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Abstract
Aggressive hardware-based and software-based prefetch al-
gorithms for hiding memory access latencies were proposed
to bridge the gap of the expanding speed disparity between
processors and memory subsystems. As smaller L1 caches
prevail in deep submicron processor designs in order to
maintain short cache access cycles, cache pollution caused
by ineffective prefetches is becoming a major challenge.
When too aggressive prefetching are applied, ineffective pre-
fetches not only can offset the benefits of benign prefetches
due to pollution but also throttle bus bandwidth, leading to
overall performance degradation.

In this paper, a hardware based cache pollution filter-
ing mechanism is proposed to differentiate good and bad
prefetches dynamically using a history table. Two schemes
— Per-Address (PA) based and Program Counter (PC)
based — for triggering prefetches are proposed and evalu-
ated. Our cache pollution filters work in tandem with both
hardware and software prefetchers. As shown in the anal-
ysis of our simulated results, the cache pollution filters can
significantly reduce the number of ineffective prefetches by
over 90%, alleviating the excessive memory bandwidth in-
duced by them. The IPC is improved by up to 9% as a
result of reduced cache pollution and less competition for
the limited number of cache ports.

1. INTRODUCTION
The speed disparity between CPU and main memory

continues to increase that poses a major obstacle for per-
formance scalability of modern processors. Although data
caches can somehow bridge this gap, yet initial data refer-
ences that miss caches still suffer from long memory lead-
off latencies if there is no enough number of independent
instructions to mask the delay, the problem aggravates for
static machines, e.g. Intel/HP’s Itanium. Prefetching has
become an essential technique for hiding memory latency.
Instead of waiting for actual memory instructions’ requests
for data accesses, prefetching brings data into the memory
hierarchy closer to the processor before they are demanded.

1.1 Data Prefetching
Most prefetch techniques are prediction-based, the accu-

racy and potential performance gain highly rely on the pre-
dictability of memory reference behaviors. Simple hardware-
based prefetching techniques proposed in [10, 15, 16] at-
tempt to identify and capture regular data access pat-
terns with unit strides. More sophisticated hardware-based
schemes [7, 8] can issue prefetches for sequential data ac-
cesses with arbitrary but constant strides. In [3, 4], Chen
and Baer proposed a reference prediction table to monitor
data reference patterns and issue prefetches dynamically.
Correlation-based prefetching [2] keeps prior L1 cache miss
addresses and triggers prefetches by correlating subsequent

misses to the history.
On the other hand, static analysis techniques were ap-

plied at compilation time to perform software prefetch-
ing [14, 16]. They embed prefetch instructions within the
binaries for runtime prefetching. Many contemporary mi-
croprocessor instruction sets feature some flavors of fetch
instructions that simply move data into the cache without
intervening other architectural resources. For example in
Alpha ISA, the load instruction can perform data prefetch
if the destination register is $r31 which is hardwired to
zero [6]. Since these prefetch instructions are non-blocking,
CPU can continue execution without awaiting their com-
pletion.

1.2 Aggressive Prefetching
As the IC feature size continues to miniaturize, com-

puter architects are dedicating more transistors to cache
memory on the processor cores, however, with more hierar-
chies. At the same time, as additional memory bandwidth
among caches and main memory become available, more
aggressive prefetching schemes were proposed to utilize it.
Current design trend shows that even though the overall
cache size is getting larger, the first level (L1) cache is,
in fact, getting smaller in order to guarantee an expedi-
tious L1 access, typically in one or two core cycles. For
example, Intel’s Pentium 4 processor employs an 8KB first
level data cache. Recent research results [20] also sug-
gest to shorten cache memory latency by engaging a 1KB
micro-cache for future Itanium architectures. It is also less
expensive to build a smaller multi-ported cache for wider
machines which need to process more memory requests at
the same cycle. Based on this design trend, overly aggres-
sive use of prefetches will not only postpone normal L1
cache accesses but also lead to severe L1 cache pollution.

