and im-
plications from applying our Hercules framework across

Table II
SYSTEM PARAMETERS AND CONFIGURATIONS

Th Nh CPU Memory Th Nh CPU Memory GPU
T1 100 CPU-T1 DDR4 T6 10 CPU-T1 DDR4 P100
T2 100 CPU-T2 DDR4 T7 5 CPU-T2 DDR4 V100
T3 15 CPU-T2 NMPx2 T8 6 CPU-T2 NMPx2 V100
T4 10 CPU-T2 NMPx4 T9 4 CPU-T2 NMPx4 V100
T5 5 CPU-T2 NMPx8 T10 2 CPU-T2 NMPx8 V100

CPU Server CPU-T1 CPU-T2
Chip Intel Xeon D-2191 Intel Xeon Gold 6138

Frequency 1.6 GHz 2.0 GHz
Physical Cores 18 20

L1/L2 size 32 KB / 1 MB
LLC size 24.75 MB 27.5 MB

TDP 86 W 125 W

Memory
DDR4

(CPU-T1)
DDR4

(CPU-T2)
NMP

x2
NMP

x4
NMP

x8
Real system Simulation

Memory Channels 4 4 4 4 4
DIMM per Channel 1 1 1 2 4
Ranks per DIMM 1 2 2 2 2

Capacity (GB) 64 128 128 256 512
TDP (Watt) 28 50 50 100 200

GPU Nvidia P100 Nvidia V100
GPU Boost Clock 1480 MHz 1530 MHz

SMs / TPCs 56 / 28 80 / 40
Memory 16 GB HBM @ 900 GB/s
Interface PCIe Gen3 @ 16 GB/s

TDP 300 W

the industry-representative models and heterogeneous server
types. We have performed a comprehensive evaluation at
both the server and cluster levels. All evaluation is performed
with the production-scale model size using the locality-
aware model partition to satisfy the memory capacity con-
straint of the NV P100 and V100 accelerators.

A. Task Scheduling Exploration

Hercules identifies the under-explored parallelism space
of task scheduling beyond the state-of-the-art baseline [32],
[37]. Hercules considers the different model partition strate-
gies and explores the parallelism space Psp(M+D+O) on
the CPU and Psp(M +D) on the accelerator. The baseline
task scheduler considered here applies model-based schedul-
ing on both the CPU and the accelerator, then explores
Psp(D) on the CPU (DeepRecSys [37]) and model co-
location on the accelerator (Baymax [32]). With the thor-
ough exploration of these expanded spaces, the Hercules task
scheduler achieves significant performance improvement.

Figure 14 shows the latency-bounded throughput of the
six models with Hercules and the baseline scheduler. On
the CPU-centric (CPU-only and CPU+NMP) servers with-
out GPU, the combination of S-D pipeline scheduling and
the thorough exploration of Psp(M + D + O) improves
the latency-bounded throughput of models with multi-
hot embedding operations. DLRM-RMC1/RMC2/RMC3
are accelerated by up to 1.82×/2.39×/2.64× on server
T2 (CPU-only) and 1.59×/2.65×/2.58× on server T3

(CPU+NMP), respectively. For MT-WnD/DIN/DIEN where
SparseNet contributes to less than 5% of the end-to-
end latency, the improvement from the task scheduler is
lower. On CPU+GPU servers, the thorough exploration

10

1.49-1.88x

1.51-1.59x

(T2)CPU-T2 (T3) CPU-T2+NMPx2 (T7) CPU-T2+V100 (T8) CPU-T2+NMPx2+V100
Baseline Task Scheduler Hercules Task Scheduler

1.53-6.63x

1.25-2.58x
1.36-2.64x

1.53-6.71x

1.35-2.1x
2.86-9.0x

1.06x
3.38-6.0x

1.54-1.95x

SLA latency target (ms) SLA latency target (ms)

1.56-2.65x

1.26-2.65x
1.36-2.39x

1.13-1.34x
2.0-6.95x

1.9-2.58x

(c) (f)

