
60

Mobile applications constantly
demand additional memory, and traditional
designs increase dynamic RAM (DRAM) to
address the problem. Modern devices also
incorporate low-power network links to sup-
port connected ubiquitous environments.
Engineers attempt to minimize network use
because of its perceived high consumption of
power. This perception is misleading. For 1-
Kbyte application pages, network memory is
more power efficient than one 2-Mbyte
DRAM when the mean time between page
transfers exceeds 690 ms. During each page
transfer, the application delay to the user is
only 16 ms.

Embedded systems for consumers add
more features while shrinking the physical-
device size. Current 2.5 or 3G (third genera-
tion) cell phones incorporate 144 Kbps or
better network links, offering customers not
only phone services but also e-mail, Internet
access, digital camera features, and video on
demand. With feature expansion demanding
additional storage and memory in all com-
puting devices, DRAM and flash memory
densities are increasing in an attempt to keep

pace. This continuous storage expansion
translates into growing power dissipation,
increased temperature, and battery drain.

To reduce energy drain and increase battery
life, designers use the smallest parts and fewest
possible components. This minimalist
approach has the added benefit of keeping
manufacturing costs down, but works against
application feature expansion and device flex-
ibility for dynamic upgrades.

In an attempt to address some of these
problems, companies such as NTT Japan are
investing time and research in solutions that
allow for mobile computing—dynamically
migrating application code between the
remote device and other network-connected
systems.1

One avenue for power savings has not been
fully considered, however. Many embedded
devices, and all mobile devices, have a net-
work link (based on GSM, Global System for
Mobile Communications; Bluetooth; Ether-
net; and so on) in a larger distributed envi-
ronment. After designers incorporate
sufficient power to support a network link,
they attempt to minimize the link’s use

Joshua B. Fryman
Chad M. Huneycutt

Hsien-Hsin (Sean) Lee
Kenneth M.
Mackenzie

David E. Schimmel
Georgia Institute of

Technology

ENERGY AND DELAY TRADEOFFS OCCUR WHEN A DESIGN MOVES SOME OR ALL

LOCAL STORAGE OUT OF THE EMBEDDED DEVICE AND INTO A REMOTE SERVER.

USING THE NETWORK TO ACCESS REMOTE STORAGE IN LIEU OF LOCAL

MEMORY CAN RESULT IN SIGNIFICANT POWER SAVINGS.

ENERGY-EFFICIENT
NETWORK MEMORY

FOR UBIQUITOUS DEVICES

Published by the IEEE Computer Society 0272-1732/03/$17.00 2003 IEEE

because of its excessive energy needs when
active. Products therefore incorporate all the
needed local storage in the device, buffering as
much as possible to avoid retransmission. This
ignores the fact that the remote server has a
much less restricted power budget and is eas-
ily made more powerful to quickly handle
requests.

For ubiquitous always-on devices such as
3G cell phones, there is the potential to use
the network link as a means for remotely
accessing applications. This remote access
could reduce local storage space, thereby
reducing energy demands on the mobile plat-
form. Remote memory could reside in a
remote server or within the network infra-
structure.

Using the network link to access remote
memory can provide a more energy-efficient
solution than traditional local memory. Tra-
ditional designs assume that the additional
cost of using the network link for moving code
and data will far outweigh any benefit of
removing or reducing local storage. The com-
mon misconception assumes that the network
is in use constantly, and therefore is much
more power consuming than local storage.

This situation is not always the case, as we
will demonstrate. The best low-power mobile
DRAM available today is 10 to 100 times less
expensive to access in terms of energy-per-bit
than a very low-power Bluetooth network.
However, for these same parts, the sleep-mode
current of the Bluetooth network module is
10 to 100 times less expensive than the
DRAM part. Therefore, if sufficient time
elapses between accesses, the network link is
more power efficient than local DRAM.

