
POD: A Parallel-On-Die Architecture

Dong Hyuk Woo1 Joshua B. Fryman2 Allan D. Knies3 Marsha Eng2 Hsien-Hsin S. Lee1

1School of Electrical and Computer Engineering 2Microprocessor Technology Labs 3Intel Research Berkeley
Georgia Institute of Technology Intel Corporation Berkeley, CA 94704

Atlanta, GA 30332 Santa Clara, CA 95052
{dhwoo, leehs}@ece.gatech.edu {joshua.b.fryman, marsha.eng}@intel.com allan.knies@intel.com

1. INTRODUCTION
To integrate thousands of cores on a single die in multi-

billion-transistor era, one fundamental limit — power con-
sumption must be addressed. Most of the current multi-core
designs leverage off-the-shelf processor economies of scale
and focus on symmetric MIMD-style. To not lose the scal-
ability of computation, communication efficiency is to be
maintained by employing complex interconnection network
or even a network-on-chip. Such design paradigm, however,
will become infeasible for a many-core die due to two major
power consumers: the massive number of general-purpose
processor cores and the increasingly complex interconnec-
tion network. Besides, such design is also inefficient in terms
of performance per mm

2.
In this abstract, we propose and investigate an alterna-

tive architecture in future many-core era. In particular,
our thrust is to exploit data level parallelism with high en-
ergy/area efficiency while not compromising compatibility of
legacy applications. The architecture revisits data-parallel
SIMD computers [1, 4] with modern design constraints for
a feasible single chip implementation. The overall goal is to
provide best-in-class performance per watt across the space
of many-cores, graphics processors, and media accelerators.

RRQ

RRQ

RRQ

RRQ

RRQ

RRQ

RRQ

RRQ

xTLBARB

Host ProcessorLLC

MC

MC

Sy
st

em
 M

em
or

y

1 2 3 45670

IBUS D
at

a
R

et
ur

n

EFLAGS

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

Figure 1: Parallel-On-Die Architecture

2. PARALLEL-ON-DIE ARCHITECTURE
We propose a new massively parallel processor architec-

ture called Parallel-On-Die or POD illustrated in Figure 1.
POD is a fully integrated processing fabric on a single die
based on the legacy Intel 64 ISA and provides best-in-class
single-stream performance for scalar applications as well as

a robust parallel SIMD PE array for scalable parallel appli-
cation execution. The salient features of POD architecture
is summarized as follows.

• Host Processor Core

To maintain scalar performance and backward compat-
ibility for legacy applications, a conventional processor
core such as Intel Core 2 Duo is provided in POD as the
host processor. In addition to boot an OS and manage
system peripherals, the host processor is also responsible
for controlling the featured massively parallel computa-
tion engine — the POD SIMD PE array comprised of
an n×n tiles (8 × 8 in the Figure). The host processor
broadcasts POD instructions (in VLIW format) to be
executed on the SIMD array and orchestrates their ex-
ecution. The generated output can either be delivered
to the host processor via explicit instructions or stored
directly back to the main memory.

• SIMD PE Array

Each PE tile consists of a high performance SSE-enabled
ALU with a local SRAM memory and its own private
general-purpose and SSE register files. There is no com-
plex logic such as branch predictors or CISC decoders
for achieving low power. The processing core of each PE
is a 3-way VLIW that executes a memory, SSE, and in-
teger instruction for each cycle. Each PE also contains
four input and four output point-to-point links, all uni-
directional to communicate with their neighbors. Under
our current programming model, each PE executes the
same instruction broadcast by the host processor.

• POD Interconnection Network

As shown in Figure 1, the inter-PE communication is
performed via a modified 2D torus network, which is de-
signed to take one uniform cycle traversing across one
PE for each communication. The latency is determinis-
tic given its layout. The number inside each PE on the
top row indicates the nearest neighbor connection link.
These links can be enabled on an as-needed basis as the
communication latencies are deterministic, thereby fa-
cilitating more power saving opportunities by disabling
unused links.

• Interaction among PEs

The 8 point-to-point communication links aforementioned
are arranged such that they are glueless drop-in compo-
nents, with each neighboring PE only requiring direct
wiring to complete the layout. This allows for dense
packing. Note that neighbor-to-neighbor communica-
tion is fully controlled by software and requires neither
arbitration nor routing. Thus it removes the need to
have buffers for communication, which is known to be
highly energy-consuming on packet-switched on-chip in-
terconnect [2]. Each PE can communicate with its neigh-
bor by moving a 128-bit register value or via memory-
transfer operation transfer in 64-bit chunks. To enable

1

4
16

64869.3 GFLOPS

113.6 GFLOPS 134.8 GFLOPS

860.3 GFLOPS
91.4 GFLOPS

504.6 GFLOPS

DenseMMM
(single-precision)

FFT
(single-precision)

IDCT
(double-precision)

OptionPricing
(single-precision)

DownSampling
(single-precision)

K-means
(single-precision)

S
pe

ed
up

1x1 POD 2x2 POD 4x4 POD 8x8 POD

Figure 2: Performance of POD

non-nearest-neighbor, we develop an algorithm based on
k-permutation routing [3] in our interconnect design.