1.3 Cache Pollution
No data prefetching algorithms can guarantee 100% ac-

curacy and effectiveness. A prefetched cache line could
be either completely useless or ineffective when it is dis-
placed before consumed. These prefetched data are allo-
cated in the data cache and compete for the available cache
resources, seriously degrading the performance when the
L1 cache size is small. Evicting useful data in the cache
by ineffective prefetches causes cache pollution which un-
necessarily reduces the overall performance due to overly
aggressive prefetching schemes. Performance is also sig-
nificantly degraded for some benchmarks when prefetch-
ing cannot be done precisely. For example, stride-based
prefetching schemes can easily become ineffective for the
pointer-based type applications, thereby polluting the data
cache. Luk and Mowry in [12] proposed 3 prefetching
schemes for pointer-based applications. Their work shows
prefetch miss can be very high ( 80%) for some benchmark
programs, which includes those prefetches that are not fi-
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nally accessed by the application or evicted without access
because they are issued either too early or too late. Srini-
vasan et al. in [17] shows even a prefetcher with a high
coverage and accuracy may still lead to low performance
(high total miss rate and low IPC). Therefore, the side-
effects of the prefetcher are also critical for a prefetching
technique.

In summary, an inappropriate prefetch can cause unde-
sirable outcomes by (1) occupying cache space with useless
data if the prefetcher is inaccurate and causing more ca-
pacity or conflict misses. (2) imposing higher pressure on
the competition for finite bandwidth and limited number
of ports of the cache, especially for aggressive prefetchers
on a wide issue machine.

In this paper, we first investigate the impact of aggres-
sive prefetching on conventional cache architectures target-
ing for deep submicron processes. Three different prefetch-
ing schemes are evaluated including software prefetches in-
serted by the Alpha compiler and two aggressive hardware-
based prefetch algorithms. We then examine all the pre-
fetches together with the runtime footprint of given pro-
grams to identify the effective prefetches, i.e. prefetched
data that are referenced by issued memory instructions
prior to eviction. These prefetches are classified as good
prefetches. In contrast, those never referenced prefetches
are classified as bad. Then, we evaluate the impact of bad
prefetches toward the overall performance by artificially
eliminating those bad ones. This motivates our endeavor
to design a hardware-based cache pollution filter that can
effectively prevent the bad prefetches from entering the
cache by exploiting historical information. We propose two
filtering algorithms, which either make prediction based on
the cache line address of the prefetched data (Per-Address
based) or on the program counter value of the prefetch
instruction (Program-Counter based). Performance im-
provement, bus traffic reduction, and design options are
quantified in our simulations and analysis.

The rest of this paper is organized as follows. Section 2
describes related approaches. Section 3 gives motivation.
Our filtering hardware designs are described in Section 4.
We evaluate the performance of our filtering scheme in Sec-
tion 5. Section 6 concludes this work.

2. RELATED WORK
Several previous works have addressed the problem of

reducing the cache pollution caused by prefetching. These
techniques can be classified into three categories — software-
based by compiler [19], hardware-based [4, 11], and hy-
brid [17]. Chen et al. in [5] proposed a dedicated prefetch
buffer for data prefetching. Instead of bringing prefetched
data into caches, the software data prefetch instructions
allocate prefetched data into a dedicated prefetch buffer.
The data cache and the prefetch buffer are probed either
in parallel or in sequence for each data item accessed. If
both are missed, the data will be fetched to the cache from
next level memory hierarchies. Typically, a prefetch buffer
is fully associative. When accessed in parallel with the L1,
the prefetch buffer can become the critical path if it can-
not keep up with the speed of the L1, thus limiting the
prefetch buffer size.

In [19], Wang et al. introduced a compiler’s approach
that checks the data in the cache to see if the next reuse dis-
tance is twice the cache size. It is shown that this scheme
can reduce the pollution of prefetched data if the data are
unused or the prefetch distance is too long to keep the data
in the cache. Data being marked as evict-me have the high-
est priority to be displaced from the cache. Lai et al. [11]
proposed to detect dead cache lines in caches and replace
the dead lines with prefetched data. Their mechanism aims
to reduce the situations where useful data are evicted from
the cache too early. While having the similar goal to re-
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Figure 1: Effectiveness of prefetches.

ducing cache pollution our approach focuses on eliminating
ineffective prefetches from entering the cache. Srinivasan
et al. presented a comprehensive taxonomy in [17] that
classifies prefetches based on traffic and misses generated
by each prefetch. They also proposed a static filter in [18]
aiming at reducing the number of polluting prefetches. The
static filter collects information of the polluting prefetches
off-line through profiling and uses this profiling informa-
tion to guide prefetches. They reported a 2 to 4% per-
formance improvement of their static filter scheme com-
bined with Next Sequence Prefetching and Shadow Direc-
tory Prefetching. In theory, the profiling information can
provide precise global information for a given input data
set, however, it lacks the dynamic adaptivity during run-
time when the working set changes. In contrast to their
work, our technique solely relies on hardware to evaluate
each prefetch dynamically. No profiling information collec-
tion is needed. Our results show that our dynamic mecha-
nism can deliver better performance than their static filter.

