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An updated take on Amdahl’s 

analytical model uses modern 

design constraints to analyze 

many-core design alternatives. 

The revised models provide 

computer architects with a 

better understanding of many-

core design types, enabling 

them to make more informed 

tradeoffs.

U
nsustainable power consumption and ever-increasing 
design and verification complexity have driven the micro-
processor industry to integrate multiple cores on a single 
die, or multicore, as an architectural solution sustaining 
Moore’s law.1 With dual-core and quad-core processors 

on the market and oct-core on the horizon, researchers already are a 
step ahead. They’re investigating architectures, compilers, and pro-
gramming models for a many-core processor with hundreds or even 
1,000 cores on a single platform.2,3 

In 1967, Gene Amdahl proposed an often overlooked law of scal-
ing: A program’s sequential computation largely limits the maximum 
achievable speedup.4 This implies that any nonparallel execution or 
intercore communication will rapidly diminish the performance 
scalability for parallel applications regardless of the amount of addi-
tional computation resources. A simple, yet insightful, observation, 
Amdahl’s law continues to serve as a guideline for parallel program-
mers to assess the upper bounds of attainable performance.

Unfortunately, beyond performance, computer architects face 
another Grand Challenge: energy efficiency. Architects should 
carefully design a future many-core processor so that its power 
consumption doesn’t exceed its power budget.5 For example, a 16-
core processor with each core consuming an average of 20 watts 
will lead to 320 watts total power when all cores are active. This 
level of consumption can easily exceed a single processor die’s power 
budget. In other words, the amount of power each core consumes will 
dictate the number of cores architects can integrate on-die. Appar-
ently, power is becoming more critical than performance in scaling 
up many-core processors. Thus, before integrating a large number of 
cores on-chip to provide desired performance and throughput, archi-
tects must maximize each core’s power efficiency.

Tackling these new design challenges requires extending Amdahl’s 
law to account for power scalability’s implications in the coming 
many-core era. As the original Amdahl’s law demonstrates, a simple 
analytical model can provide computer architects with useful insights. 
By using simple analytical models at the early design phase, we aim 
to provide a better understanding of energy-efficiency’s limits, some 
feasible many-core design options, and future directions for making 
many-core more scalable.
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MANY-CORE DESIGN STYLES
For our study, we broadly classify future many-core 

architectures into three types. The first is a symmetric 
many-core processor that simply replicates a state-of-
the-art superscalar processor on a die, as in Figure 1a. 
High-end multicore processor vendors such as Intel 
and AMD use this approach. It’s flexible and general 
enough to run different processes simultaneously while 
providing the best single-thread performance. Addi-
tionally, it can run independent threads spawned from 
one process to improve a single application’s perfor-
mance. We use P to represent a single state-of-the-art 
superscalar processor and P* to represent this type of 
many-core design style.

As Figure 1b shows, the second design style is a sym-
metric many-core processor that replicates a smaller, yet 
more power-efficient, core on a die. Embedded many-
core processors, such as picoChip,6 Connex Machine,7 
and TILE64 (www.tilera.com/products/processors.
php), use this approach. The performance of a process-
ing core using this approach isn’t as high as that of a 
state-of-the-art superscalar processor. However, archi-
tects can integrate more processing cores on a die using 
this approach, thus the aggregate on-chip performance 
might be comparable to P*. We use c to denote a smaller, 
more power-efficient processing core and c* to represent 
this many-core design style.

The third design style, shown in Figure 1c, is an asym-
metric many-core processor that contains many efficient 
cores (c*) and one full-blown processor (P) as the host. 
The Sony-Toshiba-IBM (STI) Cell Broadband Engine8 
and a recent proposed research project, POD,9 are exam-
ples of such an asymmetric many-core processor. This 
design style lacks the flexibility to run different processes 
simultaneously. Nevertheless, the single-thread perfor-
mance on the host processor should be high, because it 
guarantees state-of-the-art sequential performance for 
certain applications. Moreover, it provides highly paral-

lel performance when the efficient cores are in use. We 
use P + c* to represent this design style.

AUGMENTING AMDAHL’S LAW
While Amdahl mainly focused on performance 

scalability back in the 1960s, we’re more interested 
in the power scalability or energy efficiency of future 
many-core processors. Here, we develop analytical 
power models of each design and formulate metrics to 
evaluate energy efficiency on the basis of performance 
and power models.

