
Symbiotic Scheduling for Shared Caches in MultiCore Systems
Using Memory Footprint Signature

Mrinmoy Ghosh Ripal Nathuji Min Lee
mrinmoy.ghosh@arm.com ripal.nathuji@microsoft.com min.lee@gatech.edu

Corporate R&D Microsoft Research College of Computing
ARM, Inc., Austin, TX 78735 Redmond, WA 98052 Georgia Tech, GA 30332

Karsten Schwan HsienHsin S. Lee
schwan@cc.gatech.edu leehs@gatech.edu

College of Computing School of Electrical & Computer Engineering
Georgia Tech, Atlanta, GA 30332 Georgia Tech, Atlanta, GA 30332

ABSTRACT

As the trend of more cores sharing common resources on a single
die and more systems crammed into enterprise computing space con-
tinue, optimizing the economies of scale for a given compute capacity
is becoming more critical. One major challenge in performance scal-
ability is the growing L2 cache contention caused by multiple contexts
running on a multi-core processor either natively or under a virtual
machine environment. Currently, an OS, at best, relies on history-
based affinity information to dispatch a process or thread onto a par-
ticular processor core. Unfortunately, this simple method can easily
lead to destructive performance effect due to conflicts in common re-
sources, thereby slowing down all processes.
To ameliorate the allocation/management policy of a shared cache

on a multi-core, in this paper, we propose Bloom filter signatures,
a low-complexity architectural support to allow an OS or a Virtual
Machine Monitor to infer cache footprint characteristics and inter-
ference of applications, and then perform job scheduling based on
symbiosis. Our scheme integrates hardware-level counting Bloom fil-
ters in caches to efficiently summarize cache usage behavior on a
per-core, per-process or per-VM basis. We then proposed and stud-
ied three resource allocation algorithms to determine the optimal
process-to-core mapping to minimize interference in the L2. We ex-
ecuted applications using allocation generated by our new process-
to-core mapping algorithms on an Intel Core 2 Duo machine and
showed an averaged 22% (up to 54%) improvement when applica-
tions run natively, and an averaged 9.5% improvement (up to 26%)
when running inside VMs.

Keywords

Scheduling, Symbiosis, Shared Caches, Multi-Core, Bloom Filter,
Virtualization, Fairness

1. INTRODUCTION
The ever increasing demands for performance and manageability

in modern enterprise computing systems has directly affected inno-
vation in both computer architecture and system design. On one
end, modern computing platforms provide multi-core processors to
improve performance by exploiting thread-level parallelism. On the
other hand, it has become a requirement for enterprise systems to
provide flexible and efficient use of resources via software manage-
ment. Industry has responded to this need with the integrated hard-
ware/software solutions (e.g., Xen or VMware) for virtualization [2,
23], which allows applications to obtain benefits such as fault and
performance isolation [2, 20].

To optimize performance, prior work considered cache interfer-
ence of different processes due to affinity effect [33] and thrashing

in shared cache machines [10]. These studies showed significant per-
formance implications when execution instances are scheduled onto
processors oblivious of cache contention effects. In this paper, we
quantify such destructive caching effects on both native multi-core
machine and the virtualized execution where multiple virtual CPUs
(vcpus) are mapped to physical cores sharing a cache. We highlight
two issues preventing an optimized process-to-core allocation deci-
sion. First, there is the issue of determining cache usage characteris-
tics of workloads. As our experiments showed, using online profiling
mechanisms, e.g., event-based performance counters do not always
reflect the cache footprint of workloads. In response, we propose per-
core counting Bloom filters to enable online profiling of cache usage
behavior in the hardware. The second issue is to determine the inter-
actions between workloads based on our Bloom filter profile. We em-
ploy simple hardware support to comparing Bloom filter signatures
of workloads. This information is then provided to software-based
allocation algorithms. These policies facilitate the efficient resource
management among applications to maximize system performance.
The algorithms can be implemented in the OS scheduler or as a user-
level monitoring process. In the case of virtual machines, these al-
gorithms execute in the control domain, Domain zero (Dom0). For
VMs, these policies determine the virtual-to-physical resource map-
pings to improve performance while providing fairness across work-
loads. Our evaluation— by gathering Bloom filter signature, doing
resource allocation algorithms on Simics, and using the resource al-
location results in real execution, showed great performance benefits.

The remainder of this paper is organized as follows. Section 2 mo-
tivates hardware support for multi-core resource allocation. We then
outline our system design in Section 3. Our evaluation methodology
is described in Section 4. Section 5 analyzes our results. We discuss
related work in Section 6 and Section 7 concludes.

2. MOTIVATION

2.1 Resource Allocation in MultiCore
Workloads usually compete for common resources in a multi-core

processor. As a result, the job of the OS dispatching workloads to
physical cores is very critical to achieve the best possible perfor-
mance. In addition, a future OS also needs to consider power manage-
ment, assess formation of hot-spots, avert the risk of thermal runaway,
and guarantee QoS for given workloads. This problem is particularly
interesting in the case of providing support for virtualization for scal-
able enterprise solutions.

In virtualized systems, workloads execute using the set of virtual
resources defined to make up an underlying virtual platform. It is
the job of the virtualization layer, then, to map these virtual resources
to physical resources at runtime. Management policies can employ

����������
����������
����������
����������

��������������������

��������������������

��������������������

����������������������

DM Cache

A
cc

es
s

S
tr

ea
m

 o
f

B

double A[MAX];

{

#define LINE 16

Applicatin A Applicatin B

DM Cache

A
cc

es
s

S
tr

ea
m

 o
f

A

Miss rate = 100% Miss rate = 100%

double A[MAX];

{

#define LINE 16

for (i=0; i<N; i++) for (i=0; i<N; i++)

 = A[(8*i+3)*LINE]; = A[(2*i+1)*LINE];

16 bytes16 bytes

Footprint = 1/8 Footprint = 1/2

Figure 1: Different Cache Footprints with the Same Miss Rate

intelligent decision-making schemes to perform allocation that im-
proves systems. In this paper, we particularly consider improving the
allocation decisions when mapping physical resources like a shared
cache to virtual CPUs that run guest VMs. An important goal of
resource allocation is to determine allocation that maximizes perfor-
mance by minimizing negative caching effects described next.

2.2 Cache Working Set and Footprint
A large body of work addressed cache affinity scheduling in shared

memory multiprocessors. Devakonda et al. [6] showed the effect of
cache affinity scheduling and stated that affinity scheduling works
well only for certain applications. This observation is substantiated
by Salehi [30]. Also, the authors in [38] stated that cache affinity
scheduling is not very effective over simple scheduling policies.

One conclusion from these prior work is that when multiple appli-
cations running on different processors sharing an L2, the co-scheduling
of incompatible applications may affect the overall performance due
to destructive effect on each other’s cache state. In response, there
was research to aid scheduling decisions using cache miss rates [9].
However, predicting incompatibility of active applications cannot be
accurately done using performance metering approaches such as count-
ing the number of cache misses. This is because cache miss data do
not provide sufficient information about the coverage, distribution, or
cache footprint of an application. We illustrate this with a simple ex-
ample in Figure 1, which shows two conjured access patterns in an
8-set direct mapped cache. Application A accessing different cache
lines that fall into the same cache set has a 100% miss rate. However,
the footprint of A is just one-eighth of the entire cache. In contrast,
application B also exhibits a strided access pattern with 100% miss
rate. However, due to its smaller stride, application B will occupy
a much larger footprint, i.e., half of the cache, contributing a great
detrimental effect to other applications sharing the same cache.

