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Abstract 

 This paper proposes an optimum methodology for 
assigning supply and threshold voltages to modules in a CMOS 
circuit such that the overall energy consumption is minimized 
for a given delay constraint. The modules of the circuit should 
have large enough gate depths such that the delay and energy 
penalties of the level shifters connecting them are negligible. 
Both static and dynamic energy are considered in the 
optimization. Energy savings of up to 48% have been achieved 
on various example circuits. The first step in the optimization 
finds optimum supply and threshold voltages for each module 
in the circuit. If the circuit has a large number of modules, this 
step might yield a correspondingly large number of different 
supply and threshold voltages for minimum energy 
consumption. Since having a large number of different supply 
and threshold voltages on an IC is not feasible in current 
technologies, an additional step clusters the multiple voltages 
obtained from the first step into a fixed number of supply and 
threshold voltages (for example, 2 different supply voltages 
and  2 different threshold voltages). In addition to the 
application of this method to circuit optimization, it can also be 
applied to a wide range of problems with delay constraints, 
such as software tasks running on a dynamically variable VDD 
and Vth processor. 
 
1. Introduction 
 Energy consumption is recognized as one of the most 
important parameters in designing modern portable electronic 
systems.  Dynamic energy has been the main component of 
total energy since it is proportional to the square of VDD. 
However, with the shrinking of device sizes and reduction of 
supply voltages, static energy has become as important as 
dynamic energy. To obtain high gate overdrive (VDD - Vth) for 
high speeds of operation, Vth is also decreased as VDD is 
decreased. The decrease in threshold voltage increases the 
leakage current exponentially, which makes static energy 
consumption more significant in every new technology 
generation. Therefore, it has become essential to consider both 
supply and threshold voltage in any circuit optimization for 
low-energy consumption.  
 There has been significant research in the usage of 
dynamic supply voltage scaling [3, 4]; static assignment of 
different supply voltages to a system [1, 5, 6]; static multi-
threshold voltage systems [7, 8, 16]; and dynamic threshold 
voltage scaling [9] for energy minimization. The optimization 
procedure that we propose in this paper can be used in all of 
the above scenarios. It can be used to determine the optimal 
supply and threshold voltages for tasks executing on a variable 
voltage processor; or it can be used to statically set supply and 
threshold voltages for a system, given the probable switching 
activity and timing requirements. The benefit of our method is 

that it considers both supply and threshold voltages 
simultaneously, an idea which is gaining importance as a 
means of saving energy without sacrificing performance [15]. 
Another important contribution of this work is that it gives a 
metric which can be used by circuit designers to test how close 
the energy consumption of their design is to the minimum 
possible. We use this metric to determine the stopping 
conditions of our optimization algorithm. If an unlimited 
number of supply and threshold voltages are available, the 
proposed algorithm is optimum in the sense that no other 
voltage assignment for the given modules will give lower 
energy consumption for the given delay constraint. 
 The complete procedure has two steps. The first step finds 
optimum supply and threshold voltage values for CMOS 
modules in a digital circuit that minimizes the total energy 
consumption. Considering a circuit as composed of modules 
allows energy optimization of much larger circuits than is 
possible with gate-level optimization algorithms. This is due to 
the significant reduction of problem complexity. We find the 
exact conditions for minimum energy using the Lagrange 
Multiplier Method. Then we iteratively find the supply and 
threshold voltage values for each module that satisfy the 
minimum energy condition. This step of the algorithm 
converges to an exact solution in a small number of iterations 
for a large and varied set of problems.  If it is technologically 
feasible to assign the optimum (and perhaps all different) 
supply and threshold voltages to all the modules, then we stop 
here. Otherwise we continue to the next step. 
 The second step clusters the multiple voltages obtained 
from the first step into a fixed number of supply and threshold 
voltages (for example, 2 different supply voltages and 2 
different threshold voltages). This step results in a feasible 
implementation of the system in current technologies. The 
organization of the paper is as follows. In Section 2, we 
provide the theoretical background of the paper. In Section 3, 
we explain the Lagrange Multiplier based optimization 
procedure. In Sections 4 and 5, we explain the algorithms for 
the first and second steps of the procedure. Section 6 shows 
experimental results. Finally, Section 7 concludes. 
 
