Appeared inProceedings of the 1994 International Conference
on Parallel ProcessingSt. Charles, lllinois, Vol. lIl, pp. 188-192.

A Hierarchical Approach to Modeling and Improving
the Performance of Scientific Applicationson the KSR1

Eric L. Boyd, Wagar Azeem, Hsien—Hsin Lee, Tien—Pao Shih, Shih—-Hao Hung, and ERi\Randdson
Advanced Computekrchitecture Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan

Abstract Memory Architecture (COMAJ2] [3]. These bounds focus on the
We have developed a hierarchical performance bounding meth-aténcy and bandwidth of specific machine components, particular-
odology that attempts to explain the performance of loop-dominat- ly memory, instruction issue, and floating-point units, since these
ed scientific applications on particular systems. The Kendall Units are common bottienecks. _
Square Research KSR1 is used as a running example. We model the The KSR1is built as a group of ALLCACHE engines, connect-
throughput of key hardware units that are common bottlenecks in€d in a fat tree hierarchy of rings. Up to 34 rings can be connected
concurrent machines. The four units currently used are: memoryPY @ single second-level ring for a maximum configuration of 1088
port, floating-point, instruction issue, and a loop—carried depen- PrOCESSOrs. Each first—leyel ring has up to 32 processor nodes and
dence pseudo-unit. We propose a workload characterization, andP t© two ALLCACHE directories. Although 256-processor sys-
derive upper bounds on the performance of specific machine-work-t€ms have been built, all of our experimentSéttion4 used a sin-
load pairs. Comparing delivered performance with bounds focuses9!€-ring 32-processor KSR1. _ _
attention on areas for improvement and indicates how much im- E&ch KSR1 node contains a 64-bit custom processor with a 20
provement might be attainable. MHz clock. The basic load/store RISC architecture is enhanced to
We delineate a comprehensive approach to modeling and im-allow a 2-instryction (VLIW format) isgue per F:Iock cycle: one ad-
proving application performance on the KSR1. Application of this dres; calcglatlon, brar.mh,. or memory instruction ?”d one integer or
approach is being automated for the KSR1 with a series of tools in-floating-point calculation instruction. Floating-point multiply-add
cluding K-MA and K-MACSTAT (which enable the calculation of triad instructions allow a peak performance rating of 40 MFLOPS.
the MACS hierarchy of performance bounds), K—-Trace (which al- Each node also has a D—subcache, I-subcache, and local cache.

lows parallel code to be instrumented to produce a memory refer-Each subcache is 64 sets, 2-way set associative, random replace-
ence trace), and K-Cache (which simulates inter-cache Ment, 1 per cycle access rate, 2 cycle access time, with 2KB block

communications based on a memory reference trace). (allocation unit) and 64B subblock (transaction unit). The local
cache is 32MB, 128 sets, 16-way, LRU, 16KB page (allocation
1. Introduction unit), 128B subpage (ring transaction unit). On subcache miss, av-

L . ._erage local cach time was found t 23.4 cycl llocat
Computer scientists and engineers use performance evaluatio age local cache access time was found to be 23.4 cycles (allocated

: . . lock) or 49.2 (unallocated) or 150 to 180 (local cache miss, single
as a tool to achieve several different goals. Computer architects ar?ing transaction)4] [5]
interested in understanding existing and proposed machines in or- i .
der to improve the design of new machines. The developers of Ii-a tc;r%v;)t'gﬂls ugr?:rra?:\t/ﬁ:eo?Aﬂ%n;_“iﬁgrﬁ;r;ip\& S'rl']g\'sl' \rl1v'lgrarch
braries, compilers, and operating systems focus on effective u ically 9 ; periori u ' y
for the KSR1 on loop—dominated applications. Interprocessor com-

utilization of machine resources. Application developers optimize nication and he simulation can be reconstructed b imul
specific programs by understanding performance bottlenecks. Endtunication and cache simuiation can be reconstructed by a simuia-
tion tool under developmeri{—~Cache using traces generated by a

users may only be interested in choosing the fastest or most cost- o .)
effective machines and application packages parallel application trace collection to#l-Trace Software pipe-

