Virtual Exclusion: An Architectural Approach to Reducing
Leakage Energy in Caches for Multiprocessor Systems

Mrinmoy Ghosh

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

mrinmoy@ece.gatech.edu

Abstract

This paper proposedirtual Exclusion, an architectural technique
to reduce leakage energy in the L2 caches for cache-cohargnt
tiprocessor systems. This technique leverages two prslyiquio-
posed circuits techniques -gated VVdd anddrowsy cache, and pro-
poses a low cost, easily implementable scheme for cachereoh
multiprocessor systems. The Virtual Exclusion schemesskak-
age energy by keeping the data portion of repetitive caatesli
off in the large higher level caches while still manages to nadint
Multi-Level Inclusion, an essential property for an effitiémple-
mentation of conventional cache coherence protocols. Bioéx
ing the existing state information in the snoop-based cacher-
ence protocol, there is almost no extra hardware overhesatias
ated with our scheme. In our experiments, the SPLASH-2 multi
processor benchmark suite was correctly executed undaretie
Virtual Exclusion policy and showed an up to 72% savings akie
age energy (46% for SMP and 35% for multicore in L2 on average)
over a baseline drowsy L2 cache.

1. INTRODUCTION

Owing to the continuing downscaling of CMOS technology, the
threshold voltages have become lower and the gate oxidegetre
ting thinner, both resulting in a significant increase irkbege power.

For example, a 90nm Pentium 4 processor consumes 110 W, and

roughly 40% of it is leakage power[17]. Meanwhile, with taoh

ogy scaling, the capacity of single-chip processors hasesed
one billion transistors. To consume such an immense amdunt o
transistors, processor architects tend to allocate mareecspace
and deepen the level of cache hierarchy. While these cadmes c
stitute a major portion of a processor’s real estate, theyakso the
least active components and dominate the leakage powerggpation
other architectural modules.
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supply and ground voltage levels to bias the transistorsdease
their effective threshold voltage. It reduces leakagessurdramat-
ically while preserving transistor state in a lower suppijtage,
i.e. drowsy mode. Memory cells, however, have to incur a kmal
performance penalty for waking up the drowsy cells. Flautte
al. [8] proposed an integrated architectural and circuit tegmm
called drowsy cache that implements a simple circuit to dyina
cally choose between two different supply voltage mode$eiak-
age reduction. They analyzed different architectural qiesi for
turning L1 lines into drowsy mode. They also showed that they
can achieve good leakage power reduction by simply keepiag t
data portion of all the L2 lines in drowsy mode. A specific data
line is reinstated to a normal, high-power mode, only wheis it
re-accessed with some activation penalty. Since an L2 dadkles
tens of cycles to access, adding an extra cycle or two for wake
will be insignificant to the overall performance. All priorchitec-
tural techniques of using Gated-Vdd ignored the impligatiand
correctness issues of maintaining Multi-Level Inclusi®i() [5]
and cache coherence, voiding their applicability. Swiighdff an
L2 cache line while keeping the same line in the L1 active doul
either violate the MLI property or complicate the snoopingatm-
anism. With the industry making a paradigm shift to multeor
MPSoC, having a leakage power saving policy for cache-astter
shared-memory MP systems is imperative.

In this paper we propose a simple, low cost, viable architett
technique calledfrtual Exclusion to reduce leakage energy con-
sumption in the L2 caches. This technique aggressivelycesiu
leakage energy in the L2 or higher level caches while maintai
ing Multi-Level Inclusion property and cache coherenceusiame-
ously among multiple processors. Virtual Exclusion is aebd by
turning off repetitive but infrequently accessed cachediim the
higher level caches, given locality is already present altwer
level L1. For maintaining Multi-Level Inclusion, small midida-

There have been a large number of architectural and circuits tions to the MOESI snooping bus coherence protocol are jgexpo

techniques proposed to reduce leakage power in cachesllRbwe
al. [16, 20] shows that the leakage current can be substant&lly
duced by employing sleep transistors to gate off the supptage
when the corresponding logic blocks are not in uSaeche Decay
was subsequently proposed in [9] to exploit this circuihteque
in the L1 cache by using simple counters to turn off cacheslifie
they are unlikely to be re-accessed. Although it mentiongalica-
tions of applying the decay scheme in large, higher levehesgit
provided no further in-depth analysis, in particular, frime cache
coherence standpoint, a correctness issue for implengeatnul-
tiprocessor (MP) system. One major drawback of the cachaydec
policy lies in the performance and power trade-offs of theraex
misses induced due to the switch-off of decayed lines, wiaiatls
to additional accesses to the DRAM. This energy overheazhoft
times outweighs the leakage savings from the techniqui. itse
Another circuit technique for leakage reduction is usirgABC-
MT-CMOS memory cell [15]. This circuit technique uses diéfet

to maintain correctness of the protocol when power saviatufe

is enabled. It does not need any additional hardware supfioet
than the counters for switching off higher-level (e.g. L2kke
lines along with keeping the rest of the lines in the drowsest
Additionally, Virtual Exclusion reduces the extra misseani the

