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Abstract
This paper proposesVirtual Exclusion, an architectural technique
to reduce leakage energy in the L2 caches for cache-coherentmul-
tiprocessor systems. This technique leverages two previously pro-
posed circuits techniques —gated Vdd anddrowsy cache, and pro-
poses a low cost, easily implementable scheme for cache-coherent
multiprocessor systems. The Virtual Exclusion scheme saves leak-
age energy by keeping the data portion of repetitive cache lines
off in the large higher level caches while still manages to maintain
Multi-Level Inclusion, an essential property for an efficient imple-
mentation of conventional cache coherence protocols. By exploit-
ing the existing state information in the snoop-based cachecoher-
ence protocol, there is almost no extra hardware overhead associ-
ated with our scheme. In our experiments, the SPLASH-2 multi-
processor benchmark suite was correctly executed under thenew
Virtual Exclusion policy and showed an up to 72% savings of leak-
age energy (46% for SMP and 35% for multicore in L2 on average)
over a baseline drowsy L2 cache.

1. INTRODUCTION
Owing to the continuing downscaling of CMOS technology, the

threshold voltages have become lower and the gate oxides areget-
ting thinner, both resulting in a significant increase in leakage power.
For example, a 90nm Pentium 4 processor consumes 110 W, and
roughly 40% of it is leakage power[17]. Meanwhile, with technol-
ogy scaling, the capacity of single-chip processors has exceeded
one billion transistors. To consume such an immense amount of
transistors, processor architects tend to allocate more cache space
and deepen the level of cache hierarchy. While these caches con-
stitute a major portion of a processor’s real estate, they are also the
least active components and dominate the leakage power among all
other architectural modules.

There have been a large number of architectural and circuits
techniques proposed to reduce leakage power in caches. Powell et
al. [16, 20] shows that the leakage current can be substantiallyre-
duced by employing sleep transistors to gate off the supply voltage
when the corresponding logic blocks are not in use.Cache Decay
was subsequently proposed in [9] to exploit this circuit technique
in the L1 cache by using simple counters to turn off cache lines if
they are unlikely to be re-accessed. Although it mentioned implica-
tions of applying the decay scheme in large, higher level caches, it
provided no further in-depth analysis, in particular, fromthe cache
coherence standpoint, a correctness issue for implementing a mul-
tiprocessor (MP) system. One major drawback of the cache decay
policy lies in the performance and power trade-offs of the extra
misses induced due to the switch-off of decayed lines, whichleads
to additional accesses to the DRAM. This energy overhead often-
times outweighs the leakage savings from the technique itself.

Another circuit technique for leakage reduction is using the ABC-
MT-CMOS memory cell [15]. This circuit technique uses different

supply and ground voltage levels to bias the transistors to increase
their effective threshold voltage. It reduces leakage current dramat-
ically while preserving transistor state in a lower supply-voltage,
i.e. drowsy mode. Memory cells, however, have to incur a small
performance penalty for waking up the drowsy cells. Flautner et
al. [8] proposed an integrated architectural and circuit technique
called drowsy cache that implements a simple circuit to dynami-
cally choose between two different supply voltage modes forleak-
age reduction. They analyzed different architectural policies for
turning L1 lines into drowsy mode. They also showed that they
can achieve good leakage power reduction by simply keeping the
data portion of all the L2 lines in drowsy mode. A specific data
line is reinstated to a normal, high-power mode, only when itis
re-accessed with some activation penalty. Since an L2 cachetakes
tens of cycles to access, adding an extra cycle or two for wake-up
will be insignificant to the overall performance. All prior architec-
tural techniques of using Gated-Vdd ignored the implications and
correctness issues of maintaining Multi-Level Inclusion (MLI) [5]
and cache coherence, voiding their applicability. Switching off an
L2 cache line while keeping the same line in the L1 active could
either violate the MLI property or complicate the snooping mech-
anism. With the industry making a paradigm shift to multicores or
MPSoC, having a leakage power saving policy for cache-coherent
shared-memory MP systems is imperative.

