
Published as a conference paper at ICLR 2023

MACTA: A MULTI-AGENT REINFORCEMENT
LEARNING APPROACH FOR CACHE TIMING
ATTACKS AND DETECTION

Jiaxun Cui1 Xiaomeng Yang∗2 Mulong Luo∗3 Geunbae Lee∗4 Peter Stone1,5
Hsien-Hsin S. Lee6 Benjamin Lee2,7 G. Edward Suh2,3 Wenjie Xiong†4 Yuandong Tian†2

1The University of Texas at Austin 2Meta AI 3Cornell University 4Virginia Tech
5Sony AI 6Intel Corporation 7University of Pennsylvania
cuijiaxun@utexas.edu, yangxm@meta.com, ml2558@cornell.com, geunbae@vt.edu, pstone@cs.utexas.edu,
linear@acm.org, leebcc@seas.upenn.edu, edsuh@meta.com, wenjiex@vt.edu, yuandong@meta.com

ABSTRACT

Security vulnerabilities in computer systems raise serious concerns as comput-
ers process an unprecedented amount of private and sensitive data today. Cache-
timing attacks (CTA) pose an important practical threat as they can effectively
breach many protection mechanisms in today’s systems. However, the current de-
tection techniques for cache timing attacks heavily rely on heuristics and expert
knowledge, which can lead to brittleness and the inability to adapt to new attacks.
To mitigate the CTA threat, we propose MACTA, a multi-agent reinforcement
learning (MARL) approach that leverages population-based training to train both
attackers and detectors. Following best practices, we develop a realistic simulated
MARL environment, MA-AUTOCAT, which enables training and evaluation of
cache-timing attackers and detectors. Our empirical results suggest that MACTA
is an effective solution without any manual input from security experts. MACTA
detectors can generalize to a heuristic attack not exposed in training with a 97.8%
detection rate and reduce the attack bandwidth of adaptive attackers by 20% on
average. In the meantime, MACTA attackers are qualitatively more effective than
other attacks studied, and the average evasion rate of MACTA attackers against
an unseen state-of-the-art detector can reach up to 99%. Furthermore, we found
that agents equipped with a Transformer encoder can learn effective policies in
situations when agents with multi-layer perceptron encoders do not in this envi-
ronment, suggesting the potential of Transformer structures in CTA problems.

1 INTRODUCTION

With increasingly sensitive data and tasks, security in modern computer systems is recognized as
one of the 14 grand challenges for engineering (National Academy of Engineering, 2007). As a
concrete example, cache-timing attacks (CTA) in processor caches have been shown to leak private
encryption keys (Yarom & Falkner, 2014; Liu et al., 2015), break existing security isolation (Kocher
et al., 2019), cause privilege escalation (Lipp et al., 2018), and break new hardware security features
in the latest processors (Ravichandran et al., 2022). In CTA, the attacker is able to gain such access
to private information (e.g., via memory access patterns) from the victim who shares a cache with
the attacker. Over decades, the attack and defense policies in CTA have been explored manually
by computer architecture experts. To defend against such attacks, statistical analysis and machine
learning models with static strategies have been proposed for CTA detection, e.g., CC-Hunter (Chen
& Venkataramani, 2014) uses auto-correlation and Cyclone (Harris et al., 2019) uses an SVM clas-
sifier. Yet, new CTA attacks are still being reported (Xiong & Szefer, 2020; Briongos et al., 2020;
Saileshwar et al., 2021; Guo et al., 2022b;a), showing higher leakage rates or the ability to bypass
existing defensive mechanisms.

∗
Equal second-author contribution. † Equal supervision.
Code available at https://github.com/facebookresearch/macta.

1

https://github.com/facebookresearch/macta

Published as a conference paper at ICLR 2023

Computer security can be seen as a competitive game between the attackers and the defenders, and
game-theoretic approaches that analyze strategy (policies) for both sides have been proposed (Anwar
et al., 2018; Elderman et al., 2017; Eghtesad et al., 2020). These methods highly abstract the attack
and defense strategies, usually based on known attacks and defenses, and analyze simplified games
in the limited strategy spaces. For example, Anwar et al. (2018) studies CTA-like attack scenarios
where the attacker decides when to terminate its attack and the defender decides an abstract security
level. However, real-world CTA has large action and state spaces for different agents, sparse reward,
and long game horizons, making the game analysis hard without exploring all possible policies.

In this work, we use multi-agent reinforcement learning (MARL) to jointly explore and optimize
complex attack/defense policies in CTA. We take an integrated approach of reinforcement learn-
ing and game theory. First, we build a multi-agent gym environment, MA-AUTOCAT, that closely
models a realistic CTA setting and allows efficient learning for both attackers and defenders. Specif-
ically, we study a detect-and-terminate defense. Second, we introduce and evaluate a MARL ap-
proach, named MACTA, to automatically find both attacker and detector policies through self-play,
similar to past successes in games with large state/action spaces (e.g., StarCraft (Vinyals et al.,
2019), Go (Silver et al., 2016), and Poker (Brown & Sandholm, 2019)). MACTA adopts Fictitious
Play (FP) (Brown, 1951), population-based training in MARL (Vinyals et al., 2019) and Proximal
Policy Optimization (PPO) (Schulman et al., 2017) to learn the best response policy to a pool of di-
verse opponents, to avoid cyclic behaviors of the attacker/defender policies. Finally, MACTA uses
a Transformer architecture to parameterize the policy/value function so that an important subset of
actions can be picked up quickly during training, yielding fast policy learning.

We performed extensive experiments in a representative setting of cache-timing attack. The ex-
periments show that learned policies trained with MACTA can generalize to detectors/attackers
that they were not exposed to during the learning phase (henceforth referred to as “unseen de-
tectors/attackers”). The MACTA detector exhibits a 97.8% detection rate on an existing human-
designed attack without training on it and can lower the number of attacks per episode (bandwidth)
of adaptive attackers by 20% on average. The MACTA attacker can bypass previously unseen
detector, Cyclone, with a more than 99% success rate.

While there has been increasing interest and effort in using machine learning for computer system
security recently, our work is the first to introduce the hardware timing attack problem as a promising
application of MARL and show that MARL can be effectively applied to detect simulated CTA
attacks with strong generalization.

Our main contributions are as follows:

• We contribute a simulated multi-agent environment MA-AUTOCAT that models realistic
CTA and allows learning in both cache timing attacks and defenses.

• We introduce and evaluate MACTA, a multi-agent learning approach for CTA, and show
the resultant detector acquires interesting high-level patterns that can generalize to novel
attackers and make the cache less exploitable to high-bandwidth attacks.

• Our study on the neural architecture of learning agents indicates that the CTA is one case
where Transformers are significantly better for retrieving state information than multi-layer
perceptrons.

2 THE CACHE TIMING ATTACK CHALLENGE
The cache timing attack challenge is a fundamental problem to address as such kinds of attacks are
stealthy but powerful. We leave the detailed reasons for studying the problem in Appendix A.1 and
introduce the domain knowledge and problem formulation in this section.

2.1 DOMAIN DESCRIPTION

A cache is a small and fast on-chip memory commonly used in modern processor designs to reduce
latency of memory accesses. Accessing memory addresses whose data are available in a cache is fast
(called “cache hit”). If the data is not in the cache, data has to be retrieved from the main memory,
which is much slower (called “cache miss”).

Surprisingly, this timing difference in memory accesses due to caching could leak information across
different programs/processes executing with a shared cache, a vulnerability known as cache timing
attacks (CTA). As shown in Figure 1(a), CTA involves the attacker process and the victim process

2

Published as a conference paper at ICLR 2023

both sharing the same cache. An example (Prime+Probe CTA (Liu et al., 2015)) is given in Fig-
ure 1(b). The victim’s memory access will evict the attacker’s cache line from the cache, causing
latency changes in the attacker’s future memory accesses. Thus, the attacker can infer whether the
victim made access to a specific memory address by observing its own memory access latency, and
thus be able to infer the victim’s private information.

A0 A1 A2 A3 Cache

A0 V1 A2 A3 Cache

Attacker accesses A0, …, A3
and occupies the whole cache

Victim accesses one of the secret address
In this example: victim accesses V1

Attacker accesses A0, Cache Hit (Fast access)
Attacker accesses A1, Cache Miss (Slow access)
Victim’s secret address must be V1!

V1 A2 A3 CacheA0

(1) Attacker Prime:

(3) Attacker Probe:

(2) Victim access:
0 1 2 3 Cache

Attacker Process
Virtual Memory Space

Victim Process
Virtual Memory Space

A0 A1 A2 A3

V0 V1 V2 V3

Hit Hit HitMiss

(a) (b)

Figure 1: (a) Cache timing channel attack is formed when the attacker process and the victim process use the
same locations of a shared cache for their memory accesses. (b) An example of Prime+Probe CTA in a 4-set
direct-mapped cache. The attacker process can infer which memory address the victim process accesses by
observing the latency.