L2 cache that are introduced by the original cache decaynsehe
thereby reducing both the performance penalty and dynaneigg
consumption incurred by DRAM memory accesses. This ensures
that the leakage energy savings is not offset by the muctedarg
energy consumption of DRAM accesses. In addition, Virtual E
clusion can be integrated with a conventional cache dedagnse

to obtain more leakage energy reduction. In this work, we pro
vide a comprehensive analysis of the leakage energy redufcir

a functioning implementation of a cache coherent multipssor
system based on Virtual Exclusion technique. The coninbstof
our paper are summarized as follows.



e We provide a viable, low-overhead solution for maintaining
Multi-Level Inclusion and coherence for MP systems in the
context of saving leakage energy.

e The technique needs only minor changes to traditional snoop
based cache protocols, e.g. MOESI.

e \We apply our techniques to two MP architectures: SMP and
the emerging multicore processors, and demonstrate tlamadv
tages.

The rest of this paper is organized as follows. Section 2uees
Multi-Level Inclusion. Section 3 proposes Virtual Exclosiand its
integration with a conventional MOESI protocol for leakammver
reduction. Section 4 explains our simulation methodolo§gc-
tion 5 provides a detailed leakage power analysis and 3$eé6tio
concludes.

2. MULTI-LEVEL INCLUSION AND CACHE

COHERENCE

In this section we overview the Multi-Level Inclusion prope
and describe the architectural policy changes requireddeing a
leakage power management policies in the higher level cgeche
L2 or L3) while maintaining multi-level cache inclusion acdher-
ence in a multiprocessor system.

2.1 Multi-Level Inclusion

A multi-level cache hierarchy consists of a number of lew#ls
caches between the CPU and the main memory, with the lowar lev
caches being closer to the CPU. Multi-Level Inclusion (Mlgjo-
posed by Baer and Wang in [5], is a property in a cache hieyarch
which requires that if a cache line is present in a lower leaeghe
(e.g. L1), it should also be present in all the higher levelg.(L2
and beyond). MLI is an important property for facilitating effi-
cient implementation of cache coherence. Using this ptgpbe
higher level cache effectively shields the lower level @a@tom
1/0 and the snooping bus. Without MLI, the lower-level cazhe
will encounter a large number of queries from the snooping bu
This could lead to substantial performance degradationtaltiee
limited number of ports in small, highly accessed L1 caches.

The baseline cache hierarchy we use to demonstrate MLIsn thi
paper contains multiple cores, each with two-level cacloesnou-
nicating via a snooping bus. Each processor features a $rhall
data cache, backed by a larger L2 cache, which is connecteé to
memory through the snooping bus. MOESI protocol is employed
in this work to maintain cache coherence across processes.co

The detailed algorithm and architectural support for naiimng
inclusion in such a cache architecture is detailed in [5k $&cond
level cache needs to have an inclusion bit for every cacheettn
indicate whether the line is at the previous level. The feltg are
the cache policy changes required to maintain MLI.

e For any line-fillin the L1 cache, the L2 cache sets the incliasi
() bit for the corresponding line.

e For all evictions (Clean and Dirty) in the L1 cache, the line

Drowsy

|
o

Vdd(1V)|
VddlowL‘J

(0.3v) ?

Drowsy

BL Bl

WL

hated Vdd Control

Figure 1: SRAM cell with both Gated-Vdd and DVS control

and can affect performance due to cache contention. Théeis t
reason why a snooping port is typically dedicated to cacBes [
18]. However, these enhancements are required for guaiagte
the correctness of cache coherency protocol and hencesanmed

to be part of the baseline cache hierarchy in our work.