(a) (d)

(b) (e)

Th
ro

ug
hp

ut
 (Q

PS
)

 T

hr
ou

gh
pu

t (
Q

PS
)

Th

ro
ug

hp
ut

 (Q
PS

) DLRM-RMC1

DLRM-RMC2

DLRM-RMC3

MT-WnD

DIN

DIEN

1.28-1.82x

Figure 14. Comparison of SLA-aware task schedulers, the baseline
(DeepRecSys [37] on the CPU and Baymax [32] on the accelerator) and
Hercules, for (a) DLRM-RMC1, (b) RMC2, (c) RMC3, (d) MT-WnD, (e)
DIN, (f) DIEN.

of Psp(M + D) space considering model co-location and
query fusion improves the latency-bounded throughput sub-
stantially for compute-dominated models. For example,
DLRM-RMC3/MT-WnD/DIN/DIEN are accelerated by up
to 6.71×/9.0×/6.95×/6.0× on server T7 (CPU+GPU).

B. Server Architecture Exploration

Tailoring the server architecture for the workloads is
one major approach to improve cluster efficiency. However,
given the rather large design space, it can be an onerous
task to optimally match an appropriate high-performance and
energy-efficient server architecture to a workload for cluster
capacity and provisioned power savings. Hercules’s offline
profiling performs the server architecture exploration. We
consider the hardware design space consisting of 10 server
architectures represented as T1–T10 in Table II. In which,
T1–T2 (CPU-only) and T6–T7 (CPU+GPU) are generally
applied to all six workloads. The NMP-enabled servers,
T3-T5 and T8-T10, target the multi-hot encoded embedding
operations with Gather-Reduce pattern in all three DLRM
models; nonetheless, they do not show as much benefit for
MT-WnD, DIN and DIEN which perform embedding lookup
only with no pooling operation.

Our results indicate that the optimal server architecture
varies across the space of workloads and system configu-
rations. As shown in Figure 15, Hercules evaluates across
6×10 workload-server pairs in term of latency-bounded
throughput (QPS) and energy efficiency (QPS-per-Watt) with
user SLA targets. For the CPU-only servers, server T2

achieves higher throughput across all six workloads over

server T1, since CPU-T2 has more physical cores and higher
frequency. However, it comes with a cost of higher power,
too. Measured by QPS-per-Watt, server T1 is shown to
be more energy-efficient for DLRM-RMC2, DLRM-RMC3,
and MT-WnD.

Using GPU as the accelerator, the CPU+GPU servers T6

and T7 achieve significant throughput and energy efficiency
improvement over the CPU-only server T2 for the compute-
dominated workloads such as DLRM-RMC3, MT-WnD,
DIN, and DIEN. Note that energy efficiency improvement of
the CPU+GPU servers is constrained by GPUs’ high leakage
power and the upper bound of batch size to meet the SLA
latency target.

With near-memory acceleration, T3–T5 and T8–T10

servers achieve significant throughput and energy efficiency
improvement for memory-dominated DLRM-RMC1 and
RMC2 over T2 (CPU-only) and T7 (CPU+GPU) baselines.
The improvements become smaller for DLRM-RMC3 which
is compute-dominated. For DIN, DIEN, and MT-WnD mod-
els, the energy efficiency improvement is even lower with
no throughput improvement. With only one-hot embedding
lookup operations in DIN, DIEN and MT-WnD that have
no Gather-Reduce operations on the memory side, NMP-
DIMMs behave exactly the same as regular DRAM DIMMs
(similar throughput). However, the NMP×2, NMP×4 and
NMP×8 configurations (Table II) dissipate extra idle power
for NMP processing units and more number of DIMMs
(lower energy efficiency) than the DDR4 configuration.

C. Cluster Heterogeneity-aware Provision

Finally, we evaluate the cluster manager during the online
serving phase to efficiently and dynamically allocate work-
loads on the right amount of best-matching servers.