Models for P*
According to Amdahl’s law, the formula for comput-

ing the theoretical maximum speedup (or performance) 
achievable through parallelization is as follows:
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where n is the number of processors, and f is the frac-
tion of computation that programmers can parallelize 
(0 ≤ f ≤ 1).

To model the power consumption for a P* many-core 
processor, we introduce a new variable, k, to represent 
the fraction of power the processor consumes in idle 
state (0 ≤ k ≤ 1). We assume that one superscalar proces-
sor in active state consumes a power of 1. By definition, 
the amount of power one full-blown processor consumes 
during the sequential computation phase is 1, while 
the remaining (n − 1) full-blown processors consume  
(n − 1)k. Thus, during the sequential computation phase, 
P* consumes 1 + (n − 1)k. For the parallel computation 
phase, n full-blown processors consume n amount of 
power. Because it takes (1 − f) and f/n to execute the 
sequential and parallel code, respectively, the formula 
for average power consumption (denoted by W) for a 
P* is as follows:
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Figure 1. Many-core design styles. (a) A symmetric many-core processor that replicates a state-of-the-art superscalar processor 
on a die, and (b) a symmetric many-core processor that replicates a smaller, more power-efficient core on a die. (c) An asymmetric 
many-core processor with numerous efficient cores and one full-blown processor as the host processor.
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Now, we can model performance per watt (Perf/W), 
which represents the performance achievable at the 
same cooling capacity, based on the average power (W) 
in Equation 2. This metric is essentially the recipro-
cal of energy, because the definition of performance 
is the reciprocal of execution time. Because Perf/W of 
single-core execution is 1, the Perf/W benefit of a P* is 
expressed as

Perf
W

f
f
n

f
f
n

n k f

n

=
−( ) +

×
−( ) +

+ −( ) −( )

=
+ −

1

1

1

1 1 1

1
1 11 1( ) −( )k f

 (3)

In addition to Perf/W, we can also model performance 
per joule (Perf/J), a metric for evaluating the performance 
achievable in the same battery life cycle or, more spe-
cifically, energy. Perf/J is equivalent to the reciprocal of 
energy-delay product.10 Using Equation 1 and Equation 
3, the formula for performance per joule is as follows:
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Models for c*
The performance model of a c* many-core proces-

sor has been a topic of Mark Hill and Michael Marty’s 
recent research.11 This model assumes that one larger 
core consumes the same amount of die area that several 
smaller cores consume. 

We slightly modified this performance model to accom-
modate arbitrarily sized cores. To model the performance 
difference between a full-blown processor (P) and an effi-
cient core (c), we introduce the variable sc. This variable 
represents an efficient core’s performance normalized to 
that of a full-blown processor (0 ≤ sc ≤ 1). Because each 
efficient core’s performance is sc, the formula for calculat-
ing c*’s performance model is as follows:
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s

f
f
n

c=
−( ) +1

To model c*’s power consumption, we need two new 
variables: wc and kc. The first variable represents an 
active efficient core’s power consumption relative to 

that of an active full-blown processor (0 ≤ wc ≤ 1); the 
second represents the fraction of an efficient core’s idle 
power normalized to the same core’s overall power con-
sumption (0 ≤ kc ≤ 1). During the sequential computa-
tion phase, one efficient core in active state consumes wc, 
and all idle cores consume (n − 1) × wc × kc. During the 
parallel computation phase, all efficient cores consume 
n × wc. Because it takes (1 − f)/sc and f/(n × sc) to perform 
sequential and parallel computation, respectively, the 
average power consumption by a c* is
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Thus, the following equations can represent Perf/W 
and Perf/J:
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Models for P + c*
Hill and Marty have also studied the performance 