2. Theoretical background 
 In order to formulate the optimization, we need equations 
for delay, dynamic energy, and static energy in terms of VDD 
and Vth.  
 For a CMOS circuit, delay can be approximated as being 
proportional to VDD /(VDD - Vth)α 

 [2] .  
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Here di is the delay of the ith module, k0i is a constant for that 
module, VDDi and Vthi are the supply voltage and threshold 



voltage, respectively applied to that module, and α is the 
velocity saturation coefficient. For current technologies, α is 
between 1.2 and 1.5. The delay constant (k0i) includes the 
effects of process, device sizes, load capacitance, and gate 
depth in that module. Gate depth can be included in the 
constant because of the additive characteristics of delays. 
 Having formed an equation for module delay, we now 
form an equation for the dynamic energy consumption in terms 
of supply voltage and threshold voltage. We can write the 
dynamic energy consumed in a module as: 
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Here Ci is the term for all the capacitances that are switched 
during operation of the ith module including possible multiple 
switching of some nodes. To simplify the derivation, we 
rewrite dynamic energy as: 
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where k1i stands for the circuit, process, and application 
dependent terms including switching activity. An average value 
for total switching activity in the module can be found by 
running several different tasks on the module and averaging the 
switching activity results. Short circuit power dissipation can 
also be included in k1i because of the quadratic dependence of 
short-circuit power dissipation to VDD [11]. 
 For static energy consumption, we use a generalized 
model.  
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Esubi stands for the sub-threshold leakage component of the 
static energy consumption. This component is strongly 
influenced by the threshold voltage. Egatei stands for the gate 
leakage component of the static energy. This component is 
much smaller than Esubi when Vth is small. When Vth is large, 
the main contribution to the static energy comes from this 
component. Also, gate leakage increases as the gate oxide 
thickness becomes smaller. Ti is the period for which the 
circuit is idle. k2i and k5i are circuit-dependent parameters. k3i, 
k4i, k6i, and k7i are process-dependent parameters. The values of 
the process-dependent parameters can be found by fitting 
SPICE simulation results of a simple gate to Equation 4. The 
values for these parameters can be used for any circuit 
designed in the same technology.  
 Given these approximate models for delay and energy in 
terms of supply and threshold voltages, we state the energy-
optimization problem for a digital system (assumed given to 
us) consisting of N modules and P paths from primary inputs to 
primary outputs as follows:  
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all paths Pj where Ei = Edi + Esi, Td is the time constraint and 
the variables are VDDi and Vthi for each module. Note that we 
obtain the time constraint, Td, for the optimized circuit from the 
initial delays of the modules of the unoptimized circuit.  
 In the following sections, we will consistently use i to 
index the modules and j to index the paths. An example circuit 
for N=4 and P=2 is given in Figure 1. In the next section, we 
derive the conditions on VDDi and Vthi for minimum energy 
consumption. 
 

 
 
3. Lagrange Multiplier based optimization 
 Consider a system of N modules and P paths from primary 
inputs to primary outputs. We form a binary matrix, A, of P 
rows and N columns as follows: 
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For example, the A matrix corresponding to the circuit in 
Figure 1 (N=4, P=2) is: 
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If a path Pu is a subset of Pv (i.e. all modules on Pu also lie on 
Pv), then the row of A corresponding to Pu (Rowu(A)) is 
removed from A to reduce unnecessary computation. For the 
rest of the paper, we assume that the resulting A matrix has 
more columns than rows (i.e. N > P). 
 The total energy consumed by the system is given by: 
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The initial delay of each path in the system is given by:    
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We can represent the above equation in vector form as follows: 
 

= ⋅T A d  (9)    
 

where T = [T1 T2 . . . TP]T is the vector of path delays and d = 
[d1 d2 . . . dN]T is the vector of module delays. The delay 
constraint is obtained from the initial delays of the modules as 
follows: 
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Following is a Lagrange Multiplier formulation with multiple 
constraints, where the function to minimize is total energy, the 
constraint for each path j is that its delay, Tj, should be less 
than Td, and λj is the Lagrange Multiplier for the jth path. 
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Module 3
Delay = d3

Supply Voltage = VDD3
Threshold Voltage = Vth3

Module 1
Delay = d1

Supply Voltage = VDD1
Threshold Voltage = Vth1

Module 2
Delay = d2

Supply Voltage = VDD2
Threshold Voltage = Vth2

Module 4
Delay = d4

Supply Voltage = VDD4
Threshold Voltage = Vth4

Path 1

Path 2

Figure 1. An example circuit with 4 modules 
and 2 paths (N=4, P=2). 



