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Abstract
The Katsevich image reconstruction algorithm is the first theoret-
ically exact cone beam image reconstruction algorithm for a he-
lical scanning path in computed tomography (CT). However, it
requires much more computation and memory than other CT al-
gorithms. Fortunately, there are many opportunities for coarse-
grained parallelism using multiple threads and fine-grained paral-
lelism using SIMD units that can be exploited by emerging multi-
core processors. In this paper, we implemented and optimized Kat-
sevich image reconstruction based on the previously proposed π-
interval method and cone beam cover method and parallelized them
using OpenMP API and SIMD instructions. We also exploited
symmetry in the backprojection stage. Our results show that recon-
structing a 1024× 1024× 1024 image using 5120 512× 128 pro-
jections on a dual-socket quad-core system took 23,798 seconds on
our baseline and 642 seconds on our final version, a more than 37
times speedup. Furthermore, by parallelizing the code with more
threads we found that the scalability is eventually hinged by the
limited front-side bus bandwidth.

1. INTRODUCTION
Computed tomography is a technique that attempts to reconstruct

the 3-D density of a volume by analyzing many 2-D projections of
that volume at different angles. A typical projection setup is shown
in Figure 1. Here, the volume of interest (VOI) consists of a cylin-
drical 3-D region of space. It is represented digitally on a computer
as a 3-D array of voxels (“volume elements”) containing the value
of the density at each small cubical region of the volume. Since
x-rays are typically used in practice to generate the projections, the
voxels actually hold the amount of x-ray attenuation, not the ma-
terial density. The x-rays originate at the projection source, travel
through the VOI, and hit a detector opposite the projection source.
Each projection is stored digitally on a computer as a 2-D array of
texels (“texture elements”) containing the total attenuation of each
ray through the VOI. The essential step to reconstruct the original
image is backprojection - by taking each projection and smearing
its values back over the VOI along the paths of the original x-rays.
The projections usually first undergo a filtering step using some
type of high-pass filter to correct for the frequency components lost
during backprojection. There exist a plethora of so called filtered-
backprojection (FBP) algorithms designed for various projection
scanning paths and beam types, all of which contain these two im-
portant steps, with varying degrees of quality and speed. Examples
of beam types are: cone beam rays that spread radially away from
a source point in 3-D, fan beam rays that spread radially away but
only lie in a single 2-D plane, and parallel beam rays that travel in
the same direction. Scanning paths are usually circular or helical.

The Katsevich image reconstruction algorithm, developed in 2002,
is the first theoretically exact cone beam image reconstruction algo-
rithm for helical scanning paths [6]. Helical scanning paths are im-
portant, because they allow the reconstruction of long objects such
as humans with greater resolution than circular scanning paths. A
helical scanning path usually has a shorter x-ray acquisition time
than does a series of circular scanning paths. The Katsevich algo-
rithm is of the FBP form, because the formula can be expressed as
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Figure 1: 2-D projection of a 3-D VOI

a backprojection of filtered projections. However, Katsevich recon-
struction requires more computation and memory than other FBP
algorithms such as circular FDK [2]. In addition to the filtering
and backprojection stage, the Katsevich reconstruction algorithm
also requires differentiation of the projections, remapping to and
back from filtering coordinates, calculation of π-intervals, special
weighting of the projection borders, as well as more projection
data. Like most FBP algorithms, the most time consuming stage
is backprojection.

Fortunately, there exist many opportunities for coarse-grained
data parallelism. For instance, the processing and backprojection of
one projection is independent from that of other projections. Sim-
ilarly, the backprojection of one region of the 3-D volume is in-
dependent of other regions. Multi-core processors can exploit this
coarse-grained data parallelism by assigning different projections
and/or different reconstruction regions to different threads running
on different cores. In addition, there exist many opportunities for
fine-grained data parallelism. The processing of neighboring texels
within a single projection are for the most part independent from
each other. Backprojection of neighboring voxels are also indepen-
dent of each other. These examples of fine-grained data parallelism
are ideal candidates for SIMDification. Further optimizations to re-
duce computations can be achieved by exploiting the symmetry of
the trigonometric functions used during backprojection. After a lit-
tle inspection, we determined that the backprojection calculations
for every π

2
projection contain redundancies and therefore can be

reused. By packing every π
2

projection together in a SIMD man-
ner, multiple projections can be backprojected concurrently after
calculating the backprojection coordinates only once.

