
Extending Amdahl’s
Law for Energy-Efficient
Computing in the
Many-Core Era

Dong Hyuk Woo and
Hsien-Hsin S. Lee
Georgia Institute of Technology

An updated take on Amdahl’s

analytical model uses modern

design constraints to analyze

many-core design alternatives.

The revised models provide

computer architects with a

better understanding of many-

core design types, enabling

them to make more informed

tradeoffs.

U
nsustainable power consumption and ever-increasing
design and verification complexity have driven the micro-
processor industry to integrate multiple cores on a single
die, or multicore, as an architectural solution sustaining
Moore’s law.1 With dual-core and quad-core processors

on the market and oct-core on the horizon, researchers already are a
step ahead. They’re investigating architectures, compilers, and pro-
gramming models for a many-core processor with hundreds or even
1,000 cores on a single platform.2,3

In 1967, Gene Amdahl proposed an often overlooked law of scal-
ing: A program’s sequential computation largely limits the maximum
achievable speedup.4 This implies that any nonparallel execution or
intercore communication will rapidly diminish the performance
scalability for parallel applications regardless of the amount of addi-
tional computation resources. A simple, yet insightful, observation,
Amdahl’s law continues to serve as a guideline for parallel program-
mers to assess the upper bounds of attainable performance.

Unfortunately, beyond performance, computer architects face
another Grand Challenge: energy efficiency. Architects should
carefully design a future many-core processor so that its power
consumption doesn’t exceed its power budget.5 For example, a 16-
core processor with each core consuming an average of 20 watts
will lead to 320 watts total power when all cores are active. This
level of consumption can easily exceed a single processor die’s power
budget. In other words, the amount of power each core consumes will
dictate the number of cores architects can integrate on-die. Appar-
ently, power is becoming more critical than performance in scaling
up many-core processors. Thus, before integrating a large number of
cores on-chip to provide desired performance and throughput, archi-
tects must maximize each core’s power efficiency.

Tackling these new design challenges requires extending Amdahl’s
law to account for power scalability’s implications in the coming
many-core era. As the original Amdahl’s law demonstrates, a simple
analytical model can provide computer architects with useful insights.
By using simple analytical models at the early design phase, we aim
to provide a better understanding of energy-efficiency’s limits, some
feasible many-core design options, and future directions for making
many-core more scalable.

	 24	 Computer	 Published by the IEEE Computer Society	 0018-9162/08/$25.00	©	2008	IEEE

P e r s P e c t i v e s

MANY-CORE DESIGN STYLES
For our study, we broadly classify future many-core

architectures into three types. The first is a symmetric
many-core processor that simply replicates a state-of-
the-art superscalar processor on a die, as in Figure 1a.
High-end multicore processor vendors such as Intel
and AMD use this approach. It’s flexible and general
enough to run different processes simultaneously while
providing the best single-thread performance. Addi-
tionally, it can run independent threads spawned from
one process to improve a single application’s perfor-
mance. We use P to represent a single state-of-the-art
superscalar processor and P* to represent this type of
many-core design style.

As Figure 1b shows, the second design style is a sym-
metric many-core processor that replicates a smaller, yet
more power-efficient, core on a die. Embedded many-
core processors, such as picoChip,6 Connex Machine,7
and TILE64 (www.tilera.com/products/processors.
php), use this approach. The performance of a process-
ing core using this approach isn’t as high as that of a
state-of-the-art superscalar processor. However, archi-
tects can integrate more processing cores on a die using
this approach, thus the aggregate on-chip performance
might be comparable to P*. We use c to denote a smaller,
more power-efficient processing core and c* to represent
this many-core design style.

