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Abstract
Federated learning (FL) aims to perform privacy-
preserving machine learning on distributed data
held by multiple data owners. To this end, FL
requires the data owners to perform training lo-
cally and share the gradients or weight updates (in-
stead of the private inputs) with the central server,
which are then securely aggregated over multiple
data owners. Although aggregation by itself does
not offer provable privacy protection, prior work
suggested that if the batch size is sufficiently large
the aggregation may be secure enough. In this pa-
per, we propose the Cocktail Party Attack (CPA)
that, contrary to prior belief, is able to recover
the private inputs from gradients/weight updates
aggregated over as many as 1024 samples. CPA
leverages the crucial insight that aggregate gra-
dients from a fully connected (FC) layer is a lin-
ear combination of its inputs, which allows us to
frame gradient inversion as a blind source separa-
tion (BSS) problem. We adapt independent com-
ponent analysis (ICA)—a classic solution to the
BSS problem—to recover private inputs for FC
and convolutional networks, and show that CPA
significantly outperforms prior attacks, efficiently
scales to ImageNet-sized inputs, and works on
large batch sizes of up to 1024.

1. Introduction
Federated learning (FL) is a flexible framework for privacy-
preserving machine learning (ML) model training on dis-
tributed data. The FL framework typically consists of a
central server and multiple clients that hold private train-
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Figure 1. (a) Aggregate gradients from an FC layer are linear com-
binations of its inputs, as shown by the visualization of the gra-
dients in the second row. (b) Cocktail party attack uses this ob-
servation to frame gradient inversion as a blind source separation
problem and recovers the inputs from the gradients by optimizing
an unmixing matrix U using independent component analysis.

ing data. The protocol involves the server distributing the
model parameters θ to the clients, and then the clients using
this model to compute gradients ∇θL using their private
data as shown in Fig. 2a. The gradients are aggregated and
shared with the server who then uses it to update the model
parameters, and this process is repeated until convergence.

While FL avoids the direct sharing of data, this in itself does
not guarantee privacy as the gradient update shared with
the server can contain information about the private training
data. For instance, Zhu et al. (2019) showed that gradients
can be inverted to recover their associated private data in
a process now called gradient inversion. However, a key
drawback of existing gradient inversion attacks is that they
are sensitive to the input size. This limits their efficacy when
recovering high-dimensional inputs (e.g. ImageNet) from
aggregate gradients, especially when aggregation is done
over a large number of inputs (Zhu et al., 2019).

We overcome the limitations of prior works by developing
Cocktail Party Attack (CPA)1, which uses a fundamentally
different approach to gradient inversion that is not adversely
impacted by the input size, making it scalable to ImageNet-
size inputs in the large batch size regime. Our attack lever-
ages the novel insight that the aggregated gradient from an
FC layer can be viewed as a linear combination of its in-
puts, which allows us to frame the recovery of these inputs

1The name of our attack is inspired by the cocktail party prob-
lem (Cherry, 1953)– a popular example of the BSS problem.
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as a blind source separation (BSS) problem and solve it
by adapting the classical independent component analysis
(ICA) algorithm (Lee, 1998). We show that CPA is much
more scalable than prior attacks, successfully scaling to
large batch sizes of up to 1024. Concretely, CPA can be
used for the following privacy attacks on FL:

• Gradient Inversion for FC networks: CPA can readily
perform gradient inversion for an FC network (or any
network where the first layer is an FC layer) to recover
private inputs. Fig. 1 shows an illustration of CPA on an
FC network, where a batch of training images is recovered
with high quality from its aggregated gradient.

• Gradient Inversion for CNNs: We can extend CPA to
perform gradient inversion on convolutional networks by
first recovering the per-sample embeddings to an FC layer
of the network and then inverting these embeddings using
feature inversion to recover the input images.

• Update Inversion for FC networks: Federated averaging
(FedAvg) is a variant of FL where the clients share the
model updates (instead of gradients) after multiple local
training steps. We show that CPA can also be used in this
setting to launch an update inversion attack to recover the
private inputs from the weight updates of FC networks.

The search space of CPA is independent of the input size,
allowing it to scale efficiently to real world FL settings.
Empirically this leads to several advantages over prior work:

• CPA can perform high-quality recovery of private inputs
even with batch size as large as 1024 in our evaluation on
inverting the gradient/weight updates from an FC network
trained on CIFAR-10 and Tiny-Imagenet, and a VGG-16
network trained on ImageNet.

• Compared to prior work based on gradient matching,
CPA can recover inputs with better quality and scales to
datasets with larger input sizes (e.g., ImageNet). Further-
more, we show that gradient matching can be combined
with CPA to further improve attack performance.

• CPA only uses simple image priors such as smoothness
and does not require knowledge of the input data distribu-
tion or modifications to the model parameters, and hence
is more versatile and applicable to real world settings.

The effectiveness of CPA shows that aggregation alone does
not provide meaningful privacy guarantees and defenses like
differential privacy (Dwork et al., 2014) are truly necessary
to prevent gradients from leaking private data in FL.

2. Background
In this section, we provide background on FL, gradient
inversion attack (GIA) and update inversion attack (UIA),
and give an overview of relevant prior work.
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Figure 2. (a) FL requires the clients to perform training locally
and send the gradients ∇θL (instead of the private data X) to a
central server. (b) Gradient inversion attacks (GIA) break privacy
by estimating X from the gradients. Prior works carry out GIA by
optimizing a set of dummy parameters (x∗, y∗) with the objective
of matching the gradients obtained during FL.

