

This research was supported by NSF Information Technology
Research Contract, CCR 022-0259.

Algorithm for Achieving Minimum Energy Consumption in
CMOS Circuits Using Multiple Supply and Threshold Voltages at the Module Level

Yuvraj Singh Dhillon , Abdulkadir Utku Diril, Abhijit Chatterjee, and Hsien-Hsin Sean Lee

School of Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, GA 30332 USA

Abstract

 This paper proposes an optimum methodology for
assigning supply and threshold voltages to modules in a CMOS
circuit such that the overall energy consumption is minimized
for a given delay constraint. The modules of the circuit should
have large enough gate depths such that the delay and energy
penalties of the level shifters connecting them are negligible.
Both static and dynamic energy are considered in the
optimization. Energy savings of up to 48% have been achieved
on various example circuits. The first step in the optimization
finds optimum supply and threshold voltages for each module
in the circuit. If the circuit has a large number of modules, this
step might yield a correspondingly large number of different
supply and threshold voltages for minimum energy
consumption. Since having a large number of different supply
and threshold voltages on an IC is not feasible in current
technologies, an additional step clusters the multiple voltages
obtained from the first step into a fixed number of supply and
threshold voltages (for example, 2 different supply voltages
and 2 different threshold voltages). In addition to the
application of this method to circuit optimization, it can also be
applied to a wide range of problems with delay constraints,
such as software tasks running on a dynamically variable VDD
and Vth processor.

1. Introduction
 Energy consumption is recognized as one of the most
important parameters in designing modern portable electronic
systems. Dynamic energy has been the main component of
total energy since it is proportional to the square of VDD.
However, with the shrinking of device sizes and reduction of
supply voltages, static energy has become as important as
dynamic energy. To obtain high gate overdrive (VDD - Vth) for
high speeds of operation, Vth is also decreased as VDD is
decreased. The decrease in threshold voltage increases the
leakage current exponentially, which makes static energy
consumption more significant in every new technology
generation. Therefore, it has become essential to consider both
supply and threshold voltage in any circuit optimization for
low-energy consumption.
 There has been significant research in the usage of
dynamic supply voltage scaling [3, 4]; static assignment of
different supply voltages to a system [1, 5, 6]; static multi-
threshold voltage systems [7, 8, 16]; and dynamic threshold
voltage scaling [9] for energy minimization. The optimization
procedure that we propose in this paper can be used in all of
the above scenarios. It can be used to determine the optimal
supply and threshold voltages for tasks executing on a variable
voltage processor; or it can be used to statically set supply and
threshold voltages for a system, given the probable switching
activity and timing requirements. The benefit of our method is

that it considers both supply and threshold voltages
simultaneously, an idea which is gaining importance as a
means of saving energy without sacrificing performance [15].
Another important contribution of this work is that it gives a
metric which can be used by circuit designers to test how close
the energy consumption of their design is to the minimum
possible. We use this metric to determine the stopping
conditions of our optimization algorithm. If an unlimited
number of supply and threshold voltages are available, the
proposed algorithm is optimum in the sense that no other
voltage assignment for the given modules will give lower
energy consumption for the given delay constraint.
 The complete procedure has two steps. The first step finds
optimum supply and threshold voltage values for CMOS
modules in a digital circuit that minimizes the total energy
consumption. Considering a circuit as composed of modules
allows energy optimization of much larger circuits than is
possible with gate-level optimization algorithms. This is due to
the significant reduction of problem complexity. We find the
exact conditions for minimum energy using the Lagrange
Multiplier Method. Then we iteratively find the supply and
threshold voltage values for each module that satisfy the
minimum energy condition. This step of the algorithm
converges to an exact solution in a small number of iterations
for a large and varied set of problems. If it is technologically
feasible to assign the optimum (and perhaps all different)
supply and threshold voltages to all the modules, then we stop
here. Otherwise we continue to the next step.
 The second step clusters the multiple voltages obtained
from the first step into a fixed number of supply and threshold
voltages (for example, 2 different supply voltages and 2
different threshold voltages). This step results in a feasible
implementation of the system in current technologies. The
organization of the paper is as follows. In Section 2, we
provide the theoretical background of the paper. In Section 3,
we explain the Lagrange Multiplier based optimization
procedure. In Sections 4 and 5, we explain the algorithms for
the first and second steps of the procedure. Section 6 shows
experimental results. Finally, Section 7 concludes.

2. Theoretical background
 In order to formulate the optimization, we need equations
for delay, dynamic energy, and static energy in terms of VDD
and Vth.
 For a CMOS circuit, delay can be approximated as being
proportional to VDD /(VDD - Vth)α

 [2] .