3. MOTIVATION
In this paper, prefetches are simply classified into two

categories: 1) good or effective — those referenced in the
cache before they are evicted; 2) bad or ineffective — those
never referenced during their lifetime in the cache. As a
comprehensive prefetch taxonomy [17] requires many ad-
ditional bits to keep track of the replaced cache line and
reference order for both replaced and prefetched cache line,
our simple yet competent classification simplifies the hard-
ware implementation. Figure 1 shows the distribution of
the prefetches based on our classification for 10 benchmark
programs selected from the SPEC95, SPEC2000 and Olden
benchmark suites. The prefetches include both hardware-
based (next sequence prefetching — NSP [16] and shadow
directory prefetching — SDP [13]) as well as software-
based prefetches. Note that the number of software pre-
fetches are far less than hardware prefetch but more ac-
curate. The hardware-based prefetchers can reduce inef-
fective prefetches dynamically. For example, the NSP em-
ploys a tag bit associated with each cache line. When a
cache line is prefetched, its corresponding tag bit is set.
The next adjacent cache line is automatically prefetched
when a memory access either misses the L1 or hits a tagged
cache line. Similarly, the SDP maintains a shadow line ad-
dress in each L2 cache line for prefetching purposes along
with its resident address. The shadow line is the next line
missed after the currently resident line was last accessed.
A confirmation bit is added to each L2 cache line indicating
if the prefetched line was ever used since it was prefetched
last time.

In Figure 1, the number of ”Good Prefetches” and the
number of ”Bad Prefetches” are normalized to the total
number of prefetches for each benchmark program. As
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Figure 2: Traffic distribution of L1 cache.

indicated, more than half of the prefetches are ineffective
or ”bad” in 4 out of the 10 benchmarks. Our statistics
show, on average, 48% prefetches are not referenced during
their lifetime in cache.

Figure 2 shows the traffic distribution for the L1 cache
in terms of cache lines for the data cache. Obviously, the
traffics induced by prefetches take a significant portion of
the total traffics to the L1 cache. On average, the prefetch
access to normal access ratio is 0.41 with a maximum of
0.57 (ijpeg) and minimal of 0.29 (gzip). In other words, on
average, about 2/7 traffics to the L1 cache are prefetches.
Combined with Figure 1, it implies the aggressive and/or
excessive prefetches generated by state-of-the-art proces-
sors could be ineffective, polluting caches, and thrashing
resources such as buses and caches, which lead to per-
formance loss and unnecessary energy consumption. Our
dynamic approach attempts to address these issues and
prevent the over-aggressive prefetches, i.e. those never ref-
erenced in L1, from consuming the memory bandwidth and
polluting the L1 cache.

4. THE PREFETCH POLLUTION FILTER
In this section, we propose a hardware-based cache pollu-

tion filter for processors with aggressive prefetches enabled.
The cache pollution filter dynamically determines the ef-
fectiveness of a prefetch instruction by employing a history
table. The ”bad” (or ineffective) prefetches will be dis-
carded based on the lookup results from the history table,
thereby preventing L1 cache from being polluted. As dis-
cussed in Section 3, a processor with an aggressive prefetch-
ing mechanism is under examination. The prefetches in-
clude both compiler-inserted prefetch instructions and dy-
namic prefetches generated by the hardware. At runtime,
the prefetch pollution filter determines whether an in-flight
prefetch should be performed or not. With such a dynamic
implementation, one can maximize the capability of data-
prefetching, with both hardware and software techniques,
while reducing cache pollution simultaneously.