In this paper, we exploited the parallelism in the Katsevich image
reconstruction algorithm and performed reconstruction on a real
multi-core platform. We first ported a Matlab-based open-source
code [9], based on what we refer to as the π-interval method, to C.
We implemented basic, well-known C optimizations and used In-
tel Integrated Performance Primitives (IPP), optimized with SIMD,
for projection filtering. We used OpenMP to generate multiple
threads to process different projections and different reconstruction
regions. We then implemented and optimized the cone beam cover
method [10] and parallelized it by processing different projections
with different threads. The cone beam cover method is essentially



a loop interchange of the π-interval method. This greatly improved
read and write memory locality and removed a significant amount
of computation from the inner loop - to the point that four loop iter-
ations could be unrolled and processed simultaneously using SIMD
instructions. We also used SIMD for differentiation and used the
Intel IPP for remapping to and back from filtering coordinates. Fi-
nally, we exploited the symmetry among each π

2
projection to per-

form SIMD backprojecting of four packed projections simultane-
ously.

2. RELATED WORK
The following papers discuss parallelization strategies for Kat-

sevich image reconstruction. Deng [1] parallelized the Katsevich
algorithm on a high performance cluster using the Message Passing
Interface (MPI). Projections were divided among different proces-
sor nodes for differentiation and filtering. Each node broadcasted
its processed projections to all other nodes when the filtering is
done. Each node is then assigned a different region of the volume
to backproject. Yang [10] proposed the cone beam cover method,
which removes the burden of using π-intervals to determine the
limits of integration and allows each projection to be fully utilized
when read into memory. This method was then parallelized on a
cluster by dividing up the projections among processors [11].

The following papers discuss SIMD optimizations for algorithms
other than Katsevich image reconstruction. Kachelrie [5] imple-
mented 2-D parallel beam backprojection and 3-D cone beam back-
projection for a circular scanning path on the Cell processor. The
local store memory management utilized the DMA to hide the mem-
ory latency of loading the next needed projection data while back-
projecting the current projection. SIMD was used to unroll the in-
ner loop four times and backproject four voxels simultaneously.
Hong [3] [4] used SIMD for 3-D PET image reconstruction to
exploit multiple symmetries existing in the backprojection stage.
Zeng [13] used SIMD and multiple-threads to exploit circular sym-
metries during backprojection of fan beam filtered backprojection.
Zeng’s method can handle cone beam algorithms, but only after
transforming the cone beam projections into fan beam projections.
Our method to exploit symmetry with SIMD was developed inde-
pendently of the above papers and differs in that our method works
for 3-D cone beam reconstruction with helical scanning paths.

3. KATSEVICH ALGORITHM OVERVIEW
Although the original paper by Katsevich [6] provides the math-

ematical proof, it does not give implementation details. The fol-
lowing summarizes the relevant implementation details for a flat
detector as provided by Wunderlich [9] and Noo [7].

3.1 A Flat Discrete Detector Implementation
The Katsevich algorithm uses a helical scanning path parameter-

ized by λ:

y(λ) = (Rcos(λ), Rsin(λ), P
λ

2π
)

where R is the radius of the helix, D = 2R, and P is the pitch
between two turns of the helix as shown in Figure 2. The cylindrical
VOI occupies all points for x2+y2 < r and Zmin < z < Zmax,
where r is the radius of the cylinder, r < R, and r/R is the projec-
tion field-of-view (FOV). Note that although a 3-D rectangular grid
of voxels is used to store the image, only the cylindrical volume
inscribed in the 3-D rectangle is actually reconstructed.