Model Evolution. In this experiment, we mimic model
evolution by varying the composition of the workload sets.
In Figure 16(a), we assume the synthetic evolution process is
linear. The recommendation workloads, initially consisting
of DLRM-RMC1, RMC2 and RMC3, are gradually replaced
by DIN, DIEN and MT-WnD which represent new models
with higher accuracy and increased complexity. In the cluster
with CPU-only servers (T1 and T2), the increasing ratio
of the new models requires more cluster capacity and
provisioned power budget. Comparing between the one-day
snapshots of Day-D2 and Day-D1, 20% of the incoming
loads are routed to the higher complexity models. The cluster
capacity (number of activated servers) in Figure 16(c)(d)
and the provisioned power in Figure 16(b) are increased by
2.27× and 1.77× at peak and 2.09× and 1.64× on average.
So, with only the baseline CPU servers deployed, by the
end of model evolution, the cluster capacity and provisioned
power are projected to increase 5.4× and 3.54×.

Comparison with Prior Cluster Scheduler. Deploying
hardware accelerators in the cluster can improve cluster
execution efficiency, but it also brings an increasing level

11

DLRM-RMC1 DLRM-RMC2 DLRM-RMC3 DIN DIEN MT-WnD
(b)

29.9
18.3

N
or

m
al

iz
ed

Th
ro

ug
hp

ut
 (Q

PS
)

N
or

m
al

iz
ed

 E
ne

rg
y

Ef
fic

ie
nc

y
(Q

PS
/W

)

(T1) CPU-T1
(T2) CPU-T2

CPU-only

(T3) CPU-T2+NMPx2
(T4) CPU-T2+NMPx4
(T5) CPU-T2+NMPx8

CPU+NMP

(T6) CPU-T2+P100
(T7) CPU-T2+V100

CPU+GPU

(T8) CPU-T2+V100+NMPx2
(T9) CPU-T2+V100+NMPx4
(T10) CPU-T2+V100+NMPx8

CPU+GPU+NMP

(a)

The optimal system architecture
achieves the highest throughput
/ energy efficiency

Figure 15. Normalized latency-bounded (a) throughput (QPS) and (b) energy efficiency (QPS-per-Watt) of DLRM-RMC1, RMC2, RMC3, DIN, DIEN
and MT-WnD with 20ms, 50ms, 50ms, 50ms, 100ms, 100ms as the SLA latency target on the T1–T10 different server architectures.

(b) (d)

Peak
Average

CPU-only
cluster

Deploy accelerated
servers (T3-T10)

in the cluster
𝐃𝟐

Pr
ov

is
io

ne
d

Po
w

er
 (K

W
)

of

 A
ct

iv
at

ed
 S

er
ve

rs

Pe
rc

en
ta

ge
 (%

)

RMC1

RMC2

RMC3

DIN

DIEN

MT-WnD

(a) (c)

𝐃𝟏

𝐃𝟐

of

 A
ct

iv
at

ed
 S

er
ve

rs
 Day-𝐃𝟏

CPU-only Cluster
(T1) CPU-T1
(T2) CPU-T2

Model Update Cycle Time (Hour)

Day-𝐃𝟐

Figure 16. (a) Synthetic model evolution; (b) Peak and aver-
age provisioned power during evolution. Capacity provisioning
of CPU-only cluster on (c) Day-D1 and (d) Day-D2.