Device models
To investigate the possible performance

effect of using the network as a mechanism for
accessing remote storage, we must consider dif-
ferent device models and characteristics. We
examined three fundamental models of embed-
ded computing devices: legacy, pull, and push.
One can characterize each model by its type of
network link and communication characteris-
tics. We assume that applications exhibit suffi-
cient locality such that there are well-defined
working sets that change infrequently.2

We consider each model independently.
Although it’s possible to make general com-

parisons across models, each has different
design-time characteristics, which make direct
comparison difficult. The underlying hard-
ware design behind each model is the same,
however, as shown in Figure 1a. In this device,
the program and data values are copied from
flash memory to local DRAM for perfor-
mance reasons. This copying requires suffi-
cient DRAM to hold all or part of the flash
memory contents.

We propose that using the network link to
access the equivalent contents of flash mem-
ory from a remote server will provide a more
energy-efficient model at a lower cost. This
becomes possible by reducing the flash mem-
ory component to just a boot-block-sized unit
and removing some part of DRAM from the
local storage. The removed DRAM would
normally contain the contents of flash mem-
ory copied during boot-up or when an appli-
cation changes mode. Instead, we propose
reserving a space in local DRAM that is large
enough to hold the worst-case working set and
all local data. Figure 1b shows this reduction
concept.

Although we suggest removing DRAM
chip(s) and resizing of flash memory storage,
these actions are not absolutely necessary. By
carefully using VDD gating, we could disable
each DRAM and flash memory unit when it
is not needed. This VDD gating would result
in power tradeoffs similar to those presented
here, but would not provide the increased flex-
ibility for future application insertion and

61SEPTEMBER–OCTOBER 2003

DRAM DRAM

Network module

DRAM

Flash
memory

CPU

DRAM
DRAM DRAM

Network module

DRAM

Flash
memory

CPU

Figure 1. Basic 3G cell phone or other ubiquitous networked device: A typi-
cal mobile embedded device (a) and the small reduction proposed here (b).

patching. Moreover, the total manufacturing
cost of our design decreases, whereas that of
VDD-gated units does not decrease (and may
even increase).

Next, we introduce each of the three embed-
ded system models and the notation to analyze
the energy and delay issues inherent in each;
another work presents details of the equations.33

Legacy
Typically, designers started to conceive and
construct legacy devices without anticipating
a need to communication with other systems.
So we examine the issues of energy and delay
in this model by assuming we must add a net-
work link and reduce local storage. The lega-
cy application remains unchanged, but the
code and data now come from network mem-
ory.

The original design expected a certain
amount of normal energy consumption dur-
ing computation and sleep or idle times. To
see how adding a network link impacts this
situation, we model the extra energy incurred
by using the network link to fetch new code
and data, and the energy consumed by the
network link when in a sleep mode. We
assume the network link is only used for fetch-
ing new code and data, and that the legacy
application itself is not attempting to com-
municate to other devices. We also model the
extra time the CPU now spends waiting for
network transactions to complete.

To request new code or data, the device
must generate and send a message to the
remote server. Transmission time TTx will con-
sume energy as determined by the type of net-
work link, ETx.

Once the remote server receives the request,
there is some interval of time spent process-
ing request TSrv, during which there will be
additional energy consumption, ESrv, on the
local device monitoring the network. Once
processed, the server will reply with the nec-
essary information, which takes time to
receive (TRx), consuming more energy ERx.
The transmission payload will consist of bits
that consume power in proportion to the rate
of network communications.

In comparison, local storage only incurs a
very minor time to access (TDRAM), with a cor-
respondingly small energy use, EDRAM.
Whether the system transfers data by network

or from local storage, the CPU will be idle
during these transfers, consuming some
amount of energy. However, the CPU could
work on other tasks during this time, thus cre-
ating a different energy signature, an energy
savings we discuss later.