model of a P + c* many-core processor.11 We slightly 
modify this performance model. Executing the sequen-
tial code at the host processor (one P) takes (1 − f), 
whereas executing the parallel code using the efficient 
cores takes f/{(n − 1)sc}. (A P + c* many-core processor 
contains one P and (n − 1) c cores.) Note that we assume 
the host processor to be idle while the efficient cores 
are executing the parallel code. Thus, the formula for 
computing performance improvement using a P + c* is 
as follows:
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During the sequential computation phase, the amount 
of power the full-blown processor consumes is 1, and 
the amount the efficient cores consume is (n − 1)wckc. 
During the parallel computation phase, its full-blown 
processor consumes k, while the efficient cores consume  
(n − 1) wc. Because executing sequential and parallel code 
takes (1 − f) and f/(n − 1)sc, the average power is
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Consequently, Perf/W of a P + c* is expressed as
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Power-equivalent models
Because the limited power budget is one of the most 

critical design constraints, comparing different designs 
without considering the single-chip power budget is 
meaningless. 

Two main factors limit power growth on a single chip: 
power supply and power density. Power supply is pro-
portional to the energy cost for sustaining machines in 
data centers, as well as a concern for portable devices’ 
battery life. Power density pertains to thermal control 
mechanisms’ extra complexity and cost. From the power 
budget perspective, take, for example, a full-blown pro-
cessor and an efficient core that consume 20 W and  
5 W, respectively. Given a 160-W maximum power bud-
get, we can integrate only eight full-blown processors or 
32 efficient cores on a single die. Thus, to perform an 
apples-to-apples comparison for a given power budget, 
we developed power-equivalent models by converting 
the number of cores of a c* or P + c* to an equivalent 
number of full-blown processors of a P*.

Let Wbudget be the single-chip power budget and nP* be 
the maximum number of full-blown processors we can 
implement on a P* die. Because a full-blown processor’s 
power consumption is modeled as 1, nP* full-blown pro-
cessors on a die can consume up to nP*. Therefore, the 

maximum number of full-blown processors on a P* is 
nP* = Wbudget.

Conversely, nc* cores of a c* consume power up to  
nc* × wc, which should be less than or equal to Wbudget. 
So, the maximum number of efficient cores on a c* is  
nc* = Wbudget/wc.

Similarly, nP + c* cores of a P + c* consume power up 
to 1 + (nP + c* − 1)wc. Again, a single-chip power budget, 
Wbudget, constrains the number of cores an architect can 
implement on a chip. Consequently, the maximum nP + c*  
is

n
W

w
budget

c
= + −1

1P + c*

Using these equations, we can uniformly represent and 
compare performance, Perf/W, and Perf/J of each many-
core style with respect to a single-chip power budget.

EVALUATION
To thoroughly compare the design styles, we evaluated 

within P*, c*, and P + c* as well as across designs.

Evaluating a P*
Figure 2b shows Perf/W of a P*. Unfortunately, 

parallel execution on a P* consumes much more energy 
than sequential execution to complete the task. In the 
ideal case of f = 1, in which we can parallelize the entire 
code, we can achieve the maximum Perf/W—that is, 
1. In other words, a sequential execution and its paral-
lel execution version will consume the same amount of 
energy only when the performance improvement through 
parallelization scales linearly. Otherwise, a P* must dis-
sipate more energy to finish the same task. This occurs 
because performance doesn’t scale linearly, as Figure 2a 
shows, but the amount of idle power does scale linearly 
with the number of cores.

Another interesting implication of this outcome 
addresses battery life. If we want to optimize the sys-
tem for a longer battery life, it’s better to run several 
processes on different cores rather than parallelize each  
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Figure 2. P* scalability. P*, a symmetric many-core processor that replicates a state-of-the-art superscalar processor on a die, 
consumes a high amount of energy to complete the task: (a) performance, (b) performance per watt, and (c) performance per 
joule, where k = 0.3.
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process and time-multiplex multitask them. Although 
the number of processes is fewer than the number of 
cores, spawning as few threads as possible so that dif-
ferent processes can run simultaneously is more power 
efficient. This improved efficiency is because Perf/W 
becomes worse as the number of cores increases. Further-
more, this result implies that maximizing and balancing 
parallelization among processors is also important, not 
only for higher performance but also for power-supply 
efficiency and extended battery life. However, no mat-
ter how well the code is parallelized or its performance 
scales, parallelization on a P* many-core will always 
consume more energy unless the parallel performance 
scales perfectly linearly.