0

()
i D D i

i
D D i th i

k Vd
V V α

⋅
=

−
 (1)

Here di is the delay of the ith module, k0i is a constant for that
module, VDDi and Vthi are the supply voltage and threshold

voltage, respectively applied to that module, and α is the
velocity saturation coefficient. For current technologies, α is
between 1.2 and 1.5. The delay constant (k0i) includes the
effects of process, device sizes, load capacitance, and gate
depth in that module. Gate depth can be included in the
constant because of the additive characteristics of delays.
 Having formed an equation for module delay, we now
form an equation for the dynamic energy consumption in terms
of supply voltage and threshold voltage. We can write the
dynamic energy consumed in a module as:

20 .5di i D D iE C V= ⋅ ⋅ (2)
Here Ci is the term for all the capacitances that are switched
during operation of the ith module including possible multiple
switching of some nodes. To simplify the derivation, we
rewrite dynamic energy as:

2
1di i DDiE k V= ⋅ (3)

where k1i stands for the circuit, process, and application
dependent terms including switching activity. An average value
for total switching activity in the module can be found by
running several different tasks on the module and averaging the
switching activity results. Short circuit power dissipation can
also be included in k1i because of the quadratic dependence of
short-circuit power dissipation to VDD [11].
 For static energy consumption, we use a generalized
model.

3 4
2

i DDi i thik V k V
si subi gatei i DDi iE E E k V e T⋅ − ⋅= + = ⋅ ⋅ ⋅ (4)

 6 7
5

i DDi i thik V k V
i DDi ik V e T⋅ − ⋅+ ⋅ ⋅ ⋅

Esubi stands for the sub-threshold leakage component of the
static energy consumption. This component is strongly
influenced by the threshold voltage. Egatei stands for the gate
leakage component of the static energy. This component is
much smaller than Esubi when Vth is small. When Vth is large,
the main contribution to the static energy comes from this
component. Also, gate leakage increases as the gate oxide
thickness becomes smaller. Ti is the period for which the
circuit is idle. k2i and k5i are circuit-dependent parameters. k3i,
k4i, k6i, and k7i are process-dependent parameters. The values of
the process-dependent parameters can be found by fitting
SPICE simulation results of a simple gate to Equation 4. The
values for these parameters can be used for any circuit
designed in the same technology.
 Given these approximate models for delay and energy in
terms of supply and threshold voltages, we state the energy-
optimization problem for a digital system (assumed given to
us) consisting of N modules and P paths from primary inputs to
primary outputs as follows:

 Minimize
1

N

i
i

E
=
∑ under the constraints

∈

≤∑
j

i d
i P

d T for

all paths Pj where Ei = Edi + Esi, Td is the time constraint and
the variables are VDDi and Vthi for each module. Note that we
obtain the time constraint, Td, for the optimized circuit from the
initial delays of the modules of the unoptimized circuit.
 In the following sections, we will consistently use i to
index the modules and j to index the paths. An example circuit
for N=4 and P=2 is given in Figure 1. In the next section, we
derive the conditions on VDDi and Vthi for minimum energy
consumption.

3. Lagrange Multiplier based optimization
 Consider a system of N modules and P paths from primary
inputs to primary outputs. We form a binary matrix, A, of P
rows and N columns as follows:

1

0

=

=
jiA if Module i lies on Path j

otherwise
 (5)

For example, the A matrix corresponding to the circuit in
Figure 1 (N=4, P=2) is:

2 4

1 0 1 1
0 1 1 1

=

 x

A (6)

If a path Pu is a subset of Pv (i.e. all modules on Pu also lie on
Pv), then the row of A corresponding to Pu (Rowu(A)) is
removed from A to reduce unnecessary computation. For the
rest of the paper, we assume that the resulting A matrix has
more columns than rows (i.e. N > P).
 The total energy consumed by the system is given by:

() () ()1 1 2 2

1 2

total s d s d sN dN

N

E E E E E E E
E E E

= + + + + + +

= + + +
 (7)

The initial delay of each path in the system is given by:

∈

= ∑
j

j i
i P

T d f o r a l l j (8)

We can represent the above equation in vector form as follows:

= ⋅T A d (9)

where T = [T1 T2 . . . TP]T is the vector of path delays and d =
[d1 d2 . . . dN]T is the vector of module delays. The delay
constraint is obtained from the initial delays of the modules as
follows:

()dT m a x T= (10)

Following is a Lagrange Multiplier formulation with multiple
constraints, where the function to minimize is total energy, the
constraint for each path j is that its delay, Tj, should be less
than Td, and λj is the Lagrange Multiplier for the jth path.

1 1 1
1 1

(, , , , , , ,) - [-]
j

N P

DD th DDN thN P i j i j
i j i P

G V V V V E d Tλ λ λ
= = ∈

= ⋅∑ ∑ ∑ (11)

Module 3
Delay = d3

Supply Voltage = VDD3
Threshold Voltage = Vth3

Module 1
Delay = d1

Supply Voltage = VDD1
Threshold Voltage = Vth1

Module 2
Delay = d2

Supply Voltage = VDD2
Threshold Voltage = Vth2

Module 4
Delay = d4

Supply Voltage = VDD4
Threshold Voltage = Vth4

Path 1

Path 2

Figure 1. An example circuit with 4 modules
and 2 paths (N=4, P=2).