Regardless of the method used—network
or local storage—after transferring the pay-
load, the CPU spends time Tbusy in computa-
tion before generating the next request.
During this time, the CPU will consume a
different amount of energy, Ebusy, and the
backing store can enter into a power-down or
sleep mode. Thus, during the work period,
the network link and local storage will con-
sume their respective sleep power.

The total energy consumed by the network
link (EN) in the legacy model is EN = ETx + ESrv

+ ERx + Ebusy, and the total energy in the local
storage (EL) is EL = EDRAM + Ebusy . In terms of
energy, the network model is equivalent to the
local storage model when EN = EL, but to con-
sider the delay impact on application perfor-
mance, we construct the energy-delay product

EN × (TTx + TSrv + TRx + Ebusy) =
EL × (TDRAM + Tbusy)

Solving this equation for Tbusy provides the
energy-delay equilibrium point where using
a network store is equivalent to using local
DRAM. When Tbusy is greater than this equi-
librium value, the network link is more ener-
gy-efficient from a total system perspective.
That is, so long as the next application page
fetched from the network occurs on or after
computation time Tbusy, the network memo-
ry model is more efficient.

Pull
Unlike the isolated legacy model, the pull model
assumes that the embedded devices already
incorporate a network link. The characteriza-
tion pull comes from how the device uses a net-
work: The local device, on its own initiative,
pulls information from the network. External
network devices cannot arbitrarily send infor-
mation to a device operating in pull mode.

Using the same notation as the legacy
model, there are only minor differences in the
energy analysis. In the pull model, the origi-
nal design already budgeted power for a net-
work link. They expected the link to be in a

62

POWER- AND COMPLEXITY-AWARE ARCHITECTURE

IEEE MICRO

power-down sleep mode during normal oper-
ation, except when the program requests
remote activity. So for our modification, we
only need to calculate the impact of new
behavior (our additional traffic) over the orig-
inal expected behavior (sleep mode). There-
fore, we consider the difference between the
network link in sleep mode as opposed to
actively sending and receiving messages.

These observations modify the original
assumption—that all network link energy was
a new burden. We subtract the energy required
for sleep mode from that required to transmit
and receive information. This change repre-
sents the new burden on the power source.

Push
Similar to the pull model, the push model

also assumes an already available network link.
In contrast to the pull model, the network link
is always on so that if not actively transmit-
ting, it is in receive-listen mode. Thus exter-
nal network services can immediately push
information—such as e-mail notices and soft-
ware patches—to the local device.

Just as the pull model reduces the energy
drain of the legacy model, the push model
reduces the drain further. Because the device
for a push model device assumes an always-
active receive-mode network, the original
design allotted sufficient power for this pur-
pose. Therefore, we subtract the power term
for normal receive-mode network links, rather
than the smaller power term for a sleep-mode
link as in the pull model. That is, we only
account for the additional energy of both
sending extra messages out and idling the
CPU during responses.

Basic analysis
We now analyze in detail both the energy

equilibrium point and the energy-delay prod-
uct for each of these three modes. To provide
a quantitative analysis, we obtained technical
data for current DRAM and flash memory
products.

Using data sheets available from vendors
such as Elpida, Fujitsu, Micron, NEC, and
Samsung, we selected low-power or mobile-
device parts to represent typical commodity
part performance. We calculate the energy
consumption in terms of picojoules per bit
by computing the best-case power consump-
tion listed in each product’s electrical char-
acteristics. This gives us a relative measure of
energy used in a best-case situation to read or
write to the local storage device. During sleep
mode, these devices consume very low cur-
rent but still require some power for refresh
functions. Table 1 shows these calculations
for DRAM.

Similarly, we calculate energy information
from the data sheets published by several net-
work link vendors. Contrary to the work for
DRAMs, worst-case power-per-bit is the para-
meter of interest, as well as the standby or
sleep-mode power. In this situation, we con-
sider transmit (Tx) and receive (Rx) modes
separately, since some links display different
profiles in different operating states. We
restricted our search to monolithic, fully inte-
grated network modules to ensure valid power
measurements. Using multichip solutions
requires external components and glue logic,
which make power calculation difficult, if not
impossible. Table 2 shows the components we
considered and their power calculations.