Figure 2c shows the Perf/J of a P*. The evaluation 
result demonstrates that, if the performance of a par-
allelized application scales well, we can expect perfor-
mance improvement at the same energy budget. In other 
words, a P* can extract greater performance when run-
ning embarrassingly parallel applications given the same 
amount of energy. For example, when f = 0.9 and k = 0.3, 
a 16-core P* can achieve a speedup more than four times 
that of a single-core processor using the same amount 
of energy.

However, parallelization on a P* doesn’t always lead 
to better Perf/J, as Figure 2c shows. For example, an 
application, half of which we can parallelize (f = 0.5), 
loses energy efficiency if we parallelize it with eight full-
blown processors. This means that, from both the Perf/
W and Perf/J perspectives, efforts to parallelize applica-
tions that can’t be parallelized well might not be useful 
at all. 

Another interesting observation is the existence of an 
optimal number of cores to achieve the best possible Perf/
J. So, if we’re particularly interested in tuning a system for 
this metric, dynamic monitoring and adaptively adjusting 
the system will be helpful. For example, given a 32-core 
P*, it’s wise to enable only 17 full-blown processors when 
running an application with f = 0.9—that is, 90 percent of 
it can be parallelized. In this case, it’s best to completely 

shut off the remaining 15 full-blown processors to sup-
press unnecessary idle energy consumption.

Evaluating a  c*
To evaluate a c*’s performance and power consump-

tion, we must model the relationship between a core’s 
performance and size. To do this, we use Fred Pollack’s 
performance efficiency rule.12 It states that, given the 
same process technology, the state-of-the-art processor 
provides 1.5 to 1.7 times higher performance and con-
sumes 2 to 3 times the die area compared with its previ-
ous-generation counterpart. This means that a proces-
sor that consumes T times more transistors can provide 
only T  times higher performance. On the other hand, 
the rule also implies that the processor is T  times less 
efficient in terms of area. Another rule of thumb used 
in this evaluation is that a core’s power consumption is 
proportional to the number of transistors it contains.

Figure 3 shows the analytical results of a c*. In this 
analysis, we assume that each efficient core c has one-
fourth the number of transistors of a full-blown proces-
sor P. We then model this efficient core’s power con-
sumption as one-fourth that of a full-blown processor  
(wc = 0.25). We also assume the efficient core’s per-
formance to be one-half that of a full-blown proces-
sor (sc = 0.5) and its fraction of power to be 20 percent  
(kc = 0.2).

Figure 3a shows that the maximum speedup of this 
c* isn’t as high as that of P*. The primary reason is that 
an efficient core’s sequential performance is lower. As 
Amdahl’s law says, sequential performance strictly limits 
the maximum speedup, and a c* design quickly levels off 
the speedup. Figure 3b shows that, when the number of 
cores is small, a c* consumes less energy than a single-
core, full-blown processor baseline. This occurs mainly 
because the performance-to-power ratio of an efficient 
core is better than that of a full-blown processor. Unfor-
tunately, as the number of cores increases, the amount of 
energy consumption becomes higher than that of a single-
core full-blown processor baseline. Furthermore, Figure 
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Figure 3. c* scalability. The maximum speedup of this c*—a symmetric many-core processor that replicates a smaller, more power-
efficient core on a die—isn’t as high as that of P*: (a) performance, (b) performance per watt, and (c) performance per joule, where 
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3c shows that Perf/J of a c* isn’t good either, unless the 
application is embarrassingly parallel—that is, it has high 
f values. This means that performance saturation is the 
major contributor that leads to a low Perf/J.

Evaluating a P +  c*
Figure 4b shows the Perf/W of a P + c*, where sc, 

wc, and kc are modeled as 0.5, 0.25, and 0.2, respec-
tively. Unlike a P* or c*, whose Perf/W monotonically 
decreases, an optimal number of cores exists that con-
sumes the least amount of energy to execute an appli-
cation. For example, we can improve the Perf/W of an 
embarrassingly parallel application (f = 0.9) by about 50 
percent, when eight cores execute it. 