An effective performance evaluation technique can provide in- “rl]éntgogr l?ﬁgggiit'zr:;:%p?.sr: .'b;(;lgg; g[’g]ﬂlzruﬁe(g ?Orrettﬁtrageta—
sights for each of these groups. Many researchers have evaluate ' 4 ptimiz » 1arg

scientific computers by focusing on the expected performance. We SRI.
believe that the best approach to improving performance for scien- .
tific applications is to bound the best achievable performance that a2 MACS Performance Bounds Hierar Chy

machine could delivesn a particular codend then try to approach The MACS machine-application performance bound method-
this bound in delivered performance. ology provides a series of upper bounds on the best achievable per-
We present a technique for determining and approaching per_form.anc.e and has been used for a variety of Ipop-dominated
formance bounds for scientific loop-dominated codes, using the @PPlications on vector, superscalar and other architedtir¢s]
Livermore Fortran Kerne[d] as a running example to illustrate the ~@nd extended to the bounds hierarchy used heéd.ifrour com-
method on the Kendall Square Research KSRishared virtual mon bottleneck units (memory port, floating-point, instruction is-

memory Massively Parallel Processor (MPP) with a Cache—Only SU€, and a loop-carried dependence pseudo-unit) are included in the
KSR1 model to assess their individual workloads in the application

and to examine how well the available parallelism among them is
exploited[10]. The hierarchy of bounds equations is based on the
peak floating—point performance of a Machine of interest (M), the
Machine and a high level Application code of interest (MA), the

1 The University of Michigan Center for Parallel Computing, site of
the KSR1, is partially funded by NSF grant CDA-92-14296.

Appeared inProceedings of the 1994 International Conference
on Parallel ProcessingSt. Charles, lllinois, Vol. lIl, pp. 188-192.

Compiler-generated workload (MAC), and the actual compiler- sary (yet “essential”) memory accesses. Reordering and fusing
generated Schedule for this workload (MACS), respectively. loops, and economical data structures, are common solutions to re-

The M bound for the KSR1 is 0.5 CPF (clocks per floating— ducinggap A
point operation), assuming perfect combining of floating—point Gap C(MA —> MAC) is caused by instruction set weakness, re-
adds and multiplies into triad instructions and no other limitations source bandwidth limitations, and compiler inefficiencies. Typical
on performance. factors leading t@ap Con the KSR1 include redundant instruc-

The MA lower bound on the run time of an application loop tions (particularly redundant memory accesses), overhead for sub-
counts the essential operations for each selected function unit peroutine calls, and redundant base index registers. Subroutine
inner loop iteration from the high level code of the application. The inlining reduces save/restore overhead. Declaring data in Fortran
number ofessentiaffloating—point arithmetic operations is simply commorblocks promotes sharing of base index registers.
the number of floating—point operations (add, multiply, etc.), re- Gap S(MAC —> MACS) is caused by hardware and compiler
duced by combining them into triads where possible. Counting only scheduling inefficiencies. Loop unrolling can reduce the number of
the essential memory operations requires inter-iteration depen-nstructions per loop iteration by reusing registers and reducing
dence analysis. Famiterations of the inner loop, the number of dis- overhead. The compiler typically achieves better scheduling with
tinct array elements that appear on the left hand side of thefewer nop operations by moving independent instructions of un-
assignment statements will be of the fam+b. The number oés- rolled loop iterations into the slots where no operations existed pre-
sentialstore operations is defined to dperiteration. The number viously. Typically the KSR1 Fortran compiler unrolls 2, 4, 8, or 16
of essentialoads is counted similarly by examining the right side iterations, limited heuristically by register set size and the size and
of each statement and counting the distinct array elements that apeomplexity of the loop bodyGap Scan be reduced with the help of
pear on the right side before they appear on the left side of an asthe KSR1 version of OCO which employs a software pipelining
signment statement. technique known as polycyclic loop scheduljh@].

The MAC bound is similar to MA, except that it is computed Gap P(MACS —> Measured CPF) results from subcache miss
using the actual operations produced by the compiler, rather tharpenalties and context switches. Cache simulation enables the visu-
only the essential operations counted from the high level code. Thuslization of data movement in the memory hierar€@gp Pcan be
MAC still assumes an ideal schedule, but does account for redunteduced by restructuring data reference patterns in order to maxi-
dant and unnecessary operations inserted by the compiler as well amize data reuse in the subcaches and local caches. Common tech-
those that might be necessary, but not included in the MA count ofniques include loop blocking, loop fusion, domain decomposition,
essential operations. It removes one degree of freedom from theffinity regions, and prefetch and poststore instructiGag Pbe-
model by using an actual rather than an idealized workload. comes critical in parallel code, although uniprocessor performance

The MACS bound, in addition to using the actual workload, re- is still important. Two tools discussed $ection5 (K-Trace and
moves another degree of freedom by using the actual schedule ratiK—Cache) will provide insights into the penalties for cache misses
er than an ideal schedule. However, it ignores cache miss stallsand communication that typically account for the majoritgag P

interprocessor communication, and interrupts. in parallel applicationgGaps A C, andSinvolve the performance
of a single processoBGap Pinvolves intranode cache effects and
3. Gaps between Performance Bounds internodal communication for parallel applications.