In this paper we propose a simple, low cost, viable architectural
technique calledVirtual Exclusion to reduce leakage energy con-
sumption in the L2 caches. This technique aggressively reduces
leakage energy in the L2 or higher level caches while maintain-
ing Multi-Level Inclusion property and cache coherence simultane-
ously among multiple processors. Virtual Exclusion is achieved by
turning off repetitive but infrequently accessed cache lines in the
higher level caches, given locality is already present in the lower
level L1. For maintaining Multi-Level Inclusion, small modifica-
tions to the MOESI snooping bus coherence protocol are proposed
to maintain correctness of the protocol when power saving feature
is enabled. It does not need any additional hardware supportother
than the counters for switching off higher-level (e.g. L2) cache
lines along with keeping the rest of the lines in the drowsy state.
Additionally, Virtual Exclusion reduces the extra misses from the
L2 cache that are introduced by the original cache decay scheme,
thereby reducing both the performance penalty and dynamic energy
consumption incurred by DRAM memory accesses. This ensures
that the leakage energy savings is not offset by the much larger
energy consumption of DRAM accesses. In addition, Virtual Ex-
clusion can be integrated with a conventional cache decay scheme
to obtain more leakage energy reduction. In this work, we pro-
vide a comprehensive analysis of the leakage energy reduction for
a functioning implementation of a cache coherent multiprocessor
system based on Virtual Exclusion technique. The contributions of
our paper are summarized as follows.



• We provide a viable, low-overhead solution for maintaining
Multi-Level Inclusion and coherence for MP systems in the
context of saving leakage energy.

• The technique needs only minor changes to traditional snoop-
based cache protocols, e.g. MOESI.

• We apply our techniques to two MP architectures: SMP and
the emerging multicore processors, and demonstrate the advan-
tages.

The rest of this paper is organized as follows. Section 2 overviews
Multi-Level Inclusion. Section 3 proposes Virtual Exclusion and its
integration with a conventional MOESI protocol for leakagepower
reduction. Section 4 explains our simulation methodology.Sec-
tion 5 provides a detailed leakage power analysis and Section 6
concludes.

2. MULTI-LEVEL INCLUSION AND CACHE
COHERENCE

In this section we overview the Multi-Level Inclusion property
and describe the architectural policy changes required forhaving a
leakage power management policies in the higher level cache(e.g.
L2 or L3) while maintaining multi-level cache inclusion andcoher-
ence in a multiprocessor system.

2.1 Multi-Level Inclusion
A multi-level cache hierarchy consists of a number of levelsof

caches between the CPU and the main memory, with the lower level
caches being closer to the CPU. Multi-Level Inclusion (MLI), pro-
posed by Baer and Wang in [5], is a property in a cache hierarchy
which requires that if a cache line is present in a lower levelcache
(e.g. L1), it should also be present in all the higher levels (e.g. L2
and beyond). MLI is an important property for facilitating an effi-
cient implementation of cache coherence. Using this property the
higher level cache effectively shields the lower level cache from
I/O and the snooping bus. Without MLI, the lower-level caches
will encounter a large number of queries from the snooping bus.
This could lead to substantial performance degradation dueto the
limited number of ports in small, highly accessed L1 caches.

The baseline cache hierarchy we use to demonstrate MLI in this
paper contains multiple cores, each with two-level caches commu-
nicating via a snooping bus. Each processor features a smallL1
data cache, backed by a larger L2 cache, which is connected tothe
memory through the snooping bus. MOESI protocol is employed
in this work to maintain cache coherence across processor cores.

The detailed algorithm and architectural support for maintaining
inclusion in such a cache architecture is detailed in [5]. The second
level cache needs to have an inclusion bit for every cache line to
indicate whether the line is at the previous level. The following are
the cache policy changes required to maintain MLI.

• For any line-fill in the L1 cache, the L2 cache sets the inclusion
(I) bit for the corresponding line.

• For all evictions (Clean and Dirty) in the L1 cache, the line
address is given to the L2 cache and the L2 cache resets the I
bit of the corresponding line.

• All invalidation requests for cache lines in the snooping bus are
propagated from the L2 cache to the L1. Both the L2 line and
the L1 line are invalidated, ensuing necessary writebacks for
dirty lines.

• For any write to a line at L1, the line is also marked dirty and
written to the L2 cache and the L2 cache sends invalidation
requests to the bus.

Each of the aforementioned changes to the protocol mentioned
is an overhead in terms of cache bandwidth. They consume power
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Figure 1: SRAM cell with both Gated-Vdd and DVS control

and can affect performance due to cache contention. That is the
reason why a snooping port is typically dedicated to caches [3,
18]. However, these enhancements are required for guaranteeing
the correctness of cache coherency protocol and hence are assumed
to be part of the baseline cache hierarchy in our work.