Then, for minimum energy consumption, we have the 
following: 
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Equations 12 and 13 become: 
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where λ  = [λ 1 λ 2 . . . λ P]T and Rowi(AT) refers to the ith 
row of AT. We define two vectors, the Constant Threshold 
Energy Gradient Vector ( CTEG ) and the Constant Supply 
Energy Gradient Vector (CSEG), as follows: 
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 Following are the equations for the partial derivatives of 
the energy function, Ei. These equations are obtained using 
Equations 3 and 4.  In these equations, we assume that each 
module is active for a small amount of time compared to the 
total deadline Td. Then, we may write Ti ≈ Td in Equation 4. 
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Finally, from Equations 18, 19, 20, and 21, we get: 
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Using Equations 16, 17, 22, Equations 14 and 15 can now be 
written concisely as follows: 
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 We see that the initial energy optimization problem 
involving 2N variables (VDD and Vth for each module) and a 
delay constraint has now been simplified to the form in 
Equation 23. We now need to solve N independent equations 
( T

i i iC T E G = C S E G = R o w ( A ) λ⋅ ) in 2 variables (VDDi 
and Vthi). However, doing this is not trivial since the Lagrange 
Multiplier Vector, λ , is unknown. In the next section, we 
propose an iterative gradient search algorithm that yields a 
solution to this problem in a small number of iterations. After 
every iteration, the condition in Equation 23 will be used to 
check if minimum energy is achieved. 
 
4. Gradient search algorithm for the 
optimization    problem 
 We use an iterative algorithm to fulfill the conditions of 
Equation 23. The inputs to the algorithm are the initial 
parameters of all the N modules, such as the VDDis, the Vthis, 
the module delays (dis) and the circuit- and process-dependent 
parameters k0is, k1is, k2is, k3is, k4is, k5is, k6is and k7is.  
 To solve CTEGi = CSEGi for the ith module, we fix the 
delay, di, for that module. Then we can write Vthi in terms of 
VDDi using Equation 1. This makes CTEGi and CSEGi 
functions of VDDi only and the equation CTEGi = CSEGi can be 
solved easily (we use MATLAB’s FZERO function) to get 
VDDi and Vthi values. Then with these VDDi and Vthi values, we 
can find the energy consumption of that module (this will be 
the optimum energy consumption for that module, for the given 
delay, di ). Hence, we can consider energy consumption of a 
module as a function of delay for that module. In vector form, 
we can write: 
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where E = [E1 E2 . . . EN]T. 
 First, we get intermediate values for module delays, intd , 
that make all path delays as close to Td as possible. This step 
also makes sure that all modules have zero slack, so that we 
have an optimal starting point. A method similar to the Zero 
Slack Algorithm [13] is used in this step. Let = ⋅int intT A d  be 
the vector of path delays after this step. 
 Next, we minimize Etotal by doing a gradient search on the 
delay vector, d . But, the delay vector is constrained due to the 
path delay constraints ( ⋅ = in tA d T ). So, in every iteration, we 
vary d  by adding ∆  such that ⋅ ∆A =0. This choice of 

∆ satisfies the constraints as shown below: 
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In other words, ∆  has to lie in the nullspace of A. 



  
 The delay vector, newd , for a new iteration is obtained 

from the current delay vector, currd , as follows: 
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where ∇ A totalE is the gradient of totalE along the nullspace 
vectors of A. k is chosen in such a way that the new energy 
( ( )newE d ) is minimum in the direction of gradient vector. 
We now derive the stopping condition for the gradient search.  
 The condition C T E G C S E G= (Equation 23) is 
satisfied in every iteration of the search. To check how 
close C T E G (or C S E G ) is to λ⋅TA , we define a 
Metric_cost_fn as follows:  
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where 
†TA  is the pseudo-inverse of TA . At the minimum 

energy point, Metric_cost_fn should be zero as shown below: 
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Designers can use Metric_cost_fn to determine how close their 
design is to the optimum. 
 

 
 In our algorithm, we terminate the iterations when 
Metric_cost_fn goes below 10-3. The overview of the 
optimization algorithm is given in the flowchart in Figure 2.  
   