2.2 Leakage Energy Reduction Schemes for
Coherent Caches

In a multi-level cache hierarchy, leakage energy reducairemes
are more appealing and profitable for higher level cachesdieeral
reasons. One reason is that higher level caches are mueh leg
ing most of the on-chip transistors, thereby consuming reak-
age power that makes them good candidates for leakage pewer r
duction. Moreover, given the high hit rates of the L1 cache,
or higher level caches are not frequently accessed, suggekat
they can stay idle for long periods of time. However, clagsiwer
saving schemes in caches [4] and more recent leakage maeagem
techniques like [14] do not consider the fact that a cache beay
part of a multiprocessor system. Thus some assumptionsass th
are true in a uniprocessor system, like a low enough L2 Cache a
tivity so that a way can be completely switched off, are noétin
systems where the cache is shared by multiple processors.

Hu et al. [9] discussed briefly the effect of applying their policy
on a cache-coherent multiprocessor system. Note that gielér
sign priority of applying leakage power schemes to suchesystis
correctness. For their cache decay technique, even if higher level
cache lines can be turned off, it is imperative that the tagkthe
state of a turned off line must be kept active to maintain Mhdi a
to shield the lower level caches (e.g. L1) from snoopindfitraf
Another issue not addressed and evaluated in their worleipah
tential yet serious performance degradation and additipoaer
consumption by extra misses going to main memory due to the L2
decayed lines.

The drowsy cache [8] does not suffer from the correctness or
MLI issues as it keeps the entire state in drowsy state. AR,suc
the drowsy cache will not introduce additional misses astuhe

address is given to the L2 cache and the L2 cache resets the Idecay scheme. However, the issue is the increase in theyai@n

bit of the corresponding line.

e Allinvalidation requests for cache lines in the snooping ate
propagated from the L2 cache to the L1. Both the L2 line and
the L1 line are invalidated, ensuing necessary writebaoks f
dirty lines.

e For any write to a line at L1, the line is also marked dirty and
written to the L2 cache and the L2 cache sends invalidation
requests to the bus.

Each of the aforementioned changes to the protocol memntione

waking up a drowsy cache line. The performance degradatien d
to this is expected to be negligible since the L2 latency pscaily

in the order of tens of cycles. Nonetheless, the leakage pssve
ings by using a drowsy cache is expected to be lower than teca
decay scheme as all the drowsy lines still consume somedeaka
power. In this work we assume a cache line circuitry whereave ¢
control the Vdd reaching the circuit as in [8] as well as gdtéhe
supply voltage as shown in [16]. The schematic of such an SRAM
cell is shown in Figure 1. Our proposed architecture teahmigill
exploit this circuit to reduce leakage energy in caches. &euds

is an overhead in terms of cache bandwidth. They consumerpowe this technique in the next section.



3. APPLYING VIRTUAL EXCLUSION eviction policy in the caches, some minor changes in theeach

In this section we explain why cache decay fails to work witha ~ coherence protocol are also needed to maintain data cemsyst
MLI environment. We then describe the concept of Virtual lixc ~ First, any remote request for a cache line with an local Lzahd
sion and explain how it can be used to save leakage energflykin its associated | bit set will cause the L2 to pass the reqagbketL1
we apply the Virtual Exclusion concept to cache decay anthexp ~ cache. This is shown in Figure 3(a). Second, when aline i the
how can it help and improve cache performance over simpleecac ~ cache is being written, the address is provided to the L2ecémh

decay and still saves more leakage energy. marking the same line adirty without changing any other state.
Meanwhile, the L2 also needs to broadcast an invalidatignasi
3.1 Generic Virtual Exclusion Policy for the address on the snooping bus. These operations ase ill

trated in Figure 3(b). In this way, the states of the sameifirtee
L1 and L2 are kept consistent.

For the scenario depicted in Figure 3(a), considering a temo
request in the MOESI protocol, our policy will increase tatg if
the tag of aline is present in the L2 cache and its | bitis sedrdler
to maintain correctness, we need a slight change in the qobto
handle this special case. If the requested line has its kehitlsen
the only correct copy of the cache line must be present in the L
Now any remote request pertaining to the line needs the difet
supplied to the bus. This can be done in two ways dependinigeon t
cache architecture. If the L1 cache has a direct path to thetien
the data may be directly supplied by bypassing the L2. Otiserw
the data may be written back to the L2 cache, which in turnesrit
it to the bus. In our simulations, we assume that the line ai¢ed
be written to L2 and then to the bus.

While discussing Virtual Exclusion we should consider thie s
uation where a line being replaced from the L1 Cache hasdjrea
been replaced from the L2 Cache. Given the basis of our assump
tions of an inclusive cache hierarchy, this situation stauver
take place. This is because for an inclusive cache the linds w
their | bits set will not take part in cache replacement andcke
will never be replaced while the line is in the L1.