2.1. Federated Learning

FL aims to train a model on distributed data held by multi-
ple clients in a privacy-preserving manner. FL involves a
central server and multiple clients who hold private data X
as shown in Fig. 2a. To train a model fθ, the server starts
by distributing the model parameters θ to the clients. The
client computes a model update on their private data locally,
which either consists of a single gradient update or multiple
gradient updates depending on the FL protocol:

• FedSGD: The client performs a single training step by
using the batch of private data to compute the aggregate
gradients of the loss ∇θL with respect to the model pa-
rameters θ, which is transmitted to the central server.

• FedAVG (Konečnỳ et al., 2015; McMahan et al., 2017):
The client performs multiple training steps with poten-
tially different batches of training data and transmits the
change in the model’s weights ∆θ to the central server.

The server collects and aggregates the gradient/weight up-
dates and uses it to update the model parameters. Secure
aggregation (Bonawitz et al., 2016) can be applied to ensure
that only the aggregated update is observed by the server,
which obscures the update from individual clients. This
process is repeated until the model converges.

2.2. Gradient and Update Inversion Attacks

Attack Objective: Let A denote the gradient/update in-
version attack. The goal of the attack is to recover the
training samples x from the aggregate gradient ∇θL(x, y)
or model updates ∆θ, such that the recovered samples x̂ are
semantically similar to the private training samples x. More
precisely, given a semantic similarity measure d, the attack
objective is:

min d(x̂, x) where x̂ =

{
A(∇θL(x, y)) for GIA
A(∆θ) for UIA

(1)
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In principle, an adversarial server with access to the aggre-
gated model update can use GIA and UIA to recover private
training samples in FedSGD and FedAvg respectively.

Threat Model: We assume an honest-but-curious adver-
sary who does not have access to a significant amount of
in-distribution data. This means that the central server faith-
fully follows the FL protocol and uses the observed aggre-
gated model update to achieve the attack objective, without
distributional knowledge of the training data.

2.3. Related Work

Gradient Matching: The vast majority of prior work on
gradient inversion does so via gradient matching (Zhu et al.,
2019), which optimizes a batch of dummy inputs and labels
(x∗, y∗) to produce a gradient that matches the one received
by the server during FL as shown in Fig. 2b. This can
be done by minimizing the distance between the gradient
produced by the dummy variables ∇θL(x∗, y∗) and the
gradient received during FL ∇θL(x, y):

x̂, ŷ = argmin
x∗,y∗

d(∇θL(x∗, y∗),∇θL(x, y)) (2)

Here, d denotes a distance metric between vectors like co-
sine similarity or L2 norm. Subsequent work (Zhao et al.,
2020) proposed a method to infer the ground truth labels y
by examining the gradients of the last layer, which can help
improve the gradient matching attack. However, this method
only works when no two inputs in the batch belong to the
same output class, limiting its applicability. Aditionally,
Zhu & Blaschko (2020) proposed a closed-form recursive
solution to recover the input from the gradient. However,
this method only works with a batch size of 1.

Total Variation (TV) Prior: Since the training samples x
is a set of images, one can impose priors on x̂ to reduce the
search space and achieve better gradient inversion perfor-
mance. To this end, Geiping et al. (2020) proposed to use
the TV prior (Rudin et al., 1992) as a regularization term
along with the gradient matching objective as follows:

RTV (x
∗) = E

[
|x∗

i+1,j − x∗
ij |
]
+ E

[
|x∗

i,j+1 − x∗
ij |
]

(3)

The TV prior penalizes high-frequency components in the in-
put and encourages the optimization to find natural-looking
images. With this prior, gradient matching can be scaled to
work on a batch size of up to 100 for CIFAR-10 images and
up to a small number of inputs for ImageNet.

Generative Models and Batch Norm Statistics: In ad-
dition to the TV prior, recent works have proposed to use
generative models (Jeon et al., 2021) and batch norm statis-
tics (Yin et al., 2021; Hatamizadeh et al., 2022) to impose
a prior on the inputs when carrying out the attack. These
priors, when used with gradient matching, improve the qual-
ity of the recovered images and help the attack scale to

even larger batch sizes. However, a key drawback of these
approaches is that they require access to a distributionally
similar dataset to train a generative model or compute batch-
norm statistics, which may not be available to the attacker.
See Appendix D for an overview of these attacks.

Dishonest Central Server: Several works have proposed
attacks under the threat model of a dishonest central server.
Boenisch et al. (2021); Fowl et al. (2021); Wen et al. (2022)
have proposed methods to recover private training samples
in FL by using malicious model parameters. Such methods
use weights that cause the aggregate gradient or the differ-
ence between two aggregate gradients to be predominantly
influenced by a single input. Lam et al. (2021) proposed an
attack to recover the gradient updates of individual clients
using aggregate gradients from multiple rounds and user-
participation metadata. In addition to the extra metadata
information, this method requires modification to the FL al-
gorithm to keep the model constant between multiple rounds.
Under our threat model of an honest central server, mali-
cious modifications to model parameters and changes to the
FL algorithm are not allowed. Thus we do not consider
these attacks in our evaluations.