Figure 3 depicts the anatomy of our prefetch pollution
filter design and its relation to an out-of-order processor
and its associated cache hierarchy. The prefetch pollu-
tion filter is implemented as a stand-alone module that ex-
amines data addresses generated from the hardware-based
prefetcher, L1 cache, and the LD/ST queue. The hardware
prefetch generator is triggered by data accesses to the L1 or
L2 cache depending on the prefetch algorithms (the trigger
may come from other sources. In our cases, however, the
two hardware-based prefetchers are triggered by L1 or L2
cache accesses). The hardware prefetch generator accepts
the trigger and reroutes it to the pollution filter to check
if the prefetch should be conducted. For software prefetch
instructions, they are identified from the LSQ and sent to
the pollution filter directly.
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Figure 3: Cache Pollution Filter.

The prefetch filter consists of a single level history table,
a hash function and the mechanism to lookup and update
the history table. The incoming prefetches are sent to the
pollution filter to check against the history table. Either
the data cache line address or the program counter (PC)
of the instruction triggering the prefetch is hashed and
indexed into the corresponding 2-bit counter value of the
history table, which indicates whether this prefetch should
be performed. If the history table rejects the prefetch,
this prefetch operation will be terminated and no prefetch
will be issued to the L1 cache; otherwise the prefetch is
issued to the prefetch queue. As illustrated in Figure 3, the
prefetch queue contends the L1 cache ports with normal L1
memory references issued by the processor.

To collect feedback information, each prefetched cache
line is associated with two control bits called Prefetch In-
dicator Bit (PIB) and Reference Indication Bit (RIB). As
shown at the bottom of Figure 3, two bits are added to the
tag for each cache line. PIB is used to indicate whether this
line is brought in by the prefetcher (1 for prefetched lines; 0
for demand misses) and RIB indicates whether this line is
ever referenced during its lifetime in L1. RIB is valid only
if PIB is set. The overhead of our scheme is insignificant as
these additional bits for each cache line are typically found
in hardware-based prefetcher for controlling the number
of ineffective prefetches. For example, both the NSP and
SDP need a bit in each L1 cache line to keep track of the
prefetched line while the SDP also includes another ref-
erence indication bit, similar to ours, to indicate whether
a line is accessed in the L1. Given these shared bits, the
overhead of our scheme is primarily in the history table.

Whenever a cache line is replaced and evicted from the
L1, its corresponding PIB is checked to see if the line was
brought in by prefetching. If yes, its RIB is further checked
to see if it was ever referenced. The address of the cache
line or the PC together with the RIB are passed to the
pollution filter. The history table is then updated accord-
ingly.

Each history table entry uses a two-bit saturation counter.
Either the address of the prefetch or the PC of the trig-
gering instruciton is used to index into the history table
and depending on whether the prefeched cache line is ref-
erenced or not, the two-bit saturation counter is updated.
The lookup and update operations to the two-bit counter
are the same as those for branch predictors. We will discuss
the impact of the length of the history table with respect
to the performance in Section 5.3.

Note that the scheme depicted in Figure 3 does not use
a dedicated fully-associative prefetch buffer, instead, data
are prefetched into the L1 cache directly. Since a dedi-
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cated prefetch buffer could be more complex and expen-
sive to build due to additional buses, routing, and layout
issues, etc. Most of the contemporary microprocessors im-
plemented their data prefetch mechanism in the cache hier-
archy in lieu of dedicating a prefetch buffer. Nevertheless,
we also evaluate and quantify processor architectures for
both design options in Section 5.5.

4.1 PA-based Cache Pollution Filter
Per-Address-based (or PA-based) cache pollution filter

tracks the cache line address (address with cache line offset
bit stripped) of each prefetch operation issued. Since the
same memory instruction may lead to different cache line
addresses at different iterations, thus different prefetches
could be triggered. The PA-based filter is capable of dis-
cerning these various fetched addresses by the same mem-
ory instruction. Due to the limited length of the history
table, however, the aliasing (or interference) problem could
be severe for the PA-based filter.

4.2 PC-based Cache Pollution Filter
A PC-based cache pollution filter tracks the program

counter (offset by the instruction size) of each instruction
that triggers a prefetch. For prefetches enabled by a soft-
ware prefetch instruction, the PC is identical to the PC
of the software prefetch instruction. For hardware-based
prefetch algorithms, the PC of the memory instruction that
triggers the prefetch is used. The PC-based filter may not
be as precise as the PA-based filter due to sharing among
different prefetch addresses from the same trigger, notwith-
standing it saves the history table space. Additionally, the
PC needs to be passed to the L1 cache and the cache pol-
lution filter through a separate data path.