The third design style, shown in Figure 1c, is an asym-
metric many-core processor that contains many efficient
cores (c*) and one full-blown processor (P) as the host.
The Sony-Toshiba-IBM (STI) Cell Broadband Engine8
and a recent proposed research project, POD,9 are exam-
ples of such an asymmetric many-core processor. This
design style lacks the flexibility to run different processes
simultaneously. Nevertheless, the single-thread perfor-
mance on the host processor should be high, because it
guarantees state-of-the-art sequential performance for
certain applications. Moreover, it provides highly paral-

lel performance when the efficient cores are in use. We
use P + c* to represent this design style.

AUGMENTING AMDAHL’S LAW
While Amdahl mainly focused on performance

scalability back in the 1960s, we’re more interested
in the power scalability or energy efficiency of future
many-core processors. Here, we develop analytical
power models of each design and formulate metrics to
evaluate energy efficiency on the basis of performance
and power models.

Models for P*
According to Amdahl’s law, the formula for comput-

ing the theoretical maximum speedup (or performance)
achievable through parallelization is as follows:

Perf
f

f
n

=
−() +

1

1
 (1)

where n is the number of processors, and f is the frac-
tion of computation that programmers can parallelize
(0 ≤ f ≤ 1).

To model the power consumption for a P* many-core
processor, we introduce a new variable, k, to represent
the fraction of power the processor consumes in idle
state (0 ≤ k ≤ 1). We assume that one superscalar proces-
sor in active state consumes a power of 1. By definition,
the amount of power one full-blown processor consumes
during the sequential computation phase is 1, while
the remaining (n − 1) full-blown processors consume
(n − 1)k. Thus, during the sequential computation phase,
P* consumes 1 + (n − 1)k. For the parallel computation
phase, n full-blown processors consume n amount of
power. Because it takes (1 − f) and f/n to execute the
sequential and parallel code, respectively, the formula
for average power consumption (denoted by W) for a
P* is as follows:

P P P P

P P P P

P P P P

P P P P
(a)

c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c

(b)

c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c

c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c

c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c

c c c c c c c c c c c c c c c c

c c c c
c c c c
c c c c
c c c c

c c c c
c c c c
c c c c
c c c cc c

c cc c
c c c c

c cc c
c c

c c c c c c c c c c c c c c c c

P

(c)

Figure 1. Many-core design styles. (a) A symmetric many-core processor that replicates a state-of-the-art superscalar processor
on a die, and (b) a symmetric many-core processor that replicates a smaller, more power-efficient core on a die. (c) An asymmetric
many-core processor with numerous efficient cores and one full-blown processor as the host processor.

	 December 2008	 25

	 26	 Computer

W
f n k

f
n

n

f
f
n

n k f

=
−() × + −(){ } + ×

−() +

=
+ −() −

1 1 1

1

1 1 1(()
−() +1 f

f
n

 (2)

Now, we can model performance per watt (Perf/W),
which represents the performance achievable at the
same cooling capacity, based on the average power (W)
in Equation 2. This metric is essentially the recipro-
cal of energy, because the definition of performance
is the reciprocal of execution time. Because Perf/W of
single-core execution is 1, the Perf/W benefit of a P* is
expressed as

Perf
W

f
f
n

f
f
n

n k f

n

=
−() +

×
−() +

+ −() −()

=
+ −

1

1

1

1 1 1

1
1 11 1() −()k f

 (3)

In addition to Perf/W, we can also model performance
per joule (Perf/J), a metric for evaluating the performance
achievable in the same battery life cycle or, more spe-
cifically, energy. Perf/J is equivalent to the reciprocal of
energy-delay product.10 Using Equation 1 and Equation
3, the formula for performance per joule is as follows:

Perf
J

f
f
n

n k f
=

−() +
×

+ −() −()
1

1

1
1 1 1

Models for c*
The performance model of a c* many-core proces-

sor has been a topic of Mark Hill and Michael Marty’s
recent research.11 This model assumes that one larger
core consumes the same amount of die area that several
smaller cores consume.