2.2 Leakage Energy Reduction Schemes for
Coherent Caches

In a multi-level cache hierarchy, leakage energy reductionschemes
are more appealing and profitable for higher level caches forseveral
reasons. One reason is that higher level caches are much larger us-
ing most of the on-chip transistors, thereby consuming moreleak-
age power that makes them good candidates for leakage power re-
duction. Moreover, given the high hit rates of the L1 caches,L2
or higher level caches are not frequently accessed, suggesting that
they can stay idle for long periods of time. However, classicpower
saving schemes in caches [4] and more recent leakage management
techniques like [14] do not consider the fact that a cache maybe
part of a multiprocessor system. Thus some assumptions as that
are true in a uniprocessor system, like a low enough L2 Cache ac-
tivity so that a way can be completely switched off, are not true in
systems where the cache is shared by multiple processors.

Hu et al. [9] discussed briefly the effect of applying their policy
on a cache-coherent multiprocessor system. Note that the first de-
sign priority of applying leakage power schemes to such systems is
correctness. For their cache decay technique, even if higher level
cache lines can be turned off, it is imperative that the tags and the
state of a turned off line must be kept active to maintain MLI and
to shield the lower level caches (e.g. L1) from snooping traffic.
Another issue not addressed and evaluated in their work is the po-
tential yet serious performance degradation and additional power
consumption by extra misses going to main memory due to the L2
decayed lines.

The drowsy cache [8] does not suffer from the correctness or
MLI issues as it keeps the entire state in drowsy state. As such,
the drowsy cache will not introduce additional misses as thecache
decay scheme. However, the issue is the increase in the latency for
waking up a drowsy cache line. The performance degradation due
to this is expected to be negligible since the L2 latency is typically
in the order of tens of cycles. Nonetheless, the leakage power sav-
ings by using a drowsy cache is expected to be lower than the cache
decay scheme as all the drowsy lines still consume some leakage
power. In this work we assume a cache line circuitry where we can
control the Vdd reaching the circuit as in [8] as well as gate off the
supply voltage as shown in [16]. The schematic of such an SRAM
cell is shown in Figure 1. Our proposed architecture technique will
exploit this circuit to reduce leakage energy in caches. We discuss
this technique in the next section.



3. APPLYING VIRTUAL EXCLUSION
In this section we explain why cache decay fails to work with an

MLI environment. We then describe the concept of Virtual Exclu-
sion and explain how it can be used to save leakage energy. Finally,
we apply the Virtual Exclusion concept to cache decay and explain
how can it help and improve cache performance over simple cache
decay and still saves more leakage energy.

3.1 Generic Virtual Exclusion Policy
The drowsy cache paper [8] shows that for L2 or higher level

caches the best and complexity-effective architectural strategy for
leakage power control is to keep them in drowsy mode. A specific
data line is activated, or woken up only when it is accessed. Since
the access latency for L2 caches is large, keeping the whole cache
drowsy would not incur a large performance penalty as it justadds
one or two cycles to the L2 access latency. Our entire L2 cache
is initially assumed to be in the drowsy mode before the Virtual
Exclusion algorithm is applied.

The Virtual Exclusion scheme is added on top of the drowsy
cache scheme to allow more data lines to be turned off in the cache
hierarchy for saving more leakage energy. To make drowsy higher
level caches work with a cache-coherent MP system, it is important
to note that the tag arrays of these higher level caches (i.e.L2 in our
example) must be kepton all the time for supporting a functional
cache coherence protocol. The schematic of a cache hierarchy us-
ing Virtual Exclusion is depicted in Figure 2. Each entry in the Tag
RAM of the L2 cache contains a physical address Tag (T), a Valid
bit (V), a Dirty bit (D), an an Inclusion (I) bit. The state of the I bit
indicates the presence of a line in the L1 so as to determine whether
the data portion of the line in the L2 should be kept on in drowsy
state or be Vdd-gated off. The first simple change for the Virtual
Exclusion scheme is the following. Whenever there is a line-fill
into the L1 cache due to an L1 miss, the same line in the L2 cache
(or the missed line brought back into the L2 from main memory)
will have its corresponding I bit set. This I bit precisely indicates
that the data is now present in the L1 cache as well. Subsequently,
the corresponding data portion of the line in the L2 isVdd gated
off immediately. This turn-off of the data lines in the L2 that are
present in the L1 gives our technique its name. We illustratethis
mechanism in Figure 2(a).