Limitations of Prior Work: The optimization complexity
of gradient matching poses a fundamental limitation to its
scalability. Most prior works (with the exception of gen-
erative image prior) perform optimization directly in the
image pixel space. The size of this optimization problem is
O(n× din), where n is the batch size and din denotes the
dimensionality of the input image. For instance, for a batch
of 100 images from ImageNet, the size of the optimization
problem is approximately 15M, which may be even larger
than the size of the model parameters. This scaling makes it
difficult to apply gradient matching-based attacks to large
batches of data or high-resolution input images.

3. Cocktail Party Attack (CPA)
Our paper proposes CPA—a gradient/update inversion at-
tack that scales to large batches and high-resolution images
by drastically reducing the optimization search space in
a clever way. Our key insight is to frame the attack as a
blind source separation (BSS) problem and adapt indepen-
dent component analysis (ICA) to recover the private inputs
from aggregate gradient/weight updates. This attack works
directly for inverting the gradients of FC networks (or net-
works whose first layer is fully-connected), and in Section 4
we show how the attack can be extended to CNNs.

3.1. Framing Gradient Inversion as a Blind Source
Separation Problem

We first introduce the blind source separation (BSS) problem
using the motivating example of the cocktail party problem,
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Figure 3. The microphone recordings in the cocktail party problem and the gradients from a fully connected layer can both be represented
as linear combination of inputs. Recovering the inputs in both cases can be viewed as a blind source separation problem.3

and show that GIA and UIA for an FC layer can also be
viewed as a BSS problem.

Cocktail Party Problem: Consider a cocktail party where
there are a group of four people talking simultaneously as
depicted in Fig. 3a. A microphone placed near this group
picks up an audio recording consisting of an overlapping set
of voices from the four speakers. The cocktail party problem
models this recording as a linear combination of the voices
of the four speakers. More formally, if x⃗0, x⃗1, x⃗2, x⃗3 denote
the voices of the four speakers and g⃗0, g⃗1, g⃗2, g⃗3 denote the
recordings from the four microphones placed at different
locations, the recording of the i-th microphone is given by:

g⃗i = ai0x⃗0 + ai1x⃗1 + ai2x⃗2 + ai3x⃗3. (4)

Here, aij denote the unknown mixing coefficients. The BSS
problem can be stated as follows: Given the mixed signals
{g⃗i}, recover the individual source signals {x⃗i}.

Note that if the coefficients aij are known, this problem
has a straightforward solution by solving the linear system
given by Eqn. 4 for i = 0, 1, 2, 3. The core difficulty of
BSS lies in the coefficients being unknown, and thus some
assumptions about x⃗i must be made to enable their recovery.

Gradient Inversion for FC Layer: Much like the cocktail
party problem, the aggregate gradients from an FC layer
can be represented as a linear combinations of the inputs
used to generate them. To demonstrate this, consider an
FC layer with four hidden neurons y0, y1, y2, y3 as shown
in Fig. 3b. Let w⃗0, w⃗1, w⃗2, w⃗3 represent the weight vectors
associated with each output neuron. Let x⃗0, x⃗1, x⃗2, x⃗3 be
a batch of four inputs used to perform a single iteration of
training. g⃗i = ∇wi

L is the aggregate gradient of the loss
with respect to w⃗i, which is computed by taking the mean of
the individual gradients ∇wiLj associated with each input
x⃗j . This aggregate gradient g⃗i can be further expressed as a
linear combination of the inputs x⃗j as follows:

g⃗i =
1

4

∑
j

∇w0
Lj =

1

4

∑
j

∂L
∂yji

∂yji
∂wi

=
1

4

∑
j

∂L
∂yji

x⃗j .

(5)

Notice that Eqn. 5 has a 1-to-1 correspondence with Eqn. 4
in the cocktail party problem: The inputs here are analogous

to the speakers and gradients are analogous to the record-
ings from the microphones. The coefficients aij = ∂L/∂yji
are also unknown to the server. Recovering the inputs
{x⃗i} (source signals) from a set of aggregate gradients {g⃗i}
(mixed signals) can thus be viewed as a BSS problem.

Update Inversion for FC layer: Consider an FC model f ,
with θ and θ′ denoting the weights of the first layer before
and after training f with SGD with a dataset D = {xi, yi}
for multiple iterations. The weight update ∆θ = θ′ − θ
can be viewed as a linear combination of the gradient G⃗j at
each step of SGD. However, each individual gradient G⃗j is
in-turn a linear combination of the inputs xi in the training
dataset. Thus, the weight update ∆θ can be re-expressed a
linear combination of the inputs as described in Eqn. 6.

∆θ =
∑
j

ajG⃗j =
∑
i

bixi (6)

Since the weight update for an FC layer is a linear combi-
nation of inputs in the training dataset, we can view update
inversion for an FC layer as a BSS problem as well.

Solving BSS with an Unmixing Matrix: Eqn. 5 can be
expressed as a matrix multiplication operation as follows:
G = AX . The rows of X ∈ Rn×d denote the inputs (source
signals), rows of the A ∈ Rn×n represent the coefficients
of the linear combinations and rows of the G ∈ Rn×d

denote the gradients (aggregate signals). We can estimate
the source matrix X̂ from G by estimating an unmixing
matrix U and computing X̂ = UG, where each row of X̂ is
a single recovered input x̂i. Note that X can be recovered
perfectly if U = A−1. Estimating X̂ can thus be reduced to
finding the unmixing matrix U , which has size O(n×n) and
is independent of the input-dimensionality d. This unique
feature enables CPA to scale to ImageNet-sized datasets
even with large batch sizes.