5. EXPERIMENTAL RESULTS

5.1 System Configuration and Benchmarks
Our experimental infrastructure is based on Simplescalar

3.0 using Alpha binaries. All benchmark programs were
compiled using gcc targeting Alpha ISA with -O4 optimiza-
tion flag which generates software prefetch instructions.
The hardware prefetches are assumed being triggered (if
necessary) immediately after a cache access without any
delay. All duplicate prefetches are squashed automatically
with no penalty. All benchmark programs are run up to
300 million instructions. The default configuration param-
eters are detailed in Table 1. In this study, we target a
deep-submicron high performance processor, in which a
small L1 is typically employed in exchange of a fast ac-
cess latency. Hence we assume a default processor with an
8KB direct-mapped L1 cache. Similar schemes have been
implemented in commercial high performance processors
such as the Pentium 4 processor [9]. Configurations are
varied in our experiments, e.g. the L1 cache size, history
table size, number of L1 ports, etc. for different evaluation
purposes. The default size of the history table has 4096
entries (1KB).

Table 2 shows the properties of benchmark programs
used. These 10 programs were selected from the Olden [1]
(bh, em3d, perimeter), SPEC95 (ijpeg, fpppp, gcc, wave5)
and SPEC2000 (gap, gzip, mcf) benchmark suites. Their
input sets, L1 data cache miss rates and L2 data cache
miss rates with prefetch turned off are shown in the table.

We first evaluate the performance with an 8KB L1 cache,
then we compare the performance results with those of a
32KB L1 cache; in Section 5.3, we study the performance
sensitivity of the history table size; and in Section 5.4, we
take the number of L1 ports into account; finally, we eval-
uate our scheme with a dedicated prefetch buffer in Sec-
tion 5.5.

Processor
Target Frequency 2 GHz

Issue/Retire 8 inst/cycle
Reorder Buffer 128 entries

Load/Store Queue 64 entries
Branch Predictor Bimodal, 2048 entries

BTB 4-way, 4096 sets

Caches
L1 I/D 8KB, 32b line

Direct-mapped, 1 cycle
L1 D ports 3

L2 I/D 512KB, 32b line
4-way, 15 cycles

L2 I/D ports 1

Memory
Latency 150 core cycles

Bus 64-byte wide

Prefetcher
Queue Length 64 entries

Pollution Filter
History table 1KB, 4K entries

Table 1: System Configuration

Benchmark Input data sets L1 miss% L2 miss%

bh 2048 bodies 0.0464 0.0026
em3d 100 nodes 10 arity 0.2161 0.0001

10K iter
perimeter 12 Levels 0.0478 0.2709

ijpeg penguin.ppm 0.0565 0.0235
fpppp natoms.in 0.0807 0.0003
gcc cp-decl.i 0.0551 0.0221

wave5 wave5.in 0.1387 0.0209
gap ref.in 0.0409 0.2247
gzip input.graphic 0.0597 0.3176
mcf inp.in 0.0648 0.2426

Table 2: Properties of the benchmark programs

5.2 Performance Evaluation

5.2.1 Default processor model
In Figure 4, we compare the number of prefetches that

are bad (ineffective) and good (effective) in the L1 cache
for 3 scenarios - (1) without pollution control (no filtering),
(2) the PA-based pollution filter, and (3) the PC-based
pollution filter. For clarity, all numbers are normalized
to the number of good prefetches in case (1). The first 3
bars show the number of bad prefetches. An average of
97% bad prefetches are eliminated with the PA-based fil-
ter while nearly 98% of bad prefetches can be removed by
the PC-based filter. The next 3 bars shows the number of
good prefetches. Despite the pollution filters aim at reduc-
ing ineffective prefetches, both of the pollution filters could
be too aggressive and filter out effective prefetches as well
due to the unpredictability of cache reference behavior.
The simulated results of our 10 benchmark programs show
that an average of 51% of good prefetches are disabled for
the PA-based filter and about 48% for the PC-based fil-
ter. With the drastic reduction for bad prefetches, there is
a 75% reduction in total prefetch bandwidth for the PA-
based filter and a 74% reduction in the PC-based filter.
Figure 4 demonstrates that the pollution filters can suc-
cessfully reduce bad prefetches dynamically with tolerable
loss of good ones. Besides, the PA-based filter performs al-
most on par with the PC-based filter as shown in Figure 4.
Also notice that, for some benchmark programs, like the
gcc, most of the prefetches are filtrated due to their un-
predictable nature even though the prefetches are already
ineffective for such programs.