5.  Clustering heuristic for limited number 
of supply and threshold voltages 
 The algorithm described in Section 4 yields optimum 
values of supply and threshold voltages for each module that 
minimize the overall  circuit energy. But these voltages 
might all have different values, in which case a practical 
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Figure 3. Algorithm for clustering 
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Figure 2. Algorithm for minimum energy 
consumption 



 

 

* A power-aware partitioning of the circuit into modules could 
further improve the results, but that by itself is a very difficult 
problem to solve and is not handled in this work.  

implementation of the optimized circuit is difficult in current 
technologies. In this section, we propose a heuristic algorithm 
that clusters the optimum supply and threshold voltage values 
obtained into a limited number of supply and threshold 
voltages. The final solution meets the delay constraint at the 
expense of slightly higher total energy consumption than the 
optimum case.  
 Assume only n supply voltage planes and m threshold 
voltages are available (n<N, m<N). Note that the values of the 
available voltages are not fixed at the beginning, although their 
number is fixed. Let _DD optV and _th optV be the optimum 
supply and threshold voltage values (obtained in the previous 
section), respectively. Let _DD nV  and _th mV  be supply and 
threshold voltage vectors holding values for the limited number 
of supply and threshold voltages (n supply voltages, m 
threshold voltages) initialized as follows: 
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These vectors will finally hold the n supply voltage values and 
m threshold voltage values that will be used in the circuit. For 
any module i, the function “Map” finds the nearest pair 
[VDD_n(p), Vth_m(q)] to the pair [Vdd_opt(i), Vth_opt(i)] and assigns 
it to [VDD_new(i), Vth_new(i)]. 
 

_ _ _ _ _ _[ , ] ( , , , )DD new th new DD opt th opt DD n th mV V Map V V V V=  (28) 
 

 In any iteration, the delay of the circuit (Tc) is calculated 
using _ _[ , ]DD new th newV V . We use 2

total cE T⋅  as the cost 
function if Tc exceeds Td by a fixed fraction (say 0.01). Doing 
this forces the critical path delay to go down in the next 
iteration, possibly increasing Etotal. If Tc is less than Td by a 
fixed fraction, totalE  is used as the cost function. Doing this 
decreases the energy in the next iteration, possibly by 
increasing Tc. These cost functions were chosen because they 
yielded good results in experiments. The gradient, 

( _ )C ost fn∇ , is obtained by changing the entries of 

_D D nV  and _th mV  by a small amount, mapping these to new 

_ _[ , ]DD new th newV V  and calculating the difference in the cost 

function. The new values of _DD nV  and _th mV , which 
lower the cost function, are obtained by searching in the 
direction of the gradient. The search terminates when the 
circuit delay is in 1% proximity of the deadline, Td. The 
flowchart of the algorithm is given in Figure 3. 
 
6. Experimental results 

 We synthesized the hierarchical Verilog descriptions of 
the combinational ISCAS’85 circuits and a 16-bit Wallace Tree 
Multiplier using Synopsys Design Compiler (with the TSMC 
0.25µ library) to get the delay, dynamic energy and static 
energy consumption values for the modules at the top level of 
design hierarchy. The modules at the top level of hierarchy in 
the Verilog description were directly mapped to the modules 
used in the optimization*. The values of the process-dependent 
parameters (k3, k4, k6, k7) were obtained from SPICE 