To further demonstrate the fact that miss rates do not signify the
cache working set size, we use the full-system simulator Simics and
explore the correlation between the working set size and event-based
performance counters monitoring like cache misses, TLB misses, and
page faults. The workload used for this experiment is aim9 disk
from the AIM IX Independent Resource Benchmark [1]. Figure 2(a)
shows the L2 cache working set calculated at every tick (4ms). The
cache working set size is defined as the number of unique cache lines
touched in the 4 ms interval. Figure 2(b) shows the measured the
number of L2 misses over the same time interval of every 4ms. The
figure clearly demonstrates that the benchmark exhibits four phases
of execution. In contrast, only two periodic phases are visible in the
working set in Figure 2(a). Clearly, there is no direct correlation be-
tween cache working set and cache misses (based on performance
counters) for this benchmark. Other metrics such as TLB misses or
page faults have similar problems.

The finding from the above analysis is that performance counter
based approaches from prior studies [11] do not accurately character-

libqmcfmcflibq
libq libq

perl
mcf perl

mcf
libq

mcf

1.00

1.05

1.10

1.15

1.20

p
e
rl
b
e
n
c
h

g
o
b
m

k

h
m

m
e
r

s
o
p
le

x

p
o
v
ra

y

o
m

n
e
tp

p

m
c
f

lib
q
u
a
n
tu

m

a
s
ta

r

b
w

a
v
e
s

s
p
h
in

x
3

x
a
la

n
c
b
m

kR
e
la

ti
v
e
 R

u
n
 T

im
e

(a) On a P4 Xeon System (Run on a Single P4)

lbmlbm

libq
bwaves

libq libq

mcf

libq

libq

libq

libq

soplex

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

p
e
rl
b
e
n
c
h

g
o
b
m

k

h
m

m
e
r

s
o
p
le

x

p
o
v
ra

y

o
m

n
e
tp

p

m
c
f

lib
q
u
a
n
tu

m

a
s
ta

r

b
w

a
v
e
s

s
p
h
in

x
3

x
a
la

n
c
b
m

k

R
e
la

ti
v
e
 R

u
n
 T

im
e
s

(b) On an Intel Core 2 Duo System

Figure 3: Worst-case Performance Disturbance

ize cache working set and are therefore, not a suitable basis for mak-
ing resource allocation decisions. Determination of the cache work-
ing set of an application is essential to determine its effect on other
applications sharing the same cache. In the following subsection, we
quantify the effects of applications sharing in memory.

2.3 Quantifying Application Incompatibility
We used 12 SPEC2006 benchmark programs to quantify the effects

of application incompatibility when sharing a cache. They were cho-
sen to exhibit a good mix of compute-intensive and memory-intensive
behavior for demonstrating the mutual effect to their respective per-
formance. All possible pairs of the 12 SPEC2006 benchmark pro-
grams were run on two different real systems to be discussed as fol-
lows. For the graphs to be presented, each bar represents the worst-
case “user time” of a benchmark when running with another bench-
mark relative to the “user time” if the benchmark was executed stan-
dalone. All programs were run to completion.

2.3.1 P4 Xeon SMP System
We performed our first experiments on an Intel Xeon SMP with two

P4 3.0GHz processors, each containing its own private 2MB 8-way
L2. We confined the paired processes to run on one single proces-
sor to quantify the negative effects due to their interference in the L2.
The results are illustrated in Figure 3(a). The reported runtimes are
averaged over three independent runs for each benchmark pair. We
can see that the maximum performance degradation is less than 10%.
When processes are constrained to run on the same processor, the
primary cause of performance degradation is cache warm-up due to
context switches. Given the low frequency of context switch occur-
rences, the performance is not significantly affected.

2.3.2 Shared Cache in Intel DualCore
For a shared cache architecture, we ran our experiments on an 2.34

GHz Intel Core 2 Duo system with a 4MB 16-way shared L2. We
scheduled two processes on different cores sharing the same L2. As
shown in Figure 3(b), even though the L2 is twice larger than the
P4, the relative performance degradation is much more severe. We
found that the maximum degradation is 67% for the mcf paired with
libquantum. These results show that the performance is more sen-
sitive to process allocation in a multi-core sharing the cache, with a
potential performance improvement of as much as 67%. This actual

0

200

400

600

800

1000

0 200 400 600 800 1000 1200 1400 1600

Sampling ticks

w
o
rk

s
e
t
m

e
tr

ic

(a) Working Set Size (# of Unique Cache Lines Accessed)

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400 1600

Sampling tick

L
2
 m

is
s
e
s

Phase 1 Phase 3Phase 2

(b) L2 Misses

Figure 2: Correlation between Working Set Size and L2 Misses (aim9 disk)

Addr
N−bit

Hash Func

Hash Func

Hash Func

0

1

(k−1)

0

1

2 −1

m

m

m

Bit Vector

m

(a) Original

Addr
N−bit

Hash Func

Hash Func

Hash Func

0

1

(k−1)

m

m

m

0

1

2 −1
m

L−bit Counters Bit Vector

L

(b) Counting Bloom Filter

Figure 4: Bloom Filters

measurement motivated the need for a better core allocation policy
for applications based on their cache footprints. Ideally, each ap-
plication’s cache footprint should be recorded and compared to the
footprint of others for reaching an optimal process-to-core mapping.

However, maintaining cache footprints of individual processes over
time is prohibitively expensive in terms of both space and computa-
tional complexity. Therefore, to better assess the dynamic cache re-
source utilization of an application, new hardware structures will be
needed to efficiently maintain a signature of cache accesses for that
particular application. Also required is a simple method for inspect-
ing different signatures to determine their compatibility. We expect
that an OS that uses a metric of determining compatibility of appli-
cations for co-scheduling and resource allocation will achieve signifi-
cant performance improvement. Toward this, we will describe a novel
infrastructure capable of monitoring cache resource utilization with a
software layer that uses this information to intelligently allocate pro-
cesses. The architectural extension involves the use of a modified
Counting Bloom Filter (CBF), a low-cost data structure known for its
high efficiency in maintaining signatures of large data sets.

2.4 Counting Bloom Filters
A Bloom filter provides a low-cost structure to efficiently test if an

element is present in the set. Figure 4(a) shows a generic Bloom filter
in which a given N-bit address is hashed into k hash values using k
different hash functions. The output of each hash function is an m-bit
index value that indexes the Bloom filter’s bitvector of 2m elements.
Here, m is much smaller than N. Each element of the Bloom filter
bitvector contains only one bit that can be set. Initially, the Bloom

filter bit vector is cleared to zero. Whenever an N-bit address is ob-
served, it is hashed to the bitvector and the corresponding indexed bit
values are set to one.

When a query is to be made whether a given N-bit address has
been observed before, the N-bit address is hashed using the same hash
functions and the bits are read from the locations indexed by the m-bit
hash values. If at least one of the bit values is 0, this means that this
address has definitely not been seen before. This is called a true miss.
If all of the bit values are 1, then the address may have been observed
but the filter cannot guarantee it. In the case when an address was
never observed but the filter indicates 1, it is a false hit. As the number
of hash functions increases, the Bloom filter bitvector will be polluted
much faster. On the other hand, the probability of finding a zero on a
query also increases if more hash functions are used.

