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POD: A 3D-INTEGRATED BROAD-
PURPOSE ACCELERATION LAYER
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TO BUILD A FUTURE MANY-CORE PROCESSOR, INDUSTRY MUST ADDRESS THE CHALLENGES

OF ENERGY CONSUMPTION AND PERFORMANCE SCALABILITY. A 3D-INTEGRATED BROAD-

PURPOSE ACCELERATOR ARCHITECTURE CALLED PARALLEL-ON-DEMAND (POD)

INTEGRATES A SPECIALIZED SIMD-BASED DIE LAYER ON TOP OF A CISC SUPERSCALAR

PROCESSOR TO ACCELERATE A VARIETY OF DATA-PARALLEL APPLICATIONS. IT ALSO

MAINTAINS BINARY COMPATIBILITY AND FACILITATES EXTENSIBILITY BY VIRTUALIZING THE

ACCELERATION CAPABILITY.

......With the continuing trend of
feature-size scaling and process technology
advancement, integrating 10 to 100 billion
transistors on a reasonable die area will likely
become feasible by 2015.1 Instead of con-
tinuing to enlarge on-die cache capacity, the
trend is to improve performance and
throughput by exploiting thread-level paral-
lelism with a massive number of processor
cores on die.1,2 Currently, most general-
purpose multicore designs leverage off-the-
shelf processor economies of scale and simply
adopt a symmetric-multiprocessing (SMP)
style many-core architecture. Nevertheless, to
integrate hundreds or even thousands of
cores on a single die, the fundamental
physical limit, power consumption must be
addressed to make such a many-core archi-
tecture viable. For future many-core proces-
sors, low power will be not just a feature, but
a design constraint. Achieving the goal of
integrating a large number of cores onto one
chip boils down to one issue: how to
maintain power efficiency. In other words,
how can architects better arrange these
resources to maintain performance scalability

without exceeding a given power envelope
from both power-supply and thermal-man-
agement perspectives?

One school of thought is to incorporate
on-die special-purpose accelerators with
general-purpose cores. From an area-effi-
ciency standpoint, however, it’s impractical
to specialize and accelerate all possible
applications of interest. Furthermore, im-
plementing several application-specific ac-
celerators on a general-purpose platform has
many drawbacks, such as longer design
turnaround time, higher nonrecurring en-
gineering cost, inflexibility, and lack of
backward or forward binary compatibility.

To address these issues, we introduce a
broad-purpose accelerator design called par-
allel-on-demand (POD). Based on CISC
superscalar processors (such as the Intel 64,
formerly known as the Intel EM64T,
processor), POD revisits several massively
parallel SIMD designs yet focuses on novel
challenges including backward and forward
binary compatibility issues, on-chip wire
delay, and efficient interaction with a super-
scalar host processor. Furthermore, using
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emerging 3D die-stacking technology, a
processor can flexibly snap a POD layer on
top of a conventional general-purpose pro-
cessor die with the ability to virtualize
different generations of a POD design.
POD’s snap-on feature also lets processor
vendors optionally upgrade a product during
the packaging phase.

POD architecture
Figure 1 is a high-level block diagram of

the POD architecture, which consists of two
die layers: a general-purpose processor (an
Intel 64 processor) as the bottom layer and a
snap-on accelerator, the POD layer. The
general-purpose processor layer can be a die
of a conventional multicore processor with
design hooks. Depending on the target
market segment, we can stack a POD layer
on top at packaging time to improve
performance per joule for certain applica-
tions such as high-definition multimedia,
3D games, or scientific computing. (The
performance in performance per joule is
defined as the inverse of execution time.)

During operation, the host Intel 64
processor fully boots a normal OS and runs
every legacy application under that OS
without deviating from current perfor-
mance. At the instruction decode stage,
the host processor might encounter a block
of code written for POD to accelerate. In
such a case, instructions within the block are
broadcast to the POD layer through an
instruction bus (IBus), of which each
instruction has the same fixed size. The
processor might also broadcast 64-bit
immediate values to the POD’s registers.