simulations as explained in Section 2. SPICE simulation of 
simple gates showed that k5 is 6 orders of magnitude smaller 
than k2 for this technology. Since k2 and k5 scale almost 
linearly  with number of gates [10, 12], k5 can be taken to be 
10-6 times k2 for any module. The circuit-dependent parameters 
(k0, k1, k2) were then calculated for each module by using the 
delay, dynamic energy and static energy values obtained from 
Synopsys and the process-dependent parameters.  
 We use the following notation for describing the results: 
The symbol “I” denotes the initial circuit which has the 
standard 0.25µ TSMC voltages (VDD = 2.5V, Vth = 0.5V). We 
obtain the delay of the initial circuit using Synopsys Design 
Compiler and use this value as the time constraint for the 
optimization i..e the optimized circuits (II, III, IV) will have the 
same delay as I. “II” denotes the baseline circuit (for energy 
comparisons) that has the single VDD and Vth values that give 
the minimum energy consumption for the given deadline. “III” 
denotes the circuit having optimum (and possibly all different) 
VDDs and Vths for the modules. “IV” denotes the circuit in 
which the VDDs and Vths in III have been clustered into two 
VDDs and one Vth. We only use one Vth in the final circuit 
because we found that having more Vths only saved an 
additional 2-3% of energy in the benchmark circuits designed 
using 0.25µ technology. The need for multiple Vths will 
become more pronounced as technology shrinks.  
 For the experiments, we used various switching activities 
for the input ports to observe their effects on the energy 
savings and the optimum voltages obtained. We noticed that 
for switching activities above 0.05, the optimum Vths were of 
the order of 10 mV. This is due to the fact that the static energy 
in 0.25µ technology is very small compared to the dynamic 
energy for high switching activities. So for these cases, the 
optimization algorithm scales down VDD aggressively and to 
achieve the delay constraint, it reduces Vth to very small values 
without incurring a significant increase in static energy. Since 
such small Vth values are not currently feasible, for these cases 
we fixed Vth at 0.1V and found the optimum VDDs. This 
phenomenon is not expected ot occur for deep sub-micron 
technologies, where static energy is significant. 
 Table 1 provides detailed results for the Wallace Tree 
Multiplier circuit. The first column in the table shows the top 
level of the Verilog design hierarchy. The modules are a partial 
product generator (level0), Carry Save Adders (CSAs), and a 
Carry Propagate Adder (CPA). Also shown is the A matrix 
corresponding to the circuit. The second column gives the VDD, 
Vth and energy consumption values for the baseline circuit (II) 
for two different input switching activities (SA=0.01 and 
SA=0.0001). Note that the delay for the baseline circuit is same 
as the delay of the initial circuit (I), which had VDD = 2.5V, Vth 
= 0.5V. The third and fourth columns give the voltages for 
each module as well as the energy consumptions for circuits III 
and IV respectively. 
 Figure 4 shows the energy savings obtained for the 
various benchmark circuits as a percentage of the baseline 
energy consumption for an input switching activity of 0.01. 
The dynamic and static components of energy are also shown. 
It is observed that in II and III, static energy is ~10% of the 
total energy.  This validates the fact that at the optimum, static 
energy is a fixed fraction of the total energy [14], although this 
fraction depends on the technology used. 
 Figures 5 and 6 show the savings for different input 
switching activities for circuits III and IV, respectively. The 
results show that the energy savings tend to increase as the 
input switching activity increases. Thus, accurate estimation of 



Figure 4. Energy consumption of benchmark circuits as a percentage of the baseline energy  
consumption when the input switching activity is 0.01.  
I: Energy consumption of circuit with standard 0.25µ TSMC voltages (VDD = 2.5, Vth = 0.5) 
II: Energy consumption of circuit with optimum single VDD and single Vth (baseline case) 
III: Energy consumption of circuit with unlimited VDDs and Vths 
IV: Energy consumption of circuit with two VDDs and one Vth 

Table 1. Optimization Results for a Wallace Tree Multiplier (with two different input switching activities) 
 

Wallace Tree Multiplier II (Baseline System) III (unlimited VDDs, Vths) IV (2 VDDs, 1 Vth) 

 

 

AT 

 
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0
0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1 0 0 0
0 0 0 1 1 0 1 1 1 1 0
1 1 1 1 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1





























 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

i 
 

SA=0.01 
 
VDD=1.62V 
Vth=0.11V 
 
Td=13.7 ns 
 
E=71.6 pJ 
Ed=63.4 pJ 
Es=8.2 pJ 

ii 
 

SA=0.0001 
 
VDD=2.18V 
Vth=0.35V 
 
Td=13.7 ns 
 
E=0.35 pJ 
Ed=0.33 pJ 
Es=0.02 pJ 

i 

2 .2 3 0 .1 0
1 .3 8 0 .0 9
0 .8 5 0 .1 2
0 .8 3 0 .1 1
0 .8 5 0 .1 2
0 .7 7 0 .0 8
0 .8 4 0 .1 1
0 .8 5 0 .1 2
0 .8 0 0 .0 9
0 .9 4 0 .0 8
0 .8 4 0 .1 1
0 .8 6 0 .1 2
0 .5 0 0 .0 9
1 .0 0 0 .1 0
0 .6 3 0 .0 6
0 .5 4 0 .1 2
0 .6 4 0 .0 6

D D thV V  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 

    








 