The major drawback of the original Bloom filter is that the fil-
ter can be polluted rapidly and filled up with all 1’s as it does not
have deletion capability. To address this shortcoming, the Counting
Bloom Filter (CBF) [8] was proposed to allow deleting entries from
the filter. As Figure 4(b) shows, the CBF reduces the number of false
hits by introducing counters. In the CBF, when a new address is en-
tered to the Bloom filter, each m-bit hash index addresses to a specific

counter in an L-bit counter array.1 Then, the counter is incremented
by one. Similarly, when a new address is observed for deletion from
the Bloom filter, each m-bit hash index addresses to a counter, and
then the counter is decremented by one. If more than one hash in-
dex addresses to the same location for a given address, the counter is
incremented or decremented only once. If the counter is zero, it is a
true miss. Otherwise, the outcome is inconclusive.

From the description of the CBF, we can see that it is a simple, low
overhead structure that can keep a signature of addresses present in
a cache. This enables the hardware to keep track of applications and
“Bloom Filter” their signatures for the cache. The signatures can be
used for two purposes. Firstly, they provide information about the
footprint of an application in the cache. In Figure 5, we show an
example using the same aim9 disk benchmark in Figure 2(a). Sec-
ondly, they also provide the extent of interference between an ap-
plication and other applications. This information can be efficiently
used by the OS to guide resource allocation. The next section de-
tails our mechanism to support the OS in making resource allocation
decisions.

We demonstrate that counting Bloom filters effectively monitors

1L must be wide enough to prevent saturation.

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

Cache Working Set Footprint Occupancy Weight

Figure 5: Bloom Filter’s Occupancy Weight versus Cache Working Set Footprint (aim9 disk)

the cache footprint in Figure 5 using the same benchmark in Fig-
ure 2(a). We define occupancy weight to be the number of ones in
the bit vector of a counting Bloom filter. As can easily be seen, the
occupancy weight follows the cache footprint size more closely.

3. SYSTEM DESIGN

3.1 MultiCore with Bloom Filter Signature
This section describes the CBF-based infrastructure that enables

the OS to efficiently schedule applications in a shared-L2 multi-core.
Figure 6(a) illustrates a quad-core processor sharing an L2.

First, we modify the CBF structure explained in Section 2.4 by
splitting it into one counter array and multiple bitvector arrays to en-
able application-level monitoring of cache footprint. In essence, we
de-associate the Bloom filter bitvector from its counters and associate
one bitvector with each core. We call this bitvector the core filter
(CF). The CF is responsible for monitoring the L2 footprint for the
core to which it is assigned. The counters are exactly identical to the
CBF counters and maintain complete information about the state of
the L2. Another simplification to the CBF is that we only use one hash
function to hash to our Bloom filters. The reason for this decision is
the limited size of the Bloom filters. Using multiple hash functions
will saturate the bit-vectors faster. Also, using multiple hash func-
tions incur a larger hardware overhead.

For each L2 miss, the corresponding counter in the counter array
indexed by the address hash is incremented. Along with counter’s in-
crement, the corresponding index of the CF of the core from which
the miss originated is also set to 1. As such, the CF is only responsi-
ble for tracking memory requests originated from the core to which it
was attached. The line replacement in the L2 causes the correspond-
ing hashed counter to be decremented. If the counter becomes zero
after decrementing, all CFs are accessed and their bits correspond-
ing to the decremented counter index are set to zero. The CF has
a 1-to-1 mapping with the cache working set of a particular process
except barring two exceptions. First, if there are hash collisions in
the counter, the CF only counts one entry, an artifact due to aliasing
that will underestimate the working set size. Second, when a counter
becomes zero, the corresponding bit of all the CFs are reset to zero.
This is inaccurate because the line that caused the CF to be one in the
first place may have had been replaced long before, but the counter
becomes zero only after all the addresses mapped to it are replaced.

Despite the minor inaccuracy, this special arrangement of the CBF
enables efficient tracking of cache accesses on a per-core basis. How-
ever, the objective of the CBF extensions is to track them on a per-
application basis. To enable this, we need an additional bitvector we
call the Last Filter (LF) for each core. The LF keeps a snapshot copy
of the CF whenever a context switch takes place. The topmost bitvec-
tor in Figure 6(b) shows such a snapshot when App1 is being swapped
out of Core3 by App2. This state information kept just before the
new application or VM accesses the cache helps identify exactly how
much of the cache resources have been consumed. Therefore, when-
ever an application is context-switched out of its core, a difference
between the CF and LF of that core provides a signature of the cache
working set of the application. We call this the Running Bit Vector

(RBV) as illustrated in Figure 6(b). As shown, it was calculated by
taking the inverse value of CF → LF (implication logic). In other
words, RBV = ¬(¬CF ∨LF). Counting the number of ones in the
RBV is a metric of the cache’s occupancy weight for this application.
Further, to get an idea of the extent to which the application is inter-
fering with the others, a bitwise XOR of the RBV with all the CFs
is performed. We define symbiosis to be the sum total of the number
of ones in the bit vector obtained by XORing the CF and the RBV. A
high symbiosis value indicates low interference. A low value either
means higher interference, or that both vectors have a very low oc-
cupancy. We show two examples in Figure 6(b) where App1/Core0
generates higher symbiosis(=6) than App1/Core1 (=1). We will show
how to use symbiosis to perform core scheduling in Section 3.3.2
and 3.3.3.

The occupancy and symbiosis with other cores are kept with the
application as part of its context. The OS can use these metrics to
allocate a process to minimize L2 interference.

The infrastructure needed to support VMs is exactly the same as the
one just described. The only difference is that for the VMs, the RBV
will be computed on a per-VM basis instead of a per-application basis.
Similarly, the occupancy weight and symbiosis data structures will be
maintained on a VM granularity. Every time the hypervisor decides to
do a context switch of a VM, it computes the RBV of the VM from the
CF and LF. From the RBV, the hypervisor computes the occupancy
weight and symbiosis of the VM. The hardware infrastructure in this
case will interact with the hypervisor instead of the OS.

3.2 Software Support
The software components of our resource allocation system are dis-

tributed between the OS and a user-level monitoring process. The OS
is responsible for interacting with the hardware described above. In
particular, for each application, the OS keeps a simple data structure
consisting of (2 + N) entries, where N is the number of physical
cores. The first entry of the structure keeps the core ID of the last
physical core running the application. The second entry is the occu-
pancy weight while the remaining N entries store the symbiosis with
other cores. Whenever an application is context switched out from a
core, the data structure associated with it is updated.

While the OS handles the symbiosis and occupancy via hardware
support, the actual resource allocation decisions are made in a mon-
itoring user-level process. An allocation policy running in this mon-
itoring application utilizes the system call interface to periodically
query the OS for updated information regarding executed applica-
tions. To be detailed later, this information can then be incorporated
into different algorithms to obtain an updated allocation decision that
is then passed to the OS using existing system call interface. The user-
level process is only responsible for setting affinity bits of processes,
such that processes are allocated to specific cores. However, since the
OS is responsible for handling context switches within the core, pro-
cesses will not suffer from issues like starvation. Also, if the number
of processes is less than the number of cores, our resource allocation
algorithms will work exactly like a cache affinity based algorithm.