2.2 PROBLEM STATEMENT

In this work, our goal is to jointly find novel attackers and robust detector policies that can generalize
to unseen opponents, leading to insights for future cache design. The problem of joint learning can
be formulated as a general-sum Partially Observable Markov Game (POMG), where the attacker and
detector have limited observations and optimize for their own cumulative return. Given the finite set
of policies, the resultant attacker is the best response to a mixture of all detector policies explored,
and the resultant detector is the best response to a mixture of all attacker policies explored.

Partially Observable Markov Games (POMGs) Formally, an n-player episodic POMG can be
described using a tuple {I, T ,S,P, {A}ni=1, {O}ni=1, {R}ni=1, γ}, where I is the finite set of play-
ers, T is the episode length, S is the true state space, P is the state transition probability. Ai is the
action space of player i, and the joint action space of all agents is {A}ni=1 = A1 × A2... × An.
Similarly, Oi is the observation space of player i, andRi is the reward function for player i. Lastly,
γ ∈ [0, 1] is a reward discount factor. In POMGs, each agent only has access to its own observations
and actions, and its goal is to maximize the cumulative episodic reward for itself given the oppo-
nents’ policies, J i(πi, π−i) = E

[∑T
t γtrit|s0, ait ∼ πi(st), a

−i
t ∼ π−i(st)

]
. A Nash Equilibrium

(NE) is one solution concept to POMGs. Formally, a NE is defined as a saddle point where for any
player’s policy πi, we have J i(πi

∗, π
−i
∗) ≥ J i(πi, π−i

∗),∀i ∈ N . Namely, given all other agents’
equilibrium policies π−i

∗ , there is no motivation for agent i to unilaterally deviate from its current
policy πi

∗ to achieve higher returns.

3 MA-AUTOCAT
To study the learning dynamics of the attackers and the detectors in CTA, we develop MA-
AUTOCAT, a gym (Brockman et al., 2016) environment that models realistic multi-agent CTA
interactions. We build the environment based on a cache simulator, which faithfully models cache
state changes, following practices in prior works on CTA detection schemes (Harris et al., 2019;
Mirbagher-Ajorpaz et al., 2020). Note that experimenting detectors on real processors requires
hardware modifications, which is prohibitively expensive. Figure 2 demonstrates the environment
components and game mechanism.

In MA-AUTOCAT, each agent plays a different role, and each role has a specific goal (i.e., reward),
a different level of privileged accessibility (i.e., observation) to the information of the environment,
and a different way to take actions (i.e., action space), listed as below:

Benign Program (B) accesses memory in a regular way, implemented by replaying an offline log
of memory accesses from regular programs (e.g., a standard benchmark suite such as SPEC (Bucek
et al., 2018)). It has no observation and no policy needs to be learned.

Victim (V) accesses memory with addresses that depend on a secret. Studies have shown that such
secret-dependent memory accesses are common in real-world applications (e.g., HTTP parser), li-

3

Published as a conference paper at ICLR 2023

Detector
Agent

Attacker Program

r: Successful Attack without alarm: Attacker receives reward
 Unsuccessful Attack: Attacker receives penalty

r: Correct Alarm: Detector receives reward
 False Alarm or False Negative: Detector receives penalty

Attack Scenario
Victim Program

or
Benign Program 1
Benign Program 2
Benign Scenario

Cache
simulatora: If Detector alarms:

Terminate the programs

o: Observe latency

a: Memory accesses
by both programs

o: Observe memory
accesses by both programs

Figure 2: We propose MA-AUTOCAT, a multi-agent environment to jointly explore and optimize the policies
of the attacker and the defender processes in CTA. In this environment, multiple agents can play different roles
and learn from each other. The end goal is to learn policies that can generalize to deal with previously unseen
opponents (e.g., those designed by human heuristics).

braries (e.g., OpenSSL), and Linux kernel (Johannesmeyer et al., 2022; Qi et al., 2021; Oleksenko
et al., 2020). In CTA, a victim’s secrets usually contain multiple bits, and attackers target one bit
at a time; after guessing one bit of a secret, the attacker moves to the next bit. To model this in
our environment, the secret bit is reset after the attacker’s attempt to guess the secret and the victim
accesses an address depending on the secret when triggered.

Attacker (A) aims to obtain the secret memory address of the victim process, by checking the pat-
terns of latency of memory accesses. An attacker may learn a policy to pick which memory addresses
to access, and observes the binary latency signal (slow/fast). The attacker can also trigger the victim
process to execute, regain control after its execution, and guess the secret address of the victim if it
is confident to do so. Importantly, the attacker can only see the latency of its own accesses.

Detector (D) aims to raise the alarm as soon as possible when an attacker is present while avoiding
a false alarm for benign programs. As a system process, we assume that the detector can observe
memory accesses to the cache sets of all running processes in the environment. The detector will
terminate an episode if an alarm is raised.

See Appendix A.2 for detailed specifications of the observations, actions, and rewards.

In each episode, we may pick multiple agents of different roles to be in the environment and let them
interact. In this work, we mainly test the following two possible scenarios:

• Attack Scenario (DAV). The environment contains a detector, an attacker, and a victim.
The attacker aims to obtain the secret address of the victim. The detector aims to detect the
presence of an attacker and terminate processes as soon as possible.

• Benign Scenario (DBB). The environment contains a detector and two benign programs
with no malicious intent. In this case, the detector should not raise any false alarms.

We leave more complicated settings, such as scenarios with both victims and benign programs (e.g.,
DAVB) as future work.

4 METHOD

The CTA that we consider is a POMG with three fundamental characteristics: 1) Partial Observ-
ability. In CTA, the attacker knows which program to attack but can only see the attacker’s own
actions and latencies, while the detector does not know if there is any attacker nor which program the
attacker is targeting. 2) Sparse-Reward Markov Game. The CTA game can have a long episode
length, and agents have to come up with a good action sequence before receiving the reward. Es-
pecially, the attacker must learn both low-level skills to perform attacks and high-level strategies to
avoid defenders. 3) Environment Randomness. Such randomness comes from randomized victim
secret addresses and the random trajectory sampling of benign programs. We propose our method
based on the three crucial features.

4.1 OUR APPROACH: MACTA

In this paper, we introduce our approach, MACTA (Figure 3 Right), as an initial solution to the
CTA challenge using MARL. MACTA adopts Transformers (Vaswani et al., 2017b) as the neural
encoder of policy nets, Proximal Policy Optimization (PPO) (Schulman et al., 2017) as the policy
learning algorithm, and Fictitious Play (FP) (Brown, 1951) as the game-theoretic tool.

4

Published as a conference paper at ICLR 2023

MACTAIBR-PPO

Q learns policy against P using PPO QP

Detector 1

Attacker 1

Detector 2 Detector 3

Attacker 2 Attacker 3

Detector 1

Attacker 1

Detector 2 Detector 3

Attacker 2 Attacker 3

Figure 3: Method. Iterated Best Response PPO (IBR-PPO) learns the best response to the previous opponent
only, while MACTA learns the best response to a uniform mixture of all historical opponents.

To deal with history-dependent partial observations and sparse rewards, both the attacker and the de-
tector are equipped with policy nets with Transformer encoders. The Transformer encoder is mainly
composed of scaled dot-product attention and multi-head self-attentions. It can effectively integrate
information from long time horizons and large-scale data while not suffering from vanishing or
exploding gradients in recurrent neural networks (RNNs) (Parisotto et al., 2020).

The attacker and the detector optimize their policies by the PPO algorithm to effectively learn a
policy in the Markov game. Although independent reinforcement learning, where all agents are up-
dating their policies simultaneously, is notoriously known for the instability issue in training (Tan,
1993), if we only train one agent at a time and keep others stationary, then other agents can be taken
as a part of the environment, and PPO can effectively optimize the policy for higher cumulative
rewards. Iterated Best Response PPO (IBR-PPO) (Figure 3 Left) is the most naive way of imple-
menting the above idea. It alternates the training of the attacker and detector so that they learn the
best policy against the most recent opponent. However, it may fall into the cyclic policy learning
and never converge to any Nash Equilibrium (Roughgarden, 2010).