We slightly modified this performance model to accom-
modate arbitrarily sized cores. To model the performance
difference between a full-blown processor (P) and an effi-
cient core (c), we introduce the variable sc. This variable
represents an efficient core’s performance normalized to
that of a full-blown processor (0 ≤ sc ≤ 1). Because each
efficient core’s performance is sc, the formula for calculat-
ing c*’s performance model is as follows:

Perf
s

f
f
n

c=
−() +1

To model c*’s power consumption, we need two new
variables: wc and kc. The first variable represents an
active efficient core’s power consumption relative to

that of an active full-blown processor (0 ≤ wc ≤ 1); the
second represents the fraction of an efficient core’s idle
power normalized to the same core’s overall power con-
sumption (0 ≤ kc ≤ 1). During the sequential computa-
tion phase, one efficient core in active state consumes wc,
and all idle cores consume (n − 1) × wc × kc. During the
parallel computation phase, all efficient cores consume
n × wc. Because it takes (1 − f)/sc and f/(n × sc) to perform
sequential and parallel computation, respectively, the
average power consumption by a c* is

W

f
s

w n w k
f

ns
nw

f
s

f
ns

w

c
c c c

c
c

c c

=

− × + −(){ } + ×

− +

=

1
1

1

cc c cn w k f

f
f
n

+ −() −()
−() +

1 1

1

Thus, the following equations can represent Perf/W
and Perf/J:

Perf
W

s

w n w k f
c

c c c

=
+ −() −()1 1

 and

Perf
J

s

f
f
n

s

w n w k f
c c

c c c

=
−() +

×
+ −() −()1 1 1

Models for P + c*
Hill and Marty have also studied the performance

model of a P + c* many-core processor.11 We slightly
modify this performance model. Executing the sequen-
tial code at the host processor (one P) takes (1 − f),
whereas executing the parallel code using the efficient
cores takes f/{(n − 1)sc}. (A P + c* many-core processor
contains one P and (n − 1) c cores.) Note that we assume
the host processor to be idle while the efficient cores
are executing the parallel code. Thus, the formula for
computing performance improvement using a P + c* is
as follows:

Perf
f

f
n sc

=
−() +

−()

1

1
1

During the sequential computation phase, the amount
of power the full-blown processor consumes is 1, and
the amount the efficient cores consume is (n − 1)wckc.
During the parallel computation phase, its full-blown
processor consumes k, while the efficient cores consume
(n − 1) wc. Because executing sequential and parallel code
takes (1 − f) and f/(n − 1)sc, the average power is

W
f n w k

f
s

k
n

w

f
f

n

c c
c

c

=
−() + −(){ } +

−
+{ }

−() +
−

1 1 1
1

1
1(()sc

	 December 2008	 27

Consequently, Perf/W of a P + c* is expressed as

Perf
W

f n w k
f
s

k
n

wc c
c

c

=
−() + −(){ } +

−
+{ }

1

1 1 1
1

and Perf/J of a P + c* as

Perf
J

f
f

n s

f n w k
f

c

c c

=
−() +

−()
×

−() + −(){ } +

1

1
1

1

1 1 1
ss

k
n

w
c

c−
+{ }1

Power-equivalent models
Because the limited power budget is one of the most

critical design constraints, comparing different designs
without considering the single-chip power budget is
meaningless.

Two main factors limit power growth on a single chip:
power supply and power density. Power supply is pro-
portional to the energy cost for sustaining machines in
data centers, as well as a concern for portable devices’
battery life. Power density pertains to thermal control
mechanisms’ extra complexity and cost. From the power
budget perspective, take, for example, a full-blown pro-
cessor and an efficient core that consume 20 W and
5 W, respectively. Given a 160-W maximum power bud-
get, we can integrate only eight full-blown processors or
32 efficient cores on a single die. Thus, to perform an
apples-to-apples comparison for a given power budget,
we developed power-equivalent models by converting
the number of cores of a c* or P + c* to an equivalent
number of full-blown processors of a P*.