The POD layer is essentially a massively
parallel SIMD processing element (PE)
array. The target SIMD PE array is a sea
of n 3 n tiles, where n 5 8 in Figure 1. The
PE array executes instructions broadcast
through the IBus and generates a flag-tree
output that is tied together logically via an
OR gate (ORTree) and is routed back to the
host pipeline. The computed results from
the PEs can be retrieved through the data
return buffer (DRB) or memory hierarchy.

Heterogeneous ISA
Each PE tile contains a high-performance

arithmetic unit with its own private register

file and local SRAM memory (see Fig-
ure 2). To provide a baseline performance
level and support a subset of the host
instruction set to facilitate PE virtualization,
we use an existing 128-bit streaming SIMD
extension (SSE) engine from a contempo-
rary Intel 64 processor in POD.

Although each PE will ideally be capable
of decoding conventional CISC instructions
for execution, this approach will require a
large instruction decoder for each PE. This
is less desirable when considering perfor-
mance per square millimeter or perfor-
mance per joule. Instead, to make each PE
compact and efficient, we chose a VLIW
execution model for the PE. The PE
instructions, each 12 bytes wide, are
broadcast from the host processor. Each
12-byte word forms a partially predecoded
VLIW packet of three instructions that
eliminate the CISC decoding overheads in
POD. Each VLIW packet has a fixed format
of one G (generic), one X (SSE), and one M
(memory) pipeline instruction. Because the
host processor orchestrates the execution of
PE instructions, there’s no need for imple-

Figure 1. POD architecture in stacked die arrangement.
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menting an instruction cache within the PE.
Furthermore, because each PE is executing
the same instruction and there’s no instruc-
tion equivalent to a branch, no branch
predictor or associated flush/control logic is
required, keeping the PE small and simple.

Because the host processor will orches-
trate and broadcast POD instructions, we
enhanced the Intel 64 instruction set
architecture (ISA) to handle such heteroge-
neous instructions. To enable this, we
added a new instruction prefix byte called
SendBits indicating a POD instruction to
the existing Intel 64 ISA. When this prefix
byte is encountered, it indicates the follow-

ing 12-byte word is an encapsulation of
three POD operations. The host processor
will then dispatch the 12-byte VLIW to the
POD array. Also, we rely on the compiler or
assembler to schedule and pack the three-
way VLIW instructions.

Unlike conventional massive SIMD ma-
chines, the POD integrates a massive SIMD
PE array with a modern out-of-order host
processor. To ensure execution correctness,
two major challenges must be addressed in
the host processor: recovery from misspe-
culation and out-of-order dispatch of POD
instructions. To support speculative execu-
tion, some recovery mechanism is required

Figure 2. A processing element tile.
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to roll the machine back to the correct
architectural state. For example, Tarantula,
which had relatively narrow SIMD engines
attached to a superscalar processor, imple-
mented a recovery mechanism in each PE.3

Unfortunately, this results in substantial
overhead to both the area and power for a
massively parallel SIMD engine. To simpli-
fy the PE design (and build as many PEs as
possible), our host processor is designed to
broadcast POD instructions in a nonspec-
ulative manner. In other words, the POD
instructions won’t be dispatched from the
host processor until its preceding branches
are resolved. From a performance stand-
point, as long as the code that runs on the
host processor doesn’t depend on the results
from the POD, this approach won’t degrade
performance. (This is the case for all of our
benchmark programs we evaluated except k-
means. The host processor doesn’t issue any
data-dependent instruction that reads data
updated by the POD immediately for these
benchmark programs. This event is ex-
tremely rare even in k-means simulation.)

Another issue is that the host processor
might reorder the POD instructions, which
might lead to incorrectness because the PE
is ignorant of program order. To prevent
this, the POD instructions the host proces-
sor issues are strongly ordered by imple-
menting an IBits queue along with a
conventional out-of-order pipeline (see
Figure 3), similar to the store queue found

in an out-of-order processor. When a
SendBits instruction is issued, its 12-byte
immediate field (encoding a VLIW POD
instruction) is entered into the IBits queue.
Upon the retirement of the SendBits
instruction from the reorder buffer (ROB),
the corresponding 12-byte immediate value
is latched onto the IBus and is broadcast to
PEs.

Wire-delay-aware design
To enable SIMD-style instruction execu-

tion where every PE executes each instruc-
tion at the same global clock cycle, there are
two options:

N executing an instruction immediately
upon arrival to a POD row, leading to
a north-south time-zone effect, or

N buffering each arriving instruction for
sufficient time such that every PE will
execute the same instruction at the
same instant.