As a widely accepted method in MARL, creating a diverse pool of opponents and learning the best
response to a mixture of them can alleviate the cyclic issue and help with generalization. Similar to
fictitious play in game theory, we create a pool for each agent and add their historical policies to the
pool. Concretely, for each iteration τ , we denote the set of policies explored until τ of agent i by
our method as Πi

τ , the opponents’ joint policy set as Π−i
τ . Then we learn the best response (BR),

πi
∗(U(Π−i

τ)), to the uniform mixture of the opponents’ policy pool using a best response learner
(e.g. PPO), and add the best response to the policy pool. Mathematically, for each iteration

∀i : Πi
τ+1 ←− Πi

τ ∪ {πi
∗(U(Π−i

τ))}
where −i represents all players except for player i, and U is the uniform distribution. There are
more advanced meta game frameworks like Double Oracle (McMahan et al., 2003) and Policy
Space Response Oracle (Lanctot et al., 2017), which measure the meta game payoff matrix among
different explored policies and solves the matrix for the best opponent mixture. In our case, since
the environment contains some randomness, it is inefficient to precisely estimate the payoff matrix.
We thus leave exploring more advanced game frameworks as future work.

The above components constitute our approach (Algorithm 1 in Appendix A.7). MACTA alternates
the training of attacker and detector every E epochs and adds one deterministic policy checkpoint of
the learning agent to the agent’s policy pool every N epochs. During one agent’s training, the agent
faces a uniform mixture of all opponents’ past deterministic policy checkpoints. Note that we create
such a mixture by uniformly sampling policies from the opponent’s policy pool at each action step.

4.2 IMPLEMENTATION DETAILS

Specifically, we start with empty policy pools for both agents, first train the attacker for 50 epochs
(each epoch contains 3000 training steps) to gain the basic skills of obtaining information from the
victim program, and add one policy to the attacker’s policy pool every 10 epochs. Then we stop
the attacker’s training and switch to train the detector against the pool of the first 5 attacker policies
for 50 epochs. Similarly, the detector will have 5 policies by the end of this training iteration (50
epochs). The above process is repeated until the target training iterations (1800 epochs). We adopt
an Actor-Critic implementation of PPO for both the attacker and the detector, and both the policy
net and the value net are 1-layer 8-head Transformer encoders with different output heads. We
leverage the RLMeta (Yang et al., 2022) learning framework for the PPO implementation, which is

5

Published as a conference paper at ICLR 2023

an asynchronous version of PPO with sampling and learning in parallel, and construct our multi-
agent learning framework on top of it. For stabilizing the self-play process, we also apply dual-
clip PPO (Ye et al., 2020). Refer to Appendix A.7 for a more detailed description of training and
environment hyper-parameters. Our code is available at https://github.com/facebookresearch/macta.

5 EXPERIMENTS

5.1 EVALUATION SETUP AND METRICS

To evaluate the proposed MARL method, we compare with a few attacker and detector baselines.
For attackers, we consider a textbook attack Prime+Probe (Algorithm 2), an RL-based attacker (Au-
toCAT) (Luo et al., 2023), and the PPO with Iterated Best Response Oracle (IBR-PPO) attacker. For
detectors, we include our implementation of CC-Hunter (Chen & Venkataramani, 2014) (Appendix
A.8) and Cyclone (Harris et al., 2019) (Appendix A.8), and IBR-PPO Detector.

In this work, we employ episode return and intuitive metrics including Attack Correct Rate, Attacks
per Episode, Detection Rate, Episode Length, and False Alarm Rate. Details are listed in Table 1.

Table 1: Evaluation metrics.

Metrics Object Description

Attack Correct Rate Attacker Measures the ability of an attacker to infer a secret correctly (at-
tack successfully). It is the percentage of correct guesses among
all guesses aggregated over episodes.

Attacks per Episode Attacker,
Detector

Measures the speed of an attacker or the attacker’s ability to by-
pass detection or the detector’s ability to prevent attacks. It is the
average number of correct guesses per episode.

Detection Rate Attacker,
Detector

Detection rate is the percentage of DAV episodes alarmed by the
detector within the time limit in the evaluated DAV episodes.

Episode Length Attacker,
Detector

Measures how fast the detector can find out the existence of the
attacker.

False Alarm Rate Detector Measures the false positive (terminate episode before time limit)
rate of a detector given all benign agents.

5.2 BENIGN DATASET

We use the Standard Performance Evaluation Corporation (SPEC) 2017 benchmark suite (Bucek
et al., 2018) to represent benign programs, and obtain their memory access traces using the gem5
simulator (Binkert et al., 2011). We then generate benign traces by combining the memory ac-
cesses from two programs based on the simulation timestamps. We introduce the details of the
Train/Val/Test dataset in Appendix A.3.

5.3 RESULTS

All the experiment results below are reported on an 8set-1way L1 cache. The attacker’s memory
address range is 8-15 and the victim’s secret address is randomly chosen between 0-7. The episode
length is 64 steps. To evaluate different methods, we report the statistics based on three indepen-
dent training instances for each learning-based method and control the final policies from different
instances of a method undergoing the same number of optimization steps.

5.3.1 ATTACKER PERFORMANCE

Table 2: Attacker performance. Evaluation of the attacker’s correct rate and number of attacks in 64-step
episodes without detectors. Statistics are reported on three independent evaluations of 10,000 episodes.

Metrics
Attackers Prime+Probe AutoCAT IBR-PPO Attacker MACTA Attacker

Attack Correct Rate (%) ↑ 100.0 ± 0.0 100.0 ± 0.1 99.9 ± 0.1 100.0 ± 0.1
Attacks per Episode ↑ 3.0 ± 0 5.2 ± 0.1 5.2 ± 0.1 4.3 ± 0.3

6

https://github.com/facebookresearch/macta

Published as a conference paper at ICLR 2023

We first evaluate the attacker agent’s performance in terms of attack correct rate and the number of
attacks in an episode, to validate that the attacker agent is conducting effective attacks. Table 2 shows
that every attacker evaluated can achieve a decent attack correct rate, indicating the agent acquires
effective attack policies. In addition, the MACTA attacker has the smallest number of attacks per
episode among the learning-based methods, because it learns to obfuscate itself as a benign program.
Example attack sequences demonstrating the strategic attack behaviors can be found in Section A.4.

5.3.2 HEAD-TO-HEAD EVALUATIONS

In this head-to-head evaluation, we have an attacker play against a detector from different training
instances for 10,000 episodes and report the mean detection rate and the mean episode length for all
attacker and detector pairs. The head-to-head evaluation results can be found in Table 3 and Table 4.
We also report the mean false alarm rate and the mean episode length of the detectors on unseen
Benign agents in the last column of the table.

Table 3: Mean detection rate (%). Head-to-head evaluations with unseen opponents from different training
instances. The higher the better for detectors when the opponent is an attacker, and the lower the better when
the opponents are benign programs. ‘()’ as Cyclone is trained on Prime+Probe.

Detectors
Opponents Prime+Probe ↑ AutoCAT ↑ IBR-PPO Attacker ↑ MACTA Attacker ↑ Benign ↓

CC-Hunter (thold=0.45) 37.7 ± 0.6 13.7 ± 1.3 12.1± 0.4 16.4 ± 2.3 27.6 ±0.9
Cyclone (99.5 ± 0.1) 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 1.4 ± 0.2
IBR-PPO Detector 0.9 ± 0.7 7.3 ± 20.5 6.4 ± 15.6 8.4 ± 21.9 0.4 ± 0.5
MACTA Detector 97.8 ± 0.9 99.9 ± 0.2 99.6 ± 0.4 31.2 ± 18.5 1.1 ± 0.2

Table 4: Mean episode length (steps). Head-to-head evaluations with unseen opponents from different training
instances. The lower the better for detectors when the opponent is an attacker, and the higher the better when
the opponents are benign programs. Cyclone and CC-Hunter both require a fixed episode length of 64 steps.

Detectors
Opponents Prime+Probe ↓ AutoCAT ↓ IBR-PPO Attacker ↓ MACTA Attacker ↓ Benign ↑

IBR-PPO Detector 63.4 ± 0.4 59.6 ± 12.4 60.1 ± 9.5 58.9 ± 12.2 63.7 ± 0.3
MACTA Detector 16.4 ± 1.1 12.0 ± 2.8 12.5 ± 2.2 50.5 ± 8.7 63.4 ± 0.1

We find that the heuristic detector CC-Hunter cannot effectively discriminate the RL attackers
from benign agents since the episodes are too noisy and too short to compute meaningful auto-
correlations. Tuning the auto-correlation threshold only returns either a high false alarm rate or a
low detection rate. The SVM-based detector, Cyclone, is able to perform well (99.5% detection
rate) on the heuristic attack (Prime+Probe) that it is trained on, but has low detection rate on RL
attackers. Another drawback of these previous methods is that they require fixed-length observation
that is longer than the steps needed to complete attacks (usually 12 steps in this cache configura-
tion). IBR-PPO falls into the cyclic policy learning issue; the detector is able to react well (98.3%
detection rate) to the attacker that it is trained against but fails to respond well to other attackers.

MACTA, however, is able to generalize to unseen attacks such as Prime+Probe and the IBR-PPO
attacker. At the same time, MACTA also has a low false positive rate and fast detection speed which
prevents further information leakage. We hypothesize that MACTA can abstract the general pattern
of the attackers from interacting with diverse attacker strategies during training.