The software for resource allocation in VMs is very similar. In the
case of VMs, our resource allocation system is distributed between
the hypervisor and the Xen management or control domain, Dom0.

Core 3Core 2

L2 Cache

Core Filter

Last Filter Last Filter

Core Filter

Last Filter

Core Filter Core Filter

Back Side Bus

Core 0 Core 1

L1 Cache L1 Cache L1 Cache L1 Cache

Last Filter

Front Side Bus

Main Memory

Bloom Filter Counters

(a) Multi-core with CBF

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Symbiosis=6 Symbiosis=1
RBV

CF0
RBV

CF1App1 App1

App2 to swtich out App1

App1 switched out App0

App0 was on Core3

Last Filter (After App0 switched out)

Core Filter (App1 to be switched out)

Generate App1 RBV when App1 being switched out

(b) Symbiosis Calculation

Figure 6: Multi-Core Enhanced with Signature for Symbiotic Scheduling

Virtualization solutions such as Xen utilize this privileged domain to
execute management and control components to provide extensibility
while maintaining a thin hypervisor [2]. The hypervisor is responsi-
ble for interacting with the hardware functionality described above.
The per-VM data structure maintained by the hypervisor is exactly
the same as the per-application one. Whenever the vcpu of a VM is
removed from execution on a core, the data structure associated with
the VM is updated.

In the case of VMs, the actual resource allocation decisions are
made in Dom0. An allocation policy running in this domain utilizes
a hyper-call interface to periodically query the hypervisor for updated
information regarding executing VMs. This information can then be
incorporated into different algorithms to obtain an updated allocation
decision that is then passed along to the hypervisor using existing
control interface.

3.3 Resource Allocation Algorithms
The objective of the resource allocation algorithm is to map pro-

cesses to cores. As explained in Section 2.3.2, the allocation is done
in such a way that processes that adversely affect each others’ perfor-
mance should be scheduled to the same core. The rationale is that the
processes assigned to the same core will not execute simultaneously,
mitigating their resource conflicts that could reduce each others’ per-
formance. The quantitative effect in our execution on a real Intel Core
Duo machine has been illustrated in Section 2.3.2. We now describe
three algorithms developed for this purpose.

3.3.1 Weight Sorting Algorithm
The sorting algorithm uses a simple mechanism to detect the L2 oc-

cupancy of each process. The only metric used here is the sum of the
bits inside the Running Bit Vector (RBV) which gives a reasonable
idea of the cache footprint of a process. Upon every context switch,
the RBV is reduced to one weight as described in Section 3.1.

The user-mode algorithm collects the weights of all the processes
to be scheduled. Then it sorts the processes according to their weights.
If the number of cores is N and the number of processes to be al-

located is P, the group size is ⌈ P

N
⌉, the number of processes to be

scheduled on one core. After sorting the weights, it simply forms
groups of processes in their sorted order. For processes in the same
group, the same affinity bits used by the OS for process scheduling
will be assigned. In other words, the OS will schedule the processes
of the same group onto the same core. The rationale behind it is that a
process having a larger weight is more likely to affect performance of
others. When herding them into the same group, they will be sched-
uled to run on the same core and will not be executed at the same
time, minimizing the cache contention.

I12 I41

I31I22

I12 I31+

I32 I42+

I22 I41+

11I I21+

I31

I12

I31

I41

I42

I12

I22 I3211I I21

I22

I41

P3

P4P2

P1

Core C1 Core C2

P1 P3

P4P2

+

+

P1 P3

P4P2

xyI<P , C > = Ix y

I<P , C > I<P , C >1 1 1 2 I<P , C > I<P , C >

I<P , C > I<P , C > I<P , C > I<P , C >

3 1 3 2

2 1 2 2 4 1 4 2

Figure 7: Forming an Interference Graph

3.3.2 Interference Graph Algorithm
The Interference Graph algorithm is explained with the example il-

lustrated in Figure 7. Assume we have a dual-core machine with cores
C1 and C2. There are 4 processes (P1 through P4) to be scheduled.
We first define an interference metric to be the reciprocal of symbio-
sis for constructing an interference graph. We also define the notation
I<Px, Cy> to represent the degree of Interference of process x with
core y. The top of Figure 7 shows the interference metrics of each
process when the algorithm is invoked. For example, considering
process P3— its interference metrics I<P3, C1> and I<P3, C2>
are obtained by counting the 1’s in the bitvector obtained after XOR-
ing the Core Filters of core C1 and C2 (self-core) with the Running
Bit Vector of P3 when P3 was context switched out of C2. An exam-
ple was shown previously at the bottom of Figure 6(b)

Using the interference metric, the interference graph is constructed
as illustrated in the lower-left corner of the figure. Each process is a
node in the graph. The weight assigned to a directed edge connecting
two processes is based on its interference metric. The directed edge
P1 → P3 has a weight I12, because it is the interference of process
P1 (running on C1) with core C2. We assume that a process has equal
interference with all processes of a different core, since it is difficult to
know which process was executing in each core when the interference
data is taken. This gives us the directed graph shown in the figure.
The directed graph is then consolidated into an undirected graph by
adding the weights of the two unidirectional edges connecting any
two nodes. This consolidated graph gives an approximate idea of

1000
T1 T3

T4T2
10800

120

C1 C2

0

0

00

9999 9999

MINCUT

T3

T4
10

1201000
T1

T2
800

P1

(a) Phase 1 (weight sort algorithm) (b) Phase 2 (weighted interference graph)

Figure 8: Allocation for Multi-threaded Applications

the interference for each process with other processes running in the
system.

Thus, the objective of this algorithm in this example is to parti-
tion the graph into two groups such that the weights of edges within
a group is maximized. Maximizing weights of edges within a group
(i.e., intra-group interference) ensures that the processes will be allo-
cated to the same core and thus will not run together to affect each
others’ performance. A converse of this problem is to partition the
graph into equal groups such that the weights of edges between the
groups (or inter-group interference) are minimized. This problem is
better known as the MIN-CUT problem. Although a generic solution
to the MIN-CUT problem is NP-hard, several fast approximation al-
gorithms exist to get to a certain percentage of the optimal solution.
We use the SDP solver to solve the problem.

This algorithm provides a good solution for the case where there
are 2 cores. It can easily be extended to machines with more cores
by hierarchically using the MIN-CUT algorithm. For example, if we
have four cores, we first divide into two groups using MIN-CUT and
then apply MIN-CUT to each group.

3.3.3 Weighted Interference Graph Algorithm
The interference graph algorithm had one impediment. As ex-

plained earlier, a low symbiosis (or high interference metric) means
either high interference or low occupancy. That is, if the weight of the
bitvectors whose symbiosis being calculated is small, then the inter-
ference metric will come out high, but that does not necessarily imply
that the two vectors really interfere heavily. Therefore, we came up
with a weighted interference metric that incorporates the weight of the
vector whose interference is being calculated. Whenever we compute
the interference between a node and a core, we simply multiply the
result with the weight of the node. Therefore, the weight of the edge
connecting nodes P1 and P3 will be WP1 · I12 + WP3 · I31, where
WP1 and WP3 are the occupancy weights of nodes P1 and P3 cal-
culated by counting the number of 1’s in their respective RBVs as
defined in Section 3.1.

Using this metric will ensure that if a node has a small weight, it
will lead to a low interference metric, making the algorithm perform
more effectively. We show in Section 5.2 that this is indeed the case.