Let Wbudget be the single-chip power budget and nP* be
the maximum number of full-blown processors we can
implement on a P* die. Because a full-blown processor’s
power consumption is modeled as 1, nP* full-blown pro-
cessors on a die can consume up to nP*. Therefore, the

maximum number of full-blown processors on a P* is
nP* = Wbudget.

Conversely, nc* cores of a c* consume power up to
nc* × wc, which should be less than or equal to Wbudget.
So, the maximum number of efficient cores on a c* is
nc* = Wbudget/wc.

Similarly, nP + c* cores of a P + c* consume power up
to 1 + (nP + c* − 1)wc. Again, a single-chip power budget,
Wbudget, constrains the number of cores an architect can
implement on a chip. Consequently, the maximum nP + c*
is

n
W

w
budget

c
= + −1

1P + c*

Using these equations, we can uniformly represent and
compare performance, Perf/W, and Perf/J of each many-
core style with respect to a single-chip power budget.

EVALUATION
To thoroughly compare the design styles, we evaluated

within P*, c*, and P + c* as well as across designs.

Evaluating a P*
Figure 2b shows Perf/W of a P*. Unfortunately,

parallel execution on a P* consumes much more energy
than sequential execution to complete the task. In the
ideal case of f = 1, in which we can parallelize the entire
code, we can achieve the maximum Perf/W—that is,
1. In other words, a sequential execution and its paral-
lel execution version will consume the same amount of
energy only when the performance improvement through
parallelization scales linearly. Otherwise, a P* must dis-
sipate more energy to finish the same task. This occurs
because performance doesn’t scale linearly, as Figure 2a
shows, but the amount of idle power does scale linearly
with the number of cores.

Another interesting implication of this outcome
addresses battery life. If we want to optimize the sys-
tem for a longer battery life, it’s better to run several
processes on different cores rather than parallelize each

(a) (b) (c)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 64 32 16 8 4 1

R
el

at
iv

e
pe

rf
or

m
an

ce

Number of processors

 0

 0.2

 0.4

 0.6

 0.8

 1

 64 32 16 8 4 1R
el

at
iv

e
pe

rf
or

m
an

ce
 p

er
 w

at
t

Number of processors

 0

 1

 2

 3

 4

 5

 6

 64 32 16 8 4 1R
el

at
iv

e
pe

rf
or

m
an

ce
 p

er
 jo

ul
e

Number of processors

f = 0.3
f = 0.5
f = 0.7
f = 0.9

f = 0.3
f = 0.5
f = 0.7
f = 0.9

f = 0.3
f = 0.5
f = 0.7
f = 0.9

Figure 2. P* scalability. P*, a symmetric many-core processor that replicates a state-of-the-art superscalar processor on a die,
consumes a high amount of energy to complete the task: (a) performance, (b) performance per watt, and (c) performance per
joule, where k = 0.3.

	 28	 Computer

process and time-multiplex multitask them. Although
the number of processes is fewer than the number of
cores, spawning as few threads as possible so that dif-
ferent processes can run simultaneously is more power
efficient. This improved efficiency is because Perf/W
becomes worse as the number of cores increases. Further-
more, this result implies that maximizing and balancing
parallelization among processors is also important, not
only for higher performance but also for power-supply
efficiency and extended battery life. However, no mat-
ter how well the code is parallelized or its performance
scales, parallelization on a P* many-core will always
consume more energy unless the parallel performance
scales perfectly linearly.

Figure 2c shows the Perf/J of a P*. The evaluation
result demonstrates that, if the performance of a par-
allelized application scales well, we can expect perfor-
mance improvement at the same energy budget. In other
words, a P* can extract greater performance when run-
ning embarrassingly parallel applications given the same
amount of energy. For example, when f = 0.9 and k = 0.3,
a 16-core P* can achieve a speedup more than four times
that of a single-core processor using the same amount
of energy.