There are K = (nTurns)(nSourcesPerTurn) + 1 discrete
source projections, where nTurns is the number of turns of the
helix and nSourcesPerTurn is the number of projection sources
per turn. Since there are 2π radians in one turn of the helix, the dif-
ference in λ between adjacent projections is ∆λ = 2π

nSourcesPerTurn
.

Each discrete projection source λk (indexed by k = [0..K]) on the
scanning path produces cone beam rays that traverse radially away
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Cylindrical Volume of Interest f(x,y,z)
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Zmax

λHelical Scanning Path y(   )

Overscan

Overscan

Figure 2: Helical projection scanning path surrounding VOI
from the projection source through the VOI and hit a vertical flat
detector screen opposite the projection source. The intensity of a
ray is attenuated by the density of the matter it passes through, so
the total attenuation of a ray can be expressed as:

g(λ, θ) =

Z

∞

0

f(y(λ) + tθ)dt

where θ(λ, u, ω) is a vector representing the 3-D direction of the
ray originating at the projection source position y(λ) and striking
the detector at (u, ω). The discrete detector array contains an even
number of N columns (indexed by i = [−N

2
..N

2
− 1]) and M

rows (indexed by j = [−M
2
..M

2
− 1]). Each point of the discrete

detector g0[k, i, j] holds the value of the ray g(λk, θ(λk, ui, ωj))
originating from the discrete projection source λk. The difference
in u and ω between adjacent texels is ∆u and ∆ω, respectively.
The Katsevich algorithm can reconstruct the 3-D image f [x, y, z]
using the following steps:

3.1.1 Differentiation
The projections are first differentiated with respect to u, ω, and

λ. The derivative is computed using the chain rule. In discretized
coordinates, the partial derivatives are computed by calculating the
difference between adjacent texels in the i, j, and k directions
shown in Figure 3:

dλ = (g0[k + 1, i, j] − g0[k, i, j]

+ g0[k + 1, i, j + 1] − g0[k, i, j + 1]

+ g0[k + 1, i+ 1, j] − g0[k, i+ 1, j]

+ g0[k + 1, i+ 1, j + 1] − g0[k, i+ 1, j + 1])/(4∆λ)

du = (g0[k, i+ 1, j] − g0[k, i, j]

+ g0[k, i+ 1, j + 1] − g0[k, i, j + 1]

+ g0[k + 1, i+ 1, j] − g0[k + 1, i, j]

+ g0[k + 1, i+ 1, j + 1] − g0[k + 1, i, j + 1])/(4∆u)

dω = (g0[k, i, j + 1] − g0[k, i, j]

+ g0[k, i+ 1, j + 1] − g0[k, i+ 1, j]

+ g0[k + 1, i, j + 1] − g0[k + 1, i, j]

+ g0[k + 1, i+ 1, j + 1] − g0[k + 1, i+ 1, j])/(4∆ω)

g1[k, i, j] = dλ+
u2 +D2

D
du+

uω

D
dω
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Figure 3: Projection texels required to produce one differenti-
ated texel
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Figure 4: To filter a projection along the κ-lines, a projection is
remapped to filtering coordinates where 1-D convolution can be
performed and then remapped back to projection coordinates

The differentiated coordinates need to be length corrected since
the detector screen is flat, not curved:

g2[k, i, j] = g1[k, i, j]
D

√
u2 +D2 + ω2

3.1.2 Filtering
The differentiated projections are then filtered along the κ-lines

shown in Figure 4. A κ-line is formed by the intersection of a
κ-plane with the detector screen, and a κ-plane is any plane that in-
tersects the helix at three equally spaced points y(λ), y(λ+ψ), and
y(λ + 2ψ) for ψ ∈ (−π