In ascending through the bounds hierarchy from the M bound,
the model becomes increasingly constrained as it moves in severat. MACSM odel for the KSR1
steps from potentially deliverable toward actually delivered perfor-
mance. This approach exposes and quantifies specific performancé-1. KSRIMA, MAC, and MACS Bounds

gaps, as shown Figurel, that are extremely useful for identifying The MA performance bound model for the KSR1, in clock cy-
bottlenecks in the machine and weaknesses in the compiler. Wecles per inner loop iteratiol, is:
then individually evaluate, for example, the efficacy of the data t = Max (, &, ty, tg) = Max @, ty) (1)

flow analysis and the code scheduling phases of the compiler andyhere each term in teaxexpression is the number of busy cycles
identify their shortcomings. Restructuring techniques with the e jieration in the corresponding unit, as defined below. The MA

greatest potential performance gains can be selected according 4,0 is computed in units of clocks per floating—point operation
which gaps are the largest and their causes. This approach can he-pr) py dividingt) by the total number of essential floating—point
implemented within goal-directeccompiler for general use. operations per iteration, TNFfz+ fr, + 2*f g

~ Gap A(M —> MA) is caused by essential memory operations, The KSR1 processor can issue one instruction per clock cycle
issue limitations, loop—carried dependencies, and noncombinabley, gjther the floating—point (FPU) or integer (IPU) unit and one to
floating—point operations. A large fraction of the avoidable perfor- gjier the CEU or XIU (load, store, address arithmetic, branch, and
mance loss shown Igap Acan commonly be attributed to poor re- |5 jnstructions). In the bounds equatiopgEounts the number of

use of data in the high I(_evel application code. E>_<cessive renamingagsential floating—point multiply—add triad operations, apuid
and/or large data bandwidth between loops may introduce unnecesr-acount the noncombinable multiply and add operations. Floating—

GapA Gap C. Gap S. M Gap P Measured point stores and linked triad instructions conflict on a register port
M B-MA AC ACS CPF (FPU{C}) which indirectly constrains instruction issue. Unrolling
Figure 1: Gaps between performance bound models a loopk times reduces branch overhead by a factor &j.(EPU/
and measured time IPU branch overhead)(typically includes a loop index decrement

Appeared inProceedings of the 1994 International Conference
on Parallel ProcessingSt. Charles, lllinois, Vol. lIl, pp. 188-192.

instruction and a compare instruction to set/clear the conditionalsponding type that appear in the unrolled loop and dividing by the
code for the branch, and has a value of 2. CEU/XIU instructions in- degree of unrollingk. In particularx’ = x/k andy’ = y/k.

clude floating—point loads and storgg# g, and branch overhead, Since the KSR1 assembly code is statically scheduled, the com-
y, which typically counts one increment instruction for each essen-piler must insert explicihop instructions in the code to insure that
tial base address register and one branch instruction. Thus data dependence requirements between instructions are satisfied.

ti = Max ((f + s + YK, (mat fat fm+ %K), Fnat s)) The MACS bound for one iteration of a lgdp is thus the number
Both the floating—point unit and the data subcache are fully pipe- of lines in the static listing of the assembly code divided by the de-
. . . . ~_gree of unrollingk, and dividing by TNF to get CPF.