However, parallelization on a P* doesn’t always lead
to better Perf/J, as Figure 2c shows. For example, an
application, half of which we can parallelize (f = 0.5),
loses energy efficiency if we parallelize it with eight full-
blown processors. This means that, from both the Perf/
W and Perf/J perspectives, efforts to parallelize applica-
tions that can’t be parallelized well might not be useful
at all.

Another interesting observation is the existence of an
optimal number of cores to achieve the best possible Perf/
J. So, if we’re particularly interested in tuning a system for
this metric, dynamic monitoring and adaptively adjusting
the system will be helpful. For example, given a 32-core
P*, it’s wise to enable only 17 full-blown processors when
running an application with f = 0.9—that is, 90 percent of
it can be parallelized. In this case, it’s best to completely

shut off the remaining 15 full-blown processors to sup-
press unnecessary idle energy consumption.

Evaluating a c*
To evaluate a c*’s performance and power consump-

tion, we must model the relationship between a core’s
performance and size. To do this, we use Fred Pollack’s
performance efficiency rule.12 It states that, given the
same process technology, the state-of-the-art processor
provides 1.5 to 1.7 times higher performance and con-
sumes 2 to 3 times the die area compared with its previ-
ous-generation counterpart. This means that a proces-
sor that consumes T times more transistors can provide
only T times higher performance. On the other hand,
the rule also implies that the processor is T times less
efficient in terms of area. Another rule of thumb used
in this evaluation is that a core’s power consumption is
proportional to the number of transistors it contains.

Figure 3 shows the analytical results of a c*. In this
analysis, we assume that each efficient core c has one-
fourth the number of transistors of a full-blown proces-
sor P. We then model this efficient core’s power con-
sumption as one-fourth that of a full-blown processor
(wc = 0.25). We also assume the efficient core’s per-
formance to be one-half that of a full-blown proces-
sor (sc = 0.5) and its fraction of power to be 20 percent
(kc = 0.2).

Figure 3a shows that the maximum speedup of this
c* isn’t as high as that of P*. The primary reason is that
an efficient core’s sequential performance is lower. As
Amdahl’s law says, sequential performance strictly limits
the maximum speedup, and a c* design quickly levels off
the speedup. Figure 3b shows that, when the number of
cores is small, a c* consumes less energy than a single-
core, full-blown processor baseline. This occurs mainly
because the performance-to-power ratio of an efficient
core is better than that of a full-blown processor. Unfor-
tunately, as the number of cores increases, the amount of
energy consumption becomes higher than that of a single-
core full-blown processor baseline. Furthermore, Figure

(a) (b) (c)

R
el

at
iv

e
pe

rf
or

m
an

ce
 p

er
 w

at
t

R
el

at
iv

e
pe

rf
or

m
an

ce
 p

er
 jo

ul
e

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 64 32 16 8 4 1
Number of cores

 0

 0.5

 1

 1.5

 2

 64 32 16 8 4 1
Number of cores

 0

 1

 2

 3

 4

 5

 64 32 16 8 4 1
Number of cores

R
el

at
iv

e
pe

rf
or

m
an

ce f = 0.3
f = 0.5
f = 0.7
f = 0.9

f = 0.3
f = 0.5
f = 0.7
f = 0.9

f = 0.3
f = 0.5
f = 0.7
f = 0.9

Figure 3. c* scalability. The maximum speedup of this c*—a symmetric many-core processor that replicates a smaller, more power-
efficient core on a die—isn’t as high as that of P*: (a) performance, (b) performance per watt, and (c) performance per joule, where
s

c
 = 0.5, w

c
 = 0.25, and k

c
 = 0.2.

	 December 2008	 29

3c shows that Perf/J of a c* isn’t good either, unless the
application is embarrassingly parallel—that is, it has high
f values. This means that performance saturation is the
major contributor that leads to a low Perf/J.