2
, π

2
). There are L + 1 (where L is even)

discrete κ-lines ψl = l∆ψ (indexed by l = [−L/2..L/2]) and
separated by an amount ∆ψ = π+2arcsin(r/R)

L
. The projections

are first remapped from projection coordinates to filtering coordi-
nates using linear interpolation according to the remapping func-
tion ωκ(ui, ψl):

ωκ(ui, ψl) =
DP

2πR
(ψl +

ψl

tanψl

u

D
)

g3[k, i, l] = g2[k, i,
ωκ(ui, ψl)

∆ω
]

This remapping aligns the κ-lines on horizontally rows so that
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Figure 5: Illustration of a π-interval and the source points on
the edges of the π-interval

1-D convolution can be performed over adjacent memory locations
with the Hilbert transform kernel hH [i]:

g4[k, i, l] = g3[k, i, l] ? hH [i]

The filtered projections are then remapped back to the original
coordinates using linear interpolation using ψ̂(u, ω), the inverse of
ωκ(u, ψ):

g5[k, i, j] = g4[k, i,
ψ̂(ui, ωj)

∆ψ
]

3.1.3 Backprojection
Finally, these filtered projections are backprojection to recon-

struct a particular voxel [x, y, z]:

f [x, y, z] = −
1

2π

λo
X

k=λi

g5[k, u(λk,x,y)
∆u

, ω(λk,x,y,z)
∆ω

]

v(λ, x, y)

where λo and λi represent the extremities of the unique π-interval
containing [x, y, z]. A π-interval is any segment that intersects the
helix at two points within one turn of the helix as shown in Figure 5.
The π-intervals are calculated numerically according to [12]. The
backprojection coordinates (u, ω) for each voxel [x, y, z] are:

v(λ, x, y) = R− xcosλ− ysinλ
u(λ, x, y) = D

v(λ,x,y)
(−xsinλ+ ycosλ)

ω(λ, x, y, z) = D
v(λ,x,y)

(z − P
2π
λ)

These coordinates must be converted to integer values to cal-
culate the memory location in the projection data. The fractional
component is computed to perform linear interpolation:

iu = int(u/∆u)
iω = int(ω/∆ω)
uFrac = u/∆u− float(iu)
ωFrac = ω/∆ω − float(iω)

The four nearest neighbors to (u, ω) are loaded and weighted
according to their fractional parts, shown in Figure 6:

g5interpolated(λ, u, ω) =

g5[k, iu, iω](1 − uFrac)(1 − ωFrac)

+ g5[k, iu+ 1, iω](uFrac)(1 − ωFrac)

+ g5[k, iu, iω + 1](1 − uFrac)(ωFrac)

+ g5[k, iu+ 1, iω + 1](uFrac)(ωFrac)
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Figure 6: Linear interpolation of 4 neighboring texels
Two different methods for iterating during the backprojection

stage are the π-interval method and the cone beam cover method.

3.2 π-Interval Method
The π-interval method refers to the method described by Wun-

derlich [9] which iterates over all filtered projections g5[k, i, j to
backproject a single voxel [x, y, z].Each projection belonging to the
corresponding π-interval adds its contribution to the reconstructed
voxel. This contribution consists of the interpolated value of the
projection at the location of the backprojected voxel coordinates,
(u, ω). To improve the reconstructed image accuracy, it is neces-
sary to include the adjacent projections just outside of the π-interval
and use the trapezoidal rule to smooth the edges of the π-interval
according to the following weighting:

(1+din)2

2
if (λi − ∆λ) < λ < λi

1
2

+ din − d2

in

2
if λi < λ < (λi + ∆λ)

1 if (λi + ∆λ) < λ < (λo − ∆λ)
1
2

+ dout −
d2

out

2
if (λo − ∆λ) < λ < λo

(1+din)2

2
if λo < λ < (λo + ∆λ)

where din = λ−λi

∆λ
and dout = λo−λ

∆λ
.