Accelerated Cluster (NH)

Accelerated Cluster (Greedy) Accelerated Cluster (Hercules)

Time (Hour) Time (Hour)

Day-𝐃𝟐

Day-𝐃𝟐

CPU-only Cluster

NH Scheduler
Greedy Scheduler
Hercules Scheduler

Accelerated Cluster

Pr
ov

is
io

ne
d

Po
w

er
 (K

W
)

(T3) CPU-T2+NMPx2 (15)
(T4) CPU-T2+NMPx4 (10)
(T5) CPU-T2+NMPx8 (5)
(T6) CPU-T2+P100 (10)
(T7) CPU-T2+V100 (5)
(T8) CPU-T2+NMPx2+V100 (6)
(T9) CPU-T2+NMPx4+V100 (4)
(T10) CPU-T2+NMPx8+V100 (2)

(T1) CPU-T1 (100)
(T2) CPU-T2 (70)

of

 A
ct

iv
at

ed
 S

er
ve

rs

(a) (d)

of

 A
ct

iv
at

ed
 S

er
ve

rs

of
 A

ct
iv

at
ed

 S
er

ve
rs

(b) (c)

Day-𝐃𝟐

Day-𝐃𝟐

Figure 17. Cluster capacity provisioning of accelerated cluster with (a) NH scheduler,
(b) greedy scheduler and (c) Hercules scheduler. (d) The comparison of provisioned power
budget.

of system heterogeneity. In practical datacenter deployment,
the number of available accelerated servers are usually
limited. We assume the accelerated servers T3-T10 with
the limited amount N3-N10 (15, 10, 5, 10, 5, 6, 4, 2)
are deployed on Day-D2. In Figure 16(b), the accelerated
cluster achieves significant improvement, 22–52% and 18–
54% of peak and average provisioned power, during the
model evolution process.

The cluster scheduler determines the priority of the server
allocation for the workloads. We evaluate the three cluster
schedulers, heterogeneity-oblivious (NH) scheduler, greedy
scheduler [8], [9], and Hercules scheduler. Figure 17 shows
cluster capacity and power provisioning of the three cluster
schedulers for the one-day snapshot of Day-D2. Both greedy
scheduler and Hercules scheduler achieve high utilization of
the accelerated servers in the cluster. Compared with the
NH scheduler which ignores the hardware heterogeneity,
the greedy scheduler is heterogeneous-aware and prioritizes
workloads allocated to the optimal available servers. The
greedy scheduler achieves capacity saving by 75.8% (peak)
and 67.4% (average) and provisioned power saving by
50.8% (peak) and 42.7% (average) over the NH scheduler.
Our Hercules scheduler rigorously formulates the global
optimization objectives to quantitatively prioritize server
allocation for cluster resource cost minimization and is able
to further save the cluster capacity by 47.7% (peak) and

22.8% (average) and the provisioned power by 23.7% (peak)
and 9.1% (average) over the greedy scheduler.

VII. CONCLUSION

As production-grade recommendation systems continue to
demand more datacenter resources, optimizing their serving
performance and efficiency is important for the overall
infrastructure cost. In this paper, we perform an in-depth
characterization of the state-of-the-art recommendation serv-
ing framework to identify system inefficiency. We propose
Hercules, a framework to efficiently serve recommendation
inference using a two-stage optimization procedure: offline
profiling and online serving. Hercules explores the task
scheduling space for individual servers and dynamically
provisions the best-matched heterogeneous datacenter re-
sources in response to real-time load fluctuations. Hercules’s
task scheduling achieves 1.03× to 9× latency-bounded
throughput improvement for individual servers while the
heterogeneity-aware cluster manager saves up to 47.7% and
23.7% cluster capacity and provisioned power, respectively,
over the state-of-the-art greedy scheduler.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions. Liu Ke and
Xuan Zhang were partially supported by NSF CCF-1942900.

12

REFERENCES

[1] “Breakthroughs in Matching and Recommendation
Algorithms by Alibaba.” [Online]. Available: https:
//www.alibabacloud.com/blog/breakthroughs-in-matching-
and-recommendation-algorithms-by-alibaba 593976

[2] “Caffe2.” [Online]. Available: https://caffe2.ai///
[3] “Pytorch.” [Online]. Available: https://pytorch.org////
[4] Akshitha Sriraman, Abhishek Dhanotia, “Accelerometer: Un-

derstanding Acceleration Opportunities for Data Center Over-
heads at Hyperscale,” in ISCA, 2020.