On the other hand, since the detector is trained to block all the previous attack policies, the attacker
had to explore a new policy space to evade detection. The MACTA attackers are able to evade
a variety of unseen detectors. The above findings highlight the benefits of using MARL solution
concepts in learning the detectors.

5.3.3 EXPLOITABILITY EVALUATIONS

We measure how a detector can be exploited by adaptive attackers, by fixing a detector strategy and
training an RL exploiter (i.e., an attacker) against the detector by dual-clip PPO from scratch. The
training curve of the exploiters of MACTA detectors can be found in Figure 4. As the training
time of the MACTA detectors increases, it becomes more difficult for an RL attacker to bypass
the detectors. Specifically, it will take the RL exploiter attacker longer to find a meaningful attack
strategy. And even though the RL exploiter attacker can learn to attack eventually, the number of
attacks per episode decreases from around 5.0 attacks per episode (No Detector) to about 4.0 attacks

7

Published as a conference paper at ICLR 2023

per episode (MACTA-18th), leading to about 20% reduction in a learning attacker’s bandwidth.
The decrease in the number of attacks can come from the slower attack speed (to reduce the chance
of detection) or faster detection speed so fewer attacks can be performed.

0 10 20 30 40 50
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
E

pi
so

di
c

A
tta

ck
er

 C
or

re
ct

 R
at

e

No Detector
MACTA-9th
MACTA-18th

0 20 40 60 80 100
Epoch

0

1

2

3

4

5

N
um

be
r o

f A
tta

ck
s

pe
r E

pi
so

de

50
th

 E
po

ch

No Detector
MACTA-9th
MACTA-18th

Figure 4: Exploitability evaluation. We fix the detector policies (No Detector, detector of 9th and 18th fictitious
play iterations in MACTA (MACTA-9th, MACTA-18th)) and train an RL attacker against the detectors from
scratch. Left: Average Episodic Attacker Correct Rate. Right: Attacker’s Number of Attacks per episode.

5.4 NEURAL ARCHITECTURE STUDY

0 50Epoch

20

10

0

10

20

30

40

50

E
pi

so
de

 R
et

ur
n

Transformer
LSTM
MLP

0 50Epoch

20

10

0

10

20

30

40

50 Transformer
LSTM
MLP

0 50Epoch

20

10

0

10

20

30

40

50 8head-1layer
8head-2layer
1head-1layer

0 50Epoch

20

10

0

10

20

30

40

50 8head-1layer
8head-2layer
1head-1layer

Figure 5: A study on neural architectures. We use a Transformer with 8-head attention and one Transformer
encoder layer in MACTA experiments. Left two: Train attacker-only tasks using different neural architectures
on two machines. Right two: Train attackers with different Transformer configurations on two machines.

Our CTA task is an example where neural architecture plays a critical role in learning a meaningful
policy. We train attacker-only tasks using different network architectures on different machines (de-
tails in Appendix A.6) as shown in Figure 5. For PPO attackers, MLP with residual connections (He
et al., 2016b;a) fails to achieve a high episode return, while the Transformer and LSTM (Hochreiter
& Schmidhuber, 1997) networks succeed. For Transformers, our study shows that increasing the
number of encoder layers in the Transformer can slightly improve the return but is less efficient in
wall time. On the other hand, reducing the number of heads slows down learning. The above evi-
dence suggests that the sequence modeling structure is critical for CTA attack policy learning. Our
hypothesis is that a successful attack is composed of a series of events, which may contain history-
dependent relations among events, and Transformers can effectively model such relations. While
the prior work (Luo et al., 2023) also shows that Transformers can be used for RL CTA attacker, we
provide more in-depth studies on different model architectures in this work.

6 RELATED WORK

Detectors for Cache Timing Attacks CC-Hunter (Chen & Venkataramani, 2014) proposes to de-
tect cache-timing attacks using recurrent patterns generated during cache contention between attack
and victim processes. More specifically, it uses autocorrelation to detect periodic interleaving be-
tween the two event trains. ReplayConfusion (Yan et al., 2016) records and deterministically replays
a program’s memory traces, changing the mapping of cache addresses but retaining the cadences.
Executing the traces in different memory addresses can expose abnormal access patterns observed
between an attacker and a victim, which do not exist in benign traces. Cyclone (Harris et al., 2019)
uses cyclic interference from cache contention during an attack. This detector assigns domain tags
to processes, then uses performance counters to enumerate abnormal cache contention behaviors
triggered by each domain tag. PerSpectron (Mirbagher-Ajorpaz et al., 2020) trains a neural network
classifier using the memory and latency event logs generated from attack examples. The follow-
up work EVAX (Mirbagher-Ajorpaz et al., 2022) improves the classifier accuracy using generative

8

Published as a conference paper at ICLR 2023

adversarial networks (GAN). Existing detectors based on known attacks cannot deal with evolving
attackers. Our study shows that the RL attacker can learn novel strategies to bypass existing static
detectors. MACTA solves this problem by enabling auto-discovery of attacker policies.

Game Theory in Security Games Game theory provides a framework for decision-making and
strategy, modeling how selfish agents interact and affect system outcomes. In Stackelberg games,
a defender must first commit limited resources to protect disparate locations and an attacker that
subsequently targets locations, potentially having seen the configuration of defenses (e.g., (Bier
et al., 2007)). Such games have masked systems from probes (Schlenker et al., 2018), defended
systems against varied attack types (Thakoor et al., 2020), and assigned human analysts to automated
system alerts (Schlenker et al., 2017). Whereas Stackelberg requires the defender to move first, we
consider how the defender’s policy should respond to the attacker’s evolving policy. Game theory
inspires GAN for security (Zolbayar et al., 2021; Baimukan & Zhu, 2021). Unlike prior works
that explore adversarial samples in the neighborhood of a heuristic attack policy, our RL approach
explores a broader, unknown space of attack policies with a well-defined objective. RL is an instance
of stochastic games, often modeled by a Markov Decision Process. Representative studies of such
games for distributed systems include threat detection and resource allocation (Krishnamurthy et al.,
2007; Fan et al., 2019). To the best of our knowledge, we are the first to formulate a stochastic game
for realistic, practical hardware timing attacks.

Population-based Multi-agent Reinforcement Learning Independent Reinforcement Learning
in multi-agent environments suffers from the non-stationary opponent issue (Tan, 1993). While It-
erated Best Response methods alleviate the above problem by learning from stationary opponents;
they tend to over-fit to other players’ policies and cause cycles in policy learning (Vinyals et al.,
2019). Interacting with diverse opponent policies or heterogeneous agents is one effective way to
avoid such cycles. Population-based MARL is thus proposed to solve large-scale extensive form
games by creating a diverse pool of agents. Related work includes population-based reinforcement
learning (Parker-Holder et al., 2020), Neural Fictitious Self-Play (Heinrich & Silver, 2016), Fic-
titious Co-Play (Strouse et al., 2021), prioritized self-play (Vinyals et al., 2019), Double Oracle
(DO) (McMahan et al., 2003) and its generalization Policy Space Response Oracle (PSRO) (Lanctot
et al., 2017). The most closely related applications of population-based MARL to security games,
such as those of Eghtesad et al. (2020) and Wang et al. (2019), use variants of Double Oracle, but
they deal with different and less stochastic domains than ours.

7 CONCLUSIONS AND FUTURE WORK

Our work explores the application of multi-agent reinforcement learning in the cache timing attack
and detection domain. We first introduce the environment MA-AUTOCAT that allows learning
for both attackers and detectors, and their complex interactions with caches. Then we propose to
combine the game-theoretic concept of Fictitious Play and Proximal Policy Optimization to train
both agents (MACTA). Empirically, we found that the detector generated by MACTA can capture
the general pattern of attacks and generalize to unseen attacks. The exploitability study of the
detector also indicates the detectors can impede the learning process of adaptive attackers and slow
down the attacks. On the other hand, the MACTA attacker is able to explore new policy space and
mimic the benign agents to bypass the detectors. Finally, the neural architecture study demonstrates
the strong representation-ability of Transformers.
Deployment in Real Systems We use a cache simulator to study CTA, but we believe the trained
attacker and detector can be applied to real hardware with sufficient engineering efforts. For attack-
ers, Luo et al. (2023) demonstrate that an attack pattern learned in a cache simulator can be applied to
multiple Intel processors. Similarly, we also show that the attack sequences from a MACTA attack
can work on commercial processors in Appendix A.5. For the detectors, with hardware changes,
the neural network model can be deployed inside a processor with a reasonable area and power
overhead, as demonstrated by Mirbagher-Ajorpaz et al. (2020).
Convergence of the Policies In MACTA, we adopt the Transformer-based PPO algorithm as the
policy learning oracle, so there is no guarantee that the algorithm will return the best response to the
opponents in limited optimization steps. Meanwhile, little previous work discusses the convergence
of Fictitious Play when it is used as a game-theoretic meta solver in the general-sum MARL setting.
As training continues, we observe that the detector’s ability to generalize slightly diminishes, indi-
cating that it is forgetting some past attacks. We hypothesize it can relate to the convergence of one
player’s policy, which causes low policy diversity in the pool.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENT

This work at UT Austin has partially taken place in the Learning Agents Research Group (LARG).
LARG research is supported in part by NSF (CPS-1739964, IIS-1724157, FAIN-2019844), ONR
(N00014-18-2243), ARO (W911NF-19-2-0333), DARPA, GM, Bosch, and UT Austin’s Good Sys-
tems grand challenge. Peter Stone serves as the Executive Director of Sony AI America and re-
ceives financial compensation for this work. The terms of this arrangement have been reviewed
and approved by the University of Texas at Austin in accordance with its policy on objectivity in
research. Mulong Luo is partially supported by NSF grant ECCS- 1932501, and Geunbae Lee was
partially supported by Commonwealth Cybersecurity Initiative. We thank Vishnu Kumar Kalidasan
and John G. Harris at Virginia Tech for their technical support.