Then, for minimum energy consumption, we have the
following:

 1 1 1(, , , , , , ,) 0λ λ∂
=

∂
DD th DDN thN P

DDi

G V V V V for all i
V

 (12)

1 1 1(, , , , , , ,) 0λ λ∂
=

∂
DD th DDN thN P

thi

G V V V V for all i
V

 (13)

Equations 12 and 13 become:
Ti i

i
E = R o w (A)

D D i D D i

d f o r a l l i
V V

λ∂ ∂
⋅ ⋅

∂ ∂
 (14)

Ti i
i

E = R o w (A)
t h i t h i

d f o r a l l i
V V

λ∂ ∂
⋅ ⋅

∂ ∂
 (15)

where λ = [λ 1 λ 2 . . . λ P]T and Rowi(AT) refers to the ith
row of AT. We define two vectors, the Constant Threshold
Energy Gradient Vector (CTEG) and the Constant Supply
Energy Gradient Vector (CSEG), as follows:

T

N N1 1 2 2

1 1 2 2

EE E

DD DD DD DD DDN DDN

dd dCTEG
V V V V V V

 ∂ ∂∂ ∂ ∂ ∂
= ∂ ∂ ∂ ∂ ∂ ∂

 (16)

T

N N1 1 2 2

1 1 2 2

EE Eand
th th th th thN thN

dd dCSEG
V V V V V V

 ∂ ∂∂ ∂ ∂ ∂
= ∂ ∂ ∂ ∂ ∂ ∂

 (17)

 Following are the equations for the partial derivatives of
the energy function, Ei. These equations are obtained using
Equations 3 and 4. In these equations, we assume that each
module is active for a small amount of time compared to the
total deadline Td. Then, we may write Ti ≈ Td in Equation 4.

()

()

() ()()

3 4

6 7

3 4 6 7

i
1i

2 3

5 6

2 5

3 6

E = 2

2

⋅ − ⋅

⋅ − ⋅

⋅ − ⋅ ⋅ − ⋅

∂
⋅ ⋅

∂

+ ⋅ ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ ⋅

+ ⋅ ⋅ + ⋅

+⋅
= + ⋅ + ⋅ +

i DDi i thi

i DDi i thi

i DDi i thi i DDi i thi

DDi
DDi

k V k V
d DDi i i

k V k V
d DDi i i

k V k V k V k V
d i i

subi gateidi
i subi i gatei

DDi DDi

k V
V

T V k k e

T V k k e

T k e k e

E EE k E k E
V V

 (18)

() ()
()

()()
()

1

0 2

1

α α

α

α

α

−

⋅

− − ⋅ − ⋅∂
= ⋅

∂ −

⋅ − ⋅ +
= −

⋅ −

th i th i

th i

th i

D D i D D i D D ii
i

D D i D D i

i D D i th i

D D i D D i

V V V V Vd k
V V V

d V V

V V V

 (19)

()

()

3 4

6 7

i
2 4

5 7

4 7

E = ⋅ − ⋅

⋅ − ⋅

∂
− ⋅ ⋅ ⋅ ⋅

∂
− ⋅ ⋅ ⋅ ⋅
= − ⋅ − ⋅

i DDi i thi

i DDi i thi

k V k V
i i d DDi

thi
k V k V

i i d DDi

i subi i gatei

k k e T V
V

k k e T V
k E k E

 (20)

() ()
0i

1α

α α
+

⋅ ⋅ ⋅∂
= =

∂ −−
i DDi i

thi DDi thiDDi thi

k V dd
V V VV V

 (21)

Finally, from Equations 18, 19, 20, and 21, we get:

()
()() ()

()

3 6

4 7

2
1

di DDi i subi i gatei subi gatei
i

i DDi thi DDi thi

i subi i gatei
i DDi thi

i

E V k E k E E E
CTEG

d V V V V

k E k E
CSEG V V

d

α

α

⋅ + ⋅ ⋅ + ⋅ + +
=

⋅ − + −

⋅ + ⋅
= ⋅ −

⋅

 (22)

Using Equations 16, 17, 22, Equations 14 and 15 can now be
written concisely as follows:

:
T

M in im u m E n e r g y C o n d i t io n

C T E G C S E G A λ= = ⋅
 (23)

 We see that the initial energy optimization problem
involving 2N variables (VDD and Vth for each module) and a
delay constraint has now been simplified to the form in
Equation 23. We now need to solve N independent equations
(T

i i iC T E G = C S E G = R o w (A) λ⋅) in 2 variables (VDDi
and Vthi). However, doing this is not trivial since the Lagrange
Multiplier Vector, λ , is unknown. In the next section, we
propose an iterative gradient search algorithm that yields a
solution to this problem in a small number of iterations. After
every iteration, the condition in Equation 23 will be used to
check if minimum energy is achieved.

4. Gradient search algorithm for the
optimization problem
 We use an iterative algorithm to fulfill the conditions of
Equation 23. The inputs to the algorithm are the initial
parameters of all the N modules, such as the VDDis, the Vthis,
the module delays (dis) and the circuit- and process-dependent
parameters k0is, k1is, k2is, k3is, k4is, k5is, k6is and k7is.
 To solve CTEGi = CSEGi for the ith module, we fix the
delay, di, for that module. Then we can write Vthi in terms of
VDDi using Equation 1. This makes CTEGi and CSEGi
functions of VDDi only and the equation CTEGi = CSEGi can be
solved easily (we use MATLAB’s FZERO function) to get
VDDi and Vthi values. Then with these VDDi and Vthi values, we
can find the energy consumption of that module (this will be
the optimum energy consumption for that module, for the given
delay, di). Hence, we can consider energy consumption of a
module as a function of delay for that module. In vector form,
we can write:

())to ta lE sum E d= = E ((24)

where E = [E1 E2 . . . EN]T.
 First, we get intermediate values for module delays, intd ,
that make all path delays as close to Td as possible. This step
also makes sure that all modules have zero slack, so that we
have an optimal starting point. A method similar to the Zero
Slack Algorithm [13] is used in this step. Let = ⋅int intT A d be
the vector of path delays after this step.
 Next, we minimize Etotal by doing a gradient search on the
delay vector, d . But, the delay vector is constrained due to the
path delay constraints (⋅ = in tA d T). So, in every iteration, we
vary d by adding ∆ such that ⋅ ∆A =0. This choice of

∆ satisfies the constraints as shown below:

()⋅ = ⋅ + ∆ = ⋅ + ⋅ ∆ = intint intA d A d A d A T (25)

In other words, ∆ has to lie in the nullspace of A.

 The delay vector, newd , for a new iteration is obtained

from the current delay vector, currd , as follows:

= + ⋅∇new curr A totald d k E (26)

where ∇ A totalE is the gradient of totalE along the nullspace
vectors of A. k is chosen in such a way that the new energy
(()newE d) is minimum in the direction of gradient vector.
We now derive the stopping condition for the gradient search.
 The condition C T E G C S E G= (Equation 23) is
satisfied in every iteration of the search. To check how
close C T E G (or C S E G) is to λ⋅TA , we define a
Metric_cost_fn as follows:

() ()†Metric_cost_fn T Tnorm A A CTEG CTEG norm CTEG= ⋅ ⋅ − (27)

where
†TA is the pseudo-inverse of TA . At the minimum

energy point, Metric_cost_fn should be zero as shown below:

T
m inC TEG A λ= ⋅

() ()
() ()
() ()

†

†

Metric_cost_fn

0

T T
min min min

T T T T T

T T T

norm A A CTEG CTEG norm CTEG

norm A A A A norm A

norm A A norm A

λ λ λ

λ λ λ

= ⋅ ⋅ −

= ⋅ ⋅ ⋅ − ⋅ ⋅

= ⋅ − ⋅ ⋅

=

Designers can use Metric_cost_fn to determine how close their
design is to the optimum.

 In our algorithm, we terminate the iterations when
Metric_cost_fn goes below 10-3. The overview of the
optimization algorithm is given in the flowchart in Figure 2.

5. Clustering heuristic for limited number
of supply and threshold voltages
 The algorithm described in Section 4 yields optimum
values of supply and threshold voltages for each module that
minimize the overall circuit energy. But these voltages
might all have different values, in which case a practical

Input initial voltage vectors, and ;and optimum module voltages, and .

Compute new module voltages using Mapping Function:

Calculate initial delay vector,

 Calculate the critical path delay,

 Let and

 Let

START

()initcT max A d= ⋅

initd

Return and .

STOP

Yes

No

_DD currV _th currV

_th mV_DD nV

_ _ _ _ _ _[,] (, , ,)DD init th init DD opt th opt DD n th mV V Map V V V V=

_DD optV _th optV

Is 0.99Td<Tc < 1.01Td
 ?

curr initd d= _ _ _ _[,] [,]DD curr th curr DD init th initV V V V=

_ _0.01 [,]DD opt th optk min V V= ⋅

 Calculate the new delay vector,

 Calculate the critical path delay,

_ _ _ _ _ _[,] (, , ,)DD curr th curr DD opt th opt DD n th mV V Map V V V V=
currd

()currcT max A d= ⋅

Is Tc < Td
 ?

Calculate Gradient of Cost_fn at , .

_ _ _ _[,] [,] (_)DD n th m DD n th mV V V V k Cost fn= + ⋅∇

(_)Cost fn∇

Yes No

 Cost_fn = Cost_fn = .2total cE T⋅

_ _[,]DD n th mV V

totalE

Figure 3. Algorithm for clustering

Input initial VDD, Vth, and parameters k0,...,k7 for all N modules.

 Calculate initial delay vector,

 Calculate the deadline,

START

()= ⋅ initdT max A d

initd

Find intermediate delay vector such that all path delays
are as close to Td as possible

 Let

 Set

Calculate Metric_cost_fn

Is Metric_cost_fn < 10-3 ?

Calculate Gradient of Etotal at , .
 where k is chosen in such a way

that the new energy, , is minimum in the
direction of gradient vector.

 Find and which make for .

The latest and are optimum.