Figure 5 shows the reduction of bad/good prefetch ratio.
On average, this number is reduced by 70% for PA-based
filtering and 91% for PC-based filtering. Figure 6 compares
the simulated Instruction Per Cycle (IPC) numbers for our
filters versus the baseline. For all benchmark programs,
the IPC numbers are improved, apparently, the reduction
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Figure 4: Prefetch miss/hit ratios for 8KB D-cache.
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Figure 5: Bad/good prefetch ratios for 8KB D-
cache.
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Figure 6: IPC comparison for 8KB D-cache.

of good prefetches is compensated by elimination of bad
prefetches. The last column of the table shows the mean
for all benchmarks. On average, we achieve 8.2% increase
for PA-based pollution filer while 9.1% for the PC-based
pollution filter.

We also notice that adding a 1KB history table for cache
pollution filtering is actually more effective than simply in-
creasing the cache size. Due to implementation difficulty (a
9KB cache in terms of access speed is less cost-effective due
to the 9-way management), we only compare our default
model with the one with 16KB L1 cache (other configu-
rations are identical). The speedup for 16KB L1 is about
20%. Reasonably, we can conclude adding a 1KB history
table is more desirable.

In addition, we have experimented with the two hard-
ware prefetch algorithms separately (due to the small num-
ber of software prefetches and their higher accuracy, the ef-
fectiveness of our pollution filter is less conspicuous). For
NSP, without pollution filtering, the good/bad prefetch
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Figure 8: Bad/good prefetch ratios for 32KB D-
cache.
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Figure 9: IPC comparison for 32KB D-cache.

ratio is 1.8 on average. The pollution filter reduces bad
prefetches by 97.5% and good prefetches by 48.1%. On
the other hand, without pollution filtering, the good/bad
ratio for SDP is 11.7. The pollution filter reduces bad
prefetches by 68.3% and good prefetches by 61.9%. In
conclusion, prefetch algorithm with higher accuracy seems
to cause the pollution filtering to perform worse. For ad-
vanced features, our pollution filter can be made adaptive
to start filtering when the prefetching becomes too aggres-
sive (with low accuracy).

5.2.2 Processors with 32KB Data Caches
Figure 7 to Figure 9 repeat the same performance anal-

ysis by enlarging the L1 cache size to 32KB. Due to the
larger cache size, the L1 access latency is increased to 4
cycles in our simulation as pre-charging the word-lines and
signal driven through the bit-lines of the cache now takes
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Figure 7: Prefetch miss/hit ratios for 32KB D-cache.

longer for a high frequency processor.
In Figure 7, we present the amount of bad and good

prefetch traffics for the 3 scenarios. As expected, the fil-
ters greatly filtrated bad prefetches. We observe a 91% re-
duction of bad prefetches for the PA-based filter and 92%
reduction for the PC-based filter. In the meantime, more
good prefetches are preserved for the 32KB L1 cache. Only
35% good prefetches are removed for the PA-based filter
and 27% for the PC-based filter. Due to reduced con-
flict and capacity misses for larger caches, our pollution
filters are more effective in removing bad prefetches com-
pared against the scenarios of smaller caches as described
in Section 5.2.1. In addition, the amount of traffic reduc-
tion also confirms our theory that a larger cache leads to
a more effective filtering. The PA-based filter reduces 52%
prefetch bandwidth requirement; on the other hand, 47%
is reduced by the PC-based scheme, which are well below
the cases for 8KB L1 cache (75% and 74%). Figure 8 gives
reduction for bad/good prefetch ratio. On average, this
number is reduced by 75% for PA-based filtering and 93%
for PC-based filtering, which are slightly better than the
8KB cache. Figure 9 gives the results of the IPC com-
parison. Both of the PA-based and the PC-based filters
outperform the one without pollution filtering. As shown
in the figure, ”no filtering” always delivers the worst IPC
number. On average, the PA-based filter shows a 7.0%
speedup while the PC-based filter improves performance
by 8.1%.