Itis noteworthy that apart from keeping the L1 lines intuéned
off, we have other opportunities #G;; gate off a few more cache
lines. One obvious candidate for turn-off are the invalitef. A
line may become invalid if it is not being allocated or if ithieen
invalidated by remote snooping activity. These lines,udgig the
tag arrays and data portion, can be safely turned off withrautr-
ring any performance loss. Once turned off, they will be é&arn
back when a cache miss to the same locations occurs. Sirgce thi
event involves an access to either main memory or remoteesach
it could take some hundreds of cycles or more. Thus, an additi
delay of a few cycles to turn a line on will incur minute impact
performance.

The drowsy cache paper [8] shows that for L2 or higher level
caches the best and complexity-effective architecturatesgy for
leakage power control is to keep them in drowsy mode. A specifi
data line is activated, or woken up only when it is access@teS
the access latency for L2 caches is large, keeping the wiacleec
drowsy would not incur a large performance penalty as itqassts
one or two cycles to the L2 access latency. Our entire L2 cache
is initially assumed to be in the drowsy mode before the ¥irtu
Exclusion algorithm is applied.

The Virtual Exclusion scheme is added on top of the drowsy
cache scheme to allow more data lines to be turned off in tbleeca
hierarchy for saving more leakage energy. To make drowsyehnig
level caches work with a cache-coherent MP system, it is itapb
to note that the tag arrays of these higher level cached @.z our
example) must be kepn all the time for supporting a functional
cache coherence protocol. The schematic of a cache higrasch
ing Virtual Exclusion is depicted in Figure 2. Each entryhie fTag
RAM of the L2 cache contains a physical address Tag (T), alVali
bit (V), a Dirty bit (D), an an Inclusion (l) bit. The state dfe | bit
indicates the presence of a line in the L1 so as to determim¢heh
the data portion of the line in the L2 should be kept on in dsows
state or be Vdd-gated off. The first simple change for theudirt
Exclusion scheme is the following. Whenever there is a filhe-
into the L1 cache due to an L1 miss, the same line in the L2 cache
(or the missed line brought back into the L2 from main memory)
will have its corresponding | bit set. This | bit preciselydicates
that the data is now present in the L1 cache as well. Substguen
the corresponding data portion of the line in the L2/g, gated
off immediately. This turn-off of the data lines in the L2 thae
present in the L1 gives our technique its name. We illustitzite
mechanism in Figure 2(a).

The L2 lines are turned back on under the following scenarios
Whenever a line is being displaced from the L1 due to a conflict
miss, in order to explicitly maintain MLI, the L1 will infornthe
L2 and forward the line to the L2 for every single L1 line eiact i ; _
regardless of whether the state of the evicted line is cleatirty. 3.2 scl:g.r(]:rl]:’eolll:z:leec:ly and Hybl’ld Virtual Exclu
Note that, since the Virtually Exclusive L2 cache does netltae
data portion of a line when the line is present in the L1. There . .
fore, for each eviction, the L1 cache always supplies théedc 3.2.1 Generic Cache DecayinL2
(un)modified data portion along with its address to the L2.otp The original cache decay scheme proposed in [9] does not ad-
such an eviction, the corresponding L2 cache line is turreakb  dress the correctness issue for a cache coherent multizarcsys-
on to drowsy state and the | bit is reset to zero simultaneously a tem where Multi-Level Inclusion property needs to be ergdic

depicted in Figure 2(b). Such eviction is completely off thiical The decay scheme turns off cache lines that are not used ferca s
path! Also, it takes place only when there is an L1 miss, thus is ified number of cycles based on the size of the decay counter em
unlikely to clobber L2 accesses and impact the performaiAce. ployed. Since data will be lost whéry, gating is applied, if a line
other potential scenario to have data lines in L2 in drowayesis is allowed to decay in a higher level cache when having a copy i
for architecture that support instructions that prefetatadnly into the lower level cache, it will violate the Multi-Level Incdion prop-

L2, e.g. prefetcht2 in Intel's SSE instruction set. This type of in-  erty and cause the cache coherency protocol to fail. Hererate fi
structions bring data from main memory into L2, but not in e discuss a minor change to the cache decay policy to enablg Mul
and the data will be kept in drowsy mode for saving leakagegsne  Level Inclusion.

until the processor makes requests for them. To maintain the Multi Level Inclusion when cache decay is ap-