Evaluating a P + c*
Figure 4b shows the Perf/W of a P + c*, where sc,

wc, and kc are modeled as 0.5, 0.25, and 0.2, respec-
tively. Unlike a P* or c*, whose Perf/W monotonically
decreases, an optimal number of cores exists that con-
sumes the least amount of energy to execute an appli-
cation. For example, we can improve the Perf/W of an
embarrassingly parallel application (f = 0.9) by about 50
percent, when eight cores execute it.

However, Perf/W becomes worse than that of a
one-core baseline processor when the number of cores
exceeds a certain peak. There are two reasons for this
result: efficient cores’ relative power efficiency and per-
formance saturation. When the number of cores is small,
the additional performance benefit gained by adding
one efficient core to the host processor dominates addi-
tional power overhead, so Perf/W increases. However,
once performance improvement starts to saturate, as
Figure 4a shows, additional power overhead dominates.
Thus, Perf/W decreases, as in Figure 4b. In an energy-
constrained environment such as embedded systems, how
to spawn the optimal number of threads and turn off
unused cores will be an interesting topic of investigation.

(a) (b) (c)

R
el

at
iv

e
pe

rf
or

m
an

ce
 p

er
 w

at
t

R
el

at
iv

e
pe

rf
or

m
an

ce
 p

er
 jo

ul
e

Number of cores Number of cores Number of cores

 0
 1
 2
 3
 4
 5
 6
 7
 8

 64 32 16 8 4 1
 0

 0.5

 1

 1.5

 2

 64 32 16 8 4 1
 0

 2

 4

 6

 8

 10

 12

 64 32 16 8 4 1

R
el

at
iv

e
pe

rf
or

m
an

ce f = 0.3
f = 0.5
f = 0.7
f = 0.9

f = 0.3
f = 0.5
f = 0.7
f = 0.9

f = 0.3
f = 0.5
f = 0.7
f = 0.9

Figure 4. P + c* scalability. P + c* is an asymmetric many-core processor with numerous efficient cores and one full-blown processor
as the host processor: (a) performance, (b) performance per watt, and (c) performance per joule, where k = 0.3, s

c
 = 0.5, w

c
 = 0.25,

and l
c
 = 0.2.

(a) (b) (c)

R
el

at
iv

e
pe

rf
or

m
an

ce
 p

er
 w

at
t

R
el

at
iv

e
pe

rf
or

m
an

ce
 p

er
 jo

ul
e

R
el

at
iv

e
pe

rf
or

m
an

ce
 p

er
 w

at
t

R
el

at
iv

e
pe

rf
or

m
an

ce
 p

er
 jo

ul
e

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 64 32 16 8 4 1
Relative chip power budget Relative chip power budget Relative chip power budget

(d) (e) (f)Relative chip power budget Relative chip power budget Relative chip power budget

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 64 32 16 8 4 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 64 32 16 8 4 1

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 64 32 16 8 4 1
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 64 32 16 8 4 1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 64 32 16 8 4 1

R
el

at
iv

e
pe

rf
or

m
an

ce
R

el
at

iv
e

pe
rf

or
m

an
ce

P*
c*

P + c*

P*
c*

P + c*

P*
c*

P + c*

P*
c*

P + c*

P*
c*

P + c*

P*
c*

P + c*

Figure 5. Power-equivalent models. We used power-equivalent models to perform cross-design comparisons. Given f = 0.3, we
measured (a) performance, (b) performance per watt, and (c) performance per joule. Given f = 0.9, we measured (d) performance,
(e) performance per watt, and (f) performance per joule.

	 30	 Computer

Figure 4c shows the Perf/J of a P + c*. Because of its
low-latency sequential execution and energy-efficient
parallel execution, a P + c* achieves the best Perf/J
compared with the two previous designs.