3.2. Gradient Inversion using ICA

Independent component analysis is a classic signal process-
ing technique that can be used to solve the BSS problem by
estimating the unmixing matrix U . To do this, ICA starts
with a randomly initialized unmixing matrix U∗ and opti-
mizes it to enforce certain properties on the recovered source
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signals. To explain, let x∗
i = u∗

iG denote the i-th source
signal recovered from multiplying the i-th row of U∗ with
G. Note that the source signals represent images in our case
(Fig. 3b). ICA optimizes U∗ so that the recovered source
signals {x∗

i } satisfy the following key properties:

• Non-Gaussianity: Values of real-world signals such as
images and speech typically do not follow a Gaussian
distribution. We can measure non-Gaussianity using the
negentropy metric (Hyvärinen & Oja, 2000):

J(x∗) = E
[ 1

a2
log cosh2(ax∗

i )
]
. (7)

A high value of negentropy indicates a high degree of
non-Gaussianity.

• Mutual Independence (MI): We assume that the source
signals are independently chosen and thus their values
are uncorrelated. Since each row u∗

i of the unmixing ma-
trix corresponds to a recovered source signal x∗

i , we can
enforce MI by minimizing the absolute pairwise cosine
similarity between the rows of U∗:

RMI = E
i̸=j

exp
(
T |CS(u∗

i , u
∗
j )|

)
. (8)

• Source Prior: Any prior information about the source
signals, such as the TV prior or the generative image prior,
can be included in our optimization in the form of an
additional regularization term RP .

We estimate the unmixing matrix U by solving an optimiza-
tion problem that combines the above properties4:

U = argmax
U∗

E
i

[
J(u∗

iG)− λPRP (u
∗
iG))

]
− λMIRMI ,

(9)

where λP and λMI are chosen hyperparameters5. The U
matrix obtained from solving Eqn. 9 can be used to estimate
the source matrix via X̂ = UG.

3.3. CPA for FC Models

For an FC model trained on image data, where the inputs
are directly fed to an FC layer, we can recover the inputs
directly by inverting the gradient/weight updates of the first
FC layer using CPA. Since the source signals are images, we
can use TV regularization RTV (Eqn. 3) as the source prior
in Eqn. 9. One caveat of ICA is that it does not preserve the
magnitude of the input (i.e. x̂i can be a scaled version of
xi). However, this can be easily resolved by normalizing
the pixel values to the range [−1, 1] and selecting between
x̂i and −x̂i through a visual comparison.

3All emojis in this paper are from https://openmoji.org/ and
licensed CC BY-SA 4.0.

4We whiten and center the gradients as a pre-processing step,
before using it in our optimization.

5We refer the reader to the ablation study in Appendix A to
understand the relative importance of different terms in Eqn.9.

4. Extending Cocktail Party Attack to CNNs
The formulation of CPA as finding an unmixing matrix
depends critically on the structure of the aggregated gradient
for an FC layer. On the surface, this requirement is not
satisfied for CNN models that are commonly used for image
recognition tasks, and CPA is seemingly not applicable.
Fortunately, we leverage the fact that most CNN models
contain at least one FC layer towards the end of the network
to recover individual embeddings from a batch of data.

More concretely, consider the embedding vector z produced
immediately before the first FC layer of the model. For each
sample in the training batch, we can use CPA to recover its
embedding z from the aggregated gradient vector, and then
use feature inversion (Mahendran & Vedaldi, 2015; Ulyanov
et al., 2018) to recover the training image as shown in Fig. 4.
We describe these two steps in detail below.

4.1. Leaking Private Embeddings using CPA

The gradients from the FC layer can be viewed as linear
combinations of the embeddings z that act as the input to
the FC layer. We can use CPA to invert the gradients from
the FC layer (G) and recover an estimate of the embeddings
ẑ = UG. However, we can no longer use the TV prior in
our optimization objective (Eqn. 9) to find U since the signal
being recovered (z) is not an image. Instead, we use the
following properties of embeddings produced with a ReLU
non-linearity to design more appropriate input priors:

• z is sparse: Embeddings produced by networks that use
ReLU non-linearity are sparse, as ReLU squashes nega-
tive activations to 0. We can use the L1-norm: |z∗|1 in
our optimization to encourage sparsity.

• z is a non-negative vector: The embedding vector is non-
negative as ReLU truncates negative values to 0. We
can minimize RNN (z∗) = ReLU(−z∗) to encourage
z∗ to be non-negative. However, the embedding recov-
ered by ICA can be sign inverted, which results in a
non-positive vector. To allow for sign inverted recov-
ery, we propose the sign regularization function: RSR =
min(ReLU(z∗), ReLU(−z∗)). Minimizing RSR en-
sures that z∗ is either non-negative or non-positive.

We combine the above regularization terms with the non-
Gaussianity and mutual Independence assumptions to derive
the final optimization objective to estimate the unmixing
matrix U as follows:

U = argmax
U∗

E
i

[
J(u∗

iG)− λSP |u∗
iG|1

− λSRRSR(u
∗
iG)

]
− λMIRMI .

(10)

The unmixing matrix can be used to recover the private
embeddings Ẑ from the gradient G as follows: Ẑ = UG.
Doing so recovers the per-sample embeddings for every
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Figure 4. We attack CNN models by first recovering the private
embedding (ẑ) from the FC layer using CPA and then using feature
inversion attack (FIA) to recover the training image (x̂) from ẑ.

sample in the training batch, which can be used to infer
private information about the training samples. For instance,
we can use these private embeddings to recover the training
image using a feature inversion attack.