STOP

Yes

No

= ⋅ intintT A d

= + ⋅∇new curr A totald d k E

=curr intd d

DDV thV CTEG CSEG= currd

currd ∇A totalE

()newE d

=curr newd d

DDV thV

intd

Figure 2. Algorithm for minimum energy
consumption

* A power-aware partitioning of the circuit into modules could
further improve the results, but that by itself is a very difficult
problem to solve and is not handled in this work.

implementation of the optimized circuit is difficult in current
technologies. In this section, we propose a heuristic algorithm
that clusters the optimum supply and threshold voltage values
obtained into a limited number of supply and threshold
voltages. The final solution meets the delay constraint at the
expense of slightly higher total energy consumption than the
optimum case.
 Assume only n supply voltage planes and m threshold
voltages are available (n<N, m<N). Note that the values of the
available voltages are not fixed at the beginning, although their
number is fixed. Let _DD optV and _th optV be the optimum
supply and threshold voltage values (obtained in the previous
section), respectively. Let _DD nV and _th mV be supply and
threshold voltage vectors holding values for the limited number
of supply and threshold voltages (n supply voltages, m
threshold voltages) initialized as follows:

() () () ()_ _
_ _ 1

1
DD opt DD opt

DD n DD opt

max V min V
V p min V p for p n

n

 −
 = + ⋅ =
 +

() () () ()_ _
_ _ 1

1
th opt th opt

th m th opt

max V min V
V q min V q for q m

m

 −
 = + ⋅ =
 +

These vectors will finally hold the n supply voltage values and
m threshold voltage values that will be used in the circuit. For
any module i, the function “Map” finds the nearest pair
[VDD_n(p), Vth_m(q)] to the pair [Vdd_opt(i), Vth_opt(i)] and assigns
it to [VDD_new(i), Vth_new(i)].

_ _ _ _ _ _[,] (, , ,)DD new th new DD opt th opt DD n th mV V Map V V V V= (28)

 In any iteration, the delay of the circuit (Tc) is calculated
using _ _[,]DD new th newV V . We use 2

total cE T⋅ as the cost
function if Tc exceeds Td by a fixed fraction (say 0.01). Doing
this forces the critical path delay to go down in the next
iteration, possibly increasing Etotal. If Tc is less than Td by a
fixed fraction, totalE is used as the cost function. Doing this
decreases the energy in the next iteration, possibly by
increasing Tc. These cost functions were chosen because they
yielded good results in experiments. The gradient,

(_)C ost fn∇ , is obtained by changing the entries of

_D D nV and _th mV by a small amount, mapping these to new

_ _[,]DD new th newV V and calculating the difference in the cost

function. The new values of _DD nV and _th mV , which
lower the cost function, are obtained by searching in the
direction of the gradient. The search terminates when the
circuit delay is in 1% proximity of the deadline, Td. The
flowchart of the algorithm is given in Figure 3.

6. Experimental results

 We synthesized the hierarchical Verilog descriptions of
the combinational ISCAS’85 circuits and a 16-bit Wallace Tree
Multiplier using Synopsys Design Compiler (with the TSMC
0.25µ library) to get the delay, dynamic energy and static
energy consumption values for the modules at the top level of
design hierarchy. The modules at the top level of hierarchy in
the Verilog description were directly mapped to the modules
used in the optimization*. The values of the process-dependent
parameters (k3, k4, k6, k7) were obtained from SPICE

simulations as explained in Section 2. SPICE simulation of
simple gates showed that k5 is 6 orders of magnitude smaller
than k2 for this technology. Since k2 and k5 scale almost
linearly with number of gates [10, 12], k5 can be taken to be
10-6 times k2 for any module. The circuit-dependent parameters
(k0, k1, k2) were then calculated for each module by using the
delay, dynamic energy and static energy values obtained from
Synopsys and the process-dependent parameters.
 We use the following notation for describing the results:
The symbol “I” denotes the initial circuit which has the
standard 0.25µ TSMC voltages (VDD = 2.5V, Vth = 0.5V). We
obtain the delay of the initial circuit using Synopsys Design
Compiler and use this value as the time constraint for the
optimization i..e the optimized circuits (II, III, IV) will have the
same delay as I. “II” denotes the baseline circuit (for energy
comparisons) that has the single VDD and Vth values that give
the minimum energy consumption for the given deadline. “III”
denotes the circuit having optimum (and possibly all different)
VDDs and Vths for the modules. “IV” denotes the circuit in
which the VDDs and Vths in III have been clustered into two
VDDs and one Vth. We only use one Vth in the final circuit
because we found that having more Vths only saved an
additional 2-3% of energy in the benchmark circuits designed
using 0.25µ technology. The need for multiple Vths will
become more pronounced as technology shrinks.
 For the experiments, we used various switching activities
for the input ports to observe their effects on the energy
savings and the optimum voltages obtained. We noticed that
for switching activities above 0.05, the optimum Vths were of
the order of 10 mV. This is due to the fact that the static energy
in 0.25µ technology is very small compared to the dynamic
energy for high switching activities. So for these cases, the
optimization algorithm scales down VDD aggressively and to
achieve the delay constraint, it reduces Vth to very small values
without incurring a significant increase in static energy. Since
such small Vth values are not currently feasible, for these cases
we fixed Vth at 0.1V and found the optimum VDDs. This
phenomenon is not expected ot occur for deep sub-micron
technologies, where static energy is significant.
 Table 1 provides detailed results for the Wallace Tree
Multiplier circuit. The first column in the table shows the top
level of the Verilog design hierarchy. The modules are a partial
product generator (level0), Carry Save Adders (CSAs), and a
Carry Propagate Adder (CPA). Also shown is the A matrix
corresponding to the circuit. The second column gives the VDD,
Vth and energy consumption values for the baseline circuit (II)
for two different input switching activities (SA=0.01 and
SA=0.0001). Note that the delay for the baseline circuit is same
as the delay of the initial circuit (I), which had VDD = 2.5V, Vth
= 0.5V. The third and fourth columns give the voltages for
each module as well as the energy consumptions for circuits III
and IV respectively.
 Figure 4 shows the energy savings obtained for the
various benchmark circuits as a percentage of the baseline
energy consumption for an input switching activity of 0.01.
The dynamic and static components of energy are also shown.
It is observed that in II and III, static energy is ~10% of the
total energy. This validates the fact that at the optimum, static
energy is a fixed fraction of the total energy [14], although this
fraction depends on the technology used.
 Figures 5 and 6 show the savings for different input
switching activities for circuits III and IV, respectively. The
results show that the energy savings tend to increase as the
input switching activity increases. Thus, accurate estimation of