STATEMENTS

Ethical Statement Our work builds an environment enabling automated exploration of both at-
tack and defense policies of CTA. The attacker agent may be used for developing new attacks
maliciously. However, as shown in the vast amount of attack papers in computer security venues,
exploring and understanding security attacks is a necessary and important step in developing future
secure systems. Compared with prior works on security attacks on real systems Liu et al. (2015);
Oren et al. (2015); Kocher et al. (2019); Lipp et al. (2018); Ravichandran et al. (2022), the MACTA
agent only explores the attacks in a cache without considering other system-level activities. In addi-
tion, our framework results in a stronger detector, which can help design more secure systems.

Reproducibility Statement Our experiments are reproducible in a reasonable range near the mean
performance across multiple training instances reported. It is unavoidable that training with dif-
ferent random seeds or on machines with different hardware will result in different results, given
the variance of explorations in reinforcement learning. However, our result is not a selection
among multiple random seeds biased towards our benefits. We repeated the training for another
three instances, giving us a similar result. We provide model checkpoints and publish the code at
https://github.com/facebookresearch/macta.

REFERENCES

Ahmed H Anwar, George Atia, and Mina Guirguis. Toward a protected cloud against side channel
attacks: A game-theoretic framework. In 2018 56th Annual Allerton Conference on Communica-
tion, Control, and Computing (Allerton), pp. 78–83. IEEE, 2018.

Nurpeiis Baimukan and Quanyan Zhu. Concealment charm (concealgan): Automatic generation of
steganographic text using generative models to bypass censorship. Game Theory and Machine
Learning for Cyber Security, pp. 357–365, 2021.

Vicki Bier, Santiago Oliveros, and Larry Samuelson. Choosing what to protect: Strategic defensive
allocation against an unknown attacker. Journal of Public Economic Theory, 9(4):563–587, 2007.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi, Arkaprava
Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti, et al. The gem5
simulator. ACM SIGARCH computer architecture news, 39(2):1–7, 2011.

Samira Briongos, Pedro Malagón, José M Moya, and Thomas Eisenbarth. RELOAD+ REFRESH:
Abusing cache replacement policies to perform stealthy cache attacks. In 29th USENIX Security
Symposium (USENIX Security 20), pp. 1967–1984, 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

George W Brown. Iterative solution of games by fictitious play. Act. Anal. Prod Allocation, 13(1):
374, 1951.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
885–890, 2019.

10

https://github.com/facebookresearch/macta

Published as a conference paper at ICLR 2023

James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. Spec cpu2017: Next-generation com-
pute benchmark. In Companion of the 2018 ACM/SPEC International Conference on Perfor-
mance Engineering, pp. 41–42, 2018.

Jie Chen and Guru Venkataramani. Cc-hunter: Uncovering covert timing channels on shared proces-
sor hardware. In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 216–228. IEEE, 2014.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Taha Eghtesad, Yevgeniy Vorobeychik, and Aron Laszka. Adversarial deep reinforcement learning
based adaptive moving target defense. In International Conference on Decision and Game Theory
for Security, pp. 58–79. Springer, 2020.

Richard Elderman, Leon JJ Pater, Albert S Thie, Madalina M Drugan, and Marco A Wiering. Ad-
versarial reinforcement learning in a cyber security simulation. In ICAART (2), pp. 559–566,
2017.

Songchun Fan, Seyed Majid Zahedi, and Benjamin C Lee. Distributed strategies for computational
sprints. Communications of the ACM, 62(2):98–106, 2019.

Yanan Guo, Xin Xin, Youtao Zhang, and Jun Yang. Leaky way: a conflict-based cache covert
channel bypassing set associativity. In 2022 IEEE International Symposium on Microarchitecture
(MICRO), pp. 1458–1473. IEEE, 2022a.

Yanan Guo, Andrew Zigerelli, Youtao Zhang, and Jun Yang. Adversarial prefetch: New cross-core
cache side channel attacks. In 2022 IEEE Symposium on Security and Privacy (SP), pp. 1458–
1473. IEEE, 2022b.

Austin Harris, Shijia Wei, Prateek Sahu, Pranav Kumar, Todd Austin, and Mohit Tiwari. Cyclone:
Detecting contention-based cache information leaks through cyclic interference. In Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pp. 57–72, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), Computer Vision –
ECCV 2016, pp. 630–645, Cham, 2016a. Springer International Publishing. ISBN 978-3-319-
46493-0.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016b.

Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-
information games. arXiv preprint arXiv:1603.01121, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Brian Johannesmeyer, Jakob Koschel, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Kasper:
Scanning for generalized transient execution gadgets in the linux kernel. In NDSS Symposium
2022, 2022.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre attacks: Exploiting speculative
execution. In 2019 IEEE Symposium on Security and Privacy (SP), pp. 1–19. IEEE, 2019.

Vikram Krishnamurthy, Michael Maskery, and Minh Hanh Ngo. Game theoretic activation and
transmission scheduling in unattended ground sensor networks: A correlated equilibrium ap-
proach. Wireless Sensor Networks: Signal Processing and Communications Perspectives, pp.
349–388, 2007.

11

Published as a conference paper at ICLR 2023

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien
Pérolat, David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent rein-
forcement learning. Advances in neural information processing systems, 30, 2017.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann
Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium (USENIX Security 18), pp. 973–990, 2018.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-level cache side-channel
attacks are practical. In 2015 IEEE symposium on security and privacy, pp. 605–622. IEEE, 2015.

Mulong Luo, Wenjie Xiong, Geunbae Lee, Yueying Li, Xiaomeng Yang, Amy Zhang, Yuandong
Tian, Hsien Hsin S Lee, and G Edward Suh. Autocat: Reinforcement learning for automated ex-
ploration of cache-timing attacks. In 29th Sympisum on High Performance Computer Architecture
(HPCA), 2023.

H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the presence of cost
functions controlled by an adversary. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pp. 536–543, 2003.

Samira Mirbagher-Ajorpaz, Gilles Pokam, Esmaeil Mohammadian-Koruyeh, Elba Garza, Nael Abu-
Ghazaleh, and Daniel A Jiménez. Perspectron: Detecting invariant footprints of microarchitec-
tural attacks with perceptron. In 2020 53rd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pp. 1124–1137. IEEE, 2020.

Samira Mirbagher-Ajorpaz, Daniel Moghimi, Jeffrey Neal Collins, Gilles Pokam, Nael Abu-
Ghazaleh, and Dean Tullsen. Evax: Towards a practical, pro-active & adaptive architecture for
high performance & security. In 2022 55th IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pp. 1218–1236. IEEE, 2022.

National Academy of Engineering. 14 grand challenges for engineering of the 21st cen-
tury. 2007. URL http://www.engineeringchallenges.org/challenges/
cyberspace.aspx.

Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. SpecFuzz: Bringing
spectre-type vulnerabilities to the surface. In 29th USENIX Security Symposium (USENIX Se-
curity 20), pp. 1481–1498, 2020.

Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D Keromytis. The spy
in the sandbox: Practical cache attacks in javascript and their implications. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1406–1418,
2015.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: the case of
AES. In Cryptographers’ track at the RSA conference, pp. 1–20. Springer, 2006.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International conference on machine learning, pp. 7487–7498.
PMLR, 2020.

Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and Stephen J Roberts. Effective
diversity in population based reinforcement learning. Advances in Neural Information Processing
Systems, 33:18050–18062, 2020.

Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav S. Sukhatme, and Vladlen Koltun. Sam-
ple factory: Egocentric 3d control from pixels at 100000 FPS with asynchronous reinforcement
learning. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Re-
search, pp. 7652–7662. PMLR, 2020. URL http://proceedings.mlr.press/v119/
petrenko20a.html.

Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan, Peng Li, Heng Yin, and Tao Wei. Spectaint:
Speculative taint analysis for discovering spectre gadgets. In NDSS, 2021.

12

http://www.engineeringchallenges.org/challenges/cyberspace.aspx
http://www.engineeringchallenges.org/challenges/cyberspace.aspx
http://proceedings.mlr.press/v119/petrenko20a.html
http://proceedings.mlr.press/v119/petrenko20a.html

Published as a conference paper at ICLR 2023

Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan. Pacman: attacking arm pointer
authentication with speculative execution. In ISCA, pp. 685–698, 2022.

Tim Roughgarden. Algorithmic game theory. Communications of the ACM, 53(7):78–86, 2010.

Gururaj Saileshwar, Christopher W Fletcher, and Moinuddin Qureshi. Streamline: a fast, flushless
cache covert-channel attack by enabling asynchronous collusion. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 1077–1090, 2021.

Aaron Schlenker, Haifeng Xu, Mina Guirguis, Christopher Kiekintveld, Arunesh Sinha, Milind
Tambe, Solomon Sonya, Darryl Balderas, and Noah Dunstatter. Don’t bury your head in warn-
ings: A game-theoretic approach for intelligent allocation of cyber-security alerts. 2017.

Aaron Schlenker et al. Deceiving cyber adversaries: A game theoretic approach. In International
Conference on Autonomous Agents and Multi Agent Systems, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the Game of Go
with Deep Neural Networks and Tree Search. Nature, 529(7587):484–489, January 2016. ISSN
0028-0836. doi: 10.1038/nature16961.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating
with humans without human data. Advances in Neural Information Processing Systems, 34:
14502–14515, 2021.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings
of the tenth international conference on machine learning, pp. 330–337, 1993.

Omkar Thakoor, Phebe Vayanos, Milind Tambe, and Minlan Yu. Game theory for strategic ddos
mitigation. 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017a.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017b. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf. Cachequery: Learning replacement
policies from hardware caches. In Proceedings of the 41st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 519–532, 2020.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Yufei Wang, Zheyuan Ryan Shi, Lantao Yu, Yi Wu, Rohit Singh, Lucas Joppa, and Fei Fang. Deep
reinforcement learning for green security games with real-time information. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pp. 1401–1408, 2019.

Wenjie Xiong and Jakub Szefer. Leaking information through cache LRU states. In 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pp. 139–152.
IEEE, 2020.

13

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Published as a conference paper at ICLR 2023

Mengjia Yan, Yasser Shalabi, and Josep Torrellas. ReplayConfusion: detecting cache-based covert
channel attacks using record and replay. In 2016 49th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pp. 1–14. IEEE, 2016.

Xiaomeng Yang, Brandon Cui, Teng Li, and Yuandong Tian. RLMeta: A Flexible Frame-
work for Distributed Reinforcement Learning, 1 2022. URL https://github.com/
facebookresearch/rlmeta.

Yuval Yarom and Katrina Falkner. FLUSH+ RELOAD: A high resolution, low noise, l3 cache
side-channel attack. In 23rd USENIX security symposium (USENIX security 14), pp. 719–732,
2014.

Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang,
Xipeng Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforce-
ment learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
6672–6679, 2020.

Bolor-Erdene Zolbayar, Ryan Sheatsley, Patrick McDaniel, and Mike Weisman. Evading machine
learning based network intrusion detection systems with gans. Game Theory and Machine Learn-
ing for Cyber Security, pp. 335–356, 2021.

14

https://github.com/facebookresearch/rlmeta
https://github.com/facebookresearch/rlmeta

Published as a conference paper at ICLR 2023

A APPENDIX

A.1 WHY STUDY CACHE TIMING ATTACKS

CTA are stealthy but powerful. They do not violate any access control policies enforced by the op-
erating system and low-level hardware and they are shown to pose serious security concerns in prac-
tice. For example, some implementations of security critical software such as encryption algorithms
have a secret dependent access pattern, and an attacker can use CTA to obtain secret keys (Os-
vik et al., 2006; Liu et al., 2015). CTA also enables covert communication channels between two
domains and breaks the existing security isolation mechanism, e.g., sandbox in javascript (Oren
et al., 2015), isolation between processes (Kocher et al., 2019), and the system privilege levels (Lipp
et al., 2018). CTA can also facilitate brute forcing hash values stealthily without triggering excep-
tions, which is shown to help break the ARM pointer protection mechanisms (Ravichandran et al.,
2022). One of the important defensive strategies is to detect unique characteristics of memory ac-
cess patterns of attacker programs that are different from usual benign ones, as leveraged by the
state-of-the-art cache-timing channel detectors (Yan et al., 2016; Chen & Venkataramani, 2014;
Harris et al., 2019; Mirbagher-Ajorpaz et al., 2020). However, many new attacks (Briongos et al.,
2020; Luo et al., 2023) avoid the characteristics that the detector uses and it is hard to adapt existing
detectors to previously unseen attacks or access patterns.

A.2 ENVIRONMENT CONFIGURATIONS

Table 5: Environment hyper-parameters.

Parameter Group Parameter Name Parameter Value
MA-AUTOCAT Max Episode Length 64 steps

MA-AUTOCAT Observation Window Size for the attacker and the detector 64 steps

MA-AUTOCAT Probability between Attack Scenario and Benign Scenario during Training [50%, 50%]

MA-AUTOCAT Benign Program Logs (Train) 48 Million Steps

MA-AUTOCAT Benign Program Logs (Validation) 4 Million Steps

MA-AUTOCAT Benign Program Logs (Test) 40 Million Steps

MA-AUTOCAT Attacker Memory Address Range 8-15

MA-AUTOCAT Victim Memory Address Range 0-7

Cache Simulator Cache Configuration L1 Cache, 8 set 1 way

Cache Simulator Replacement Policy Least Recently Used (LRU)

Game Mechanism. In MA-AUTOCAT, within a fixed-length episode, the attacker agent can
guess the secret address of the victim as many times as possible and get a reward for every cor-
rect guess (successful attack). In the meantime, the detector agent can monitor the cache access
history and interactions of two programs and decide whether to raise a flag/alarm to terminate the
episode to prevent further information leakage.

Attacker’s Reward Function. The attacker is punished by 0.01 for every time step, +10 if guess
the victim’s secret successfully, -10 if incorrectly. It will get a one-time punishment of 20 if it
reaches a timeout without any attack, a one-time punishment of -10 if identified by detector. The
episode length to collect reward is affected by the detector.

Detector’s Reward Function. The detector can raise a flag to terminate the episode. If the detec-
tor raises a flag in an attack scenario, then the detector receives a reward for remaining steps [max
step - current step]; if the detector raises a flag in a benign scenario, then it receives a large penalty
[5 × max step]. If the detector lets the episode going, for benign scenario there is no punishment;
while the detector gets -10 every time the attacker attacks successfully.

Attacker’s Action. For each time step, the attacker can choose an action aa ∈ {aaX , aav , a
a
vr, a

a
gY },

where aaX represents access address X, aav represents letting the victim access a secret-related ad-
dress, aavr represents letting the victim access a random address and aagY represents guessing the
secret address to be Y .

15

Published as a conference paper at ICLR 2023

Detector’s Action. For each time step, the defender can choose ad ∈ {adterm, adcont} where aterm
means terminate the episode and adcont means let the episode keep going.

Attacker’s Observation. The attacker’s observation space includes a history of attacker ac-
tions and memory access latency it receives from the cache simulator. For each time step, a
new step observation (salat, s

a
vt, s

a
act, s

a
step) is appended to the observation window, where salat ∈

{shit, smiss, sN.A.} represents the access latency, savt ∈ {st, snt} represents whether to wait for the
victim’s action, sact records the attacker’s current action and sastep is the current time step.

Detector’s Observation. The detector can observe a history window of the memory ac-
cess actions of both programs. For each time step, the new observation is composed of
(sdlat, s

d
program, sdset, s

d
step), where sdlat ∈ {shit, smiss} represents the access latency (access la-

tency of all programs are visible to the detector), sdprogram ∈ {sa, sb} indicates the identity of the
program, sdset represents the cache set being accessed at the current step, and sdstep represents the
current defender time step.

Benign Programs. The benign programs share the same action space with the victim and the
attackers, and their domain id is randomized per episode. The actions of benign programs are
sampled from pre-collected memory traces of the benign programs and we map the traces to the
cache configuration (8 sets and 1 way) in this paper. A detailed introduction to the benign datasets
we use and the detectors’ false alarm rate comparison is in Section A.3.