4.2. Feature Inversion Attack

Feature inversion attack (FIA) (Mahendran & Vedaldi, 2015)
inverts the embedding produced by a neural network to
recover the input. Formally, given an embedding function
f : X → Z that maps an image x to an embedding z =
f(x), FIA recovers an estimate of the input x̂ from z. We
do this by solving the following optimization problem using
a dummy input x∗:

x̂ = argmax
x∗

CS(f(x∗), z)− λTV RTV (x
∗) (11)

The first term maximizes the cosine similarity between the
embedding from the dummy input z∗ = f(x∗) and the true
embedding z. The second term is TV regularization, which
suppresses high-frequency components. Solving this opti-
mization problem allows us to estimate the private inputs
{x̂i} from the embedding {ẑi} recovered by CPA, which
completes the GIA. Additionally, we can also use the gradi-
ent information to improve FIA by including the gradient
matching objective in the optimization as follows:

x̂ =argmax
x∗

CS(f(x∗), z) + λGM

CS(∇θL(x∗),∇θL(x))− λTV RTV (x
∗).

(12)

5. Experiments
To demonstrate the efficacy of CPA, we evaluate our pro-
posed attack on FC and CNN models trained on image
classification tasks. While FC networks are typically not
used for image classification, they allow us to demonstrate
the efficacy of CPA in its simplest form. Our evaluations on
the CNN model (VGG-16) demonstrates the utility of our
attack in a more realistic problem setting.

5.1. Setup

Model and Datasets: For our experiments on the FC
model, we use a simple 2-layer network (FC-2), with the
following network architecture: [Linear(256)−ReLU()−
Linear(k)] for a k-class classification problem. We train
FC-2 on the CIFAR-10 (Krizhevsky et al., 2009) and Tiny-
ImageNet datasets for 20 epochs using the Adam (Kingma
& Ba, 2014) optimizer with a learning rate of 0.001. We
perform our CNN experiments using ImageNet with a pre-
trained VGG-16 network (from torchvision (et al., 2017)).

Evaluation Methodology: We evaluate gradient inversion
attacks with the following batch sizes: [32, 64, 128, 256] for
the FC-2 model and [32, 64, 128, 256, 512, 1024] for VGG-
16. We perform evaluations by first sampling a batch of
inputs {xi} from an unseen test set to generate the aggre-
gate gradient ∇θL. We then use different gradient inversion
attacks to recover an estimate of the inputs {x̂i} from the
aggregate gradients and compare their performance. Since
our experiments are done on image data, we use the LPIPS
score (Zhang et al., 2018) to quantify the perceptual similar-
ity between the original and recovered images to evaluate
the attacks. We repeat the attack on 5 batches of data and re-
port the average LPIPS scores in our results. We also use the
FC-2 network to evaluate the update inversion attack. We
use datasets of size [32, 64, 128, 256], with a batch size of
32 to train the model for 10 epochs and generate the weight
updates ∆θ. We recover the input from the weight updates
using various attacks and compare their performance. We
perform 25K rounds of optimization for all attacks.

Hyperparameter Tuning: For all the hyperparameters
(λTV , λMI , T, λSP , λSR), we sweep their values in the
range [0.00001, 10] using a single batch of inputs and pick
the set of values that yield the best LPIPS score to carry out
our attack. Note that the inputs used in the hyperparameter
sweep are separate from the ones used to report our results.

Threat Model and Baseline: Most advanced gradient in-
version attacks use some form of data-specific prior to re-
duce the search space (Jeon et al., 2021; Yin et al., 2021;
Hatamizadeh et al., 2022). We do not consider these base-
lines since (1) access to in-distribution data may be unreal-
istic and (2) CPA can readily incorporate such priors and
hence the improvement is orthogonal. Instead, we consider
the threat model of an honest-but-curious attacker who does
not have access to in-distribution examples6. The Geiping
et al. (Geiping et al., 2020) attack, denoted by GMA, uses
the gradient matching objective and TV prior and is the
most suitable baseline for CPA that operates under the ex-
act same threat model. We compare against GMA with the
best choice of hyperparameters as our main baseline.

6Except a single batch of inputs for tuning hyperparameters.
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Figure 5. Comparison of a subset of images recovered from gradient matching (GMA) and cocktail party (CPA) attacks by inverting the
gradients from the FC-2 network with a batch of 64 Tiny-ImageNet inputs. The quality of images recovered by CPA is significantly better
than the GMA attack. Please see Appendix B for additional results.

Table 1. LPIPS ↓ scores comparing the performance of cocktail
party (CPA) and gradient matching (GMA) attacks on FC-2 trained
on CIFAR-10 and Tiny-ImageNet. CPA significantly outperforms
GMA for both gradient inversion attack (GIA) and update inversion
attack (UIA) across all batch/training set sizes.