3.3 Cone Beam Cover Method
The cone beam cover method avoids the need to calculate the

π-intervals. Yang [10] proved that a point lies in the cone beam
cover of a projection if and only if that projection belongs to the
π-interval of that point. The cone beam cover of a projection is de-
fined to be the set of all points that, when projected onto the detec-
tor, lie within the Tam-Danielsson window. The Tam-Danielsson
window consists of all the projection points (u, ω) necessary to
perform exact reconstruction [8]. The top and bottom of the Tam-
Danielsson window are ωtop(u) and ωbottom(u).

The differentiation and filtering stages are identical to those of
the π-interval method. However, immediately after a projection
is filtered, it is backprojected to the VOI. It contributes all of its
backprojected values to all voxels lying within its cone beam cover.
This improves the temporal locality of accessing projection mem-
ory, because immediately after a projection is backprojected, it can
be discarded from memory, never to be used again. To improve
the reconstructed image accuracy, if the bottom or top boundaries
of the cone beam cover do not lie within the cone beam cover of
the adjacent projection, then the backprojected values need to be
weighted by the following amount:

0.5 +

˛

˛

˛
zboundary

k − z
˛

˛

˛

˛

˛

˛
zboundary

k − zboundary
k±1

˛

˛

˛

The cone beam cover method also simplifies computation in the
inner loop, since the backprojected u coordinate of a voxel does
not depend on the z coordinate. The outer loop can iterate over all
[x, y] in the cylindrical VOI. Then the u backprojection coordinate
can be calculated and reused by the inner loop, which iterates over

ωtop

ωbottom

u

ω

ωd   /dz

Figure 7: Decrease in backprojection computation afforded by
cone beam cover method; simply increment ω by dω

dz
each z

loop iteration

all z that belong to the cone beam cover. Since the backprojection
ω coordinate only changes by an amount dω

dz
when z increases by 1,

this difference can be precomputed in the outer loop and used in the
inner loop to calculate the next ω coordinate, as shown in Figure 7.
To improve read locality, the projection u and ω coordinates are
reversed so that projection memory is accessed sequentially when
iterating over the z coordinate. Similarly to the π-interval method,
linear interpolation is used when looking up projection values. The
entire volume is reconstructed once all projections have finished
backprojection.

3.4 Basic computation optimizations
Calculating the π-intervals requires solving a non-linear equa-

tion iteratively [12]. However, assuming that the helical parameters
are constant, the π-intervals only need to be generated once and can
be reused every time a new image needs to be reconstructed. In ad-
dition, due to the symmetry of a helix, only one horizontal slice at
z = 0 of the π-intervals needs to be generated. The π-interval for
any voxel [x, y, z] can be determined by rotating the [x, y] coordi-
nates by an amount z 2π

P
. Linear interpolation is used to look up the

rotated π-interval value from the reference horizontal slice z = 0.
If a backprojected coordinate lies on outside of the range of the

projection coordinates, then it should be discarded. However, in
order to avoid expensive if statements inside of inner loop, this test
can be removed by padding the detector array with zeroes. Noo [7]
provides sufficient conditions for the width of the detector array to
be just large enough to hold the entire FOV. Thus any backprojected
values will lie inside the projection boundaries, so bounds checking
is not required.

The backprojection contribution from projections at the edges of
the π-interval need to be weighted specially. Instead of using if
statements in the inner loop to test if a projection is at the edge
of the π-interval, the first two and last two iterations of the inner
loop are simply unrolled from the remaining iterations of the inner
loop and weighted separately. Similarly for the cone beam cover
method, the first and last iterations of the inner backprojection loop
are unrolled from the rest of the loop.

Since sin and cos are used repeatedly, and since there are a fixed
number of angles used, the values of sin and cos are found in a
precomputed lookup table. Also, the projection remapping coordi-
nates are precomputed and stored in an array. Finally, the top and
bottom boundaries of the Tam-Danielsson window are also tabu-
lated based on the u coordinate. This continuous function can be
well approximated using linear interpolation, as shown in Figure 8.