Tc=13.7 ns 
 
E=36.9 pJ 
Ed=31.8 pJ 
Es=5.1 pJ 
 
Saving=48% 

ii 

2 .8 0 0 .3 3
1 .7 5 0 .3 2
1 .4 3 0 .3 8
1 .4 8 0 .3 6
1 .4 3 0 .3 8
1 .3 9 0 .3 4
1 .4 9 0 .3 7
1 .4 0 0 .3 6
1 .4 4 0 .3 6
1 .4 1 0 .3 2
1 .4 6 0 .3 7
1 .4 7 0 .3 8
0 .9 7 0 .3 3
1 .4 7 0 .3 5
1 .0 7 0 .3 0
1 .0 2 0 .3 6
1 .0 7 0 .3 0

D D thV V  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 

    








 

Tc=13.7 ns 
 
E=0.22 pJ 
Ed=0.20 pJ 
Es=0.02 pJ 
 
Saving=39% 

i 

1 .8 4 0 .0 9
1 .8 4 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
1 .8 4 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
1 .8 4 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9
0 .9 1 0 .0 9

D D thV V  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 

     








 

Tc=13.7 ns 
 
E=49.4 pJ 
Ed=41.9 pJ 
Es=7.5 pJ 
 
Saving=31% 

ii 

2 .4 2 0 .3 4
2 .4 2 0 .3 4
1 .4 5 0 .3 4
2 .4 2 0 .3 4
1 .4 5 0 .3 4
1 .4 5 0 .3 4
2 .4 2 0 .3 4
1 .4 5 0 .3 4
1 .4 5 0 .3 4
1 .4 5 0 .3 4
2 .4 2 0 .3 4
2 .4 2 0 .3 4
1 .4 5 0 .3 4
2 .4 2 0 .3 4
1 .4 5 0 .3 4
1 .4 5 0 .3 4
1 .4 5 0 .3 4

D D thV V  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 

    








 

Tc=13.7 ns 
 
E=0.28 pJ 
Ed=0.25 pJ 
Es=0.03 pJ 
 
Saving=22% 

  



 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Table 2. Optimization Results 
 

Circuit 
Input 

Switching 
Activity 

E (I) 
pJ 

E (II) 
pJ 

E (III) 
pJ 

E (IV) 
pJ 

VDD 
(II) 

Vth 
(II) 

VDD1 
(IV) 

VDD2 
(IV) Vth (IV) 

% Energy 
Savings 

(III) 

% Energy 
Savings 

(IV) 
0.5 106 44.2 25.9 30.6 1.6 0.10 1.2 2.1 0.10 41.5 30.9 
0.1 44.1 18.7 11.2 13.2 1.6 0.10 1.2 2.1 0.10 40.2 29.4 

0.01 5.85 2.75 1.67 1.98 1.6 0.10 1.2 2.1 0.10 39.4 28.1 
0.001 0.62 0.37 0.25 0.28 1.8 0.20 1.4 2.4 0.19 32.5 22.9 

c1908 

0.0001 0.07 0.05 0.04 0.05 2.0 0.28 1.7 2.1 0.27 26.9 5.1 
0.5 238 100 92.5 100 1.6 0.10 1.6 1.6 0.10 7.5 0 
0.1 78.1 33.5 31.2 33.5 1.6 0.10 1.6 1.6 0.10 6.9 0 

0.01 8.95 4.58 3.71 4.45 1.7 0.14 1.3 1.7 0.12 19.2 3.0 
0.001 0.85 0.55 0.45 0.53 1.9 0.23 1.5 1.9 0.22 18.4 2.6 

c2670 

0.0001 0.09 0.07 0.06 0.07 2.1 0.32 1.8 2.1 0.31 13.4 1.0 
0.5 414 175 120 139 1.6 0.10 1.2 1.6 0.10 31.5 20.3 
0.1 130 57.0 39.1 45.3 1.6 0.10 1.2 1.7 0.10 31.4 20.6 

0.01 14.4 7.75 5.18 6.81 1.7 0.16 1.3 1.7 0.12 33.2 12.2 
0.001 1.29 0.87 0.60 0.73 2.0 0.25 1.5 2.0 0.22 31.8 16.0 

c3540 

0.0001 0.09 0.07 0.05 0.06 2.2 0.36 1.7 2.3 0.35 32.6 17.6 
0.5 23.5 9.81 9.05 9.47 1.6 0.10 1.5 1.8 0.10 7.7 3.5 
0.1 6.77 2.88 2.65 2.77 1.6 0.10 1.5 1.7 0.10 8.0 3.9 