63SEPTEMBER–OCTOBER 2003

Table 1. Best-case energy consumption of typical DRAMs for mobile applications.

Access Sleep
Size Width Speed Supply current current Access energy

Vendor Model (Mbytes) (bits) (MHz) voltage (V) (mA) (mA) (pJ/bit) (pJ/bit/Mbyte)
Elpida EDL1216AASA 16 16 133 2.3 80 1.5 86.5 5.4
Fujitsu MB82D01171A-80 2 16 125 2.3 20 0.2 23.0 11.5
Micron MT48V4M32-10 16 32 100 2.3 100 0.35 71.9 4.5
Micron MT48V16M16-10 32 16 100 2.3 80 0.35 115.0 3.6
NEC mPD4664312 8 16 150 2.7 45 0.1 49.6 6.2
Samsung K4S643233-75 8 32 100 2.3 85 5 61.1 7.6
Samsung K4S283233-75 16 32 100 2.7 220 6 185.6 11.6
Samsung K4S561633-1H 32 16 100 2.7 130 6 219.4 6.9

For our analysis, we demonstrate a conser-
vative extreme: best-case local storage versus
worst-case network links for remote storage.

Although neither of these models is gener-
ally realistic, they demonstrate the extreme
bounds where network links are more effec-
tive than local storage. Thus, in actual appli-
cation, network links will be more efficient
than we demonstrate here.

To understand more exact characteristics of
mobile devices that use remote storage, we
define models for memory, networks, and
CPUs.

Best-case memory
To construct the best-case memory power
model, we carefully choose to ignore certain
effects in the CPU-to-memory interaction.
Because flash memory is substantially slower
than DRAM, a device based on our proposed
scheme copies the application from flash
memory to DRAM for faster execution and
then places flash memory in deep-sleep mode
or uses VDD gating to disable it. Therefore,
we ignore the contribution of flash memory
to the total energy. We also ignore the effects

of initiating and waiting for memory access
and assume all accesses begin instantaneous-
ly at the DRAM device’s maximum support-
ed rate.

Moreover, we define the transition from idle
or sleep mode to active mode as instanta-
neous. We choose minimal VDD and current
consumption at all times and ignore energy
drawn by refresh operations. We also assume
that any accessed code or data is in the DRAM
and does not load from flash memory.

This constitutes a best-case memory model.
For our analysis, we use the Fujitsu FCRAM
model MB82D01171A. This 2-Mbyte
DRAM has the lowest power consumption
(in terms of picojoules per bit) of all the
devices listed in Table 1.

Worst-case network
For this analysis, we restrict the additional
traffic needed to support the network memo-
ry model to unalterable content such as pro-
grams, static global data, and so on. We
further model the request for code or data to
a remote server as fully encapsulated in a 64-
byte packet. It is possible to reduce or expand

64

POWER- AND COMPLEXITY-AWARE ARCHITECTURE

IEEE MICRO

Table 2. Worst-case energy consumption of typical network links for mobile applications.