Figure 4. Energy consumption of benchmark circuits as a percentage of the baseline energy
consumption when the input switching activity is 0.01.
I: Energy consumption of circuit with standard 0.25µ TSMC voltages (VDD = 2.5, Vth = 0.5)
II: Energy consumption of circuit with optimum single VDD and single Vth (baseline case)
III: Energy consumption of circuit with unlimited VDDs and Vths
IV: Energy consumption of circuit with two VDDs and one Vth

Table 1. Optimization Results for a Wallace Tree Multiplier (with two different input switching activities)

Wallace Tree Multiplier II (Baseline System) III (unlimited VDDs, Vths) IV (2 VDDs, 1 Vth)

AT

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0
0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1 0 0 0
0 0 0 1 1 0 1 1 1 1 0
1 1 1 1 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1

i

SA=0.01

VDD=1.62V
Vth=0.11V

Td=13.7 ns

E=71.6 pJ
Ed=63.4 pJ
Es=8.2 pJ

ii

SA=0.0001

VDD=2.18V
Vth=0.35V

Td=13.7 ns

E=0.35 pJ
Ed=0.33 pJ
Es=0.02 pJ

i

2 .2 3 0 .1 0
1 .3 8 0 .0 9
0 .8 5 0 .1 2
0 .8 3 0 .1 1
0 .8 5 0 .1 2
0 .7 7 0 .0 8
0 .8 4 0 .1 1
0 .8 5 0 .1 2
0 .8 0 0 .0 9
0 .9 4 0 .0 8
0 .8 4 0 .1 1
0 .8 6 0 .1 2
0 .5 0 0 .0 9
1 .0 0 0 .1 0
0 .6 3 0 .0 6
0 .5 4 0 .1 2
0 .6 4 0 .0 6

D D thV V

Tc=13.7 ns

E=36.9 pJ
Ed=31.8 pJ
Es=5.1 pJ

Saving=48%

ii

2 .8 0 0 .3 3
1 .7 5 0 .3 2
1 .4 3 0 .3 8
1 .4 8 0 .3 6
1 .4 3 0 .3 8
1 .3 9 0 .3 4
1 .4 9 0 .3 7
1 .4 0 0 .3 6
1 .4 4 0 .3 6
1 .4 1 0 .3 2
1 .4 6 0 .3 7
1 .4 7 0 .3 8
0 .9 7 0 .3 3
1 .4 7 0 .3 5
1 .0 7 0 .3 0
1 .0 2 0 .3 6
1 .0 7 0 .3 0

D D thV V

Tc=13.7 ns

E=0.22 pJ
Ed=0.20 pJ
Es=0.02 pJ

Saving=39%

i

1 .8 4 0 .0 9
1 .8 4 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
1 .8 4 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
1 .8 4 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9

D D thV V

Tc=13.7 ns

E=49.4 pJ
Ed=41.9 pJ
Es=7.5 pJ

Saving=31%

ii

2 .4 2 0 .3 4
2 .4 2 0 .3 4
1 .4 5 0 .3 4
2 .4 2 0 .3 4
1 .4 5 0 .3 4
1 .4 5 0 .3 4
2 .4 2 0 .3 4
1 .4 5 0 .3 4
1 .4 5 0 .3 4
1 .4 5 0 .3 4
2 .4 2 0 .3 4
2 .4 2 0 .3 4
1 .4 5 0 .3 4
2 .4 2 0 .3 4
1 .4 5 0 .3 4
1 .4 5 0 .3 4
1 .4 5 0 .3 4

D D thV V

Tc=13.7 ns

E=0.28 pJ
Ed=0.25 pJ
Es=0.03 pJ

Saving=22%

Table 2. Optimization Results

Circuit
Input

Switching
Activity

E (I)
pJ

E (II)
pJ

E (III)
pJ

E (IV)
pJ

VDD
(II)

Vth
(II)

VDD1
(IV)

VDD2
(IV) Vth (IV)

% Energy
Savings

(III)

% Energy
Savings

(IV)
0.5 106 44.2 25.9 30.6 1.6 0.10 1.2 2.1 0.10 41.5 30.9
0.1 44.1 18.7 11.2 13.2 1.6 0.10 1.2 2.1 0.10 40.2 29.4

0.01 5.85 2.75 1.67 1.98 1.6 0.10 1.2 2.1 0.10 39.4 28.1
0.001 0.62 0.37 0.25 0.28 1.8 0.20 1.4 2.4 0.19 32.5 22.9

c1908

0.0001 0.07 0.05 0.04 0.05 2.0 0.28 1.7 2.1 0.27 26.9 5.1
0.5 238 100 92.5 100 1.6 0.10 1.6 1.6 0.10 7.5 0
0.1 78.1 33.5 31.2 33.5 1.6 0.10 1.6 1.6 0.10 6.9 0