• POD and System Memory Interaction

Aside from a local SRAM allocated to each PE, ap-
plications are allowed to communicate with the system
memory using memory instructions. To manage this
interaction, each PE is enhanced with special MBUS
to the main memory via an interface called Row Re-
sponse Queue (RRQ). Since system memory operations
of all PEs are synchronized, PEs can safely disable their
MBUS and related logic when not used for minimizing
energy. The RRQ is the queuing point for transactions
in both directions, and in turn is connected to a mem-
ory ring with the host’s last level cache (LLC) and all
memory controllers (MCs).

• Physical Design Evaluation

Our implementation is aimed at 3GHz with a 45nm pro-
cess technology. For an 8×8 POD array each containing
128KB SRAM, we project the peak performance to be
1.5 TFLOPS and 768 GFLOPS for IEEE SP and DP op-
erations. Using datasheet from Intel’s 65nm Conroe pro-
cessor with conservative scaling and their 45nm SRAM
cell library, the SIMD pipeline and the local SRAM of
each PE are estimated to be 2.1mm

2 and 0.363mm
2, re-

spectively. Hence the 8 × 8 POD array will amount to
205mm

2. Taking the host core (25.9mm
2), the RRQ

(25.6mm
2), and a 3MB LLC (20mm

2) into account,
the entire POD processor is approximately 276.5mm

2.

3. ISA AND PROGRAMMING MODEL
The SIMD execution inside POD is completely managed

by the host processor. To enable this, we propose extending
the host core with five new instructions and modifying three
others. Our new instructions include:

• SendBits: broadcast instructions to the POD.

• GetFlags: to obtain the return status.

• DrainFlags: assure that the initial setup of a known state
in the flag tree is complete.

• SendRegister: broadcast a host register to every PE.

• GetResult, to obtain a return buffer value from the POD
without using system memory as a go-between.

The three modified host instructions are the various fence
operations (Load, Store, and combined) extended to monitor
the return status of the POD’s memory interface.

The POD instruction streams are embedded within the
regular Intel 64 binaries. A SendBits instruction is used
for the host to forward a 12-byte VLIW instruction to the
POD array. POD instructions are transferred by the host in
a pipelined fashion. Hierarchical buffers were implemented
in each row of the POD array to make the same instructions
arrive at the same time for all rows.

To support multi-level conditional execution (e.g. nested
if-then-else) in the PE, two types of masking instructions,
pushmask and popmask, are provided. They keep track of

the nested conditional state. Upon entering each conditional
region, pushmask shifts down all the bits in the mask register
for each PE and sets its MSB based on the test condition.
popmask pops the MSB bit out of the mask register as a
result of exiting a conditional region.

4. PERFORMANCE EVALUATION
We evaluated the performance of POD architecture with

several data-parallel applications using a simulator. Figure 2
shows achieved GFLOPS and relative performance improve-
ment normalized to the performance of 1 × 1 POD as the
number of PEs increases. The off-chip DRAM bandwidth
is assumed to be 4×32 GBps (four on-chip memory con-
trollers where each can provide 32 GBps bandwidth) with
the DRAM latency as 50 ns. To factor out performance
improvement due to larger on-chip memory as the number
of PEs increases, we assume that aggregate size of the on-
chip memory remains the same regardless of the number of
PEs. For example, in our simulations, a PE of 1 × 1 POD
has 8MB of local SRAM, while each PE of 8 × 8 POD has
128KB SRAM only.

DenseMMM FFT K-means

0%

1%

2%

3%

4%

5%

6%

N E W S N E W S N E W S

A
ct

iv
e

T
im

e

1x1 POD 2x2 POD 4x4 POD 8x8 POD

Figure 3: Point-to-point Links Active Time

Figure 3 shows the active time of inter-PE point-to-point
links with respect to the overall execution time for differ-
ence sized PODs. We show only those applications that
require inter-PE communication. As shown, although FFT
is communication-intensive, synchronized computation and
communication model of POD makes it possible to disable
its point-to-point links for more than 95% of the time, thus
minimizing the interconnect energy, which will be impossi-
ble to do in MIMD-based many-core architecture due to the
unpredictable nature of their interconnection.

For more information, please visit our project website at
http://arch.ece.gatech.edu/pod.html.

5. REFERENCES
[1] T. Blank. The MasPar MP-1 Architecture. In Proceedings of

COMPCON, Spring 1990.
[2] S. Borkar. Networks for Multi-core Chip–A Controversial View.

In 2006 Workshop on On- and Off-Chip Interconnection
Networks for Multicore Systems, 2006.

[3] M. D. Grammatikakis, D. F. Hsu, M. Kraetzl, and J. F. Sibeyn.
Packet routing in fixed-connection networks: A survey. Journal
of Parallel and Distributed Computing, 54(2):77–132, 1998.

[4] L. W. Tucker and G. G. Robertson. Architecture and
Applications of the Connection Machine. In IEEE Computer,
August 1988.

2

http://arch.ece.gatech.edu/pod.html

	Introduction
	Parallel-On-Die Architecture
	ISA and Programming Model
	Performance Evaluation
	REFERENCES 0pt