The time-zone effect can be challenging
for programmers and architects to work
around, as any given row will be executing
instruction j, while the preceding row is
executing j + 1 and the successor row is
executing j 2 1. To avoid undesired
complexity for programmers, architects,
and compilers, we use a buffering model
to eliminate the time-zone effect and enable
lock-step execution.

Figure 3. IBits queue in the superscalar pipeline.
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Figure 4 shows such a model for a single
column in the POD. Instructions are
broadcast using the IBus and are queued
before being executed by the PE. For n
rows, it takes n 2 1 cycles before every PE
executes the instruction. The queue size
shrinks monotonically as a PE’s location
gets farther away from the host processor.
(Although each PE is identical, program-
mable fuses are burned after die manufac-
ture to set the used numbers of slots in the
queue.) For an n 3 n POD, where n 5 8,
there are seven entries for the bottom-most
PE, while no queue is needed for the
topmost PE. The delay units (D block) are
inserted to delay each instruction broadcast
to synchronize the SIMD execution. Simi-
larly, when gathering results (such as
EFLAGS) from PEs, the results from the
PEs closer to the host processor must be
delayed and wait in their queue until the

farther results arrive for combining. Fig-
ure 4 depicts these in the propagation paths
with correct delay queues on the left side.
Compared to the previous immediate
execution model, there’s no overhead to
the PEs with this implementation, except
for a buffer to hold the instructions
broadcast. The roundtrip latency for the
host processor to evaluate the conditional
loop also remains the same, which for n
rows, is 2 3 (n + f0) + l cycles, where 2n
cycles are consumed for instruction and
EFLAGS propagation, 2f0 is fan-in and fan-
out latency between the host processor and
PEs in the first row, and l is the actual
instruction latency.

Regardless of how the PEs are connected
to each other, the instruction and data-value
broadcast from the host processor are
arranged as a fan-out tree. The PE array’s
bottom-most row will receive the same
instruction at the same cycle. The instruc-
tion is then passed up to the next row in
sequence. This fan-out tree is implemented
on a POD layer so that the number of die-
to-die vias between a general-purpose
processor layer and a POD layer remains
unchanged (Figure 1), regardless of the
number of PEs. This constant interface lets
us extend a POD layer without redesigning
a general-purpose layer every time we
introduce a new product.

Energy-efficient interconnection network
Figure 1 also shows that POD adopts a

folded torus network.4 To minimize latency
and maximize packing, each PE is small
enough that signal propagation time over
one PE is less than one clock cycle. Ideally,
each side of a PE will be no longer in any
direction than 95 percent of the wire
distance in one clock cycle with all
surrounding line drivers, buffers, and so
forth. The ordering of the number labels
inside the PEs of the leftmost column in
Figure 4 indicates the north-south nearest-
neighbor connection pattern. In the same
way, the communication links for each row
are laid out in east-west direction. In
addition to providing shorter links, such a
layout also leads to deterministic commu-
nication latency. The significance of this is
that we can disable communication-related

Figure 4. A detailed POD column.
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logic and wires safely when they are not
used. Moreover, the lock-step execution
model will make the entire computation
predictable and thus fully debuggable.
There are no tricky issues such as race
condition, live lock, deadlock, and so on
found in normal SMP-style many-core
processors.

At any given moment, only one direction
(input and output) must be enabled.
Because each nearest-neighbor communica-
tion pattern has a known latency and is
directed by communication instructions,
the links are disabled during the course of
pure computation or when links in the
other direction aren’t being used. Further-
more, no power-hungry routers are required
for this point-to-point network. All we need
are a single 4:1 multiplexer and a 1:4
demultiplexer for input and output. With
this reduced power profile, the POD array’s
growth is only limited by the average power
consumption of each PE and the manufac-
turing die reticle. This approach contrasts
with other tiled designs such as the Raw
processor from MIT or the TRIPS proces-
sor from the University of Texas where any
of the interconnection network links could
be active at the same time due to dynamic
routing.