Evaluating power-equivalent models
In addition to evaluating each many-core design style

on its own, we use power-equivalent models to perform
cross-design comparisons. Because the power budget is
the major design constraint, the amount of power one
core consumes determines the number of cores architects
can implement on a single die. So, to compare different
many-core designs, it’s better to study performance and
energy efficiency with the same power budget, rather
than with the same number of cores.

Figure 5 shows the evaluation results with power-
equivalent models. We assume each efficient core to
consume one-fourth the power of a full-blown proces-
sor (wc = 0.25) and its performance to be half that of
a full-blown processor (sc = 0.5). As Figures 5a and 5d
show, the power-equivalent performance of a P + c* is
found to be highest in most cases. The power-equiva-
lent performance of a P* approaches that of a P + c*
when f is small. As f increases, the difference between
them grows, because a P + c* can have more cores at
the same power budget. The power-equivalent perfor-
mance of a c* improves as f increases, as Figures 5a
and 5d show, but it’s still the lowest among the three
in most cases.

When f = 0.9 and the relative power budget is very
low, the power-equivalent performance of a c* is the
highest (a pointer highlights this area in Figure 5d).
In other words, in terms of performance itself, a c*
is preferable only when applications contain a huge
amount of parallelism, and the system is extremely
power limited. Embedded devices designed for mul-
timedia or data-streaming applications fall into this
category.

Figures 5b and 5e show power-equivalent Perf/W.
When the relative chip power budget is small, a c*
consumes the least amount of energy to finish a task.
However, when the budget is reasonably large, a P + c*
always consumes the least amount of energy. We explain
these relationships as follows: When the power budget
is small, a c* can finish the task quickly owing to more
processing power. As the power budget increases, this
benefit diminishes because of the performance satura-
tion resulting from its low sequential performance. This
effect continues to degrade the c* as the budget increases
and eventually causes the Perf/W of a c* to become even
worse than that of a P*.

Similarly, Figures 5c and 5f show that the Perf/J of a
c* is the highest only when the power budget is low and
the task is embarrassingly parallel (f = 0.9). However,
as the power budget increases, the Perf/J of a c* many-
core is worse than that of the other designs. Instead,

a P + c* is the most power scalable. Due to its high
sequential performance along with energy-efficient
parallel computation capability, it achieved the highest
Perf/J. To better understand the design spectrum, we
also performed several sensitivity studies with different
sizes of c and with different relationships between the
performance and the power using these models. These
studies showed similar trends.

E xtending Amdahl’s law to take power and energy
into account, our analysis clearly demonstrates that
a symmetric many-core processor can easily lose

its energy efficiency as the number of cores increases.
To achieve the best possible energy efficiency, our work
suggests a many-core alternative, featuring many small,
energy-efficient cores integrated with a full-blown pro-
cessor. Our analytical models also show that by know-
ing the amount of parallelism available in an application
prior to execution, we can find the optimal number of
active cores for maximizing performance for a given
cooling capacity and energy in a system. To further
optimally control the number of active cores adaptively,
future many-core runtime must be capable of dynamic
per-core power profiling and have a feedback mechanism
to manage thread dispatch. ■

Acknowledgments
We thank Mark Hill of the University of Wisconsin

for his feedback and encouragement on an early ver-
sion of this article. This work was sponsored in part by
National Science Foundation CAREER Award CNS-
0644096.

References
 1. L. Hammond, B.A. Nayfeh, and K. Olukotun, “A Single-Chip

Multiprocessor,” Computer, Sept. 1997, pp. 79-85.
 2. J. Held, J. Bautista, and S. Koehl, “From a Few Cores to

Many: A Tera-Scale Computing Research Overview,” white
paper, Intel; http://download.intel.com/research/platform/
terascale/terascale_overview_paper.pdf.

 3. W.-M. Hwu et al., “Implicitly Parallel Programming Models
for Thousand-Core Microprocessors,” Proc. 44th Design
Automation Conf. (DAC 07), ACM Press, 2007, pp. 754-
759.