Dataset Attack Batch/Training set size

32 64 128 256

GIA

CIFAR-10 GMA 0.491 0.569 0.610 0.614
CPA 0.197 0.352 0.521 0.610

Tiny-ImageNet GMA 0.368 0.620 0.687 0.720
CPA 0.164 0.217 0.232 0.388

UIA

CIFAR-10 GMA 0.468 0.553 0.622 0.634
CPA 0.21 0.360 0.607 0.631

Tiny-ImageNet GMA 0.403 0.637 0.689 0.708
CPA 0.166 0.213 0.235 0.384

5.2. Results for FC-2

We first present the results from our experiments on the
FC-2 models trained on the CIFAR-10 and Tiny-ImageNet
datasets. Fig. 5 shows samples recovered by GIA using
CPA and GMA for a Tiny-ImageNet model with a batch
size of 64. The images recovered by CPA have better visual
quality and higher perceptual similarity with the original
images, compared to the images recovered by GMA. Ta-
ble 1 shows quantitative results (LPIPS scores) comparing
CPA and GMA when used to carry out GIA and UIA with
various batch/training set sizes. A lower LPIPS value in-
dicates better perceptual similarity and thus a better attack
performance. Notably, the size of the optimization problem
being solved by CPA and GMA also differ significantly:

• CPA has an optimization complexity O(n × n), as it is
optimizing over U∗ (cf. Eqn. 9), which is an n×n matrix.

• GMA has an optimization complexity O(n × d) as it is
optimizing directly in the input space.

Here, n denotes batch/training set size for GIA/UIA and d
denotes the input dimensionality (d = 3072 for CIFAR-10
and d = 12288 for Tiny-ImageNet). With this in mind, we

make the following key observations from our results:

• Comparison with prior work: CPA significantly out-
performs GMA for both GIA and UIA across all
batch/training set sizes since the size of optimization prob-
lem is much smaller for CPA compared to GMA. E.g. for
n = 64 with Tiny-ImageNet (d = 12288), the size of the
optimization is 4096 for CPA and 786, 432 for GMA.

• Sensitivity to batch/training set size (n): The size of the
optimization problem increases with n for both CPA and
GMA causing their performance to degrade for larger n.

• Sensitivity to input dimensionality (d): The optimization
problem for CPA is independent of d. Consequently, CPA
performs significantly better for datasets with larger inputs
(Tiny-ImageNet) compared to GMA.

Table 2. LPIPS ↓ scores of images recovered using GMA (prior
work), CPA+FIA (our proposal) and CPA+FIA+GMA (prior work
+ our proposal), with VGG-16 trained on ImageNet.

Attack Batch Size

32 64 128 256 512 1024

GMA 0.536 0.594 0.609 0.652 OOM OOM
CPA+FIA 0.483 0.493 0.479 0.495 0.507 0.509

CPA+FIA+GMA 0.392 0.430 0.423 0.469 OOM OOM

5.3. Results for VGG-16

Next, we present the results from our experiments with the
VGG-16 trained on the ImageNet dataset. Our proposed
attack uses a 2-step process that combines CPA and FIA
(Fig. 4) to perform gradient inversion.

Embedding recovery: Our attack starts by recovering the
private embeddings ẑ from the gradients of the FC layer.
We evaluate the fidelity of these recovered embeddings by
computing its cosine similarity (CS) with the original em-
bedding z. Fig. 7 shows the distribution of the CS values
for various batch sizes. Our results show that CPA allows
near-perfect recovery of embeddings in most cases, with the
CS values degrading slightly for larger batch sizes.

Gradient Inversion: We use the embeddings recovered
from CPA to estimate the training images with a feature
inversion attack. Table 2 shows the LPIPS scores com-
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Figure 6. Comparison of a subset of images recovered from gradient matching (GMA), cocktail party + feature inversion (CPA+FIA) and
cocktail party + feature inversion + gradient matching (CPA+FIA+GMA) by inverting the gradients from a VGG-16 network with a batch
of 256 ImageNet inputs. CPA+FIA (our proposal) can recover more images compared to GMA (prior work). CPA+FIA+GMA improves
the quality of recovered images by combining the benefits of our proposal and prior work. Please see Appendix B for additional results.

32 64 128 256 512 1024
Batch Size
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Figure 7. Distribution of cosine similarity (CS) values computed
between the private embeddings z and the embeddings recovered
by CPA ẑ. Most of the CS values are close to the ideal value of 1.

paring GMA (prior work), CPA+FIA (our proposal) and
CPA+FIA+GMA (our proposal + prior work; cf. Eqn. 12).
We make the following key observations:

• Comparison with prior work: CPA+FIA has better aver-
age LPIPS score as it can recover more images com-
pared to GMA. CPA+FIA+GMA improves the number
of images recovered further by combining the benefits of
our proposal (CPA+FIA) and prior work (GMA).

• Sensitivity to batch size: The performance of GMA de-
grades significantly with larger batch sizes. In contrast,
CPA+FIA shows a smaller degradation and shows better
scalability to larger batch sizes.

• Memory Footprint: The optimization for gradient match-
ing is O(n× d). The memory footprint of this optimiza-
tion can exceed the available GPU memory when the
input dimensionality (d) is large. For the experiments
with ImageNet, we found that an 8-GPU machine cannot
handle batch sizes in excess of 256 causing out of memory
(OOM) errors. In contrast, the optimization for CPA is
independent of d and can scale to a batch size of 1024.

Table 3. LPIPS ↓ scores of recovered images from CPA and
GMA under varying magnitudes of DP noise.

σ 0 0.0001 0.001 0.01
ϵ ∞ 6056.00 606.60 60.56

GMA 0.182 0.426 0.728 0.701
CPA 0.0082 0.474 0.721 0.723

6. Limitation and Defenses
We discuss limitations of CPA and defenses in the context
of gradient inversion attacks.

Batch Size: ICA requires the number of aggregate gradients
from neurons (mixed signals) to be greater than or equal to
the number of inputs (source signals). Thus choosing a very
large batch size that exceeds the number of neurons in the
FC layer can prevent our attack.