0.01 8.95 4.58 3.71 4.45 1.7 0.14 1.3 1.7 0.12 19.2 3.0
0.001 0.85 0.55 0.45 0.53 1.9 0.23 1.5 1.9 0.22 18.4 2.6

c2670

0.0001 0.09 0.07 0.06 0.07 2.1 0.32 1.8 2.1 0.31 13.4 1.0
0.5 414 175 120 139 1.6 0.10 1.2 1.6 0.10 31.5 20.3
0.1 130 57.0 39.1 45.3 1.6 0.10 1.2 1.7 0.10 31.4 20.6

0.01 14.4 7.75 5.18 6.81 1.7 0.16 1.3 1.7 0.12 33.2 12.2
0.001 1.29 0.87 0.60 0.73 2.0 0.25 1.5 2.0 0.22 31.8 16.0

c3540

0.0001 0.09 0.07 0.05 0.06 2.2 0.36 1.7 2.3 0.35 32.6 17.6
0.5 23.5 9.81 9.05 9.47 1.6 0.10 1.5 1.8 0.10 7.7 3.5
0.1 6.77 2.88 2.65 2.77 1.6 0.10 1.5 1.7 0.10 8.0 3.9

0.01 0.74 0.37 0.33 0.36 1.7 0.14 1.5 1.8 0.11 10.6 4.0
0.001 0.09 0.053 0.049 0.052 1.9 0.22 1.7 2.1 0.20 8.7 3.0

c432

0.0001 0.01 0.0084 0.0078 0.0081 2.1 0.30 1.9 2.4 0.29 7.5 4.1
0.5 81.4 34.0 26.9 27.6 1.6 0.10 1.2 1.9 0.10 20.8 18.8
0.1 34.4 14.5 11.8 12.0 1.6 0.10 1.2 1.9 0.10 18.5 17.1

0.01 4.81 2.24 1.95 1.98 1.6 0.10 1.3 1.8 0.09 12.8 11.5
0.001 0.49 0.29 0.26 0.26 1.8 0.19 1.5 2.0 0.19 11.1 10.2

c499

0.0001 0.05 0.039 0.035 0.035 2.0 0.28 1.7 2.3 0.28 9.5 9.1
0.5 438 184 110 153 1.6 0.10 0.5 1.6 0.10 40.0 16.8
0.1 143 61.5 37.3 50.7 1.6 0.10 0.5 1.6 0.10 39.3 17.5

0.01 16.7 8.59 5.38 7.83 1.7 0.14 0.5 1.6 0.09 37.3 8.9
0.001 1.59 1.03 0.67 0.97 1.9 0.23 0.6 1.8 0.18 34.8 5.3

c5315

0.0001 0.15 0.12 0.07 0.10 2.1 0.33 0.8 2.1 0.29 35.0 14.5
0.5 861 361 259 285 1.6 0.10 1.0 1.6 0.10 28.1 21.0
0.1 283 121 84.7 86.0 1.6 0.10 0.6 1.6 0.10 29.9 28.9

0.01 32.3 16.4 9.04 11.00 1.7 0.14 0.7 1.6 0.10 44.9 32.8
0.001 3.34 2.12 1.20 1.42 1.9 0.22 1.0 1.9 0.20 43.4 33.2

c7552

0.0001 0.42 0.32 0.17 0.20 2.1 0.31 1.2 2.1 0.31 45.4 36.0
0.5 2890 1210 502 834 1.6 0.10 1.0 1.8 0.10 58.4 30.0
0.1 1180 500 245 342 1.6 0.10 1.0 1.8 0.10 51.0 31.6

0.01 151 71.6 36.9 49.40 1.6 0.11 0.9 1.8 0.09 48.4 30.9
0.001 11.7 7.21 4.00 5.16 1.9 0.21 1.1 2.1 0.20 44.5 28.5

Multiplier

0.0001 0.43 0.35 0.22 0.28 2.2 0.35 1.5 2.4 0.34 39.0 22.0

0

10

20

30

40

50

60

c1908 c2670 c3540 c432 c499 c5315 c7552 Multiplier

%
 E

ne
rg

y
Sa

vi
ng

s

0.01
0.001
0.0001

Figure 6. Percent energy savings with two VDDs
and one Vth (IV) for different input switching
activities