Ilnf_ed, s_o the issue unit subsumes the bqun_d for the floating—point Table2 (changed parameter values appedsdit) shows the
unit, t; = .fma+ fm * T and the memory urif, = Iy + sy, as shown MAC bound calculation. Counts have been dividedt;tky x/k, and

in Equation(1) above. ylk are taken fronTTablel. The “other CEU/XIU” column lists

th tThedIoIopt;catrrled cfieptindlence ;:_Teudo—un_lt (;sda fICtIcthOuS unit those instructions on the CEU/XIU side of the issue that are not in-
at models the timé, for the longest loop—carried dependence as cluded iny and are neither floating—point loads nor stores. In the

the sum of the latencies of thg °pefa“°r_‘s in one traversal of the Ykernels examined, these instructions copy an IPU register to a CEU
cle divided by the number of iterations in one traversal. In the ab-

fal ied d dercis 0 register. “Other FPU/IPU” = 0, as no such instructions exist in the
sence of a loop—carried depen enge 0. . . kernels examined, except for floating—point moves which are im-
While computing they bound we have ignoredl factors that

- . - plemented and counted as floating—point adds.
may limit concurrency between the machine uiijghe inability
to pack the reservation templates of the individual instructions in a

loop body tightly into a reservation tabiié) cache misses, intern- : MA Bound|Compileg
odal communication, register spilling and other operations intro- LK falTm/fmai | snltaXly] - 4 K (CPF) (CPF)
duced by the compiler, amg) time for code that is not in the inner T JO|1] 2 2|L1022 3+2/K[8 0.6+04K| 006
loop, loop start-up time, system overhead and contention. There-| 2 [0|0| 2 [4|1[0|2[3| 5+ 3/k|8[1.25 + 0.75/k 3.09
fore it is possible for an optimal schedule to exhibit performance | 3 |0|0| 1 |2[0][0[2[2| 2 + 2/k|8] 1+ 1/k 1.32
that does not reach the MA bound. 4 |(0({0|1(|2|0|0|2[3[2+3/k|8 1+1.5/k 1.55
The MA bounds (in CPF) for LFKs 1-12 are calculated in 5 (0/0| 1(2[1|4|2|2| 3+2/k[8 2.5;k=1 2.43

Tablel. The f,50peration in loop 5 is of the form X*(Y-Z), where 2.0, k>1
Z is the result of the previous iteration. Thys= 4, the triad—to— 2+3/k|8 1+1.5k | 4.07
triad latency. Loop 11 has a floating—point add operation of the 10; k=1|4| 0.625; k=1| 0.92

~N| o
[=]f=}
|
wWiN
| o
o

N[N
N W

form X+Y where X is the result of the previous iteration. Thus 9 k>1| | 0.56; k>1
2, the add-to—add latency. Only LFK 7 hasnd hencg, affected 8 16/0]15/9]6]0|2/3)21 + 2/k1]0.58 + 0.06/k 1.01
by FPU{C} source conflicts. 9 [1/0] 8 |10 1|0[2/2{11 + 2/k|4|0.65 + 0.12/k 0.8
The twelve kernels were compiled for the KSR1 using-tb2 10 19|01 0]10100j2|2|120 + 2/K2|2.22 + 0.22/k 2.46
option of version 1.1.3 of the Fortran compiler which does loop un- 11111010]1]1]2]2]2)2+2/k|8 2+ 2/k 2.88
12 |110| 0 |1|1|0|2]2| 2+ 2/k|8] 2+ 2/k 2.46

rolling in addition to other global optimizations.
The average CPF of a set of applications can be used to calcu- Table 1. Calculation of the MA Bound
late their harmonic mean performance as follows:

HMEAN (MFLOPS) = CPU clock rate (MHz)Avg. CPF (3) h MAC |[MACS
The harmonic mean performance of the compiled code is 10.05 [LFK| fa |fm|fmal 1 |S1|ceupxiultal t [BoundBound
MFLOPS (1.99 CPF) while MA is 14.93 MFLOPS (1.34 CPF) for _— i (CPF) (CPQ
LFKs 1-12, hence the compiled code achieves 67.34% ofthe MA | 1 [O |1] 2 [213]1 0 [0[3.38] 0.68] 0.93
bound performance (calculated by dividing the CPF of the bound | 2 | 0 [0} 2| 5 |1 0]0]6.38] 1.59 | 2.59
by the CPF of the actual application). All kernels but LFK 2 and 6 3/]0j0j1]2]0 0]0]2.25/112] 1.25
achieve at least 60% of their MA bound performance, while loops | 4 [0 0] 1] 2]0] 013 |0/ 25125 131
10 and 12 achieve over 90%. Loop 6, at 29.93%, is the furthest | 5 | 0 [O| 1 |213/1 0 14|3.38] 2.0 | 231
away from MA. Ask increases, thk—dependent term in the MA 61063 0| 12131| 013 |0|3.63] 1.81| 3.56
bound becomes negligible. The average CPF of the MA bounds of | 7 |275/0] 8 |45|1 0 |0j11.259 0.70| 0.89
the first 12 LFKs would then be 1.24, corresponding to 16.13 | 8 [10]0/15/15|6 0O (0] 27]075)0.97
MFLOPS. The compiled code achieves 62.31% of this bound. 921 7]10]1] 025 |0j|11.79 0.69| 0.76