[5] Amazon Personalize, https://aws.amazon.com/personalize/.
[6] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha

Smelyanskiy, Sergey Pupyrev, Kim Hazelwood, Asaf Cidon,
Sachin Katti, “Bandana: Using non-volatile memory for stor-
ing deep learning models,” in SysML, 2019.

[7] Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Da Eun Shim,
Sung-Kyu Lim, Hyesoon Kim, “FAFNIR: Accelerating
Sparse Gathering by Using Efficient Near-Memory Intelligent
Reduction,” in HPCA, 2021.

[8] Christina Delimitrou, Christos Kozyrakis, “Paragon: QoS-
aware scheduling for heterogeneous datacenters,” in ASPLOS,
2013.

[9] Christina Delimitrou, Christos Kozyrakis, “Quasar: Resource-
Efficient and QoS-Aware Cluster Management,” in ASPLOS,
2014.

[10] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy
Ranganathan and Christos Kozyrakis, “Heracles: Improving
Resource Efficiency at Scale,” in ISCA, 2015.

[11] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek
Seshadri, Nikhil R. Devanur, Gregory R. Ganger, Phillip B.
Gibbons, Matei Zaharia, “PipeDream: Generalized Pipeline
Parallelism for DNN Training,” in SOSP, 2019.

[12] Florian A.Potra, Stephen J.Wright, “Interior-point methods,”
in Journal of Computational and Applied Mathematics, 2000.

[13] Fortune, https://fortune.com/2019/04/30/artificial-
intelligence-walmart-stores/.

[14] Google Cloud Platform, https://cloud.google.com/solutions/
recommendations-using-machine-learning-on-compute-
engine.

[15] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang
Zhou, Xiaoqiang Zhu, Kun Gai, “Deep Interest Evolution
Network for Click-Through Rate Prediction,” in AAAI, 2019.

[16] Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han
Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, Kun Gai,
“Deep Interest Network for Click-Through Rate Prediction,”
in KDD, 2018.

[17] Hailong Yang, Alex Breslow, Jason Mars, Lingjia Tang,
“Bubble-Flux: Precise Online QoS Management for Increased
Utilization in Warehouse Scale Computers,” in ISCA, 2013.

[18] Haishan Zhu, David Lo, Liqun Cheng, Rama Govindaraju,
Parthasarathy Ranganathan and Mattan Erez, “Kelp: QoS for
Accelerated Machine Learning Systems,” in HPCA, 2019.

[19] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson,
Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria
Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, Hemal Shah,
“Wide & Deep Learning for Recommender Systems,” in
DLRS, 2016.

[20] Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul
Khanna, and Christian Le, “RAPL: memory power estimation
and capping,” in ISLPED, 2010, pp. 189–194.

[21] Jason Mars, Lingjia Tang, “Whare-Map: Heterogeneity

in “Homogeneous” Warehouse-Scale Computers,” in ACM
SIGARCH Computer Architecture News, 2013.

[22] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron,
Mary Lou Soffa, “Bubble-Up: Increasing Utilization in Mod-
ern Warehouse Scale Computers via Sensible Co-locations,”
in MICRO, 2011.

[23] Kevin Lee, Vijay Rao, William Arnold, “Accelerating
Facebook’s infrastructure with application-specific hardware,”
2019. [Online]. Available: https://engineering.fb.com/2019/
03/14/data-center-engineering/accelerating-infrastructure/

[24] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chin-
tala, Utku Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill
Jia, Yangqing Jia, Aditya Kalro, James Law, Kevin Lee, Jason
Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong,
Xiaodong Wang, “Applied machine learning at Facebook: a
datacenter infrastructure perspective,” in HPCA, 2018, pp.
620–629.