 4. G.M. Amdahl, “Validity of the Single Processor Approach to
Achieving Large-Scale Computing Capabilities,” Proc. Am.
Federation of Information Processing Soc. Spring Joint Com-
puter Conf. (AFIPS 07), AFIPS Press, 1967, pp. 483-485.

 5. T. Mudge, “Power: A First-Class Architectural Design Con-
straint,” Computer, Apr. 2001, pp. 52-58.

 6. A. Duller, G. Panesar, and D. Towner, “Parallel Processing:
The picoChip Way!” Proc. Communicating Process Architec-
tures, 2003, IOS Press, pp. 125-138.

	 December 2008	 31

 7. T.R. Halfhill, “Massively Parallel Digital Video,” Micropro-
cessor Report, 9 Jan. 2006.

 8. H.P. Hofstee, “Power-Efficient Processor Architecture and
the Cell Processor,” Proc. 11th Ann. Symp. High-Perfor-
mance Computer Architecture (HPCA 05), IEEE CS Press,
2005, pp. 258-262.

 9. D.H. Woo et al., “POD: A 3D-Integrated Broad-Purpose
Acceleration Layer,” IEEE Micro, vol. 28, no. 4, 2008, pp.
28-40.

 10. R. Gonzalez and M. Horowitz, “Energy Dissipation in Gen-
eral-Purpose Microprocessors,” IEEE J. Solid-State Circuits,
vol. 31, no. 9, 1996, pp. 1277-1284.

 11. M.D. Hill and M.R. Marty, “Amdahl’s Law in the Multicore
Era,” Computer, July 2008, pp. 33-38.

 12. F.J. Pollack, “New Microarchitecture Challenges in the
Coming Generations of CMOS Process Technologies,” Proc.
IEEE/ACM 32nd Int’l Symp. Microarchitecture (MICRO
32), keynote address, IEEE CS Press, 1999, p. 2.

Dong Hyuk Woo is a PhD student in the School of Electri-
cal and Computer Engineering at the Georgia Institute of
Technology. His research interests include energy-efficient
many-core architectures. Woo received an MS in electrical
and computer engineering from the Georgia Institute of
Technology. He is a student member of the IEEE and the
ACM. Contact him at dhwoo@ece.gatech.edu.

Hsien-Hsin S. Lee is an associate professor in the School of
Electrical and Computer Engineering at the Georgia Insti-
tute of Technology. His research interests include computer
architecture, cybersecurity, and 3D integration. Lee received
a PhD in computer science and engineering from the Uni-
versity of Michigan at Ann Arbor. He is a senior member of
the IEEE. Contact him at leehs@gatech.edu.

Windows Kernel Source and Curriculum Materials
for Academic Teaching and Research.

The Windows® Academic Program from Microsoft® provides the
materials you need to integrate Windows kernel technology into
the teaching and research of operating systems.

The program includes:

• Windows Research Kernel (WRK): Sources to build and
experiment with a fully-functional version of the Windows
kernel for x86 and x64 platforms, as well as the original design
documents for Windows NT.

• Curriculum Resource Kit (CRK): PowerPoint® slides presenting
the details of the design and implementation of the Windows
kernel, following the ACM/IEEE-CS OS Body of Knowledge,
and including labs, exercises, quiz questions, and links to the
relevant sources.

• ProjectOZ: An OS project environment based on the SPACE
kernel-less OS project at UC Santa Barbara, allowing students
to develop OS kernel projects in user-mode.

These materials are available at no cost, but only for non-commercial use by universities.

For more information, visit www.microsoft.com/WindowsAcademic
or e-mail compsci@microsoft.com. www.computer.org/join

SAVE

25%

o n a l l

c o n f e r e n c e s

s p o n s o r e d

b y t h e I E E E

C o m p u t e r

S o c i e t y

I E E E
C o m p u t e r

S o c i e t y
m e m b e r s