In addition to the simple changes in the cache line fill and lin  plied, the tags of lines that have their | bit set need to beagdw
turned on even if the decay counter indicates that the limebea
LThe only overhead is an increase in the dynamic power consump decayed for not being used for cycfe3his policy potentially de-

tion. This extra dynamic power overhead is accounted fornas a
overhead component when calculating leakage power savings 2In our experiments, we always charge up the tag arrays to the
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creases the power savings compared to the originally peapds-
cay policy but is indispensable to preserve the requirerfegrthe
MLI and guarantees the correct functioning of the cohergmoe
tocol. Figure 4 shows the decaying mechanism. When a linests fi

brought into the L2 and L1, the corresponding L2 decay caunte

(DC) is reset to the maximum value, e.g., 4 millidras shown
in Figure 4(a). Similar to a normal decaying scheme, the R@st
down-counting also shown in Figure 4(a) when the corresipond
L2 line is idle. lllustrated in Figure 4(c), when there is anfiiwt
miss causing an eviction of the line, no matter it is cleanidyd
the L2 will keep down-counting. Typically, there is no actid
the line was not updated during its lifetime in the L1, othiseyit
needs to be written back to the L2 if it is dirty. Nonetheleks,DC
will be untouched in either scenarios. The DC will only beetes

back to the maximum value when there is a request that geserat

an L2 hit. Figure 4(c) shows such a case.

3.2.2 Hybrid Mirtual Exclusion Policy

Now we discuss how to further improve the energy efficiency of

the cache decay scheme using our Virtually Exclusive cantté-a
tecture. To exploit the advantages of both Cache Decay amlVi

normal, high supply voltage even for the invalid lines.

3The 4-million cycle decay interval for the L2 Cache has bewen ¢
sen using analysis of decay intervals done byeHal. in [9].

Exclusion schemes, we will be able to further reduce thedgek
energy consumption. We call our new schelhrid Virtual Ex-
clusion policy. There is a subtle caveat in the generic cache decay
scheme. The intuition behind cache decay is that due to teahpo
locality a line not being used for a long time is unlikely to ured

again any time soon. Based on the above, when applying decay

technique to higher level L2 cache, lines in L2 is likely tacdg
when L1 is effective and exhibits high temporal locality. diibn-
ally, to maintain Multi-Level Exclusion in such scenaritise tag
arrays of the L2 cannot be completely gated off for snoopéa; r
sons even if the decay counter is already counted down to iero
other words, so long as the | bit in the L2 is set, decaying (€;g
gate-off) will be disabled for the L2 address tags. Accagdimour
Virtual Exclusion mechanism discussed in Section 3.1, véhkme
is evicted from the L1, the | bit of the same line in the L2 wid b
reset and the line from the L1 will be copied to its data paortio
Upon this point, the decay counter will start counting down.

It is noteworthy to point out that the L2 lines with | bit set dot
decay as shown in Figure 5(a), they only start decaying whe t
bitis reset in Figure 5(b). Namely, the L2 lines decaying/atarts
after they are evicted from the L1, the difference betweeritbrid
and the decay scheme in the previous section. Note thatjdra
hit, similar to the generic decay scheme, the decay couritebev
reset back to the maximum value. From the above discusgien, t
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decay counter, when starting to count, will always (rejstam
the maximum value because (1) the decaying only starts after
eviction due to replacement; (2) any prior L1 line fill, eithrét in
L2 or miss the first time, must have the decay counter reséttoac
the maximum value.

Having our Virtual Exclusion policy applied to the Cache Bgc
has the following advantages.

e It reduces leakage consumption by turning off data portibn o
lines in the L2 that are in the L1. It does not wait until the
line start to decay. In prior work, there was unnecessarylea
age current consumption during the 4 million cycles the geca
counter is counting down.

e Forinclusive lines, the decay counters start counting wlgn
the corresponding L1 line is evicted. This gives us a decay-
ing victim cache, reducing the possibility of decay-indii¢

extra overhead of decay counters that are also present oritfie
nal cache decay scheme. Another notable feature of ouritgahn
is that we do not inherently change the MOESI protocol in g&rm
of state changes to a cache line or signals transmitted &nibepy
bus. This ensures that correctness of the protocol and luehes-
ence between the SMP caches.

3.3 Virtual Exclusion in Multicore Processors

In addition to a traditional multiprocessor system, theaf Ex-
clusion technique can also be applied to the emerging rouétiar-
chitectures. A modern multicore processor consists of anaurof
processors sharing a large L2 cache. This L2 cache may béysimp
a single monolithic structure or may be non-uniformly disited
among processor cores with some type of interconnectiomankt
that guarantees coherency [7, 11, 10]. Similarly, in a rooaig ar-

misses. Reducing a few L2 Cache misses is extremely impor- chjtecture, the Inclusion bit will be set if any of the L1 casthas
tant, because a L2 cache miss causes a memory access, Which ¢opy of the line. The concept of Virtual Exclusion is the sas
in turn consumes more energy in the DRAM and suffer from jt is in the case of an SMP architecture explained earliey;lare

additional latency of some hundreds of cycles.