Worst-case
energy

Transmission/ Sleep- consumption
Supply receiving mode transmission/

Protocol Range Speed voltage currents current receiving
Vendor/model type (m) (Kbps) (V) (mA) (µA) (µJ/bit)
AMI Semi/ASTRX1 SpreadS 300 40 3.3 14/25.0 10.0 1.155/2.063
AMI Semi/A519HRT Modem Unavailable 1.2 5.0 0.6/0.6 Unavailable 2.500/2.500
CSR/BC2-Ea Bluetooth 100 1,500 1.8 53/53 20.0 0.064/0.064
MuRata/LMBTB027 Bluetooth 100 1,000 1.8 60/58 30.0 0.108/0.104
NovaTel/Expedite Wireless Unavailable 38.4 3.3 175/130 5.0 15.039/11.172
OKI Semi/MK70 Bluetooth 100 921.6 3.3 115/72 Unavailable 0.412/0.258
Option/GlobeTrotter GSM Unavailable 116 3.3 550/50 50.0 15.647/1.422
Radiometrix/BiM-UHF UHF 30 40 5.0 21/16 1.0 2.625/2.000
Siemens/SieMo S50037 Bluetooth 20 1,500 3.3 120/120 120.0 0.264/0.264
UTMC/UT63M1xx Bus Unavailable 1,000 5.0 190/40 Unavailable 0.950/0.200
Vishay/TFBS560x IrDA Varies 1,152 5.0 120/0.9 1.0 0.521/0.004
Wireless Futures/

BlueWAVE 1 Bluetooth 100 115.2 3.3 60.9/60.9 50.0 1.745/1.745
Cypress*/

CYWUSB6941,2 W-USB 10 1,000 3.3 120/135 20.0 0.396/0.446
Bermai*/BER7000 802.11a 50 54,000 3.3 454/364 3,030 0.028/0.022

* Only approximations.

this packet size based on the network topolo-
gy and error-handling needs, but at 64 bytes,
the packet has sufficient storage space for a
wide range of requests. The response packet,
a variable-payload version of the request pack-
et, will consist of 20 bytes for control infor-
mation, followed by the actual, variable-size
payload. We use these values as the basis of
our client-server system implementation.4

We assume that for the total count of
DRAM chips, at least one is for mirroring part
or all of flash memory. Based on the working-
set principle, the system only needs a small
fraction of this space at any given moment. So
rather than store a large mirror image, an ener-
gy-efficient design should only reserve suffi-
cient space for the worst-case working set in
local DRAM, eliminating excess DRAM. By
using the network link to access applications,
we could also shrink the flash memory such
that it contains only a boot image and not all
the applications that the device could ever run.
This also reduces the burden of pushing mas-
sive code patches out to all systems in the net-
work. Because steady-state mode changes
occur relatively infrequently,2, 5 the need to load
new code and data from the network will also
occur infrequently.

The worst-case network model uses typical
VDD with worst-case current consumption in
all cases. With slower transfer rates, higher
current consumption, and a long duration of
remote-server processing TSrv, the network
appears unattractive for energy savings at first
glance. However, we will demonstrate that
this is not the case.

The analysis that follows implicitly uses the
concept of one computational task running
at a single time on the mobile device. So we
model the CPU as completely idle during the
time it takes to process additional network
transactions to receive new code (using the
best-case zero-overhead local memory access).
Normally, the CPU would be busy with other
work during this time. If multiple tasks were
present, the CPU could simply switch to the
next task and continue processing. This would
not add to the energy overhead of sitting idle
and delaying all work and thus is not the
worst-case scenario for network impact.

Our analysis assumes the removal of one
DRAM chip, although it’s possible to reduce
flash memory as well as DRAM chips. Our

network link model is the CSR BC2-Ea, a fully
integrated Bluetooth module. This module
exhibits a starting time of 10 µs and a settling
time of 5 µs in the internal analog-to-digital
converter for gain control.

A transition from active to sleep mode in
the network module occurs in under 1 ms. As
we will demonstrate later, the server process-
ing time for requests is set to 10 ms. Com-
pared with such a relatively long time for
server processing, the transition time between
active and sleep mode is small; we can ignore
it and other third-order effects of the network
module design.

Mobile CPU
Our CPU model for the mobile device is

the DEC SA-110, a processor that runs at 0.5
W during times of high computational loads
and 0.02 W during idle periods, when it oper-
ates at 160 MHz.6 Several interesting factors
arise from using this particular processor as
our representative model.