Prefetching is used to hide the latency of accessing memory across
the memory hierarchy by anticipating future memory accesses. When
implementing the cone beam cover method, as one z-strip is back-
projected, the projection data and image memory for the next z-
strip is prefetched.
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Figure 8: Linear interpolation of Tam-Danielsson window

4. PARALLELIZATION TECHNIQUES
4.1 Coarse-grained using Multi-threads

The parallelize strategy for the π-interval method is shown in
Figure 9. We dynamically assign the next adjacent projection to
the next available thread. Because the differentiation operation re-
quires data from two adjacent projections, this assignment hope-
fully improves read locality since the previous adjacent projection
is likely to still be present in the shared cache. (Note however that if
the last level cache is not shared, then it is more efficient to assign
chunks of adjacent projections to each individual thread). After
all projections are done with differentiation and filtering, there is
an implicit barrier. When performing backprojection, we dynami-
cally assign the next adjacent horizontal slice of the VOI to the next
available thread. This improves read locality if the last level cache
is shared, since the backprojection of neighboring image slices have
similar backprojection coordinates.

When parallelizing the cone beam cover method [10], we dy-
namically assign the next adjacent projection to the next available
thread as shown in Figure 10. Since the cone beam covers of ad-
jacent projections overlap a great deal, this improves locality when
accumulating their partial reconstruction to the image memory if
the last level cache is shared. However, since different threads now
may potentially write to the same image memory location, we must
perform some type of write synchronization. This write synchro-
nizations can be performed at a fine-granularity during each accu-
mulation by enclosing the accumulation of a voxel in a critical re-
gion. However, this is costly since it occurs in the innermost loop.
Instead, different threads use a lock to obtain exclusive access to a
specific z-strip of image memory, and then release the lock when
done backprojecting that z-strip. Since this synchronization does
not occur in an inner loop, it has much lower overhead.

4.2 Fine-grained using SIMD
4.2.1 SIMD Cone Beam Cover Backprojection

The inner loop of the cone beam cover method is simplified
enough such that four loop iterations can be unrolled and processed
simultaneously using the vertical SIMD model, since four 32-bit
floating-point values can fit into one 128-bit SIMD register. A
scalar version of the inner loop is run until the first 128-bit aligned
image memory address is encountered, because accessing memory
along 128-bit aligned boundaries with SIMD reads and writes is
much faster than accessing unaligned memory. The backprojection
ω integer lookup coordinate iω and fractional components ωFracs
for four consecutive z image coordinates are calculated together in
one packed SIMD register from the floating point packed ω coor-
dinates fω.

Linear interpolation requires accessing the four nearest neigh-
bors. Since neighbors g[k, iu, iω] and g[k, iu, iω+1] occupy con-
secutive memory locations, as well as neighbors g[k, iu+1, iω] and
g[k, iu+1, iω+1], these pairs of neighbors can be loaded together
with a 64-bit load. These are shuffled such that the values for each
iteration occupy different positions in the SIMD registers. The frac-
tional components of the backprojected coordinates are packed to
form SIMD weights that are multiplied with the packed texel val-
ues. Thus four interpolated values are computed simultaneously.
Finally, these four contributions are accumulated to the aligned im-
age memory.
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Figure 11: Using SIMD to perform differentiation of 4 texels
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jection coordinates for each π

2
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4.2.2 SIMD Differentiation
We also used SIMD for differentiation. Instead of operating on

a single texel at a time, four consecutive texels are loaded and sub-
tracted together. Figure 11 shows how the projection memory is
accessed when performing SIMD differentiation. Since the differ-
ence between adjacent texels needs to be computed, an unaligned
load must be performed when reading the location of the neighbors
on the right.