Our technique is extremely simple and it only uses the sitde b
the dirty bit and the inclusion bit to determine whether tatsiva
cache line off. Since these state bits are already presém tache
for the purpose of maintaining coherence and inclusionothlg
major area overhead will be to maintain different voltagev@o
supplies and the simple cache line driver circuitry. Theral$o an

with its “I” bit set will have its data array part off. SincedHI” bit
being set guarantees that the line is present in some L1 Cache
other cache requesting the data may get it through a caetaete
transfer. As explained previously, we also apply the decagme
on top of our Virtual Exclusion scheme to obtain energy bésefi
In multicore type structures, a large number of cores caresha
L2 cache. Therefore, more L2 lines will be inclusive in seder



distinct L1 caches, thus a greater leakage saving opptyttor
Virtual Exclusion — leaving a larger number of L2 data pansdo

be V4 gated off. Also, due to a larger number of processor cores,
the number of accesses to the L2 cache will be greater, tok; ma
ing decaying lines by a conventional cache decay mechanisra m
difficult. Again, we do not change the inherent snooping busp

col to implement our technique. Our results show that usezag
with Virtual Exclusion in a multicore lead to up to 72% sawirig

L2 cache leakage power over a baseline drowsy L2 Cache.

4. EVALUATION METHODOLOGY

Our experiments were based on the M5 simulator system devel-
oped by the University of Michigan [6]. M5 is capable of perfo
ing a system level simulation for a snooping bus multipreoes
system. Our baseline architectural parameters along \sitiows
cache sizes are listed in Table 1. The processor is chosea to b
in-order to be in tune with the some latest trend in Multicpre-
cessors that have multiple cores of simple in-order praressn
a chip with an on-chip L2 Cache. The aim of these Multicore ar-
chitectures is to increase throughput through TLP. An exarigp
the Ultra SPARC T1 (Niagara) processor that contains 8 deor
processor cores on the die [2]. The power estimation toadl use
for estimating leakage power is based on ECacti [12]. We inte
grated the ECacti leakage power model into the M5 simulator t
analyze both dynamic and leakage power consumptions iresach
The DRAM access energy is estimated from the data sheetsmf co
mercial DRAMs offered by Micron [1].A typical write to a 25681
DRAM costs 9.72 nJ of energy and a typical read uses 11.52nJ.
All the simulations are performed on the SPLASH-2 benchmark

rchitectural Parameters
In-order, stalls on cache misses

16KB 2-way 64-byte line

16KB 2-way 64-byte line

1 cycle

256KB 8-way and 512KB 8-way

10 cycles Normal, 12 cycles Drowsy
200 cycles

Table 1: A
Processor Core

L1 D Cache Size
L1 I Cache Size
L1 Access Time
L2 Cache Sizes
L2 Access Time
Memory Access Time

Table 2: Spec2000 Benchmark used for simulations
2-way Multicore | bzip andgzip
4-way Multicore | bzip, gzip, crafty andgap
8-way Multicore | 2 copies each dfzip, gzip,
crafty andgap

5. EXPERIMENTAL RESULTS ANALYSIS

In this section we evaluate our techniques by running SPLARSH
benchmarks for both SMP and multicore architectures. Allitts
shown are relative savings in the leakage energy over aibasel
— drowsy cache. All savings numbers take into account the en-
ergy consumption overhead. The overhead is different féeréint
cache policies, this discussion encompasses all overluesdid-
ered in our analysis. We consider the overhead for the extra c
cuitry required for maintaining Gateldz; scheme, the energy con-
sumed for the extra misses by DRAM memory accesses and finally

suite [19] and SPEC CPU2000 Integer benchmark programs. To for Virtual Exclusion, the overhead of bringing a line fron bn

evaluate the dynamic cost of using the same counters in [@] an
the modified bitline and wordline driver circuitry in [8, Qe use
the energy overhead numbers supplied in these papers ded sca
down to 70nm technology using conventional technologyisgal
rules [13].