A.3 BENIGN DATASET

The memory traces of different benign programs are sampled from the Standard Performance
Evaluation Corporation (SPEC) 2017 benchmark suite (Bucek et al., 2018). Specifically, we run
each individual benchmark in the gem5 simulator (Binkert et al., 2011) and generate log files
containing all memory accesses executed and their corresponding timestamps. To sample typi-
cal memory access patterns, we follow the standard practice in computer architecture studies to
skip the first 2 million operations which represent the warm-up phase of programs, and sam-
ple the memory accesses in the middle of execution by skipping more steps. We collect mem-
ory access traces from the following 10 SPEC benchmarks, of which names are in the form of
(program id.program name speed/rate): 500.perlbench r, 502.gcc r, 505.mcf r, 548.exchange2 r,
549.fotonik3d r, 602.gcc s, 607.cactuBSSN s, 631.deepsjeng s, 638.imagick s, and 641.leela s.
Since our benign scenario consists of two benign programs, we mix two memory traces based on
the timestamp in the simulation using either different benchmarks or identical benchmarks with dif-
ferent starting points. We prepare each benign trace to have 4 million memory accesses in total.
Note that there can be combinatorically many different traces of two programs, we only select a
representative subset of them for the training and evaluation. Finally, we project the memory access
traces onto the valid action space given the current cache configuration (8-set, 1-way, cache line size
of 64 bytes).

We randomly select three programs (500.perlbench r, 502.gcc r, 505.mcf r), and use different com-
binations (with replacement and with different skip steps) of them as training set. For example,
the trace file name “500-2M 500-4M” means it contains two perlbench programs sharing the same
cache. They start from different times (skipping the first 2 million memory accesses and skipping
the first 4 million memory accesses, respectively) and continue until there are 4 million memory
accesses by either program. We generate the validation dataset (549.fotonik3d r, 607.cactuBSSN s)
and test dataset (548.exchange2 r, 631.deepsjeng s, 638.imagick s, and 641.leela s) in the same way
as the training set.

The ML models (MACTA, IBR-PPO, Cyclone) are trained on the same training set and tuned on
the validation set. In the meantime, CC-Hunter’s threshold is selected based on the validation set.
Since the memory traces can exhibit different behaviors, we provide our per-trajectory false positive
rate estimate in Figure 6. All the machine learning models appear to perform better on the test
set than the training set, which indicates a potential distribution shift between the training set and
the test set. CC-Hunter’s false positive rate is too high (ranging from 7.5 − 30%) to be plotted in
the figure. In general, MACTA and Cyclone detectors have similar false positive rate on benign
programs. The IBRPPO detector has lower false positive rates but it also has much lower detection
rates. In addition, we closely inspect the benign traces that cause false positive. We find most of

16

Published as a conference paper at ICLR 2023

them are variations of the Prime+Probe attack on subset of cache sets. This is because even though
the benign programs do not have malicious intentions, but they can still generate small pieces of
memory access patterns that happen to be an attack pattern.

500-2M_500-4M

502-2M_502-4M

505-2M_505-4M

500-2M_502-2M

500-2M_505-2M

502-2M_505-2M

500-6M_502-6M

500-6M_505-6M

502-6M_505-6M

500-10M_502-10M

500-10M_505-10M

502-10M_505-10M

549-2M_607-2M

548-2M_548-4M

631-2M_631-4M

638-2M_638-4M

641-2M_641-4M

548-2M_631-2M

548-2M_638-2M

548-2M_641-2M

631-2M_638-2M

631-2M_641-2M

638-2M_641-2M
0

1

2

3

4

5

Fa
lse

 P
os

iti
ve

 R
at

es
 (%

)

Tr
ai

n
Se

t

Va
l S

et

Te
st

 S
et

IBRPPO
MACTA
Cyclone

Figure 6: False Positive Rate on Different Datasets. We report the per-dataset mean false positive rate of three
models. CC-Hunter(threshold=0.45)’s false positive rates are too high to be included here.

0 20 40 60 80 100
False Positive

0

20

40

60

80

100

Re
ca

ll

MACTA
IBR-PPO
CC-Hunter
Cyclone

0 20 40 60 80 100
False Positive

0

20

40

60

80

100

Re
ca

ll

MACTA
IBR-PPO
CC-Hunter
Cyclone

Figure 7: The relative positions of all detectors’ performance on the ROC figure. The recall is shown for
the Prime+Probe attacks (Left) and the AutoCAT attacks (Right). The false positive rate is measured on the
proposed test benign dataset. Here, Cyclone is trained on Prime+Probe attack sequences. But we did not
provide the Prime+Probe attack sequences to MACTA detector explicitly.

A.4 TRAJECTORY ANALYSIS

Figure 8 illustrates different attackers’ attack sequences given a fixed secret bit. Here, we use victim
secret=5 as an example. The top row shows a sampled pattern of benign programs. In that case,
the two programs act independently and alter the access to the cache frequently. The Prime+Probe
attacker causes cache contention by accessing the cache frequently, and only invokes the victim to
access the cache when needed. Once contention with the victim in one cache set is observed (i.e., a
cache miss after the same address is accessed by the attacker), the attacker will make a guess without
more memory accesses. The IBR-PPO attacker takes a similar strategy as AutoCAT’s, but it learns to
insert some extra victim invocation steps to confuse the detector. The issue with the extra invocation

17

Published as a conference paper at ICLR 2023

Benign
2

7 5

7

7

5 5 7

5 5

7

5

3 7 5

7

1 6 7

7

3Program 2

Program 1

Time Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 …

Cache Miss Observed by
the Attacker

Cache Hit Observed
by the Attacker

Victim Random Access
Not Observable to the Attacker

Cache Set Access Not
Observable to the Attacker3333

1 6 3 0 5 2 7 3 1 2 0

5

467145230Prime + Probe
Victim

Attacker

Correct Guess 5Victim Secret 5 Victim Reset 3

73 0 4 1 2 3 2 5 5 3 7 0 4 1 2 6AutoCAT
5 5 5 3Victim

Attacker

Victim Secret 5 Correct Guess 5 Victim Reset 3

3 7 7 3 4 0 6 0 4 2 5 1 5 3 2IBR-PPO
5 5 5 35

0

Victim

Attacker

Correct Guess 5 Victim Reset 3Victim Secret 5

Correct Guess 3

4MACTA
3Victim

Attacker

Correct Guess 5 Victim Reset 3

Victim Random Access

5

4

3 05 5

5 35

3

5

3 3

2

3

5

3

4 3

Figure 8: Example trajectories of different attackers and benign agents in a 8-set 1-way L1 cache. The number
indicates the cache set being accessed. Red and green boxes show the observation by the attacker. The latency
of other programs (i.e., victim or benign) cannot be observed by the attacker, but they can be observed by the
detectors. The program IDs are randomized during training, and the attacker can be any of the two programs in
the system. The cache is initialized with random states.

strategy is that the victim only accesses its secret bit, which can be easily captured by the detector.
The MACTA attacker, however, learns more advanced strategies. It learns to invoke random victim
accesses to alter its behavior to be more similar to benign programs. Note that invoking random
accesses from a victim can cause noise in the attacker’s latency observation and make the steps
needed for a successful attack longer. This means that to evade the MACTA detector, just inserting
some extra victim invocation steps is far from enough. The attacker has to take a risk to invoke
random accesses from a victim instead because the “easiest” policy space has been exhausted.

A.5 REAL HARDWARE ANALYSIS

Table 6: Attack evaluation on commercial processors. We report the attack correct rates of MACTA attack
sequences on three commercial Intel processors for 10,000 episodes. MACTA attackers achieve a > 99.9%
correct rate in the simulator, and still > 99% on real hardware.

CPU Cache Level #Sets #Ways Attack Correct Rate ↑
i7-6700 (SkyLake) L3 8 1(partitioned) 100.00%
i7-7700k (KabyLake) L3 8 1(partitioned) 99.97%

We evaluated the effectiveness of the attack sequences produced by MACTA attackers on real hard-
ware by running them on two commercial processors through CacheQuery (Vila et al., 2020). The
attack sequences are generated from a MACTA attacker that is trained using a simulated environment
for an 8-set 1-way cache configuration. Then, the attack sequences were performed on real hardware
to obtain the attack correct rate. Table 6 demonstrates the attacker policy from the simulator can be
transferred to real hardware with negligible discrepancy.

18

Published as a conference paper at ICLR 2023

A.6 MODEL ARCHITECTURES

In Section 5.4, we compared three different neural network architectures: Transformers (Vaswani
et al., 2017a), LSTM (Hochreiter & Schmidhuber, 1997), and MLP. All of the methods are controlled
at the same scale of parameters and trained with PPO (Schulman et al., 2017) without dual-clip (Ye
et al., 2020) on two different machines. The details about the model architectures are listed below.