The MAC bound calculation for the KSR1 is similar to the MA 10/ 9]0/ 0)10j100 05 |0|21.5] 2.39| 2.39

calculation. However all the actual compiler—generated instructions |11 | 1 |0 0 |1.13/1 0 [2|2.38] 2.38| 2.75

are counted in the assembly code, and;tfe@rhula is changed to: 1211 /0] 0]113/1 0 [0[2.38] 2.38| 2.38

t; = Max ((l + 5 + (other CEU/XIU)#H’), (fnat fa+ fm + (other Table 2: Calculation of the MAC and MACS Bounds
FPU/IPU) +x), (fma *+ s1))) The number of noncombinable floating—point add operations,

The “other CEU/XIU” and “other FPU/IPU” terms count instances f, changes in LFK 6, 7, and 8 because of the introduction of float-
of all other types of instructions (except nops). Each term is calcu-ing—point move instructions. The compiler failed to find one pair of
lated by counting the actual number of instructions of the corre- combinable multiply-adds in LFK 9. Many compiled kernels in-

Appeared inProceedings of the 1994 International Conference
on Parallel ProcessingSt. Charles, lllinois, Vol. lIl, pp. 188-192.

cludenonessentidbads, and in LFK 6 there is@nessentiastore. packing problem which even hand-coding could not solve. Each
The compiler-generated workload for loop 3 does not have anyother loop achieved a steady—state inner loop performance greater
nonessential operations, and therefore the MAC bound is the saméhan 90% of the MA bound performance.
as the MA bound, as seen by comparing Tables 2 and 3. These two 100
bounds are also the same for loop 5 due to the fadtti@minates
the time spent in all other modeled machine units. The MAC g
bounds for loops 1, 4, 9, 10, 11 and 12 show only a small changeai
from the MA bound, indicating that the workload produced for the <
bottleneck unit of the bound is close to the set of essential opera<
tions. These slight changes appear in loops 4, 9 and 10 due to thg
small fraction added tg by “other CEU/XIU” instructions, and in
loops 1, 11, and 12 due to the slight increase in the number of load
A large gapdap Q between the MA and MAC bounds is evi-
dentin LFKs 2, 6, 7, and 8. In LFK 2, the compiler fails to identify
all of the redundant loads, despite unrolling eight times. In LFK 6,
the compiler fails to use a scalar as a reduction variable, thus intro-
ducing a nonessential store instruction. (This has been fixed in the
latest compiler release.) In LFK 7, the compiler introduces extra L T T T T e
FPU move instructions to save reusable values (overwritten due to LFKs 1-12
a hardware restriction that requires one of a triad’s source registers Figure 2: % of MA Bound Performance Achieved
to be used as a result register) despite the fact that the FPU/IPU in-
struction stream is already the kernel bottleneck and some reload$, Evaluation Toolsfor the KSR1
can be masked. In LFK 8, the compiler again introduces redundant e are developing a series of tools to further facilitate the per-
move instructions and nonessential loads. formance analysis of the KSR1. MA, MAC, and MACS perfor-
All of the loops, except loops 2, 4, and 6, achieve at least 94%mance bounds for the KSR1 can be generated by the tools K-MA
of the MACS bound performance. For loops 10 and 12 the MACS and K-MACSTAT. When coupled with an understanding of inter-
bound is the same as the MAC bound. This implies that the schedprgcessor communication given by K-Trace and K—Cache, these
gle for the compiler-gengrated workload was optimal..This IS CON- tools provide an application programmer or compiler writer the
frmed by the observation that the CEU/XIU portion of the apjjity to ferret out specific sources of performance degradation on
instruction issue unit is the bottleneck, and the code on this sideyhe KSR1. Code restructuring, aided when needed by a version of

does not hgve amops Howeve_r, the percentage of MACS perfor- - ocQ targeted for the KSR1, can then proceed in a more efficient
mance achieved by the compiled code is 97.15% and 96.54% fofyoa|-directed manner.