The L2 lines are turned back on under the following scenarios.
Whenever a line is being displaced from the L1 due to a conflict
miss, in order to explicitly maintain MLI, the L1 will informthe
L2 and forward the line to the L2 for every single L1 line eviction
regardless of whether the state of the evicted line is clean or dirty.
Note that, since the Virtually Exclusive L2 cache does not have the
data portion of a line when the line is present in the L1. There-
fore, for each eviction, the L1 cache always supplies the cached,
(un)modified data portion along with its address to the L2. Upon
such an eviction, the corresponding L2 cache line is turned back
on to drowsy state and the I bit is reset to zero simultaneously as
depicted in Figure 2(b). Such eviction is completely off thecritical
path.1 Also, it takes place only when there is an L1 miss, thus is
unlikely to clobber L2 accesses and impact the performance.An-
other potential scenario to have data lines in L2 in drowsy state is
for architecture that support instructions that prefetch data only into
L2, e.g. prefetcht2 in Intel’s SSE instruction set. This type of in-
structions bring data from main memory into L2, but not in theL1,
and the data will be kept in drowsy mode for saving leakage energy
until the processor makes requests for them.

In addition to the simple changes in the cache line fill and line

1The only overhead is an increase in the dynamic power consump-
tion. This extra dynamic power overhead is accounted for as an
overhead component when calculating leakage power savings.

eviction policy in the caches, some minor changes in the cache
coherence protocol are also needed to maintain data consistency.
First, any remote request for a cache line with an local L2 hitand
its associated I bit set will cause the L2 to pass the request to the L1
cache. This is shown in Figure 3(a). Second, when a line in theL1
cache is being written, the address is provided to the L2 cache for
marking the same line asdirty without changing any other state.
Meanwhile, the L2 also needs to broadcast an invalidation signal
for the address on the snooping bus. These operations are illus-
trated in Figure 3(b). In this way, the states of the same linein the
L1 and L2 are kept consistent.

For the scenario depicted in Figure 3(a), considering a remote
request in the MOESI protocol, our policy will increase latency if
the tag of a line is present in the L2 cache and its I bit is set. In order
to maintain correctness, we need a slight change in the protocol to
handle this special case. If the requested line has its I bit set, then
the only correct copy of the cache line must be present in the L1.
Now any remote request pertaining to the line needs the line to be
supplied to the bus. This can be done in two ways depending on the
cache architecture. If the L1 cache has a direct path to the bus, then
the data may be directly supplied by bypassing the L2. Otherwise,
the data may be written back to the L2 cache, which in turn writes
it to the bus. In our simulations, we assume that the line needs to
be written to L2 and then to the bus.

While discussing Virtual Exclusion we should consider the sit-
uation where a line being replaced from the L1 Cache has already
been replaced from the L2 Cache. Given the basis of our assump-
tions of an inclusive cache hierarchy, this situation should never
take place. This is because for an inclusive cache the lines with
their I bits set will not take part in cache replacement and hence
will never be replaced while the line is in the L1.

It is noteworthy that apart from keeping the L1 lines in L2turned
off, we have other opportunities toVdd gate off a few more cache
lines. One obvious candidate for turn-off are the invalid lines. A
line may become invalid if it is not being allocated or if it has been
invalidated by remote snooping activity. These lines, including the
tag arrays and data portion, can be safely turned off withoutincur-
ring any performance loss. Once turned off, they will be turned
back when a cache miss to the same locations occurs. Since this
event involves an access to either main memory or remote caches,
it could take some hundreds of cycles or more. Thus, an additional
delay of a few cycles to turn a line on will incur minute impacton
performance.

3.2 Cache Decay and Hybrid Virtual Exclu-
sion Policies

3.2.1 Generic Cache Decay in L2
The original cache decay scheme proposed in [9] does not ad-

dress the correctness issue for a cache coherent multiprocessor sys-
tem where Multi-Level Inclusion property needs to be enforced.
The decay scheme turns off cache lines that are not used for a spec-
ified number of cycles based on the size of the decay counter em-
ployed. Since data will be lost whenVdd gating is applied, if a line
is allowed to decay in a higher level cache when having a copy in
the lower level cache, it will violate the Multi-Level Inclusion prop-
erty and cause the cache coherency protocol to fail. Here we first
discuss a minor change to the cache decay policy to enable Multi
Level Inclusion.