4.2.3 SIMD Remapping
In addition, Intel IPP provides a remapping function which uses

SIMD to remap one 2-D array based on a 2-D coordinate remap-
ping array. Although it requires extra memory to hold the 2-D co-
ordinate remapping array, using the Intel IPP remapping function
for remapping to filtering coordinates and back to projection coor-
dinates does produce a performance improvement.

4.2.4 SIMD Symmetry Method
As described in [3], the backprojection of each π

2
source projec-

tion contain redundant computation due to symmetry of the trigono-
metric functions:

sin(λ+
π

2
) = cos(λ)

cos(λ+
π

2
) = −sin(λ)

The image coordinates shown in Figure 12 produce identical
backprojection coordinates:
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ω(λ, x, y, z) = ω(λ+
π

2
,−y, x, z + P/4)

u(λ, x, y) = u(λ+
π

2
,−y, x)

Therefore, instead of iterating over all λ values during backpro-
jection of a z-strip, it is only necessary to iterate over the range of
angles comprising a quarter turn of the helix: [0.. π

2
]. During each

iteration, since the backprojection coordinates of all π
2

rotations of
the coordinates and projections are equivalent, the coordinates are
calculated once and reused by all π

2
projections. The bold vox-

els in Figure 13 all have identical backprojection coordinates when
backprojected to their corresponding source projections. Once the
(u, ω) coordinate has been calculated, backprojection for all π

2
ro-

tations are performed concurrently.
The symmetry described reduces computation of the backpro-

jection coordinates by roughly a factor of 4(nTurns). However
this method suffers from poor read and write locality because both
image data and projection data are accessed over large strides. By
repacking the projection and image data, these memory locations
are oriented so that they occupy adjacent memory locations. Af-
ter each projection finishes filtering, it is put into a packed format
where columns of each π

2
projection are interleaved together as il-

lustrated in Figure 14. That way, the values of identical [i, j] co-
ordinates for each π

2
projection occupy consecutive memory loca-

tions. Now backprojection can be performed with SIMD. When ac-
cessing projection coordinates during backprojection, four projec-
tions are read simultaneously, interpolated simultaneously, weighted
simultaneously, and accumulated to image data simultaneously. We
refer to this method as the SIMD symmetry method. Since the
memory accesses are more sequential and deterministic, the hard-
ware prefetcher can accurately predict the next cache line to bring
in.

However, the image data will be written in a packed format shown

λ
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λ+13π/2

λ+17π/2
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z+11P/4

z+P

z+2P
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Figure 13: Due to symmetry of each π
2

rotation, the bolded
voxels reuse the same backprojection coordinates when back-
projected to their corresponding projection sources

in the right half of Figure 15. Adjacent locations in packed image
memory have [x, y] coordinates that are rotated by π

2
and z val-

ues separated by P
4

. The packed image data eventually needs to be
unpacked into an [x, y, z] format.

The image unpacking is costly for its poor locality. Instead of
waiting for the whole image to be backprojected, only one z-strip
and its four rotations are backprojected at a time. Each thread has
its own private array to accumulate the partial reconstructions of the
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Figure 14: The columns from each π
2

projection are interleaved
so that data from four projections separated by π

2
can be read

simultaneously with a SIMD load
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four z-strips. This partial reconstruction array is small enough that
it can hopefully fit into the private L1 cache. After a thread is fin-
ished with each z-strip and its four rotations, they are unpacked into
the image [x, y, z] format. When this partial reconstruction region
has been fully reconstructed, the streaming SIMD store instruction
is used to avoid cache pollution since the completed reconstruction
region of memory will not be used in the future.

Note that there is a caveat when accessing this packed projection
memory. When the image z coordinate increases by 1, the pointer
to image memory increases by 4(nTurns + 1). However, if the
image z coordinate crosses a z value equal to a multiple of P , it
has passed an imaginary boundary corresponding to a turn of the
helix. Since crossing a turn of the helix is equivalent to increasing
the quarter turn offset by four and decreasing the z offset by P , the
pointer should be adjusted by the amount 4− 4P (nTurns+ 1) if
this situation occurs.