The SA-110 can transition between idle and
active mode with effectively no delay. It does
so using its two separate clock domains. In idle
mode, the internal bus clock and clock grid
stop signaling. The actual steps to enable idle
mode include toggling a register, loading an
uncachable address, and waiting for an inter-
rupt; these steps take only a few instructions.
This processor recovers after receiving an inter-
rupt and restoring the original register values.
Because the transition between active and idle
modes is nearly instantaneous, we do not
model the time necessary for it in the CPU.

Initial impact
Given that network transmission speeds lag

substantially behind the bandwidth of local
memories, the bounds on TSrv will depend on
the network speed. With increasing payload size
in transfers, the remote server’s processing time
becomes less important than overall network
performance. Figure 2 illustrates the boundaries
as TSrv varies from zero to one second.

It is unreasonable to assume there will be
zero processing overhead on the remote stor-
age system. The CPU has to receive the
incoming network request, invoke interrupt
handlers, search memory, and so on. Using
our already existing client-server system as a
basis,4 an Intel Pentium III 800-MHz system

65SEPTEMBER–OCTOBER 2003

running RedHat Linux 8.0 is capable of pro-
cessing and responding to requests in under
10 ms. During this time, the server is also run-
ning a fully interactive XWindows desktop
with multiple open applications (gcc, gdb, and

so on). Therefore, we use 10
ms as an approximate remote-
server processing time.
Although we can optimize
the remote server and make it
arbitrarily powerful, it will
serve multiple targets, so we
would expect similar response
times.

To compare the legacy,
pull, and push models using
our established TSrv of 10 ms,
we again plot the necessary
Tbusy to reach the energy-delay
equilibrium point. Figure 3
demonstrates the tradeoffs
between the three models.
Any value of Tbusy beyond the
times shown in this figure
indicates that using remote
storage is more energy effi-
cient than local storage.

The legacy model presents
the worst energy-delay prod-
uct result. We have added a
network link to a design that
did not originally incorporate
one. For the network link to
be more efficient than local
DRAM requires a significant
amount of time Tbusy spent in
computation.

The pull model provides
better energy-delay results
than the legacy model, as you
might expect from subtracting
the sleep-mode power. The
improvement turns out to be
small compared to the energy
costs associated with transfer-
ring the data as well as remote
server processing time TSrv.
The actual difference between
the legacy and pull models is
slightly less than 8 percent.
This indicates that adding a
network link to a legacy sys-
tem that uses a pull-based

communication model has a small impact
compared to that of the energy consumed by
local storage devices.

The push model uses the least additional
energy and thereby benefits most from using

66

POWER- AND COMPLEXITY-AWARE ARCHITECTURE

IEEE MICRO

 0.1

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8 16 32 64 128 256

T
bu

sy
 (

s)

Data transferred (Kbytes)

TSrv = 1 s
TSrv = 100 ms
TSrv = 10 ms
TSrv = 1 ms
TSrv = 0 ms

Figure 2. Each line represents the Tbusy equilibrium point for different remote-server process-
ing times TSrv. The network transmission speed is the limiting factor during payload trans-
fers, shown as the asymptote when TSrv = 0 ms.

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 1 2 4 8 16 32 64 128 256

T
bu

sy
 (

s)

Data transferred (Kbytes)

Legacy
Pull
Push

Figure 3. Comparing the energy-delay equilibrium characteristics of legacy, pull, and push
models when TSrv = 10 ms.

remote storage. Because designers expected
devices following this model to keep the net-
work link in receive mode at all times, the only
extra energy for accessing remote storage is the
energy of the transmit operations.

Assuming the change of a 1-Kbyte page and
a TSrv of 10 ms, the legacy model requires a
minimum interval of 4.33 s before it becomes
beneficial to access a remote server. With the
pull model, the required busy time falls to
3.99 s; with the push model, the time drops
to 0.69 s. In relative comparison, this same 1-
Kbyte page of code loaded across the network
with TSrv = 10 ms will present a total applica-
tion delay of 16 ms to the user while access-
ing the network. This includes sending,
processing, and returning a payload through
the network.