0

10

20

30

40

50

60

c1908 c2670 c3540 c432 c499 c5315 c7552 Multiplier

%
 E

ne
rg

y
Sa

vi
ng

s

0.01
0.001
0.0001

Figure 5. Percent energy savings with unlimited
VDDs and Vths (III) for different input switching
activities

the input switching activity is crucial for obtaining good energy
savings.
 Table 2 summarizes the results of the experiments. VDD1
and VDD2 are the two voltages applied to the circuit after
clustering. We obtained up to 48.4% savings for circuit III and
up to 36% savings for circuit IV for switching activities below
0.05 (Vths variable). For switching activities above 0.05 (Vths
fixed at 0.1V), we obtained up to 58.4% savings for circuit III
and up to 31.6% savings for circuit IV. The average saving, for
switching activities above 0.05, was 29% for circuit IIIand
18% for circuit IV. For switching activities below 0.05, the
average saving was 28% for circuit III and 15% for circuit IV.
 The optimization algorithms in Sections 4 and 5 were
implemented in MATLAB and run on a PC with 1 GB RAM
and PIII 800 MHz processor. To compare execution times for
the different circuits, we terminate the optimal algorithm in
Section 4 after 10 iterations of the loop in Figure 2. 10
iterations were enough to get near optimal results for most of
the cases. Since we observed that the clustering algorithm
(Section 5) takes only about 5-10% of the total execution time,
we let it run to completion. Figure 7 shows the execution time
of the program versus number of modules (N) multiplied with
the number of null-space vectors of A (|Null(A)|). Execution
time is roughly proportional to N x |Null(A)| because in each
iteration of the loop in Figure 2, computation of each co-
ordinate of the gradient vector,∇ A totalE , requires computation
of supply, threshold voltage and energy consumption values for
each module.

7. Conclusion and future work
 In this paper, we presented an algorithm to find optimum
values of supply and threshold voltages for circuit modules
such that the energy consumption is minimized. The conditions
for optimum energy were found mathematically and then a
gradient search algorithm was presented which iteratively
converges to the optimum values. An additional step clusters
these optimum values into a limited number of supply and
threshold voltages. The method can be applied to circuit
modules of any kind, given the delay and energy parameters
for the modules.
 As a next step, we plan to apply our algorithm to deep
sub-micron technologies, which we believe will give more

energy savings than the results for 0.25µ. We are also
investigating techniques for power-aware partitioning of
circuits into modules.

References
[1] A. U. Diril, Y. S. Dhillon, K. Choi, A. Chatterjee, “An

O(N) Supply Voltage Assignment Algorithm for Low-
Energy Serially Connected CMOS Modules and a
Heuristic Extension to Acyclic Data Flow Graphs,”
ISVLSI, pp.173-179, February 2003.

[2] T. Sakurai, A.R. Newton, “Alpha-power law MOSFET
model and its applications to CMOS inverter delay and
other formulas,” IEEE Journal of Solid-State Circuits, vol.
25, pp.584-594, April 1990.

[3] S. Lee, T. Sakurai, “Run-time Voltage Hopping for Low
Power Real-Time Systems,” DAC, pp.806-809, 2000.

[4] T. Pering, T. Burd, R. Brodersen, “The Simulation and
Evaluation of Dynamic Voltage Scheduling Algorithms,”
ISLPED, pp.76-81, 1998.

[5] J. Chang, M. Pedram, “Energy Minimization Using
Multiple Supply Voltages,” IEEE Trans. on VLSI Systems,
vol.5, no.4, December 1997.

[6] M. Johnson, K. Roy, “Optimal Selection of Supply
Voltages and Level Conversions During Data Path
Scheduling Under Resource Constraints,” ICCD '96,
pp.72 -77, 1996.

[7] P. Pant, R.K. Roy, A. Chattejee, “Dual-threshold voltage
assignment with transistor sizing for low power CMOS
circuits,” IEEE Trans. on VLSI Systems, vol.9, no.2,
pp.390 -394, April 2001.

[8] V. Sundararajan, K.K. Parhi, “Low power synthesis of
dual threshold voltage CMOS VLSI circuits,” ISLPED,
pp.139-144, 1999.

[9] Y. Moisiadis, I. Bouras, A. Arapoyanni, “Dynamic back
bias CMOS driver for low-voltage applications,”
Electronics Letters, vol.36, no.2, pp.135-136, Jan. 2000.

[10] J.A. Butts, G.S. Sohi, “A static power model for
architects,” IEEE/ACM MICRO, pp. 191-201, 2000.

[11] K. Nose, T. Sakurai, “Analysis and future trend of short-
circuit power,” IEEE Trans. on CAD, vol.19, no.9,
pp.1023-1030, Sept. 2000.

[12] R. Kumar, C.P. Ravikumar, “Leakage power estimation
for deep submicron circuits in an ASIC design
environment,” DAC, pp.45-50, 2002.

[13] R. Nair, C.L. Berman, P.S. Hauge, E.J. Yoffa,
“Generation of performance constraints for layout,”
IEEE Trans. on CAD, vol.8, no.8, pp.860-874, Aug. 1989.

[14] K. Nose, T. Sakurai, “Optimization of VDD and VTH for
low-power and high-speed applications,” ASP-DAC,
pp.469-474, 2000.

[15] R. Bai, S. Kulkami,W. Kwong, A. Srivastava, D.
Sylvester, D.Blaauw, “An implementation of a 32-bit
ARM processor using dual power supplies and dual
threshold voltages,” ISVLSI, pp.149-154, 2003.

[16] L. Wei, Z. Chen, K. Roy, M.C. Johnson, Y. Ye, V.K. De,
“Design and optimization of dual-threshold circuits for
low-voltage low-power applications,” IEEE Trans. on
VLSI Systems, pp.16-24, vol.7, no.1, March 1999.

Figure 7. Execution time versus N x | Null(A)|