3.3.4 Resource Allocation for Multithreaded Apps
The algorithms just described must be adapted properly for multi-

threaded applications. To enable this, we must collect occupancy
weights and interference metric statistics at the per-thread granular-
ity. For multi-threaded applications, threads of the same application
often share data intensely. Therefore, if we compute the interference
metrics among threads of the same process, we will obtain a very high
interference value. This is misleading, as in this case the threads are
actually sharing data rather than contending space against each other.
To overcome this shortcoming, we adapt our algorithms to perform
resource allocation in two phases. Note that, this adaption for threads
will be applied together with the process-level allocation discussed in
the previous sections.

In the first phase, we consider multi-threaded processes in isolation
and perform resource allocation for threads of each multi-threaded
process. Since the interference metric will be inappropriate for threads
of the same process, we use the occupancy weight sorting algorithm

Primergy

Primergy

Simics x86
(tango)

P1T1 P1T2 P4 P2T5

P3T1 P3T3 T1P2

P1T3 P1T4 P2T2

P2T3 P2T4 P3T2

Core 1

Core 2

in Emulator

P1 P2 P3 P4

Fedora Linux 2.6.26

(a) Native x86 Run

(b) Hypervisor Run

Core 2 Duo

Core 2 Duo

P1 P2 P4P3

LinuxLinuxLinuxLinux

VM4VM1 VM2

Xen Hypervisor

VM3

Fedora Linux 2.6.26

P1 P2 P4P3

"magic"
interface

Proc−to−Core
MappingGather Footprint

Figure 9: Evaluation Methodology

described in Section 3.3.1 to decide for a given process which threads
will be allocated to the same core. This is shown in Figure 8(a) where
the occupancy weight is shown under the thread ID in each node.

After this, we begin the second phase of the resource allocation al-
gorithm by forming the interference graph. In this phase, we perform
the weighted interference graph algorithm at the thread granularity.
We use the results of phase one by setting the edge weights of threads
allocated on the same core to a very large value. Similarly, we set the
edge weights of threads that will be on different cores to zero. This
is shown in Figure 8(b). Such edge weight adjustment will ensure
that the MIN-CUT of the graph will always place threads that have
very large edge weights onto the same core and threads that have zero
weights to different cores. What we did not show is that in addition
to thread level allocation, we will follow our prior weighted interfer-
ence graph algorithm described in Section 3.3.3 to set all other edge
weights between processes to complete the entire resource allocation.

4. EVALUATION METHODOLOGY
We conduct our experiments in two phases as shown in Figure 9.

The first phase emulates our CBF infrastructure and gather statistics
for the OS scheduler. The second phase is the actual execution on
commercial machines.

4.1 Gathering Footprint
In this phase, we use Simics to emulate an x86-based virtual ma-

chine called tango. A Fedora Core Linux (kernel version 2.6.26.33)
OS is run on top of tango. All simulations are done with groups of
four processes running on top of the Fedora Core Linux.

The hardware-software interface was implemented using Simics
magic instructions. The Linux 2.6.16.33 kernel was modified to in-
corporate calls to the special magic instruction during context switches
of targeted applications. The targeted applications for which this
scheduling is being done are specified by the user. We use Linux’s
proc interface to let the kernel know the PIDs of targeted processes.
When a magic instruction is executed, it passes the control to the Sim-
ics magic handler which contains our enhancement to pass Bloom Fil-
ter Signatures. The Bloom Filter Signatures infrastructure was imple-
mented inside the Simics g-cache module. The cache models exactly
the same configuration of our target machine Intel Core 2 Duo, i.e.,
16-way 4MB L2. This experimental approach enables us to apply the
decisions, based on Simics simulator implemented with our footprint
scheme, on actual machines to gather measurement results. A kernel
module reads these signatures and keeps them as a part of the process
context. The Linux kernel was also modified to implement a syscall
to make this signature data available to user-mode programs.

The job of resource allocation is done by a user-level application.
It involves setting affinity bits of processes, so that the scheduler can
assign the process to a particular core. The algorithms were explained

Table 1: Example of Experiments
Benchmarks AB & CD AC & BD AD & BC
povray (A) 125 126 125
gobmk (B) 107 107 99
libquantum (C) 124 123 111
hmmer (D) 104 105 104

in Section 3.3. The goal of this phase is to provide a process-to-core
mapping for a certain set of processes for performance optimization.
This mapping will be used at runtime where we use these decisions to
guide process scheduling on real machines. The emulation phase ran
for 2 billion instructions after fast-forwarding 5 billion instructions.
The resource allocator was invoked every 100ms of simulated time.
The allocation picked by the simulated allocator majority of the times
is considered to be chosen schedule for the given mix of benchmarks.

4.2 Real Machine Execution
We perform two sets of experiments. The first involved running

sets of four benchmarks simultaneously on a Fedora Core Linux OS
on top of an Intel Core 2 Duo 2.6 GHz machine with a 4MB shared
cache. The benchmarks were run simultaneously and restarted ac-
cordingly until the longest of the four benchmarks completed. For
the second set of experiments we used the open source industry stan-
dard virtualization software Xen running on the same Core 2 Duo
machine. Four VMs were configured on the Xen hypervisor. Each
VM ran Fedora Core Linux and one benchmark. This set of VMs
were run till the longest running benchmark completed. The other
three benchmarks were restarted accordingly.

We report the maximum and average performance improvement.
We explain how we arrive at these two numbers using an example.
Let us choose four benchmarks (povray, gobmk, libquantum and
hmmer) from our pool. We run all possible mappings of these four
on a Core 2 Duo machine and record their user run-time to comple-
tion. For this example, the user run times in seconds for all possible
process-to-core mappings are listed in Table 1.

There are only three possible mappings for 4 processes running
on a dual-core as shown in the table. Once we obtain this table, we
examine our results collected in the emulation phase and find that
during our simulation the mapping (AD and BC) was preferred by
our resource allocation algorithm for majority of the emulation times.
Our results show that benchmarks gobmk and libquantum have sig-
nificant performance improvement for the chosen schedule while no
schedule has any significant effect on the runtimes of benchmarks
povray and hmmer. We note for this set of benchmarks libquan-
tum has a performance improvement of 11%. We run libquantum
with all possible combination of benchmarks from our pool of bench-
marks and report the maximum performance improvement over all
possible combinations. Similarly we also report the average perfor-
mance improvement over all possible benchmark combinations in-
volving libquantum.

Our pool of benchmarks consists of 12 SPEC 2006 programs. They
were chosen to have a diverse mix. To observe the performance ef-
fect of the benchmarks on each other, they were run to completion in
mixes of 4 for all the three possible allocations on a dual-core ma-
chine. The benchmarks were run till the longest running benchmark
completed.

For the VM experiments we used the same 12 SPEC programs and
encapsulated them in a VM. Four VMs were configured on the Xen
hypervisor. Each VM ran Fedora Linux and one benchmark from the
pool. Note that, due to limitations and scalability issues of executing
virtualization solutions such as Xen in Simics, our first phase was
performed using process-based encapsulation of workloads instead
of VMs. Our execution results (mapping of VMs to cores), though,
map directly to scenarios where workload processes are executed in
independent VMs as opposed to a single OS. Using this approach,
the hypervisor functionality described in Section 3 is incorporated

into the host kernel via modifications to the OS and an associated
module. The control domain is mapped to a user space application
which communicates to underlying components using system calls
as opposed to the hypercalls that would exist in an actual virtualized
implementation.