To maintain the Multi Level Inclusion when cache decay is ap-
plied, the tags of lines that have their I bit set need to be always
turned on even if the decay counter indicates that the line can be
decayed for not being used for cycles.2 This policy potentially de-

2In our experiments, we always charge up the tag arrays to the
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creases the power savings compared to the originally proposed de-
cay policy but is indispensable to preserve the requirementfor the
MLI and guarantees the correct functioning of the coherencepro-
tocol. Figure 4 shows the decaying mechanism. When a line is first
brought into the L2 and L1, the corresponding L2 decay counter
(DC) is reset to the maximum value, e.g., 4 million3 as shown
in Figure 4(a). Similar to a normal decaying scheme, the DC starts
down-counting also shown in Figure 4(a) when the corresponding
L2 line is idle. Illustrated in Figure 4(c), when there is a conflict
miss causing an eviction of the line, no matter it is clean or dirty,
the L2 will keep down-counting. Typically, there is no action if
the line was not updated during its lifetime in the L1, otherwise, it
needs to be written back to the L2 if it is dirty. Nonetheless,the DC
will be untouched in either scenarios. The DC will only be reset
back to the maximum value when there is a request that generates
an L2 hit. Figure 4(c) shows such a case.

3.2.2 Hybrid Virtual Exclusion Policy
Now we discuss how to further improve the energy efficiency of

the cache decay scheme using our Virtually Exclusive cache archi-
tecture. To exploit the advantages of both Cache Decay and Virtual

normal, high supply voltage even for the invalid lines.
3The 4-million cycle decay interval for the L2 Cache has been cho-
sen using analysis of decay intervals done by Huet al. in [9].

Exclusion schemes, we will be able to further reduce the leakage
energy consumption. We call our new schemeHybrid Virtual Ex-
clusion policy. There is a subtle caveat in the generic cache decay
scheme. The intuition behind cache decay is that due to temporal
locality a line not being used for a long time is unlikely to beused
again any time soon. Based on the above, when applying decay
technique to higher level L2 cache, lines in L2 is likely to decay
when L1 is effective and exhibits high temporal locality. Addition-
ally, to maintain Multi-Level Exclusion in such scenarios,the tag
arrays of the L2 cannot be completely gated off for snooping rea-
sons even if the decay counter is already counted down to zero. In
other words, so long as the I bit in the L2 is set, decaying (e.g. Vdd

gate-off) will be disabled for the L2 address tags. According to our
Virtual Exclusion mechanism discussed in Section 3.1, whena line
is evicted from the L1, the I bit of the same line in the L2 will be
reset and the line from the L1 will be copied to its data portion.
Upon this point, the decay counter will start counting down.

It is noteworthy to point out that the L2 lines with I bit set donot
decay as shown in Figure 5(a), they only start decaying when the I
bit is reset in Figure 5(b). Namely, the L2 lines decaying only starts
after they are evicted from the L1, the difference between the hybrid
and the decay scheme in the previous section. Note that, for any L2
hit, similar to the generic decay scheme, the decay counter will be
reset back to the maximum value. From the above discussion, the
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decay counter, when starting to count, will always (re)start from
the maximum value because (1) the decaying only starts afteran
eviction due to replacement; (2) any prior L1 line fill, either hit in
L2 or miss the first time, must have the decay counter reset back to
the maximum value.

Having our Virtual Exclusion policy applied to the Cache Decay
has the following advantages.

• It reduces leakage consumption by turning off data portion of
lines in the L2 that are in the L1. It does not wait until the
line start to decay. In prior work, there was unnecessary leak-
age current consumption during the 4 million cycles the decay
counter is counting down.

• For inclusive lines, the decay counters start counting onlywhen
the corresponding L1 line is evicted. This gives us a decay-
ing victim cache, reducing the possibility of decay-induced L2
misses. Reducing a few L2 Cache misses is extremely impor-
tant, because a L2 cache miss causes a memory access, which
in turn consumes more energy in the DRAM and suffer from
additional latency of some hundreds of cycles.