[25] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David
Brooks, Vikas Chandra, Utku Diril, Amin Firoozshahian,
Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng Li,
Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Mar-
tin Schatz, Mikhail Smelyanskiy, Xiaodong Wang, Brandon
Reagen, Carole-Jean Wu, Mark Hempstead, Xuan Zhang,
“RecNMP: Accelerating Personalized Recommendation with
Near-Memory Processing,” in ISCA, 2020.

[26] Liu Ke, Xuan Zhang, Jinin So, Jong-Geon Lee, Shin-Haeng
Kang, Sukhan Lee, Songyi Han, YeonGon Cho, JIN Hyun
Kim, Yongsuk Kwon, KyungSoo Kim, Jin Jung, Ilkwon Yun,
Sung Joo Park, Hyunsun Park, Joonho Song, Jeonghyeon
Cho, Kyomin Sohn, Nam Sung Kim, Hsien-Hsin S. Lee,
“Near-Memory Processing in Action: Accelerating Personal-
ized Recommendation with AxDIMM,” in IEEE Micro, 2022.

[27] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo Park,
Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson
G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia
Cherniavskii, Yinghai Lu, Raghuraman Krishnamoorthi,
Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong,
Misha Smelyanskiy, “Deep Learning Recommendation
Model for Personalization and Recommendation Systems,” in
arXiv preprint arXiv:1906.00091, 2019. [Online]. Available:
https://arxiv.org/abs/1906.00091

[28] Michael Anderson, Benny Chen, Stephen Chen, Summer
Deng, Jordan Fix, Michael Gschwind, Aravind Kalaiah,
Changkyu Kim, Jaewon Lee, Jason Liang, Haixin Liu,
Yinghai Lu, Jack Montgomery, Arun Moorthy, Satish
Nadathur, Sam Naghshineh, Avinash Nayak, Jongsoo
Park, Chris Petersen, Martin Schatz, Narayanan Sundaram,
Bangsheng Tang, Peter Tang, Amy Yang, Jiecao Yu,
Hector Yuen, Ying Zhang, Aravind Anbudurai, Vandana
Balan, Harsha Bojja, Joe Boyd, Matthew Breitbach, Claudio
Caldato, Anna Calvo, Garret Catron, Sneh Chandwani, Panos
Christeas, Brad Cottel, Brian Coutinho, Arun Dalli, Abhishek
Dhanotia, Oniel Duncan, Roman Dzhabarov, Simon Elmir,
Chunli Fu, Wenyin Fu, Michael Fulthorp, Adi Gangidi,
Nick Gibson, Sean Gordon, Beatriz Padilla Hernandez,
Daniel Ho, Yu-Cheng Huang, Olof Johansson, Shishir Juluri,
Shobhit Kanaujia, Manali Kesarkar, Jonathan Killinger, Ben
Kim, Rohan Kulkarni, Meghan Lele, Huayu Li, Huamin
Li, Yueming Li, Cynthia Liu, Jerry Liu, Bert Maher,
Chandra Mallipedi, Seema Mangla, Kiran Kumar Matam,
Jubin Mehta, Shobhit Mehta, Christopher Mitchell, Bharath
Muthiah, Nitin Nagarkatte, Ashwin Narasimha, Bernard
Nguyen, Thiara Ortiz, Soumya Padmanabha, Deng Pan,
Ashwin Poojary, Ye (Charlotte)Qi, Olivier Raginel, Dwarak

13

Rajagopal, Tristan Rice, Craig Ross, Nadav Rotem, Scott
Russ, Kushal Shah, Baohua Shan, Hao Shen, Pavan Shetty,
Krish Skandakumaran, Kutta Srinivasan, Roshan Sumbaly,
Michael Tauberg, Mor Tzur, Hao Wang, Man Wang, Ben
Wei, Alex Xia, Chenyu Xu, Martin Yang, Kai Zhang, Ruoxi
Zhang, Ming Zhao, Whitney Zhao, Rui Zhu, Lin Qiao,
Misha Smelyanskiy, Bill Jia, Vijay Rao., “First-Generation
Inference Accelerator Deployment at Facebook,” in Arxiv,
2021. [Online]. Available: https://arxiv.org/abs/2107.04140

[29] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patter-
son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc
Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike
Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaem-
maghami, Rajendra Gottipati, William Gulland, Robert Hag-
mann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le,
Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller,
Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy
Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Sama-
diani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed
Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan,
Richard Walter, Walter Wang, Eric Wilcox, Doe Hyun Yoon,
“In-datacenter performance analysis of a tensor processing
unit,” in ISCA, 2017.