For the multi-threaded applications we use PARSEC suite [3]. We
run all possible combinations of four benchmarks from this suite. For
the multi-threaded benchmarks, each application has four threads. We
measure the user time to completion of the enclosing process to report
performance improvements.

5. RESULTS AND ANALYSIS

5.1 Performance Improvement

5.1.1 Intel Core 2 Duo Execution
Figure 10 reports the maximum performance benefit obtained per

benchmark application using our best resource allocation algorithm.
The results were obtained by running the benchmark suite in groups
of four, and the reported results on the left bars are the maximum
performance benefit obtained by an allocation by our weighted in-
terference graph algorithm over the worse-case performance for that
group of four. All reported results were obtained from running the
mix of applications on a real Intel Core 2 Duo system. Our tech-
nique shows significant improvement for those heavily exercising the
L2 cache (e.g., mcf). The maximum improvement is 54% for mcf
followed by 49% for omnetpp. Another noteworthy point is that
cache contention does not affect performance for two types of appli-
cations. The first type is compute-bound such as povray which does
not depend much on the L2. The second type is bandwidth-bound
such as hmmer, a sequence profile searching package. It frequently
accesses a protein database and shows low locality yet high memory
traffic. Figure 10 also shows the average performance gain using the
weighted interference graph algorithm obtained for each benchmark
across all the mixes of benchmarks.

5.1.2 Virtual Machine Execution on Xen
Figure 11 reports the maximum and average performance benefit

obtained per benchmark running inside a Xen hypervisor using our
weighted interference graph algorithm. It shows that the maximum
and average performance improvements are lower than if they were
running on a native machine. For example, the maximum perfor-
mance improvement for mcf is 26 % when running inside hypervisors
in contrast to 54% on a native machine. One reason for the reduc-
tion is the virtualization overhead. Despite the lowered performance
improvement, the relative trend of improvements remains much the
same. It implies that even though the applications are encapsulated
inside VMs, the negative caching effect among them still maintain
similar impact on each other’s performance.

5.1.3 MultiThreaded Workload on Intel Core 2 Duo
Figure 12 shows the maximum and average performance improve-

ment for multi-threaded PARSEC. Similar to single threaded bench-
mark, the multi-threaded benchmarks also show reasonably good per-
formance improvement. The maximum performance improvement
(10.1%) is observed in ferret. The performance improvements for
the multi-threaded workloads seem more modest than their single
threaded counterparts as the memory working set (footprint) of SPEC
2006 is known to be much larger than the PARSEC; the latter was fo-
cused more on compute-bound applications.

5.2 Comparison of Three Resource Allocation
Algorithms

Figure 13 shows the relative performance improvement of a few
representative benchmark mix for three proposed algorithms. Inter-
estingly, the weight sorting algorithm, despite its simplicity, gave the
best results in certain cases. This indicates that the cache footprint is a
very good metric for predicting performance effect on processes/VMs
sharing the L2. We can also observe that the weighted interference

16.0% 14.3%

2.5%

25.3%
22.0%

54.4%

40.6%

11.0%

2.6%

38.3%

19.0%
24.7%

0.7%
2.8%

13.3%

0.6%
3.3%

11.0%
6.0%

12.4% 9.7% 8.9%

22.7%

8.0%

0%

10%

20%

30%

40%

50%

60%

astar gobmk hmmer lbm libquantum mcf omnetpp perlbench povray soplex sphinx xalanbcmk

Maximum Average

Figure 10: Maximum Performance Improvement for Each Benchmark (Native run on Intel Core 2 Duo)

9.3% 8.5%

1.9% 2.3%

18.3%

25.8%

17.7%

6.1%

2.3%

9.3%

14.4% 12.9%

7.8%
9.5%

3.3%4.6%
6.9%6.3%

3.3%
1.7%

0.4% 0.2%
2.3%

0.2%

0%

5%

10%

15%

20%

25%

30%

astar gobmk hmmer lbm libquantum mcf omnetpp perlbench povray soplex sphinx xalanbcmk

Maximum Average

Figure 11: Maximum Performance Improvement for Each Benchmark (Run in Xen Hypervisor)

0%

2%

4%

6%

8%

10%

12%

mcf

gobmk

povray

omnetpp

mcf

hmmer

libquantum

omnetpp

perlbench

gobmk

libquantum

omnetpp

gobmk

hmmer

libquantum

povray

mcf

hmmer

libquantum

povray

Application Mix

P
e
rf

o
rm

a
n

c
e
 I
m

p
ro

v
e
m

e
n

t

Weight-Sorted Interference Graph Weighted Interference Graph

Figure 13: Resource Allocation Algorithms

graph mechanism achieved as good or better performance among all.
This result is not surprising as the weighted algorithm considers both
the symbiosis and the occupancy weights.

5.3 Comparison of Different Hash Functions

0%

2%

4%

6%

8%

10%

12%

mcf

gobmk

povray

omnetpp

mcf

hmmer

libquantum

omnetpp

perlbench

gobmk

libquantum

omnetpp

gobmk

hmmer

libquantum

povray

mcf

hmmer

libquantum

povray

Application mix

P
e
rf

o
rm

a
n

c
e
 i
m

p
ro

v
e
m

e
n

t

XOR XOR Inverse Reverse Modulo Presence Bit

Figure 14: Comparing Different Hash Functions

One important design criterion in our proposed architecture is choos-
ing a suitable hash function for the Bloom filters. Aside from min-
imizing collisions, a low-complexity hash function is highly desir-

able for practical hardware implementation. Figure 14 shows a few
representative mix of benchmarks showing the relative performance
improvements for different hash functions. We tested four hash func-
tions for our evaluation:

• XOR: The block address is divided into equal chunks of hash in-
dex wide which are bitwise-XORed to obtain the hash index.

• XOR Inverse Reverse: This is same as XOR except that the ob-
tained index from XOR is bitwise inverted and reversed.

• Modulo: This is a simple modulo operation of the block address
with the Bloom filter size.

• Presence bits: It has a one-to-one mapping with the cache lines
being sampled. More explanation is described later.

We found that the first three hash functions perform identically for
almost all the mixes. The exception is the mix with gobmk, hmmer,
libquantum and povray where modulo performs slightly worse. In
general, XOR-based hash suffices in terms of performance and hard-
ware cost.

As explained, the presence bits have a one-to-one mapping with the
cache lines being sampled. Therefore, instead of maintaining a bloom
filter whose number of entries is bigger than the number of cache lines
we are sampling, a presence bit vector has exactly the same number
of bits as the number of cache lines it is sampling. So a presence bit
vector contains an exact per-core footprint of the cache. The results
are shown in the rightmost bar of Figure 14. We found that the pres-
ence bit vectors have no effect on scheduling decisions. All the results
shown are default schedules with which the processes began execu-
tion. In the case of perlbench, gobmk, libquantum, and omnetpp
mix and the mcf, hmmer, libquantum, and omnetpp the default
schedule coincidentally is the best possible schedule. The reason why
presence bit vectors do not work is because they get saturated quite
often for processes that heavily use the cache. A saturated presence
bit vector conveys little information. This is exactly the same reason
why we chose not to use multiple hash functions which will set mul-
tiple bits in the bit vector for a single address entering the cache. This
will saturate the Bloom filter and render the technique ineffective just
as in the case of presence bit vectors. Multiple hash functions would
have been effective if we did not have a strict hardware budget on the
number of Bloom filter entries.