Embedding size: The efficacy of feature inversion attack
depends on the size of the embedding. For a CNN that
produces a smaller sized embedding, FIA might be harder
to carry out. However, this limitation can be overcome if
the attacker knows the input data distribution.

Differential Privacy (DP) Defense: DP is an effective
defense against GIA/UIA as it provably reduces the amount
of information that the gradient/update vector contains about
its training data. We evaluate CPA when the gradient is
perturbed using Gaussian noise—a standard DP mechanism
for SGD (Dwork et al., 2014; Abadi et al., 2016). We use
the FC2 model with Tiny-ImageNet dataset and a batch
size of 8. Gradients are scaled to have a unit norm and
perturbed with Gaussian noise of varying standard deviation
σ. Table 3 shows the LPIPS scores for CPA and GMA
under the DP defense. We also show the ϵ values for (ϵ, δ)-
DP with δ = 0.00001 corresponding to different magnitude
of noise. As expected, both CPA and GMA have drastically
worse recovery accuracy when σ is large.
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7. Conclusion
We proposed Cocktail Party Attack (CPA)—a gradi-
ent/update inversion attack that can recover private training
images from aggregated update vectors in FL. By reducing
the gradient/update inversion problem to blind source sep-
aration and formulating a more efficient solution based on
ICA, CPA is capable of scaling to ImageNet-sized inputs
and works with realistically-large batch sizes (as large as
1024). Our work demonstrates that that aggregation alone is
not sufficient to prevent privacy leakage from client updates
and principled defenses such as differential privacy are truly
necessary to provide meaningful privacy guarantees in FL.
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Konečnỳ, J., McMahan, B., and Ramage, D. Federated opti-
mization: Distributed optimization beyond the datacenter.
arXiv preprint arXiv:1511.03575, 2015.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Lam, M., Wei, G.-Y., Brooks, D., Reddi, V. J., and Mitzen-
macher, M. Gradient disaggregation: Breaking privacy
in federated learning by reconstructing the user partic-
ipant matrix. In International Conference on Machine
Learning, pp. 5959–5968. PMLR, 2021.

Lee, T.-W. Independent component analysis. In Independent
component analysis, pp. 27–66. Springer, 1998.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Feder-
ated learning: Challenges, methods, and future direc-
tions. IEEE Signal Process. Mag., 37(3):50–60, 2020.
doi: 10.1109/MSP.2020.2975749. URL https://doi.
org/10.1109/MSP.2020.2975749.

Mahendran, A. and Vedaldi, A. Understanding deep im-
age representations by inverting them. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 5188–5196, 2015.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

9

https://arxiv.org/abs/1611.04482
https://github.com/pytorch/vision
https://github.com/pytorch/vision
http://proceedings.mlr.press/v119/hsieh20a.html
http://proceedings.mlr.press/v119/hsieh20a.html
https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.1109/MSP.2020.2975749


Cocktail Party Attack: Breaking Aggregation-Based Privacy in Federated Learning Using Independent Component Analysis

Rudin, L. I., Osher, S., and Fatemi, E. Nonlinear total
variation based noise removal algorithms. Physica D:
nonlinear phenomena, 60(1-4):259–268, 1992.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. Deep image
prior. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 9446–9454, 2018.

Wen, Y., Geiping, J., Fowl, L., Goldblum, M., and Gold-
stein, T. Fishing for user data in large-batch feder-
ated learning via gradient magnification. arXiv preprint
arXiv:2202.00580, 2022.

Yeom, S., Giacomelli, I., Fredrikson, M., and Jha, S. Privacy
risk in machine learning: Analyzing the connection to
overfitting. In 2018 IEEE 31st computer security founda-
tions symposium (CSF), pp. 268–282. IEEE, 2018.

Yin, H., Molchanov, P., Alvarez, J. M., Li, Z., Mallya,
A., Hoiem, D., Jha, N. K., and Kautz, J. Dreaming to
distill: Data-free knowledge transfer via deepinversion. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8715–8724, 2020.

Yin, H., Mallya, A., Vahdat, A., Alvarez, J. M., Kautz,
J., and Molchanov, P. See through gradients: Image
batch recovery via gradinversion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16337–16346, 2021.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as a
perceptual metric. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 586–595,
2018.

Zhao, B., Mopuri, K. R., and Bilen, H. idlg: Improved deep
leakage from gradients. arXiv preprint arXiv:2001.02610,
2020.

Zhu, J. and Blaschko, M. R-gap: Recursive gradient attack
on privacy. arXiv preprint arXiv:2010.07733, 2020.

Zhu, L., Liu, Z., and Han, S. Deep leakage from gradients.
Advances in neural information processing systems, 32,
2019.

10



Cocktail Party Attack: Breaking Aggregation-Based Privacy in Federated Learning Using Independent Component Analysis

A. Ablation Study
The optimization function used by CPA (Eqn. 13) consists of
three terms that correspond to: 1. negentropy (NE) 2. total
variation (TV) and 3. mutual independence (MI) objectives.