0.01 0.74 0.37 0.33 0.36 1.7 0.14 1.5 1.8 0.11 10.6 4.0 
0.001 0.09 0.053 0.049 0.052 1.9 0.22 1.7 2.1 0.20 8.7 3.0 

c432 

0.0001 0.01 0.0084 0.0078 0.0081 2.1 0.30 1.9 2.4 0.29 7.5 4.1 
0.5 81.4 34.0 26.9 27.6 1.6 0.10 1.2 1.9 0.10 20.8 18.8 
0.1 34.4 14.5 11.8 12.0 1.6 0.10 1.2 1.9 0.10 18.5 17.1 

0.01 4.81 2.24 1.95 1.98 1.6 0.10 1.3 1.8 0.09 12.8 11.5 
0.001 0.49 0.29 0.26 0.26 1.8 0.19 1.5 2.0 0.19 11.1 10.2 

c499 

0.0001 0.05 0.039 0.035 0.035 2.0 0.28 1.7 2.3 0.28 9.5 9.1 
0.5 438 184 110 153 1.6 0.10 0.5 1.6 0.10 40.0 16.8 
0.1 143 61.5 37.3 50.7 1.6 0.10 0.5 1.6 0.10 39.3 17.5 

0.01 16.7 8.59 5.38 7.83 1.7 0.14 0.5 1.6 0.09 37.3 8.9 
0.001 1.59 1.03 0.67 0.97 1.9 0.23 0.6 1.8 0.18 34.8 5.3 

c5315 

0.0001 0.15 0.12 0.07 0.10 2.1 0.33 0.8 2.1 0.29 35.0 14.5 
0.5 861 361 259 285 1.6 0.10 1.0 1.6 0.10 28.1 21.0 
0.1 283 121 84.7 86.0 1.6 0.10 0.6 1.6 0.10 29.9 28.9 

0.01 32.3 16.4 9.04 11.00 1.7 0.14 0.7 1.6 0.10 44.9 32.8 
0.001 3.34 2.12 1.20 1.42 1.9 0.22 1.0 1.9 0.20 43.4 33.2 

c7552 

0.0001 0.42 0.32 0.17 0.20 2.1 0.31 1.2 2.1 0.31 45.4 36.0 
0.5 2890 1210 502 834 1.6 0.10 1.0 1.8 0.10 58.4 30.0 
0.1 1180 500 245 342 1.6 0.10 1.0 1.8 0.10 51.0 31.6 

0.01 151 71.6 36.9 49.40 1.6 0.11 0.9 1.8 0.09 48.4 30.9 
0.001 11.7 7.21 4.00 5.16 1.9 0.21 1.1 2.1 0.20 44.5 28.5 

Multiplier 

0.0001 0.43 0.35 0.22 0.28 2.2 0.35 1.5 2.4 0.34 39.0 22.0 
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Figure 6. Percent energy savings with two VDDs 
and one Vth (IV) for different input switching 
activities
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Figure 5. Percent energy savings with unlimited 
VDDs and Vths (III) for different input switching 
activities 



the input switching activity is crucial for obtaining good energy 
savings.  
 Table 2 summarizes the results of the experiments. VDD1 
and VDD2 are the two voltages applied to the circuit after 
clustering. We obtained up to 48.4% savings for circuit III and 
up to 36% savings for circuit IV for switching activities below 
0.05 (Vths variable). For switching activities above 0.05 (Vths 
fixed at 0.1V), we obtained up to 58.4% savings for circuit III 
and up to 31.6% savings for circuit IV. The average saving, for 
switching activities above 0.05, was 29% for circuit IIIand 
18% for circuit IV. For switching activities below 0.05, the 
average saving was 28% for circuit III and 15% for circuit IV. 
 The optimization algorithms in Sections 4 and 5 were 
implemented in MATLAB and run on a PC with 1 GB RAM 
and PIII 800 MHz processor. To compare execution times for 
the different circuits, we terminate the optimal algorithm in 
Section 4 after 10 iterations of the loop in Figure 2. 10 
iterations were enough to get near optimal results for most of 
the cases. Since we observed that the clustering algorithm 
(Section 5) takes only about 5-10% of the total execution time, 
we let it run to completion. Figure 7 shows the execution time 
of the program versus number of modules (N) multiplied with 
the number of null-space vectors of A (|Null(A)|). Execution 
time is roughly proportional to N x |Null(A)| because in each 
iteration of the loop in Figure 2, computation of each co-
ordinate of the gradient vector,∇ A totalE , requires computation 
of supply, threshold voltage and energy consumption values for 
each module. 
 