Our technique is extremely simple and it only uses the state bits,
the dirty bit and the inclusion bit to determine whether to switch a
cache line off. Since these state bits are already present inthe cache
for the purpose of maintaining coherence and inclusion, theonly
major area overhead will be to maintain different voltage power
supplies and the simple cache line driver circuitry. There is also an

extra overhead of decay counters that are also present in theorigi-
nal cache decay scheme. Another notable feature of our technique
is that we do not inherently change the MOESI protocol in terms
of state changes to a cache line or signals transmitted to thesnoopy
bus. This ensures that correctness of the protocol and hencecoher-
ence between the SMP caches.

3.3 Virtual Exclusion in Multicore Processors
In addition to a traditional multiprocessor system, the Virtual Ex-

clusion technique can also be applied to the emerging multicore ar-
chitectures. A modern multicore processor consists of a number of
processors sharing a large L2 cache. This L2 cache may be simply
a single monolithic structure or may be non-uniformly distributed
among processor cores with some type of interconnection network
that guarantees coherency [7, 11, 10]. Similarly, in a multicore ar-
chitecture, the Inclusion bit will be set if any of the L1 caches has
a copy of the line. The concept of Virtual Exclusion is the same as
it is in the case of an SMP architecture explained earlier; any line
with its “I” bit set will have its data array part off. Since the “I” bit
being set guarantees that the line is present in some L1 Cache, any
other cache requesting the data may get it through a cache-to-cache
transfer. As explained previously, we also apply the decay scheme
on top of our Virtual Exclusion scheme to obtain energy benefits.
In multicore type structures, a large number of cores can share the
L2 cache. Therefore, more L2 lines will be inclusive in several,



distinct L1 caches, thus a greater leakage saving opportunity for
Virtual Exclusion — leaving a larger number of L2 data portions to
beVdd gated off. Also, due to a larger number of processor cores,
the number of accesses to the L2 cache will be greater, too, mak-
ing decaying lines by a conventional cache decay mechanism more
difficult. Again, we do not change the inherent snooping bus proto-
col to implement our technique. Our results show that using decay
with Virtual Exclusion in a multicore lead to up to 72% savings in
L2 cache leakage power over a baseline drowsy L2 Cache.

4. EVALUATION METHODOLOGY
Our experiments were based on the M5 simulator system devel-

oped by the University of Michigan [6]. M5 is capable of perform-
ing a system level simulation for a snooping bus multiprocessor
system. Our baseline architectural parameters along with various
cache sizes are listed in Table 1. The processor is chosen to be
in-order to be in tune with the some latest trend in Multicorepro-
cessors that have multiple cores of simple in-order processors on
a chip with an on-chip L2 Cache. The aim of these Multicore ar-
chitectures is to increase throughput through TLP. An example is
the Ultra SPARC T1 (Niagara) processor that contains 8 in-order
processor cores on the die [2]. The power estimation tool used
for estimating leakage power is based on ECacti [12]. We inte-
grated the ECacti leakage power model into the M5 simulator to
analyze both dynamic and leakage power consumptions in caches.
The DRAM access energy is estimated from the data sheets of com-
mercial DRAMs offered by Micron [1].A typical write to a 256MB
DRAM costs 9.72 nJ of energy and a typical read uses 11.52nJ.
All the simulations are performed on the SPLASH-2 benchmark
suite [19] and SPEC CPU2000 Integer benchmark programs. To
evaluate the dynamic cost of using the same counters in [9] and
the modified bitline and wordline driver circuitry in [8, 9],we use
the energy overhead numbers supplied in these papers and scaled
down to 70nm technology using conventional technology scaling
rules [13].

The simulations were carried out on two types of architectures:
multicore processors and SMPs. In the multicore architecture, we
simulate using six configurations. These configurations consist of
an L2 cache either 256KB or 512KB, being shared by 2, 4 and 8
processor cores, respectively. For the SMP architecture, each pro-
cessor contains their own L1 and L2 caches. We simulate the above
two L2 cache sizes, with 2, 4, and 8 processors running on a shared
bus. We implement and evaluate three distinct energy management
policies for the L2 caches. The policies are:

• Decay: Cache Decay policy implemented to work for Multi-
Level Inclusion. The decaying policy was detailed in Section 3.2.1.

• Virtual Exclusion : Generic Virtual Exclusion policy described
in Section 3.1 for the L2 cache.

• Hybrid : Virtual Exclusion implemented on top of the cache
decay. The policy was discussed in Section 3.2.2 with illustra-
tion.