loops 10 and 12, respectively. The remaining performance gap

could be due to two reasons: the timing measurements are slightlys.1. K-MA and K-MACSTAT

perturbed due to system overhead, and ¢mlyk | x k iterations Currently K-MA calculates MA for inner loop bodies that con-

of a loop are executed in the unrolled part of the inner loop. The re-tain no internal branches. K-MA assumes a typical scientific appli-
maining n—|[n/k | xk iterations are executed in a stub which is cation that is dominated by floating—point loads, stores, adds, and
not unrolled and has a higher branch overhead associated with it. Iinultiplies. The tool can be extended to handle branching by using
is also likely that the schedule in the stub would be suboptimal, a profile methodology and it can be extended to more general code

o

!

"

al

% Achieved in Steady—
E State Inner Loop

E Hand Coded Inner Loop

% of MA Boung’Perf

Il Compiled Code (-02)

even though the schedule for the unrolled section is optimal. segments by adopting an integer performance model.
For a given source code segment, K-MA employs a two step
4.2. KSR1 Performance | mprovement process. SIGMA, a tool kit for building parallelizing compilers and

Given the insights produced by the MACS hierarchy gaps be- performance analysis systefid], builds a database which con-
tween the MA bound and the measured performance it is possiblgajns needed information such as expression trees and dependence
to tune the delivered single processor performance by modifyingyectors. Then K—MA backtracks through the expression tree to
the assembly code produced by the compiler. Hand coding of thecompute the number of essential floating-point operations, groups
inner loops of each kernel elevated the KSR1 processor perfor-rnemory operations based on their dependence vectors and com-
mance from 67.34% to 87.58% of the MA bound performance, aspytes the number of essential load/stores, and computes the length
shown inFigure2. [10] of the maximally-weighted dependence cycle. It is then straightfor-

The MA bound is clearly unattainable by modifying only the \yard to calculate the workload of each of the four units and the per-
inner loops of LFK 2, 4, and 6 since they contain significant outer tgrmance bound of the loop for given machine parameters.
loop overhead. To assess this, we have developed a technique for k_MACSTATIs a single pass, forward—scanning tool that gen-
measuring delivered steady—state inner loop performd8pef erates the parameters used in the MAC and MACS bounds. It re-
this steady—state performance is used as the metric for “deliveredportS statistics for each loop in a designated region of interest.
performance” for the hand-coded loops, the highest bars ingatistics for outer loops report only on code not contained in the in-
Figure2 are obtained: an average steady-state delivered perforner |oops, i.e. the residue code; statistics for code spanned by for-
mance of 94.83% of MA. LFK8 poses a very difficult template \y4rd branches are reported separately. Using TNF pualues

Appeared inProceedings of the 1994 International Conference
on Parallel ProcessingSt. Charles, lllinois, Vol. lIl, pp. 188-192.

calculated byK-MA and profile—generated frequencies for all con- 6. Conclusion

ditional branches, MAC and MACS are then derived by taking e have presented an overview of the KSR1 architecture, a de-

weighted averages of the component statistics. scription of the MACS performance bound model, and a discussion

52 K_Traceand K—Cache pf th(_a principle causes and cures for the various performance gaps
K-Trace instruments the assembly code of an application andlllumlnated by the MACS bound methodology. We have demon-

generates memory traces of the code on the KSR Since K—TracStrated the MACS performance modeling technique on part of the

. o i . anrence Livermore Fortran Kernel benchmark suite, and shown
directly modifies assembly programs without any other input from

th ler itis ind dent of th i d thus b (}hat it is possible to utilize the insights obtained to achieve a high
toetr(;?:zg elgolrtlr;ln ai%egssgm%ly perg;grr:wlse:)zrlhecaK%Rlljs e use percentage of the MA bound for each kernel examined. We have

e . .) outlined a suite of tools (K-MA, K-MACSTAT, K-Trace, and K-
Difficulties encountered in creating tracing tools for the KSR1, u U (

. he) th ill icall lcul he MA hierar-
or porting them from other platforms, are caused by the fact that theCac €) that will automatically calculate the CS bound hierar

KSR1 has no interlocks, all constants and subroutines are referre&hy and model internodal communication.
to via a table of constant pointers, no symbol table is generated fo
optimized code, the identification of global variables is difficult in
KSR1 assembly codes, and KSR does not officially support assem1]
bly language programming.