The simulations were carried out on two types of architestur
multicore processors and SMPs. In the multicore architectue
simulate using six configurations. These configurationsisbof
an L2 cache either 256KB or 512KB, being shared by 2, 4 and 8
processor cores, respectively. For the SMP architectah pro-
cessor contains their own L1 and L2 caches. We simulate ineab
two L2 cache sizes, with 2, 4, and 8 processors running onragha
bus. We implement and evaluate three distinct energy manegfe
policies for the L2 caches. The policies are:

e Decay Cache Decay policy implemented to work for Multi-
Level Inclusion. The decaying policy was detailed in Set8®.1.

e Virtual Exclusion: Generic Virtual Exclusion policy described
in Section 3.1 for the L2 cache.

e Hybrid : Virtual Exclusion implemented on top of the cache
decay. The policy was discussed in Section 3.2.2 with iidust
tion.

For all the above configurations we ran the SPLASH-2 bench-
mark to completion. We also simulated a set of simulationsife
multicore architecture that involves running heterogeiseSPEC
benchmark programs on different processor cores in a routic
system. These simulations were aimed to analyze the efféeto
erogeneous applications running on multiple cores thatagomo
data sharing. All the SPEC2000 INT benchmark programs were
run for 1 billion instructions. The exact SPEC2000int pegs
used in our simulations are given in Table 2. The reason waatid
show all the results is that not all the SPEC2000int prograere
successfully ported to M5 simulation framework due to vasics-
sues such as unimplemented system calls.

a bus read request, and also writing clean values from L1 to L2
during evictions.

5.1 SMP Analysis

Figure 6 illustrates the energy savings for a dual proceSs#P
system and each processor has a 256KB L2 cache. The perentag
reduction calculation is based on the baseline leakaggeidre
denominator). The numerator considers both the leakaggyehg
each scheme and the dynamic energy overhead caused byigstra t
to the DRAM memory. The rationale is to evaluate how much en-
ergy can be saved with these architectural leakage-rexfutgch-
nigues. We observe that in almost all the benchmark progtaens
hybrid scheme shows the best saving results. The reasoatis th
the cache decay scheme incurs a lot of overhead for the eftra L

‘l Decay O Virtual Ex B Hybrid ‘

55%

45%

35%

25% -

15% -

5%

-5%

Barnes
Cholesky
FFT

FMM
LUContig
LUNoncontig
OceanContig
Radix
Raytrace
WaterSpatial
Average|

OceanNoncont
WaterNSquared

Figure 6: Leakage Energy Reduction for 2-way SMP (256KB
L2, Baseline: Drowsy L2 Cache)



Figure 7: Average Leakage Energy Reduction over Drowsy 5% 1
Cache for Different SMP Configurations
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misses that consume additional DRAM memory energy. This-ove
head is effectively eliminated by the hybrid scheme becdhse
hybrid scheme transforms a portion of the L2 cache into aydeca
ing victim cache. Also note that the decay scheme for some pro
grams failed to save energy. This happens for the same reason
the large memory access overheads caused by L2 misses.n®ur si

(a) 2-way Multicore Processor

ple Virtual Exclusion scheme does not suffer from such ovads. ‘ W Decay O Virtual Exclusion B Hybrid ‘
But since the L1 cache size is a small percentage of the LRjalir 65%

Exclusion alone gives an average of 8% leakage energy saving 5556 |

By combining with decay in our hybrid scheme, the averagegav

is increased to 20%. Also there is never a case where thechybri 45% 1

scheme actually encounters energy loss. For FFT and LuigCont 3506 |

from SPLASH-2, the pure decay scheme does better than the hy-

brid scheme. This happens because the Virtual Exclusioenseh 25% 1

turns “on” the lines that are evicted from the L1 cache. On the 15% |

other hand, in the decay scheme, the line might have beeyef:ca
in the L2 already, therefore, some benchmark programs sletw b
ter energy savings for the decay scheme. However, as sea@n fro o L
the results, this policy of having a decaying victim cachessful E
in reducing L2 misses and its ensuing memory access ovestiead s
the replacement is transient.

Figure 7 plots the average L2 leakage energy savings for 2, 4,
and 8 processor systems for the entire SPLASH-2 benchmiek su
The average across all the applications clearly reveatgtipehy-
brid method is the best among all techniques. Another olsviou
trend from the graph is that the leakage energy savingsdeere
with increased cache size. This is because for a given datango | m Decay O Virtual Exclusion B Hybrid
set, the larger the cache, the higher likelihood of decawitige.