In summary, a smaller L1 cache size, also the trend of
deep submicron processors, results in a more aggressive
filtering. Although a less aggressive pollution filtering pre-
serves more good prefetches, at the same rate, it retains
more bad prefetches, hence more bandwidth is consumed
by prefetch traffic. The performance largely depends on
the trade-off between prefetch traffic reduction and cache
pollution reduction. Once prefetch traffic is reduced too
much to introduce enough useful prefetches, the perfor-
mance degrades. As for gcc, the good prefetches are re-
duced to the extent that it offsets the benefits of traffic
reduction.

5.3 Impact of the History Table Size
In this section, different history table sizes are evalu-

ated to quantify their impacts to the overall performance.
The size of the history table is varied from 1024 entries
(256B), 2048 entries (512 B), 4096 entries (1KB), 8192 en-
tries (2KB) up to 16384 entries (4KB). All the experiments
with variable history table sizes were performed using the
default configuration. Only the PA-based filter is evalu-
ated.

As the first performance metric, we examine the number
of good prefetches in Figure 10. All the numbers shown in
this figure are normalized to that of a 4096-entry history
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Figure 10: Number of good prefetches for different
history table sizes (normalized to 4K entries).
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Figure 11: Number of bad prefetches for different
history table sizes (normalized to 4K entries).

table - the default configuration. In general, the number of
good prefetches increases as a longer history is employed,
indicating effective prefetches are better preserved. A few
outliers in Figure 10, such as gap, gzip and mcf, however,
show that varying the history table size is almost insensi-
tive in preserving the number of good prefetches. It im-
plies that a small history table, e.g. 1024 entries, is good
enough for capturing most of the good prefetches in these
benchmarks.

Figure 11 shows the trend of the number of bad prefetches
with different history table sizes. It may be surprising that
the number of bad prefetches also increases in some bench-
marks such as gcc when the history table gets longer. Ac-
tually, as shown earlier, these numbers are already small,
the absolute numbers of increased bad prefetches are still
less than the increase in the number of the good prefetches.
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Figure 12: IPC for different history table sizes.
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Figure 13: Bad/good prefetch ratios for different
numbers of L1 ports.

Another possibility is that all prefetches first mapped to
the history table are assumed to be good and issued, if the
working set of the program is less than the table size, more
bad prefetches may result. For some of the benchmarks,
like em3d, gap, and mcf, the minimum is reached for mid-
size tables, therefore, a history table too short or too long
may not be good.

Figure 12 presents the IPC comparison for different sizes
of the history tables. For most programs, the IPC in-
creases slightly with longer tables. The mean shows a 6%
improvement from 2048-entry to 4096-entry. Further in-
crease in the table sizes makes little difference in perfor-
mance, mostly within 1%. In summary, the performance
improvement for a history table size over 4096 entries is
limited. Moreover, short history tables (1024 or 2048 en-
tries) can affect the performance to some extent. Hardware
implementations should choose the size of the history table
based on their cost budget. With 4096 entries, the pollu-
tion filter will take only 1KB space with direct indexing, a
small overhead in future performance processors with one
billion transistors available to explore.

5.4 Impact of L1 Cache Ports
Next, the number of L1 cache ports is varied to see how

it affects bad/good prefetch ratio and the IPC. All exper-
iments are performed with the default configuration and
the PA-based pollution filter. The number of the L1 ports
is increased gradually from 3, 4 to 51. Note that addi-
tional cache ports lead to a bigger cache design, thus elon-
gating the access latency. We take these physical design
constraints into account. For a 4-port 8KB cache, the L1
access latency is assumed 2 cycles and 3 cycles for a 5-port
8KB cache.

1Our processor model does not differentiate read ports and
write ports. All ports are universal for either reads or
writes. The prefetch queue competes for these L1 ports.
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Figure 14: IPC for different numbers of L1 ports.
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Figure 15: Bad/good prefetch ratio comparison
with prefetch buffer.

The bad/good prefetch ratio is used in this study. Fig-
ure 13 shows the bad/good prefetch ratios. For most bench-
mark programs, this value decreases as more L1 ports are
provided. With fewer L1 ports, the competition for the
ports is more intense. Consequently, prefetches to the L1
are postponed as they are lined up waiting for the L1 cache
ports to become available. This procrastination turns po-
tential good prefetches into bad, if they reach the L1 cache
too late. However, our pollution filter should try to ad-
just the history table for the increased misses (a previ-
ously good feedback turns bad, and the table updater must
change the setting in the table.) The ratios for 4-port and
5-port L1 caches are quite close. On average, there is a
6% drop from 3-port to 4-port caches and only a 2% drop
from 4-port to 5-port.