V̂ = argmax
V ∗

E
i

[
J(v∗i G)− λTV RTV (v

∗
i G)

−λMI E
i̸=j

|exp(T · |CS(v∗i , v
∗
j )|)|

] (13)

To understand the importance of these three terms, we per-
form an ablation study. We use the FC2 model trained on
TinyImagenet with a batch size 32 for our study and mea-
sure LPIPS by carrying out the attack by excluding different
loss terms to understand their importance. We perform hy-
perparameter sweeps in each case and report the best (i.e.
lowest) value of LPIPS in Table 4. A higher value of LPIPS
indicates a higher degradation in the quality of the image
recovered, which implies a high level of importance on the
term being removed. Our results indicate that the MI term
is the most important. We find that without the MI term the
optimization recovers the same image multiple times. TV
is the second most important term, indicating that even a
simple image prior is quite powerful. The NE term which
enforces non-Guassianity has the lowest marginal benefit as
it only provides a very weak prior on the source signal.

Table 4. Ablation study to understand the relative importance of
different terms in the optimization function.

NE+TV+MI -NE -TV -MI

LPIPS ↓ 0.081 0.092 0.368 0.546

B. Additional Results
Qualitative Results: Fig. 8, Fig. 9, Fig. 10, Fig. 11 and
Fig. 12 show additional qualitative results comparing the
recovered images from gradient inversion attacks on CIFAR-
10, Tiny-ImageNet and ImageNet.

Quantitative Results on FedSGD: We provide additional
results for update inversion attack (UIA) with the VGG-16
network trained on Imagenet. For this study, we assume
that the Convolutional layers of the model are frozen and
only the FC layers are updated by the clients for multiple
rounds using FedAvg. Table 5 shows the LPIPS scores of
the recovered images comparing CPA+FIA (our proposal)
and GMA (baseline). Our results show that CPA continues
to outperform prior work.

C. Extensions to CPA
Our evaluations in this paper assume that the the network
does not use batchnorm layers and that the attacker does

Table 5. Additional results for UIA showing LPIPS ↓ scores
of images recovered using GMA (prior work), CPA+FIA (our
proposal) and CPA+FIA+GMA (prior work + our proposal), with
VGG-16 trained on ImageNet with FedAvg.

Attack Batch Size

16 32 64 128

GMA 0.598 0.613 0.625 0.639
CPA+FIA 0.41 0.429 0.431 0.448

not have access to the input data distribution. When this
information is available, it can be combined with our attack
to further improve performance. Additionally, the private
embeddings leaked from CPA can also be used to infer
additional attributes about the input (Yeom et al., 2018).
Lastly, our work can also be extended to language models
and recommendation systems where it is common for the
input to be fed directly to a FC layer. We leave this as part
of our future work.

D. Related Work on Gradient Inversion using
Generative Priors and Batch Norm
Statistics

Generative Image Prior: Instead of performing optimiza-
tion in the space of inputs, a recent work (Jeon et al., 2021)
proposes to move the optimization to the smaller latent
space of a generative model (G) to find an input x∗ = G(z∗)
that satisfies the gradient matching objective as shown in
Eqn. 14. The reduced space of optimization and the prior
induced by the generative model helps the attack scale to
ImageNet-scale datasets with a small batch size.

ẑ, ŷ = argmin
z∗∈Rk,y∗

d(Lθ(G(z∗), y∗),Lθ(x, y)) (14)

Note that this method requires the adversary to have access
to in-distribution data or a generative model that is trained
on in-distribution data. This may not be realistic in several
settings (e.g. medicine and finance), where in-distribution
data/generative model may not be available. Additionally,
such methods may not work well under dataset shift.

Batch Norm Statistics: Several works (Yin et al., 2021;
Hatamizadeh et al., 2022) have proposed to use the mean
and variance of the activations captured by the batch norm
(BN) layers as a prior to improve gradient inversion using
the regularization term in Eqn. 15. Here, µl(x

∗) and σ2
l (x

∗)
represent the mean and variance of the activation produced
by the input x∗ at the l-th BN layer. This regularization
term encourages the optimization to find inputs that produce
activations whose distribution matches the BN statistics.
Evaluations from this work show that the BN prior can
enable gradient inversion on ImageNet with a batch size of
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Figure 8. Comparison of a random subset of images recovered by various gradient inversion attacks carried out using the gradients from
FC2 with a batch of 64 CIFAR-10 images. Images are not cherry-picked.

up to 48 examples.

RBN (x∗) = El

[
||µl(x

∗)−BNl(mean)||2

+||σ2
l (x

∗)−BNl(var)||2
] (15)

A key limitation of this work is that it can only be used
for models that use BN layers. In a real-world FL, the
model might not contain BN layers because BN layers often
degrades accuracy with a non-IID data (Hsieh et al., 2020),
which is common in FL (Li et al., 2020). Furthermore, BN
statistics can be used to perform model inversion to leak the
training data directly from the model parameters (Yin et al.,
2020) (without the need for gradients), posing a concern
about the premise of using networks with BN layers to train
on private data.
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Figure 9. Comparison of a random subset of images recovered by various gradient inversion attacks carried out using the gradients from
FC2 with a batch of 64 Tiny-ImageNet images. Images are not cherry-picked.
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Figure 10. Comparison of a random subset of images recovered by various gradient inversion attacks carried out using the gradients from
FC2 with a batch of 64 Tiny-ImageNet images. Images are not cherry-picked.
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Figure 11. Comparison of a random subset of images recovered by various gradient inversion attacks carried out using the gradients from
VGG-16 with a batch of 256 ImageNet images. Images are not cherry-picked.
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Figure 12. Comparison of a random subset of images recovered by various gradient inversion attacks carried out using the gradients from
VGG-16 with a batch of 256 ImageNet images. Images are not cherry-picked.
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