However, Perf/W becomes worse than that of a 
one-core baseline processor when the number of cores 
exceeds a certain peak. There are two reasons for this 
result: efficient cores’ relative power efficiency and per-
formance saturation. When the number of cores is small, 
the additional performance benefit gained by adding 
one efficient core to the host processor dominates addi-
tional power overhead, so Perf/W increases. However, 
once performance improvement starts to saturate, as 
Figure 4a shows, additional power overhead dominates. 
Thus, Perf/W decreases, as in Figure 4b. In an energy- 
constrained environment such as embedded systems, how 
to spawn the optimal number of threads and turn off 
unused cores will be an interesting topic of investigation. 
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Figure 4. P + c* scalability. P + c* is an asymmetric many-core processor with numerous efficient cores and one full-blown processor 
as the host processor: (a) performance, (b) performance per watt, and (c) performance per joule, where k = 0.3, s

c
 = 0.5, w

c
 = 0.25, 

and l
c
 = 0.2.
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Figure 4c shows the Perf/J of a P + c*. Because of its 
low-latency sequential execution and energy-efficient 
parallel execution, a P + c* achieves the best Perf/J  
compared with the two previous designs.

Evaluating power-equivalent models
In addition to evaluating each many-core design style 

on its own, we use power-equivalent models to perform 
cross-design comparisons. Because the power budget is 
the major design constraint, the amount of power one 
core consumes determines the number of cores architects 
can implement on a single die. So, to compare different 
many-core designs, it’s better to study performance and 
energy efficiency with the same power budget, rather 
than with the same number of cores. 

Figure 5 shows the evaluation results with power-
equivalent models. We assume each efficient core to 
consume one-fourth the power of a full-blown proces-
sor (wc = 0.25) and its performance to be half that of 
a full-blown processor (sc = 0.5). As Figures 5a and 5d 
show, the power-equivalent performance of a P + c* is 
found to be highest in most cases. The power-equiva-
lent performance of a P* approaches that of a P + c* 
when f is small. As f increases, the difference between 
them grows, because a P + c* can have more cores at 
the same power budget. The power-equivalent perfor-
mance of a c* improves as f increases, as Figures 5a 
and 5d show, but it’s still the lowest among the three 
in most cases.

When f = 0.9 and the relative power budget is very 
low, the power-equivalent performance of a c* is the 
highest (a pointer highlights this area in Figure 5d). 
In other words, in terms of performance itself, a c* 
is preferable only when applications contain a huge 
amount of parallelism, and the system is extremely 
power limited. Embedded devices designed for mul-
timedia or data-streaming applications fall into this 
category.

Figures 5b and 5e show power-equivalent Perf/W. 
When the relative chip power budget is small, a c* 
consumes the least amount of energy to finish a task. 
However, when the budget is reasonably large, a P + c* 
always consumes the least amount of energy. We explain 
these relationships as follows: When the power budget 
is small, a c* can finish the task quickly owing to more 
processing power. As the power budget increases, this 
benefit diminishes because of the performance satura-
tion resulting from its low sequential performance. This 
effect continues to degrade the c* as the budget increases 
and eventually causes the Perf/W of a c* to become even 
worse than that of a P*.

Similarly, Figures 5c and 5f show that the Perf/J of a 
c* is the highest only when the power budget is low and 
the task is embarrassingly parallel (f = 0.9). However, 
as the power budget increases, the Perf/J of a c* many-
core is worse than that of the other designs. Instead, 

a P + c* is the most power scalable. Due to its high 
sequential performance along with energy-efficient 
parallel computation capability, it achieved the highest 
Perf/J. To better understand the design spectrum, we 
also performed several sensitivity studies with different 
sizes of c and with different relationships between the 
performance and the power using these models. These 
studies showed similar trends.

E xtending Amdahl’s law to take power and energy 
into account, our analysis clearly demonstrates that 
a symmetric many-core processor can easily lose 

its energy efficiency as the number of cores increases. 
To achieve the best possible energy efficiency, our work 
suggests a many-core alternative, featuring many small, 
energy-efficient cores integrated with a full-blown pro-
cessor. Our analytical models also show that by know-
ing the amount of parallelism available in an application 
prior to execution, we can find the optimal number of 
active cores for maximizing performance for a given 
cooling capacity and energy in a system. To further 
optimally control the number of active cores adaptively, 
future many-core runtime must be capable of dynamic 
per-core power profiling and have a feedback mechanism 
to manage thread dispatch. ■
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