In overall, the hybrid scheme saves from 19% to as much as 45%
of leakage energy consumption of an L2. 65%

5%

Cholesky
LUContig
LUNoncontig
OceanContig
WaterSpatial
Average

QOceanNoncont
WaterNSquared

(b) 4-way Multicore Processor

75%

55%

5.2 Multicore Processors Analysis
Now we show the energy results for multicore processorsgn Fi

45%

ure 8. Using the same metric, we compare the leakage energy sa 35% 1
ings for each of the three techniqu&scay, Virtual Exclusion and 250
Hybrid in each figure. Figure 8(a) shows the savings for differ-

ent SPLASH-2 benchmark programs for a 2-way multicore syste 15% 1
with a 16KB L1 data and instruction cache in each processaan 59 |

256KB L2 cache shared by the two processor cores. We canatee th
the leakage energy savings highly depend on the benchmark ch
acteristics. Similar to the observations made in the SMRyaisa

we find that the Cache Decay technique sometimes led to energy
loss for more DRAM accesses. The Virtual Exclusion techaiqu
provides around 10% savings across all the benchmark prsgra

-5%

Barnes
Cholesky

FFT

FMM
LUContig
LUNoncontig
OceanContig
Radix
Raytrace
WaterSpatial
Average

QOceanNoncont
WaterNSquared

The hybrid technique obtains the best savings of L2 leakagrg, (c) 8-way Multicore Processor
up to 52% in Radix. Neither the Virtual Exclusion nor the Hgbr
technique ever shows any negative savings results. Figure 8: Leakage Energy Reduction for Multicore Processcs

We further studied the leakage energy savings for a 4- araé8-c (256KB L2, Baseline: Drowsy L2 Cache)
system using SPLASH-2. The results in Figure 8(b) and Fi§(ck '
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15%
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Figure 9: Leakage Energy Reduction for Multicore Systems
(SPECIint2000: 256KB and 512KB L2)

demonstrated similar trends to a 2-core system. In facheasum-
ber of processor cores increases in a multicore system ethe r
tive leakage power savings using the hybrid scheme alseases

compared to the decay scheme. This is because as the number off2]

processors increases, the occupancy and activity in theyldifb
ferent workloads also increases. This reduces the opptyrtiam
the generic decay scheme to decay lines.

Figure 9 shows leakage energy savings for systems where dif-

ferent SPEC benchmark programs run on different processesc
The purpose of this experiment is aimed to study the energy im
pact for heterogeneous applications running on a multispseem,

a more realistic scenario for multiple independent sirigleaded
applications are concurrently executing. Note that, tfagsg#ica-
tions have their respective address spaces. The combisatio
SPEC2000int programs for different cores on a 2-, 4- andr8-co
system are detailed in Table 2. As mentioned earlier, weetubs
the results simply because some SPECint programs have @t be
successfully ported to the M5 simulator yet. We observe tiat
hybrid scheme provides the best average savings (9%) fonell
benchmark programs and configurations we simulated. Utii&e
decay scheme, neither the Virtual Exclusion nor the Hylefiesne
ever consumes more energy (i.e. negative savings) tharage b
line. As the number of processor cores keeps increasingumefu
generations of multicore processors, our scheme will becoiore
effective in addressing the leakage issues.

5.3 Performance Impact

Compared to the baseline MP system with drowsy L2 caches, [15]

the performance of our Virtual Exclusion will mostly be onrpa
Note that during a snoop hit, the baseline system requirtea ey-
cles to wake up the drowsy lines. On the other hand, the Virtua
Exclusion needs to perform an L1 lookup for retrieving thesimo
up-to-date data if the snoop-hit line in the L2 is turned off
other words, both schemes suffer similar performance easth
According to our simulation results, the performance défees

between our scheme and the baseline are within the noise rang [18]

(below 0.00001%) — almost negligible. Therefore, we do et r
port the performance results in this paper.

6. CONCLUSIONS

Multiprocessor or multicore systems are the current desegmd
in all processor market segments. All these designs usepheult
levels of large on-chip caches, in which leakage controliches
will become highly critical for several looming issues — pw
management, thermal control, and circuit reliability. Hwer, ex-
isting leakage energy saving techniques in multiprocesgstems
are limited in scope because cache coherency maintenancerfo
rectness is often neglected in these previously proposegdaver

architectural designs. In this paper we present a new, l@haad
architectural technique called Virtual Exclusion to saeeddage en-
ergy in higher level caches that simultaneously providesanteed
Multi-Level Inclusion property for correct operations afahe co-
herence protocols and saves leakage energy more effgctat
technique shows that a significant leakage energy savingp tf
46% in an 8-processor SMP and 35% for an 8-way multicore archi
tecture can be achieved. We envision that such a practasy;®-
implement technique will be very useful in saving leakagergn

for the cache-coherent multicore, multiprocessor systems
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