Each PE can communicate with its
nearest neighbor by either directly moving
a register value of up to 128 bits or by
transferring memory in 64-bit chunks.
Because the nearest-neighbor latency for a
folded torus is targeted to be two cycles or
less, this allows for high-throughput com-
putation even when the algorithm requires
neighboring registers and memory values. A
fully synchronized computation model al-
lows register transfer operations to utilize
full communication bandwidth without any
network overhead, such as additional laten-
cy due to contention, and header encoding
overhead. In the case of memory transfer
operations, only a half communication
bandwidth can be utilized because the upper
64 bits are used to encode other informa-
tion such as memory addresses.

When one PE needs to communicate to
another PE in a non-nearest-neighbor
fashion, we use the k-permutation routing
in our interconnect design.5 Rather than

providing dynamic-wormhole-routing hard-
ware support for a relatively infrequent
operation, we use a dedicated algorithm to
drive the collective POD multiplexers into a
series of sweeps to migrate all data to the
intended targets. These algorithms require
each PE to support n hardware buffer slots
(permutation queue) of the bit size match-
ing the point-to-point link width in an n 3

n SIMD array.
The basic algorithm proceeds by having

all PEs send messages to the east, with each
message stopping when it reaches its target
column. This takes n 2 1 hops, and at the
end at most n messages will be buffered in
any one PE. At the end of this sweep, every
message in every POD row will be in its
target column. If we now apply the same
algorithm to the north, we may require as
many as n2 steps until all the buffered
messages reach their target PE. As messages
reach their target PE, they are processed
(stored into the appropriate memory loca-
tion). This two-phase sweeping algorithm
ensures that for any permutation of routing,
even all-to-one, all messages are delivered
after a fixed latency. This fixed routing
wouldn’t be an optimal solution, but each
PE needs to enable only one link at the
same time, which is more energy efficient.
Although the fixed latency might be high
for such generic routing support, we’ve
made the trade-off to keep nearest-neighbor
communications fast, which is a much more
frequent event than generic routing. More
optimized row-only and column-only
sweeps of just n 2 1 steps are also supported
for more structured communication to
reduce the high latency of a full any-to-
any communication.

Virtual address support
Aside from a 128-Kbyte private local

SRAM dedicated to each PE, applications
must also be able to communicate with the
system memory through normal loads and
stores. To manage this interaction, each PE
is further enhanced with two unidirectional
memory buses (MBuses) to the main
memory via an interface called the row
response queue (RRQ). One bus streams
data back from main memory to the PEs in
the row, while the other bus streams data
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from the PEs in the row to the main
memory. Because the system memory
operations of all PEs are synchronized by
barrier operations, PEs can safely disable
their MBus and its related logic to minimize
energy consumption when they aren’t
communicating with the system memory.
The RRQ is the queuing point for
transactions in both directions and, in turn,
is connected to a memory ring with the host
processor’s last level cache (LLC) and all
memory controllers (MCs). The ring is
good not only for easy arbitration and high
throughput, but also for a POD layer and a
general-purpose layer to be merged into one
system, as Figure 1 shows.

System memory accesses use virtual
addresses acquired from the host processor.
All n2 PEs share one pipelined translation
look-aside buffer (TLB), which is external
to the host processor, but managed by it.
The external TLB (xTLB) in Figure 1 need
not be organized along traditional lines; the
TLB lookup isn’t as critical as it is in the
host processor. This allows for a super-
pipelined, high capacity xTLB to be
implemented, much like the texture sampler
TLB in a general-purpose graphics process-
ing unit. In the event of a fault or miss event
in the TLB, the host processor is notified
and the request in the RRQ control ring is
flagged as a TLB failure. When the host
processor updates any TLB entry, a dedi-
cated control signal in the RRQ control ring
is set to indicate that any prior TLB failure
may now retry.

Minimal ISA modification in host processor
As we discussed earlier, the host processor

manages the SIMD execution inside PEs
completely. To enable this, the host pro-
cessor ISA is extended with five new
instructions and three modified instruc-
tions. The new instructions are

N SendBits, to broadcast instructions to
PEs;

N GetFlags, to obtain the return status;
N DrainFlags, which assures that the

initial setup of a known state in the
flag tree is complete;

N SendRegister, to broadcast a host
register value to PEs; and

N GetResult, to obtain a return buffer
value from PEs without using system
memory as a go-between.