After instrumentation, the modified program is linked with K—
Trace run time routines and executed. An execution trace is pro-
duced for each processor including address, access type, and L;?r]
pointer to the assembly code listing for each memory reference.
Synchronization events in the program are also recorded in th
trace. The instrumentation instructions do not affect processor state
(registers and condition codes), so the output results of an instru 4]
mented program are identical to those of the original program.

The timing behavior of the instrumented program and the orig-
inal program will differ as a result of run time dilation introduced
by instrumentation. This dilation may not affect the accuracy of
traces in a uniprocessor run because the memory references are re-
corded in the same order as in the original program. For a multipro-
cessor run on the KSR1 shared memory system, the timing of
memory references among a set of processors is very important be-
cause the order of references to the same global address on differe
processors determines the explicit interprocessor communication,
invalidates, and opportunities for automatic updates. The execution
of a parallel program on the KSR1 is not deterministic due to sys-
tem interference, the use of random replacement in the subcache,
etc. As a result, the order of the instruction executions and memory
references in the parallel program is not deterministic. The uncer-[
tainty of parallel execution is limited by the barrier synchroniza-
tions found in parallel programs. Modifying the KSR1 Presto
library enables the recording of synchronization events.

The traces generated by K—Trace can be input to K-Cache, alscgg]
under development, to simulate subcaches, local caches, and com-
munication traffic. K-Trace and K—Cache can be used in combina-
tion to investigate Gap P Assuming that the barrier
synchronizations properly synchronize the high—level application [10]
code, K—Cache independently reconstructs the interactions of each
processor with its subcache and local cache, and the hierarchical
ring interconnect until a synchronization is reached. All processors
then perform the accumulated invalidates at that time before con-
tinuing past the synchronization. K-Cache will flag occurrences of
faulty synchronization, i.e. when some processor writes into a sub-
block that some other processor reads between the same pair of suc-
cessive synchronizations. By this means, K—Cache can simulate
individual processor portions of the trace simultaneously on distinct
processors of a parallel system, and the memory accesses can be
sufficiently well-ordered among the nodes.

7. References

F. H. McMahon, “The Livermore Fortran Kernefs:Com-
puterTest of the Numerical Performance Rangethnical
Report UCRL-5375, Lawrence Livermore National Labora-
tory, December1986.

KSR1 Principles of Operation, Kendall Square Research
Corporation,"Waltham, MA, 1991.

KSR1 Technical SummaryKendall Square Research €or
poration,”Waltham, MA, 1992.

E. L. Boyd, E. S. Davidson, “Communication in the KSR1
MPP: Performance Evaluation Using Synthétiorkload
Experiments, Proceedings of the 1994 International Con-
ference on Supeomputing July, 1994.

[5] D. Windheiser E. L. Boyd, E. Hao, S. QAbraham, E. S.
Davidson, “KSR1 MultiprocessorAnalysis of Latency
Hiding Techniques in a Sparse SolveProceedings of the
7th International Parallel Pocessing Symposiumpril,
1993, pp. 454-461.

D. Windheiser Data Locality and Fine Grain Parallelism
Optimization Ph.D. thesis, Irisa INRIA-RENNES, 1992.
(Available only in French).

W. H. Mangione-Smith, S. QAbraham, E. S. Davidson,
“A Performance Comparison of the IBM RS/6000 and the
Astronautics ZS—1,Computer January1991, pp. 39-46.

W. H. Mangione-SmithT-R Shih, S. GAbraham, E. S.
Davidson. “Approaching a Machine—Application Bound in
Delivered Performance on Sciertiftode,”|EEE Pioceed-
ings August, 1993, pp.166-1178.

E. L. Boyd, E. S. Davidson, “Hierarchical Performance
Modeling with MACS:A Case Study of the Convex C-
240,” Proceedings of the 20th International Symposium on
ComputerArchitectue, May, 1993, pp. 203-212.

W. Azeem. “Modeling andApproaching the Deliverable
Performance Capability of the KSR1 Procegsbniver-
sity of Michigan,Technical Report, CSE-TR-164-93, June,
1993.

11] D. Gannon, J. K. Lee, B. Shei, S. SarukaiN8rayana, N.
Sundaresan, D. Atapattu, F. Bodin, “SIGMA 1I: A Tool Kit
for Building Parallelizing Compilers and Performance
Analysis Systems,"Proceedings of the IFIP WG 10.3
Workshop on Programming Environments for Parallel
Computing Edinburgh, April, 1992, pp. 17-36.