For all the above configurations we ran the SPLASH-2 bench-
mark to completion. We also simulated a set of simulations for the
multicore architecture that involves running heterogeneous SPEC
benchmark programs on different processor cores in a multicore
system. These simulations were aimed to analyze the effect of het-
erogeneous applications running on multiple cores that contain no
data sharing. All the SPEC2000 INT benchmark programs were
run for 1 billion instructions. The exact SPEC2000int programs
used in our simulations are given in Table 2. The reason we didnot
show all the results is that not all the SPEC2000int programswere
successfully ported to M5 simulation framework due to various is-
sues such as unimplemented system calls.

Table 1: Architectural Parameters
Processor Core In-order, stalls on cache misses
L1 D Cache Size 16KB 2-way 64-byte line
L1 I Cache Size 16KB 2-way 64-byte line
L1 Access Time 1 cycle
L2 Cache Sizes 256KB 8-way and 512KB 8-way
L2 Access Time 10 cycles Normal, 12 cycles Drowsy
Memory Access Time 200 cycles

Table 2: Spec2000 Benchmark used for simulations
2-way Multicore bzip andgzip
4-way Multicore bzip, gzip, crafty andgap
8-way Multicore 2 copies each ofbzip, gzip,

crafty andgap

5. EXPERIMENTAL RESULTS ANALYSIS
In this section we evaluate our techniques by running SPLASH-2

benchmarks for both SMP and multicore architectures. All results
shown are relative savings in the leakage energy over a baseline
— drowsy cache. All savings numbers take into account the en-
ergy consumption overhead. The overhead is different for different
cache policies, this discussion encompasses all overheadsconsid-
ered in our analysis. We consider the overhead for the extra cir-
cuitry required for maintaining Gated-Vdd scheme, the energy con-
sumed for the extra misses by DRAM memory accesses and finally
for Virtual Exclusion, the overhead of bringing a line from L1 on
a bus read request, and also writing clean values from L1 to L2
during evictions.

5.1 SMP Analysis
Figure 6 illustrates the energy savings for a dual processorSMP

system and each processor has a 256KB L2 cache. The percentage
reduction calculation is based on the baseline leakage energy (the
denominator). The numerator considers both the leakage energy by
each scheme and the dynamic energy overhead caused by extra trips
to the DRAM memory. The rationale is to evaluate how much en-
ergy can be saved with these architectural leakage-reduction tech-
niques. We observe that in almost all the benchmark programsthe
hybrid scheme shows the best saving results. The reason is that
the cache decay scheme incurs a lot of overhead for the extra L2
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Figure 6: Leakage Energy Reduction for 2-way SMP (256KB
L2, Baseline: Drowsy L2 Cache)
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Figure 7: Average Leakage Energy Reduction over Drowsy
Cache for Different SMP Configurations

misses that consume additional DRAM memory energy. This over-
head is effectively eliminated by the hybrid scheme becausethe
hybrid scheme transforms a portion of the L2 cache into a decay-
ing victim cache. Also note that the decay scheme for some pro-
grams failed to save energy. This happens for the same reason—
the large memory access overheads caused by L2 misses. Our sim-
ple Virtual Exclusion scheme does not suffer from such overheads.
But since the L1 cache size is a small percentage of the L2, Virtual
Exclusion alone gives an average of 8% leakage energy savings.
By combining with decay in our hybrid scheme, the average saving
is increased to 20%. Also there is never a case where the hybrid
scheme actually encounters energy loss. For FFT and Lu-Contig
from SPLASH-2, the pure decay scheme does better than the hy-
brid scheme. This happens because the Virtual Exclusion scheme
turns “on” the lines that are evicted from the L1 cache. On the
other hand, in the decay scheme, the line might have been decayed
in the L2 already, therefore, some benchmark programs show bet-
ter energy savings for the decay scheme. However, as seen from
the results, this policy of having a decaying victim cache isuseful
in reducing L2 misses and its ensuing memory access overheads if
the replacement is transient.

Figure 7 plots the average L2 leakage energy savings for 2, 4,
and 8 processor systems for the entire SPLASH-2 benchmark suite.
The average across all the applications clearly reveals that the hy-
brid method is the best among all techniques. Another obvious
trend from the graph is that the leakage energy savings increase
with increased cache size. This is because for a given data working
set, the larger the cache, the higher likelihood of decayinga line.
In overall, the hybrid scheme saves from 19% to as much as 45%
of leakage energy consumption of an L2.