The three modified host instructions are
the various fence operations (load, store,
and combined) that are extended to mon-
itor the return status of the POD’s memory
interface system.

POD virtualization
There are two main reasons for virtualiz-

ing the POD accelerator. The first is to
provide execution compatibility for various
POD sizes. Without such resilience in the
design, software vendors would need to
recompile their code to fully utilize all PEs
for each particular platform. To virtualize
the number of PEs, we hardwired six
variables in POD: the number of PEs in
each row, the number of PEs in each
column, the number of PEs, each PE’s x-
and y-coordinates, and the PE ID. The host
processor can retrieve the first three values
by using a CPU identification (CPUID)
instruction, and each PE can retrieve all six
values from the protected memory space of
its local memory, which is preset at boot
time. By forcing each PE to read these six
values from its local memory, the same
POD binary code can continue to improve
performance as the number of PEs grows.

The second reason for POD virtualiza-
tion is to circumvent the compatibility issue
of running POD code on a platform
without an integrated POD acceleration
layer. There are several potential solutions;
one can rely on a software or hardware
binary translator. Because the POD ISA
inherently originates from Intel 64 ISA, the
POD code can be dynamically translated
into Intel 64 ISA-compatible instructions.
Three-operand POD operations can be
translated into two-operand Intel 64 ISA
instructions at the cost of less efficiency. (An
fma, or floating-point multiply and add,
instruction needs to be translated into two
Intel 64 ISA instructions, and it introduces
a rounding error between the original code
and the translated code.) The fact that the
number of PE registers is greater than that
of the host processor can result in reduced
efficiency. Communication instructions can
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be simply ignored as if there is only one PE.
Masking operations can be converted into
branch instructions. Local memory of a PE
can be emulated by copying the original
data into a virtual memory space of the
same size as the local memory of a PE.

Another solution is to implement one PE
on the general-purpose processor layer to
execute the POD code natively. The
original goal of a PE design was to
maximize area, power, and communication
efficiency by minimizing a PE. This
minimal design, when integrated onto the
host processor die, increases the area of the
host processor layer by 9 percent (not
considering the area of the L2 cache) based
on our area analysis but can provide better
performance than the software translation
or hardware translation approach. The 9
percent area penalty could be further
subsidized by reusing the existing SSE unit
in the host processor.

Physical design evaluation
POD aims for a 3-GHz clock speed

assuming a 45-nm or better process. For
this target frequency, the memory ring is
capable of a bandwidth up to 192 gigabytes
per second (Gbytes/s), servicing up to eight
24-Gbytes/s MCs before any modification
is required. For an 8 3 8 POD array, with
each PE containing 128 Kbytes of SRAM,
connected in a torus, the peak performance
of single-precision and double-precision
IEEE FP operations is 1.5 Tflops and 768
Gflops, respectively.

Based on published data from Intel
(http://download.intel.com/technology/silicon/
Bohr_IDF_Moscow_0406.pdf ) and the die
photo of its 45-nm Intel Xeon processor
E5472 (formerly code-named Penryn), a
single PE is estimated to occupy approxi-
mately 1.90 mm2. In other words, the entire
8 3 8 PE array will amount to 122 mm2.
We assumed each RRQ, given the complex-
ities of the various bus wirings and the ring
interfaces, will be allotted an area on par with
that of each PE. Therefore, the POD layer
will amount to 137 mm2. Compared to one
E5472 core (22.26 mm2), one PE consumes
9 percent of die area due to the lack of a
CISC decoder, an instruction cache, branch

predictors, TLBs, out-of-order execution
related circuits, and so on.

Given that a PE consumes roughly 9
percent of die area of a single core, we used
the E5472 product specification (http://
processorfinder.intel.com/details.aspx?sSpec5

SLANR) and a simple heuristic that power
consumption of a certain block is proportional
to the number of transistors in the block, to
calculate that a PE will consume 1.37 W.
Consequently, we expect 64 PEs and eight
RRQs to consume 103.6 W. We additionally
modeled the global interconnection power
consumption using the Berkeley Predictive
Technology Model.6 We used 1.25 V,
3 GHz, and 0.5 for supply voltage, clock
frequency, and switching factor, respectively.
Based on these models, we expect the 96-bit
IBus and two 80-bit MBuses to consume 1.90
and 3.16 W overall. This interconnect power
is low mainly because all global communica-
tion links are highly pipelined, and each PE is
extremely small.