Figure 14 compares the IPC numbers. In general, the
IPC increases with the port number increased. The mean
of IPC reflects a 4% speedup from 3-port to 4-port, and
less than 1% gain from 4-port to 5-port.

In summary, the port number of L1 cache has a direct
impact on the performance of the pollution filter. As shown
in the figures, the impact diminishes quickly with the in-
crease of the number of ports, due in part to longer access
latency. Therefore, adding more L1 ports, which is expen-
sive in terms of die area, gains marginal benefits when the
number of universal ports is over 4, even with an 8-wide
issue processor.

5.5 Comparison with a Dedicated Prefetch
Buffer

In this section, we evaluate the impacts of a dedicated
prefetch buffer with our baseline machine model. All other
configurations are kept intact. The prefetch buffer is fully
associative with 16 entries. Both PA-based and PC based
filters are evaluated and quantified.
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Figure 16: IPC comparison with prefetch buffer.

Prefetch buffer is suggested by [5] to reduce L1 cache
pollution by storing prefetched data in a separate buffer.
As observed from our experiments, a single prefetch buffer
is ineffecitve in reducing bad prefetches when prefetching
is done aggressively. This is because 1)Prefetch buffer can-
not reduce the prefetch traffic. 2)Distinguish bad/good
prefetches simply by restricting their lifetime in the prefetch
buffer is not precise. 3)Prefetch buffer is fully associative,
so its size cannot be big, which causes some prefetches to
be evicted earlier. Our results show that prefetch buffer
can only improve IPC by 1 to 2% when all the software
and hardware prefetches are enabled.

However, our experiments in the following show that for
aggressive prefetching, a small dedicated prefetch buffer is
less effective if combined with our pollution filters. In Fig-
ure 15 and Figure 16, four schemes were investigated in-
cluding the PA-based filter with or without a dedicated
prefetch buffer and the PC-based filter with or without
a dedicated prefetch buffer. In Figure 15, the bad/good
prefetch ratio is again used as a metric for comparison. In
most of the programs, adding a dedicated prefetch buffer
degrades the effectiveness of pollution filters.

In Figure 16, the IPC numbers concur that a dedicated
prefetch buffer causes performance penalty. On average,
the IPC loses by 9% for the PA-based filter and 10% for
the PC-based filter. Note that gcc is almost unaffected,
probably due to the small absolute numbers of both bad
and good prefetches.

6. CONCLUSIONS
This paper proposes two hardware-based prefetch pol-

lution filtering mechanisms that can significantly reduce
the number of bad prefetches (over 98% for an 8KB L1
cache and 92% for a 32KB cache) for architectures with
aggressive hardware and software prefetching. The major
advantage of employing a cache pollution filter hardware
is to enable architectures to encompass several prefetch-
ing techniques altogether with dynamic filtering capabil-
ity to maintain the performance edge. Excessive but inef-
fective prefetches causing performance degradation are fil-
tered out by the hardware-based filter. We quantified our
approach through simulations and showed that our tech-
nique mitigates L1 data cache pollution while reducing the
prefetch traffics that compete for limited number of the L1
cache ports and finite cache bandwidth. As a result, the
IPC, on average, is improved by 7% to 9% for different L1
cache sizes with respect to a machine without any filtering
mechanism. We also analyzed and demonstrated that the
hardware overheads for implementing the filter. Basically,
the history table size can be kept small (1KB or 512B for
some benchmarks) while the overhead for the L1 cache is
very insignificant as the flags for enabling other hardware
prefetching algorithms can be reused. Next, we analyzed

the impact of different L1 cache ports and noticed that the
improvements are decreased when more cache ports are
added. Finally, we compared our baseline machine with a
machine featuring a dedicated prefetch buffer.

In conclusion, the prefetch pollution filter offers an ef-
fective hardware solution with affordable overheads that
improves performance by dynamically controlling the num-
ber of bad prefetches generated from aggressive prefetching
schemes. For small L1 caches emerging in deep submicron
processors, this solution provides a more efficient utiliza-
tion for the limited resources.
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