 
 
7. Conclusion and future work 
 In this paper, we presented an algorithm to find optimum 
values of supply and threshold voltages for circuit modules 
such that the energy consumption is minimized. The conditions 
for optimum energy were found mathematically and then a 
gradient search algorithm was presented which iteratively 
converges to the optimum values. An additional step clusters 
these optimum values into a limited number of supply and 
threshold voltages. The method can be applied to circuit 
modules of any kind, given the delay and energy parameters 
for the modules.  
 As a next step, we plan to apply our algorithm to deep 
sub-micron technologies, which we believe will give more 

energy savings than the results for 0.25µ. We are also 
investigating techniques for power-aware partitioning of 
circuits into modules. 
 
References 
[1] A. U. Diril, Y. S. Dhillon, K. Choi, A. Chatterjee, “An 

O(N) Supply Voltage Assignment Algorithm for Low-
Energy Serially Connected CMOS Modules and a 
Heuristic Extension to Acyclic Data Flow Graphs,” 
ISVLSI, pp.173-179, February 2003. 

[2] T. Sakurai, A.R. Newton, “Alpha-power law MOSFET 
model and its applications to CMOS inverter delay and 
other formulas,” IEEE Journal of Solid-State Circuits, vol. 
25, pp.584-594, April 1990. 

[3] S. Lee, T. Sakurai, “Run-time Voltage Hopping for Low 
Power Real-Time Systems,” DAC, pp.806-809, 2000. 

[4] T. Pering, T. Burd, R. Brodersen, “The Simulation and 
Evaluation of Dynamic Voltage Scheduling Algorithms,” 
ISLPED, pp.76-81, 1998. 

[5] J. Chang, M. Pedram, “Energy Minimization Using 
Multiple Supply Voltages,” IEEE Trans. on VLSI Systems, 
vol.5, no.4, December 1997.  

[6] M. Johnson, K. Roy, “Optimal Selection of Supply 
Voltages and Level Conversions During Data Path 
Scheduling Under Resource Constraints,” ICCD '96, 
pp.72 -77, 1996. 

[7] P. Pant, R.K. Roy, A. Chattejee, “Dual-threshold voltage 
assignment with transistor sizing for low power CMOS 
circuits,” IEEE Trans. on VLSI Systems, vol.9, no.2, 
pp.390 -394, April 2001. 

[8] V. Sundararajan, K.K. Parhi, “Low power synthesis of 
dual threshold voltage CMOS VLSI circuits,” ISLPED, 
pp.139-144, 1999. 

[9] Y. Moisiadis, I. Bouras, A. Arapoyanni, “Dynamic back 
bias CMOS driver for low-voltage applications,” 
Electronics Letters, vol.36, no.2, pp.135-136, Jan. 2000. 

[10] J.A. Butts, G.S. Sohi, “A static power model for 
architects,” IEEE/ACM MICRO, pp. 191-201, 2000. 

[11] K. Nose, T. Sakurai, “Analysis and future trend of short-
circuit power,” IEEE Trans. on CAD, vol.19, no.9, 
pp.1023-1030, Sept. 2000. 

[12] R. Kumar, C.P. Ravikumar, “Leakage power estimation 
for deep submicron circuits in an ASIC design 
environment,” DAC, pp.45-50, 2002. 

[13] R. Nair, C.L. Berman, P.S. Hauge, E.J. Yoffa, 
“Generation  of performance constraints for layout,” 
IEEE Trans. on CAD, vol.8, no.8, pp.860-874, Aug. 1989. 

[14] K. Nose, T. Sakurai, “Optimization of VDD and VTH for 
low-power and high-speed applications,” ASP-DAC, 
pp.469-474, 2000. 

[15] R. Bai, S. Kulkami,W. Kwong, A. Srivastava, D. 
Sylvester, D.Blaauw, “An implementation of a 32-bit 
ARM processor using dual power supplies and dual 
threshold voltages,” ISVLSI, pp.149-154, 2003. 

[16] L. Wei, Z. Chen, K. Roy, M.C. Johnson, Y. Ye, V.K. De, 
“Design and optimization of dual-threshold circuits for 
low-voltage low-power applications,” IEEE Trans. on 
VLSI Systems, pp.16-24, vol.7, no.1, March 1999. 

Figure 7. Execution time versus N x | Null(A)|