[30] Nvidia, “Multi-Process Service.” [Online]. Avail-
able: https://docs.nvidia.com/pdf/CUDA Multi Process
Service Overview.pdf

[31] Paul Covington, Jay Adams, Emre Sargin, “Deep Neural
Networks for YouTube Recommendations,” in RecSys, 2016.

[32] Quan Chen, Hailong Yang, Jason Mars, Lingjia Tang, “Bay-
max: QoS Awareness and Increased Utilization for Non-
Preemptive Accelerators in Warehouse Scale Computers,” in
ASPLOS, 2016.

[33] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan,
Jason Mars, Lingjia Tang, “Prophet: Precise QoS Prediction
on Non-Preemptive Accelerators to Improve Utilization in
Warehouse-Scale Computers,” in ASPLOS, 2017.

[34] Samuel Hsia, Udit Gupta, Mark Wilkening, Carole-Jean Wu,
Gu-Yeon Wei, David Brooks, “Cross-Stack Workload Char-
acterization of Deep Recommendation Systems,” in IISWC,
2020.

[35] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,
Eddie Yan, Meghan Cowan, Haichen Shen, Leyuan Wang,
Yuwei Hu, Luis Ceze, Carlos Guestrin, Arvind Krishna-
murthy, “TVM: An Automated End-to-End Optimizing Com-
piler for Deep Learning,” in OSDI, 2018.

[36] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Nau-
mov, Brandon Reagen, David Brooks, Bradford Cottel, Kim
Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Andrey Malevich,
Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong,
Xuan Zhang, “The Architectural Implications of Facebook’s
DNN-based Personalized Recommendation,” in HPCA, 2020.

[37] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang,
Brandon Reagen, Gu-Yeon Wei, Hsien-Hsin S. Lee, David
Brooks, Carole-Jean Wu, “DeepRecSys: A System for Opti-
mizing End-To-End At-scale Neural Recommendation Infer-
ence,” in ISCA, 2020.

[38] Yang Jiao, Liang Han, Xin Long, and Team, “Hanguang 800
NPU – The Ultimate AI Inference Solution for Data Centers,”

in HotChips, 2020.
[39] Youngeun Kwon, Yunjae Lee, Minsoo Rhu, “TensorDIMM: A

Practical Near-Memory Processing Architecture for Embed-
dings and Tensor Operations in Deep Learning,” in MICRO,
2019.

[40] Youngeun Kwon, Yunjae Lee, Minsoo Rhu, “Tensor casting:
Co-designing algorithm- architecture for personalized recom-
mendation training,” in HPCA, 2021.

[41] Yujeong Choi, Yunseong Kim, Minsoo Rhu, “LazyBatching:
An SLA-aware Batching System for Cloud Machine Learning
Inference,” in HPCA, 2021.

[42] Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath,
Shawn Andrews, Aditee Kumthekar, Maheswaran Sathi-
amoorthy, Xinyang Yi, Ed Chi, “Recommending What Video
to Watch Next: A Multitask Ranking System,” in RecSys,
2019.

[43] Zhihao Jia, Matei Zaharia, Alex Aiken, “Beyond Data and
Model Parallelism for Deep Neural Networks,” in MLSys,
2019.

[44] Zhihao Jia, Sina Lin, Charles R. Qi, Alex Aiken, “Exploring
Hidden Dimensions in Parallelizing Convolutional Neural
Networks,” in ICML, 2018.

14