We need to mention here that since our technique is at a cache line
granularity, page granularity changes in the system like page remap-
ping is unlikely to affect its effectiveness. However, there may be
slight changes in the interference metric due to remapping. Also,
since our technique uses a user-level process to set affinity bits and as-

5.0%

8.7%
10.1%

5.5%
4.6%

0.5%

9.5%

1.1% 1.2% 1.7%
1.2%

2.2% 2.2%

0.2%

0%

2%

4%

6%

8%

10%

12%

Bodytrack Facesim Ferret Fluidanimate Freqmine Swaptions X264

Maximum Average

Figure 12: Maximum Performance Improvement for Multi-threaded PARSEC (Native run on Intel Core 2 Duo)

signs processes to processor cores, it will not affect Linux’s schedul-
ing algorithm of using distributed queues for a multicore system.

5.4 Implementation Overheads
We consider two different aspects of the overheads for our tech-

nique. The first is the software overhead that involves book-keeping
of interference data with the process/VM context. This part of the
overhead is trivial since the amount of data needed to be maintained
as a process context is just a set of three 32-bit numbers. Also there
is the overhead of computation of the appropriate schedule by the al-
gorithm. Since the graphs created by the scheduling algorithms have
tens of nodes, the overhead of creating such graphs is hundreds of in-
structions. Also the graph algorithm will be in the order of hundreds
of instructions. Since the algorithm is only invoked once every 100
ms in a GHz processor, this performance overhead for a fast heuristic
algorithm is also negligible.

Another aspect of the overhead is computing the weight and in-
terference metrics for every context switch, which are done using
parallel bitwise XOR gates and will not take more than a few nano-
seconds. We also need to consider the communication overhead of
transferring the current RBV’s between cores during a context switch.
Since the number of bytes in an RBV is 1KB, the communication
overhead for a dual-core machine per context switch is two transfers
of 1KB data for roughly once every 2-3 billion cycles.

Another aspect of overhead is the hardware. This overhead in-
volves the hardware cost of maintaining the Counters, Core Filters,
and Last Filters. The number of entries in the counter array, LFs and
CFs were chosen to be equal to the number of cache lines. Assuming
a 64-byte line and an N-core machine and 3-bit counters, the over-
head of the LF and CF is given by (2 ∗ N + 3)/(64 + 18) ∗ 100%.
For a dual-core machine it is 8.5% of the cache size, which would be
inordinately large. We, therefore, consider a widely used technique
of sampling data sets for keeping signatures. Sampling of data sets is
a widely used technique for cache profiling [27]. We performed 25%
sampling of data sets and also compared the results to unsampled sys-
tem. We found that the correctness of our algorithm is not affected

by the sampling for the benchmarks we considered.2 Thus our total
overhead can be boiled down to only about 2.13% of the L2 size.

6. RELATED WORK
A slew of prior work have been focused on the impact of L2 cache

partitioning [4, 12, 13, 15, 16, 18, 26, 28, 29, 35, 39]. A notable
one similar to ours is CacheScout [39] which tags cache lines with
software guided monitoring ID to track interference. The approach is
similar to using presence bits, which we showed in Figure 14, given
little performance benefit. Comparing their simulated speedup re-
sults reported in [39] against our actual measurement results for four
same benchmark programs, the speedup for three of them (art, crafty,
swim) showed two to four times improvement. By the way, all the L2
partitioning schemes still suffered from the problem that they need to
change the interface of the normal caching. For example, the replace-
ment policy needs to be modified in [16, 18, 28, 35] while dedicated

2Therefore, we did not present the results of unsampled systems as
the mapping decisions were found identical to those of sampled ones.

sets were adaptively given to processors in [34] to improve L2 shar-
ing.

Other cache partitioning techniques require software layers to ex-
plicitly specify the application requirements for cache capacity and
bandwidth, and provide hardware mechanisms to uphold guarantees [24,
25]. Settle et al. [31] uses an activity-factor as a metric to schedule
threads in an SMT platform. They require to rewrite the OS scheduler
while our scheme is OS-agnostic. Another technique for scheduling
was proposed by Snavely et al. [32]. They compute the diversity, bal-
ance, and resource conflicts between competing possible schedules
in SMT and performs symbiotic scheduling, very different from our
memory footprint signature. Li et al. [21] studied the OS support
for fair-sharing on heterogeneous cores with asymmetric ISAs. Kan-
demir et al. [17] applied code restructuring in compilers to mitigate
inter-core conflict misses. Herdrich et al. [14] communicated task pri-
ority to a rate controller for estimating cache and memory bandwidth
needed by applications. In [5, 36], shared cache partitioning is done
at the OS level by page allocation. In contrast, we did not change nor-
mal cache mechanisms nor require specified requirements for virtual
resources. Our less invasive scheme simplifies the implementation.

Researchers also examined metrics like cache affinity for resource
allocation [11, 10, 33, 37]. Some [19] leveraged the OS to capture
misses per cycle and cache accesses on a per-thread basis for schedul-
ing. However, these techniques are less effective without dynamic
hardware’s involvement.

Dhodapkar et al. [7] presented algorithms that dynamically collect
and analyze working set to configure the I-cache. Though the manner
of collecting Working Set Signatures is similar, they did it for phase
change detection. Liu et al. [22] and Zhuravlev et al. [40] analyzed re-
source sharing issues in non-cache system resources such as memory
bandwidth, prefetch hardware, etc. Different from ours, miss rates
were used in the scheduling algorithms by [40].

7. CONCLUSIONS
Demands for performance and manageability and technological con-

straints have led to two trends: multi-core architectures and support
for virtualization. Meanwhile, resource sharing and contention on
these emerging platforms can degrade performance if the resource
allocation policy is ignorant. In this paper, we proposed architec-
tural support to mitigate the interference caused by the L2 cache con-
tention. We also proposed and studied three resource allocation al-
gorithms to minimize interference and find the symbiosis among pro-
cesses and threads. By integrating Bloom Filter Signature collected
on a per-core, per-process, or per-VM basis, the OS can perform job
scheduling based on their dynamic, mutual symbiosis to minimize
negative performance side effect when incompatible processes run on
multiple cores sharing a cache.

Unlike prior studies that completely relied on simulation results
and defined their own fairness metrics, we substantiated our perfor-
mance results by executing our new process-core mapping on an Intel
Core 2 Duo machine and reported the runtime speedup. Our exper-
iments were done in two phases. First, we collected the dynamic
signature information from Simics runs, and ran them through the
proposed three resource allocation algorithms. We then applied these
results to guide our modified Linux and executed the same workloads
on a real Intel Core 2 Duo platform. We showed an improvement of

22% on average (up to 54%) when applications run natively. When
running inside the VMs, the speedup is 9.5% on average (up to 26%).
Given that the future trend is to increase the number of cores and the
degree of sharing, integrating more intelligence using runtime infor-
mation for resource sharing as proposed will become very critical to
minimize performance downfall due to resource conflicts.

8. ACKNOWLEDGMENT
This research is supported by NSF grants CCF-0326396, CCF-

0811738, CNS-1017297, an NSF CAREER Award CNS-0644096,
and generous gift given by Intel Corp. The authors also thank Tejas
Iyer for discussion on the algorithm design. This research was per-
formed when Dr. Ghosh and Dr. Nathuji were affiliated with Georgia
Tech.