In sum, we expect a POD layer to peak at
108.7 W. Assuming that a dual-core pro-
cessor is bonded with a POD layer, and
these two cores are fully utilized, we expect
both layers to consume 148.7 W. In common
scenarios, this maximum power is unlikely to
be reached because the host processor won’t
be fully active while the POD layer is in
operation. During this period, the host
processor is only active for decoding encap-
sulated POD instructions, resolving branches
for POD control, and so forth.

Performance evaluation
We developed a cycle-level POD simula-

tor to carry out our performance study. This
simulator models every single feature of the
PEs and memory subsystem, including
RRQ, xTLB, and memory controller. It
also accurately models on- and off-chip
communication bandwidth. In our simula-
tion, off-chip DRAM bandwidth is mod-
eled as 4 3 32 Gbytes/s (four on-chip
memory controllers where each can provide
32-Gbytes/s bandwidth) and DRAM laten-
cy as 50 ns. To factor out performance
improvement due to larger on-chip memory
as the number of PEs increases, we assumed
that the aggregate size of the on-chip
memory remains the same regardless of
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the number of PEs for a fair comparison.
For example, a PE of 1 3 1 POD has 8
Mbytes of local SRAM, while each PE of 8
3 8 POD has a 128-Kbyte SRAM only.
We also conservatively assumed that the
access latency of 8-Mbyte SRAM is equiv-
alent to that of a 128-Kbyte SRAM, which
is three cycles for a load or one cycle for a
store. In reality, the access time of an 8-
Mbyte SRAM of the baseline, a 1 3 1
POD, will be much longer, so the actual

speedup will be even greater than our results
indicate.

Figure 5 shows relative performance
improvement, normalized to the perfor-
mance result of a 1 3 1 POD. As the
number of PEs increases, so does the
achieved gigaflops. (We count each add,
sub, mul, div, max, min, and cmp as one
floating-point operation, and fma as two.)
The figure shows that the trend of the
speedup is approaching linear. When it runs

Figure 5. Simulation results. The bar numbers in the top graph are in absolute gigaflops.

(Histogram: integer application, IDCT: double-precision floating-point application, Others:

single-precision floating-point application)
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a compute-intensive application, such as
DenseMMM (dense matrix-matrix multi-
ply) or OptionPricing (financial option
modeling), it achieves more than 800
Gflops. In the case of DenseMMM, very
low latency (two cycles) of neighbor-to-
neighbor communication makes it possible
to completely hide communication over-
head with computation. The reason the
performance doesn’t show an ideal linear
speedup is that the efficiency of each PE
decreases, although not severely, because the
working set of each PE becomes smaller
when we increase the number of PEs to 64.

We found that the highly communica-
tion-intensive benchmark fast Fourier trans-
form (FFT) also showed fairly good speedup.
To demonstrate how effectively PEs ex-
change data, we chose a small input size
(1,024 points) so that the computation
latency couldn’t hide the communication
latency. Clearly, as the number of PEs
increases, communication overhead becomes
dominant, but we can still achieve good

performance improvement because of our
high-efficiency communication architecture.

An important observation is that, al-
though a target application can be easily
ported to POD for acceleration and its
performance can be improved well, off-chip
memory bandwidth can still be the greatest
performance bottleneck in the future many-
core era. Figure 6 shows the simulation
results of five memory bandwidth-sensitive
applications. The figure shows the perfor-
mance improvement of different POD
configurations with different off-chip mem-
ory bandwidth. Here, x 3 32 Gbytes/s
means that the system has x on-chip
memory controllers and channels, and each
memory controller can support up to 32
Gbytes/s. As Figure 6 shows, memory
bandwidth can be a serious bottleneck with
on-chip many-core architectures when the
number of cores is large. In these simula-
tions, larger memory bandwidth improves
an 8 3 8 POD’s performance rather
substantially in several benchmark pro-

Figure 6. Effect of off-chip memory bandwidth.
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grams. Once memory bandwidth is saturat-
ed, overall performance doesn’t scale or can
even degrade, as we can observe from the
simulation result of the CollisionDetection
(a physics simulation algorithm) with 1 3

32 Gbytes/s off-chip memory bandwidth.
When the performance doesn’t scale well
due to saturated off-chip memory band-
width, an intelligent mechanism to detect it
and to disable some of the PEs to balance
computation power and memory band-
width would be an improvement.