Transformer. In our experiments, all the policies use an 8-head 1-encoder-layer Transformer with
dmodel = 128 and dfeedforward = 2048. For the model architecture study, we study the changes in
the number of heads in the multi-head attention mechanism, and the number of Transformer Encoder
layers. Similar to Luo et al. (2023), we apply an average-pooling to reduce the step dimension.

LSTM. We employed a 1-layer LSTM with hidden dimension of 256. The input to the LSTM is the
embedding of the pre-padding history of the observation. We concatenate the hidden and cell states
of the last step and use it as the sequence embedding.

MLP. The MLP model we used directly feeds the input embeddings into 4 pre-activation residual
blocks (He et al., 2016b;a) with hidden dimension 128. Each residual block is composed of 2 ReLU-
Linear layers with a residual connection.

We obverse that the MLP model fails even when tested on multiple different machines while Trans-
former and LSTM models both work. The learning speed of Transformer and LSTM models can
be different. Our hypothesis is that the CPU/GPU configurations of different machines may affect
the policy lag (Petrenko et al., 2020) of Asynchronous PPO training, which may lead to different
learning speed for different models.

A.7 ALGORITHM AND TRAINING HYPER-PARAMETERS

The MACTA algorithm is explained in Algorithm 1, and detailed training hyperparameters can be
found in Table 7. In MACTA, the policy pool is created by sampling a new model to do batch
actions per step. It is an infrastructure implementation to produce faster sampling speed, so it is
not strictly a per-step sampling, but it is per-step sampling considering a large amount of data.
Additionally, we are exploring the per-trajectory policy sampling because it has nice theoretical
properties. Nevertheless, it needs further infrastructure support.

Algorithm 1 MACTA

1: Initialize Number of Fictitious Play Iterations I , Attacker Policy Pool PA, Detector Policy Pool
PD, Number of Epoch per Fictitious Play Iteration E, Add a policy to Pool per N epochs.
PPO the Proximal Policy Optimization. U the uniform random sampling of policies per step.
i← 0, j ← 0, k ← 0

2: while i < I do
3: j ← 0
4: while j < E do
5: πAj=PPO(U(PD)) ▷ Train attacker policy against the pool of the detectors
6: if j mod N − 1==0 then
7: PA ← PA ∪ πAj ▷ Add an attacker checkpoint to the attacker pool
8: end if
9: j ← j + 1

10: end while
11: j ← 0
12: while j < E do
13: πDj=PPO(U(PA)) ▷ Train detector policy against the pool of the attackers
14: if j mod N − 1==0 then
15: PD ← PD ∪ πAj ▷ Add a detector checkpoint to the detector pool
16: end if
17: j ← j + 1
18: end while
19: end while
20: return πA, πD ▷ return the last policy of attacker and detector

19

Published as a conference paper at ICLR 2023

Table 7: Training hyper-parameters for MACTA.

Parameter Group Parameter Name Parameter Value
Fictitious Play Fictitious Iterations 18 iterations

Fictitious Play Epochs per Iteration per Agent 50 epochs

Fictitious Play Training Steps per Epoch 3000 steps

Fictitious Play Frequency of Adding one Policy to Pool 10 epochs

Computing Resource Number of Sampling Actors 72 Actors

Computing Resource Sampling Instance per Worker 3 Actors / Worker

Computing Resource Remote Model Push Frequency 10 steps

Computing Resource GPU Information 4 Nvidia Tesla V100 16G / 32G

Computing Resource CPU Information 80 Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

Proximal Policy Optimization Replay Buffer Size 262144

Proximal Policy Optimization Training Batch Size 512

Proximal Policy Optimization Learning Rate 1e-4

Proximal Policy Optimization Entropy Coefficient 0.03

Proximal Policy Optimization Discount Factor γ 0.99

Proximal Policy Optimization Max Gradient Norm 1.0

Proximal Policy Optimization GAE λ 0.95

Proximal Policy Optimization Policy Ratio Clipping ϵ 0.2

Proximal Policy Optimization Value Clipping ϵ 0.2

Proximal Policy Optimization Value Loss Coefficient 0.5

Proximal Policy Optimization Dual-Clip Threshold 3.0

Model Architecture Number of Transformer Encoder Layers 1

Model Architecture Transformer d model 128

Model Architecture Transformer nhead 8

Model Architecture Transformer dim feedforward 2048

Model Architecture Transformer dropout 0.0

A.8 HEURISTIC CACHE TIMING ATTACKS AND DETECTORS

Algorithm 2 Prime+Probe Attack
1: step← step+ 1
2: if step < len(attacker address range) then
3: action = prime address(step, cache size) ▷ attacker fills cache by attacker’s address
4: else if step = len(attacker address range) then
5: action = trigger victim(step) ▷ victim accesses a cache and fills its own address
6: else
7: action = probe address(step, cache size) ▷ attacker access caches again
8: measure latency(action)
9: end if

10: if latency = 1 then ▷ attacker observes for any cache miss
11: action = guess(action, cache size) ▷ attacker makes a guess on a victim’s secret address
12: end if
13: Return action

• Heuristic Attacker Algorithms

– Prime+Probe (Algorithm 2) Osvik et al. (2006). First, in the prime phase, the attacker
fills the cache set with its address value (lines 3) in a randomized way, then waits for
the victim to access the cache set. Next, the victim accesses one of the cache sets,
then replaces the loaded address value with its address (lines 5). Lastly, in the probe
phase, the attacker accesses the cache sets again in a random permutation order, then
measures the cache latency to load each set of the primed address value (lines 7 to 8).

20

Published as a conference paper at ICLR 2023

In a cache set accessed by the victim, the attacker observes increased latency (cache
miss) and makes a guess.

• Detector Algorithms
– CC-Hunter Chen & Venkataramani (2014). Cache timing channels rely on the latency

of events to perform timing modulation. To send information, two processes (i.e., the
trojan and the spy) generate a sufficient number of alternating conflict events (cache
misses) to allow the adversary to decode the transmitted bit based on the average
memory access times (hit/miss). Those behaviors show periodic, oscillating patterns
of conflicts between the two processes. Therefore, autocorrelation is used to identify
those patterns. Autocorrelation is the correlation coefficient of the signal with a time-
lagged version of itself, along with measuring the event train X , as a variable at a time
instance of t. Two cases of conflict miss, i.e., either the victim eviting the attacker’s
cache line or the attacker evicting the victim’s cache line, are considered for the event
trains. For example, we can check the autocorrelation Cp at a time lag p, which is
expressed as:

Cp =

∑n−p
i=0

[(
Xi − X̄

) (
Xi+p − X̄

)]∑n
i=0

(
Xi − X̄

)2
If there exists a time lag p which 1 ≤ p ≤ P , where P is a predefined parameter such
that makes Cp larger than a threshold value, then it is assumed as an attack.
We tune the threshold to be p = 0.45 on our validation set, and this threshold yields
a 7.5% false alarm rate and a 38% detection rate on Prime+Probe. However, this
threshold fails to generalize to the test set, giving us a 27% false positive rate, as
reported in this paper. The main issue with applying CC-Hunter to our environment
is that our episode length is short, and the cache is initialized with random loads after
resetting. As a result, even attackers’ latency histories can have low autocorrelations.

– Cyclone Harris et al. (2019). The concept of cyclic interference is commonly found
in all known cache contention side-channel attacks and has been used for detecting
those attack patterns. Interference occurs from the attacker to the victim process or
vice versa, considered directional, and affects the behavior of microarchitecture in a
disruptive manner. The cyclic interference can be noted as (a⇝ b⇝ a), where inter-
ference (a⇝ b) is followed by (b⇝ a). However, interference including a third party
between attacker and victim, like (a⇝ b⇝ c), is not considered cyclic interference.
To classify the anomaly and benign patterns, Cyclone uses one-class support vector
machine (SVM) and a scalable end-to-end tree boosting system (XGBoost Chen &
Guestrin (2016)) models.
We use 8 buckets and an observation window of 17 steps (same as Prime+Probe’s
frequency) to extract the attacker features and train the SVM with a Gaussian kernel
with 24000 train samples until convergence. The regularization coefficient C of SVM
is 100.

21

	Introduction
	The Cache Timing Attack Challenge
	Domain Description
	Problem Statement

	MA-AutoCAT
	Method
	Our Approach: MACTA
	Implementation Details

	Experiments
	Evaluation Setup and Metrics
	Benign Dataset
	Results
	Attacker Performance
	Head-to-Head Evaluations
	Exploitability Evaluations

	Neural Architecture Study

	Related Work
	Conclusions and Future Work
	Appendix
	Why Study Cache Timing Attacks
	Environment Configurations
	Benign Dataset
	Trajectory Analysis
	Real Hardware Analysis
	Model Architectures
	Algorithm and Training Hyper-parameters
	Heuristic Cache Timing Attacks and Detectors