9. REFERENCES

[1] The AIM IX Independent Resource Benchmark Suite.
http://sourceforge.net/projects/aimbench.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proceedings of the ACM Symposium on Operating
Systems Principles, 2003.

[3] C. Bienia and K. Li. PARSEC 2.0: A New Benchmark Suite for
Chip-Multiprocessors. In Proceedings of the 5th Annual Workshop on
Modeling, Benchmarking and Simulation, June 2009.

[4] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip
multiprocessors. In Proceedings of the International Conference on
Supercomputing, 2007.

[5] S. Cho and L. Jin. Managing distributed, shared L2 caches through
OS-level page allocation. In Proceedings of the International
Symposium on Microarchitecture, 2006.

[6] M. Devarakonda and A. Mukherjee. Issues in implementation of
cache-affinity scheduling. Proceedings of theWinter 1992 USENIX
Technical Conference and Exhibition, pages 345–357, 1992.

[7] A. S. Dhodapkar and J. E. Smith. Managing multi-configuration
hardware via dynamic working setanalysis. Proceedings of the Annual
International Symposium on Computer Architecture, 2002.

[8] L. Fan, P. Cao, J. Almerda, and A. Broder. Summary cache: A scalable
wide-area Web cache sharing protocol. IEEE/ACM Transactions on
Networking, 2000.

[9] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum.
Throughput-Oriented Scheduling On Chip Multithreading Systems.
Technical ReportTR-17-04, Harvard University, August, 2004.

[10] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. Performance of
multithreaded chip multiprocessors and implications for operating
system design. In Proceedings of the USENIX Annual Technical
Conference, April 2005.

[11] A. Fedorova, M. Seltzer, M. Smith, and C. Small. CASC: A
Cache-Aware Scheduling Algorithm For Multithreaded Chip
Multiprocessors. http://research.sun.com/scalable/pubs/CASC.pdf.

[12] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework for providing
quality of service in chip multi-processors. In Proceedings of the IEEE
International Symposium on Microarchitecture, 2007.

[13] M. Hammoud, S. Cho, and R. Melhem. Dynamic Cache Clustering for
Chip Multiprocessors. In Proceedings of the International Conference
on Supercomputing, 2009.

[14] A. Herdrich, R. Illikkal, R. Iyer, D. Newell, V. Chadha, and J. Moses.
Rate-based qos techniques for cache/memory in cmp platforms. In ICS
’09: Proceedings of the 23rd international conference on
Supercomputing, pages 479–488, 2009.

[15] R. Iyer. CQoS: A Framework for Enabling QoS in Shared Caches of
CMP Platforms. In Proceedings of the 2004 International Conference
on Supercomputing, pages 257–266, June 2004.

[16] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and
J. Emer. Adaptive insertion policies for managing shared caches. In
Proceedings of the 17th international conference on Parallel
Architectures and Compilation Techniques, 2008.

[17] M. Kandemir, S. P. Muralidhara, S. H. K. Narayanan, Y. Zhang, and
O. Ozturk. Optimizing shared cache behavior of chip multiprocessors.
In Proc. of the International Symp. on Microarchitecture, 2009.

[18] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture. In Proceedings of
the 2004 International Conference on Parallel Architectures and
Compilation Techniques, pages 111–122, Sept. 2004.

[19] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using OS
Observations to Improve Performance in Multicore Systems. IEEE
MICRO, 28(3):54–66, 2008.

[20] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu. An
analysis of performance interference effects in virtual environments. In
Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2007.

[21] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and S. Hahn.
Operating System Support for Overlapping-ISA Heterogeneous
Multi-core Architectures. In Proceedings of the International
Conference on High Performance Computer Architecture, 2010.

[22] F. Liu, X. Jiang, and Y. Solihin. Understanding How Off-Chip Memory
Bandwidth Partitioning in Chip Multiprocessors Affects System
Performance. In Proceedings of the International Conference on High
Performance Computer Architecture, 2010.

[23] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig. Intel
Virtualization Technology: Hardware Support for Efficient Processor
Virtualization. In Intel Technology Journal, August 2006.

[24] K. Nesbit, J. Laudon, and J. Smith. Virtual private caches. In
Proceedings of the Int’l Symp. on Computer Architecture, 2007.

[25] K. Nesbit, J. Smith, M. Moreto, F. Cazorla, B. Supercomputing,
A. Ramirez, and M. Valero. Multicore Resource Management. IEEE
MICRO, 28(3):6–16, 2008.

[26] M. Qureshi. Adaptive Spill-Receive for Robust High-Performance
Caching in CMPs. In Proceedings of the International Symposium on
High Performance Computer Architecture, 2009.

[27] M. Qureshi, M. Suleman, and Y. Patt. Line Distillation: Increasing
Cache Capacity by Filtering Unused Words in Cache Lines.
Proceedings of International Symp. on High Performance Computer
Architecture, 2007.

[28] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance Runtime Mechanism to Partition
Shared Caches. In Proceedings of the Interntaionl Symposium on
Microarchitecture, 2006.

[29] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural Support for
Operating System-Driven CMP Cache Management. In Proceedings of
the 15th International Conference on Parallel Architectures and
Compilation Techniques, pages 2–12, Sept. 2006.

[30] J. Salehi, J. Kurose, and D. Towsley. The effectiveness of affinity-based
scheduling in multiprocessor network protocol processing. IEEE/ACM
Transactions on Networking, 4(4):516–530, 1996.

[31] A. Settle, J. Kihm, A. Janiszewski, and D. Connors. Architectural
Support for Enhanced SMT Job Scheduling. In Proceedings of the
International Conference on Parallel Architectures and Compilation
Techniques, 2004.

[32] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreaded processor. SIGARCH Comput. Archit.
News, 28(5):234–244, 2000.

[33] M. Squillante and E. Lazowska. Using processor-cache affinity
information in shared-memory multiprocessor scheduling. IEEE
Transactions on Parallel and Distributed Systems, 4(2), 1993.

[34] S. Srikantaiah, M. Kandemir, and M. Irwin. Adaptive set-pinning:
Managing shared caches in chip multiprocessors. In Proceedings of the
13th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2008.

[35] G. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared
cache memory. The Journal of Supercomputing, 28(1):7–26, 2004.

[36] D. Tam, R. Azimi, L. Soares, and M. Stumm. RapidMRC:
Approximating L2 miss rate curves on commodity systems for online
optimizations. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating
Systems, pages 121–132. ACM, 2009.

[37] J. Torrellas, A. Tucker, and A. Gupta. Evaluating the Performance of
Cache-Affinity Scheduling in Shared-Memory Multiprocessors. Journal
of Parallel and Distributed Computing, 24(2):139–151, 1995.

[38] R. Vaswani and J. Zahorjan. The implications of cache affinity on
processor scheduling for multiprogrammed, shared memory
multiprocessors. Proceedings of the 13th ACM Symposium on
Operating Systems Principles, pages 26–40, 1991.

[39] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and D. Newell.
CacheScouts: Fine-Grain Monitoring of Shared Caches in CMP
Platforms. Proceedings of the 16th International Conference on
Parallel Architecture and Compilation Techniques, 2007.

[40] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing Shared
Resource Contention in Multicore Processors via Scheduling. In
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems, 2010.