To demonstrate the efficiency of POD as
a snap-on accelerator, we used the following
metrics for evaluation: performance per
square millimeters and performance per
joule. Figure 5 shows the relative area
efficiency of POD, represented by perfor-
mance per square millimeters. Because one
PE consumes approximately 9 percent of
the host processor’s area, performance per
square millimeters will keep improving as
the number of PEs increases, given the
overall performance scales. In an SMP-style
many-core processor, this metric is at most
one, because n cores consume n times space,
and it can achieve n times speedup at the
best scenario of linear speedup.

The performance per joule metric repre-
sents achievable speedup given a fixed energy
budget such as battery lifetime and is
equivalent to a reciprocal of energy-delay
product.7 Figure 5 shows that we can easily
improve performance per joule with parallel-
ization. All cases show that the larger the PE
array, the more improvement this metric can
achieve. Furthermore, performance per joule
scales super-linearly. In the case of an SMP-
style many-core system, execution time can
be reduced by a factor of n times at most,
while it consumes n times more power.
Thus, the performance per joule of an SMP-
style many-core system scales linearly in the
best scenario of linear speedup. The addi-
tional performance per joule benefit of POD
comes from the efficient design of PEs
compared to the host processor.

In addition to computation efficiency,
POD has an efficient communication
architecture. A major problem with a
conventional tile-based many-core architec-
ture is that we expect the interconnection
architecture to consume a high percentage

of space and unsustainable energy. For
instance, the Raw processor consumes 40
percent of die area in its crossbar and
buffers.8 On the other hand, according to
estimates reported for Raw and TRIPS, the
interconnection-related circuits and wires
can consume approximately 36 and 25
percent of the overall chip power.9,10 Out
of these consumptions, input buffers and
crossbar consumed 61 and 68 percent.11

Without any software hint, it is difficult
to apply clock-gating to these systems
because the communication patterns are
completely nondeterministic.12

In contrast, each PE in POD requires
only one multiplexer and one demultiplexer
for its 2D torus network. A PE requires
neither crossbars nor input/output buffers
of a conventional packet-switched 2D torus
network. The only buffer required is the
permutation queue, which is activated only
during non-nearest-neighbor communica-
tion. In addition to this efficiency, a
software-directed communication mecha-
nism along with its deterministic latency
makes the 2D torus traffic predictable.
Thus, we can use clock-gating to further
suppress the energy consumption of wires.
Figure 7 shows the active time of inter-PE
point-to-point links with respect to the
overall execution time for PODs with
difference sizes. Although FFT is a well-
known communication-intensive applica-
tion, POD’s synchronized computation
and communication model makes it possi-
ble to disable its point-to-point links for
more than 95 percent of the total execution
time, thus minimizing the communication
links’ energy consumption.

Although this work focuses on a dedicated
POD layer for one host processor core,

we envision that a future 3D-integrated many-
core processor will contain multiple general-
purpose cores commanding and sharing a
common acceleration layer. How to effectively
virtualize the common POD among multiple
cores requires further investigation in both the
architecture and OS designs.

On the other hand, memory bandwidth
will only become more limited when the
number of cores and the PE array’s size are
increased with future process technology.
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To approach the best possible energy
efficiency, a dynamic monitoring mecha-
nism will be needed for measuring on-chip
memory bandwidth consumption and each
individual PE’s performance. Based on
these measurements, the runtime system
can more flexibly determine the optimal
number of simultaneously active PEs,
minimizing the odds of wasted energy. To
design a more aggressive system, however,
we can use the same 3D die stacking
technology to improve bandwidth by inte-
grating additional memory die layers such as
SRAM or even DRAM array atop of the
POD and the host processor layers.

Last but not least, due to the extremely low
latency of interdie vias, the POD layer has the
potential, if used intelligently, to improve
sequential performance for applications even
without any data level parallelism. Several
challenges from the architecture down to the
technology level must be addressed before
these techniques become practical. MICRO
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