5. EXPERIMENTAL METHODOLOGY
We used a system with two 2.33 GHz Intel Clovertown proces-

sors with 4 GB of DRAM running Windows Vista. We used the
64-bit Intel C++ Compiler with options /O3 /QxT /Qopenmp and
used Intel vTune to identify bottlenecks. The time to load the pro-
jection data into main memory and write the reconstructed image

Step Init-base Opt-1T Opt-2T Opt-4T Opt-8T
Derivative 20.6 3.8

Forward remap 4.2 2.1 25.0 18.9 18.8Filter 18.9 19.5
(3.0x) (4.0x) (4.0x)Backward remap 31.8 2.5

SIMD pack 0 12.5
Backprojection 23722.2 2083.9 1062.0 728.8 623.5

(Speedup) (1.0x) (11.4x) (22.3x) (32.5x) (38.0x)
Overall time 23798.1 2126.7 1087.3 748.2 642.3
(Speedup) (1.0x) (11.2x) (21.9x) (31.8x) (37.1x)

Table 1: Breakdown of Execution Time and Speedup (10243)

to disk is not included. Our helical scanning path consists of four
turns plus an additional overscan of a half turn below and above
the VOI. All results include the basic optimizations in addition to
others specifically discussed.

6. RESULT ANALYSIS
Figure 16 provides a comparison of the image quality of the fi-

nal optimized version against the Shepp-Logan phantom at a single
horizontal slice. The amplified error image shows the streaking ar-
tifacts that result from using a finite number of projections.

Figure 17 shows the reconstruction times of the π-interval method
with basic optimizations, the cone beam cover method with SIMD
optimizations, and the final SIMD symmetry method. As shown
in the figure, the speedup for one single thread with the SIMD
symmetry method over the π-interval method and the cone beam
cover method are significant for all image sizes. Also shown is
the speedup from parallelizing on multiple cores. In general, we
achieved significant speedup for the π-interval method; however,
speedup for the cone beam cover method and the SIMD symmetry
method levels off after about four threads. The π-interval method
easily achieves its speedup, because it is not memory-bound. How-
ever, for the SIMD symmetry method, performance counter mea-
surements indicate that the front-side bus (FSB) has reached almost
100% utilization in the time-critical inner loop even with just one
thread.1 Since most of the backprojection computation is optimized
out, there is little computation remaining to hide the memory access
latency. Thus the application has become bandwidth-limited.

To further gain insight from the speedup number, we show the
breakdown of the execution time using the SIMD symmetry method
compared to the π-interval method in Table 1. Obviously, the ma-
jority of speedup is obtained from optimization and parallelization
of the backprojection stage. For the 8-thread SIMD symmetry re-
construction, we are able to obtain 37.1x speedup over the single-
thread π-interval reconstruction.

Since the SIMD symmetry method demonstrates the best per-
formance in all cases, we study its scalability in Figure 18. The
speedup levels off after about four threads for all image sizes for
two reasons. First, two threads now share the same L2 cache space,
thereby reducing the amount of space each thread has. Secondly,
as mentioned earlier, the front-side bus bandwidth eventually be-
comes the bottleneck, limiting any additional speedup.

7. CONCLUSION
In this paper, we discussed and demonstrated several optimiza-

tion and parallelization schemes for Katsevich image reconstruc-
tion algorithm used in computed tomography. On our system with
two-quad-core Intel processors (eight cores in total), we were able
to achieve 37.1x speedup with our final optimized version run-
ning on eight threads over the baseline version running on a single
thread. In addition, we identified the front-side bus bandwidth to
be a major scalability roadblock for this medical imaging applica-
tion. Without increasing the front-side bus bandwidth, parallelizing
this application with even more cores will render little performance
benefit.
1The peak FSB bandwidth is 10.5GB/sec.
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Figure 16: Image Quality of one Horizontal Slice of Shepp-Logan Phantom
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