5.2 Multicore Processors Analysis
Now we show the energy results for multicore processors in Fig-

ure 8. Using the same metric, we compare the leakage energy sav-
ings for each of the three techniques,Decay, Virtual Exclusion and
Hybrid in each figure. Figure 8(a) shows the savings for differ-
ent SPLASH-2 benchmark programs for a 2-way multicore system
with a 16KB L1 data and instruction cache in each processor and a
256KB L2 cache shared by the two processor cores. We can see that
the leakage energy savings highly depend on the benchmark char-
acteristics. Similar to the observations made in the SMP analysis,
we find that the Cache Decay technique sometimes led to energy
loss for more DRAM accesses. The Virtual Exclusion technique
provides around 10% savings across all the benchmark programs.
The hybrid technique obtains the best savings of L2 leakage energy,
up to 52% in Radix. Neither the Virtual Exclusion nor the Hybrid
technique ever shows any negative savings results.

We further studied the leakage energy savings for a 4- and 8-core
system using SPLASH-2. The results in Figure 8(b) and Figure8(c)
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(a) 2-way Multicore Processor
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(b) 4-way Multicore Processor
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(c) 8-way Multicore Processor

Figure 8: Leakage Energy Reduction for Multicore Processors
(256KB L2, Baseline: Drowsy L2 Cache)
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Figure 9: Leakage Energy Reduction for Multicore Systems
(SPECint2000: 256KB and 512KB L2)

demonstrated similar trends to a 2-core system. In fact, as the num-
ber of processor cores increases in a multicore system, the rela-
tive leakage power savings using the hybrid scheme also increases
compared to the decay scheme. This is because as the number of
processors increases, the occupancy and activity in the L2 by dif-
ferent workloads also increases. This reduces the opportunity for
the generic decay scheme to decay lines.

Figure 9 shows leakage energy savings for systems where dif-
ferent SPEC benchmark programs run on different processor cores.
The purpose of this experiment is aimed to study the energy im-
pact for heterogeneous applications running on a multicoresystem,
a more realistic scenario for multiple independent single-threaded
applications are concurrently executing. Note that, theseapplica-
tions have their respective address spaces. The combinations of
SPEC2000int programs for different cores on a 2-, 4- and 8-core
system are detailed in Table 2. As mentioned earlier, we subset
the results simply because some SPECint programs have not been
successfully ported to the M5 simulator yet. We observe thatthe
hybrid scheme provides the best average savings (9%) for allthe
benchmark programs and configurations we simulated. Unlikethe
decay scheme, neither the Virtual Exclusion nor the Hybrid scheme
ever consumes more energy (i.e. negative savings) than the base-
line. As the number of processor cores keeps increasing in future
generations of multicore processors, our scheme will become more
effective in addressing the leakage issues.

5.3 Performance Impact
Compared to the baseline MP system with drowsy L2 caches,

the performance of our Virtual Exclusion will mostly be on par.
Note that during a snoop hit, the baseline system requires extra cy-
cles to wake up the drowsy lines. On the other hand, the Virtual
Exclusion needs to perform an L1 lookup for retrieving the most
up-to-date data if the snoop-hit line in the L2 is turned off.In
other words, both schemes suffer similar performance overheads.
According to our simulation results, the performance differences
between our scheme and the baseline are within the noise range
(below 0.00001%) — almost negligible. Therefore, we do not re-
port the performance results in this paper.

6. CONCLUSIONS
Multiprocessor or multicore systems are the current designtrend

in all processor market segments. All these designs use multiple
levels of large on-chip caches, in which leakage control in caches
will become highly critical for several looming issues — power
management, thermal control, and circuit reliability. However, ex-
isting leakage energy saving techniques in multiprocessorsystems
are limited in scope because cache coherency maintenance for cor-
rectness is often neglected in these previously proposed low-power

architectural designs. In this paper we present a new, low overhead
architectural technique called Virtual Exclusion to save leakage en-
ergy in higher level caches that simultaneously provides guaranteed
Multi-Level Inclusion property for correct operations of cache co-
herence protocols and saves leakage energy more effectively. Our
technique shows that a significant leakage energy savings ofup to
46% in an 8-processor SMP and 35% for an 8-way multicore archi-
tecture can be achieved. We envision that such a practical, easy-to-
implement technique will be very useful in saving leakage energy
for the cache-coherent multicore, multiprocessor systems.
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