Transfer of a larger page size might be more
realistic to consider, however. For a 16-Kbyte
change and TSrv = 10 ms, the legacy model
requires 26.6 s between transfers, and the pull
model, 24.5 s. The push model reduces this
time to a mere 4.2 s. The delay the user expe-
riences while the network transfer occurs is
185 ms.

Portability
The preceding results come from a very low-
power Bluetooth integrated module. To com-

pare these results to those for other network
types, we now consider two alternate network
interfaces: Wireless USB and 802.11. Neither
of these alternatives comes in complete mono-
lithic solutions, but instead comprises two or
three highly integrated chips with minimal,
external glue logic. The estimates for the
Cypress wireless USB chipset and the Bermai
integrated 802.11a chipset include only the
main chip components. In these estimates, we
do not consider power consumption of the
glue logic, and therefore these numbers are
slightly smaller than they should be in a worst-
case scenario. In particular, the 802.11a
chipset has especially large currents in any
mode of operation, even before considering
the glue logic components.

Using the push model as a baseline, we
compare the CSR BC2-Ea solution to both
the Cypress and Bermai solutions. Figure 4
displays the results of this comparison. The
surprising result from this figure is that the
very power-hungry 802.11a network is a
much better selection than the low-power
Bluetooth or similar modules. The substan-
tially higher data rate causes the limiting fac-
tor to be the remote-server processing time
rather than the network link speed.

This comparison is against a push model,
which assumed sufficient built-in power to

67SEPTEMBER–OCTOBER 2003

 0.1

 0.5

4

2

1

8

16

32

64

128

1 2 4 8 16 32 64 128 256

T
bu

sy
 (

s)

Data transferred (Kbytes)

Wireless USB
Bluetooth
802.11a (6 Mbps)
802.11a (54 Mbps)

Figure 4. Comparing the push model’s energy-delay equilibrium characteristics with Blue-
tooth, Wireless USB, and 802.11a network modules when TSrv = 10 ms.

mode. Comparing to the pull model, shown
in Figure 5, we can see a more illustrative
example of the substantial power drain
involved in 802.11 chipsets. Note that the ini-
tial energy cost of the 802.11 network far
exceeds other options, but that if the typical
payload transferred in the network is greater
than or equal to 32 Kbytes, the 802.11 net-
work is a better design choice.

Although these results do not specifically
tie to any estimated average transfer size, they
show interesting trends. Ultimately, the typi-
cal payload size will depend entirely on the
application and the network support provid-
ed by commercial companies. This work
shows that careful analysis of the types of
applications and data transmitted over the
network, and the characteristics of those appli-
cations, can prove intuitive design directions
incorrect. In some cases, increasing local stor-
age might be the wrong approach to longer
battery life.

Related work
Using the network to access RAM is novel as

a low-power mechanism. Prior work concen-
trated on using remote memories for high per-
formance, avoiding accesses to slow disks, or to
expand memory for working sets of code or
data.7, 8 Other work examining the network in
power-limited devices has concentrated and
minimizing usage9 and optimizing protocols.

Researchers are focusing on finding ways to
improve a network’s overall energy efficiency. Previ-

ous research shows that ad-hoc
relaying improves wireless local
area networks.10 Other research
looks at tying battery level with
ad-hoc routing methods to
increase network robustness as
well as node runtimes.11

Using the availability of low-
power, short-range devices
such as those based on Blue-
tooth, researchers are building
larger energy-efficient net-
works. These new systems
compete with more tradition-
al network options.12 Such pro-
totypes strengthen the viability
of using limited embedded
hardware for larger projects.

With each generation of
network technology, data rates increase and
power consumption decreases. Next-genera-
tion technology such as ultra wideband net-
working will likely have a higher data rate and
use less power than current Bluetooth devices.
Such networks will also have similar, if not bet-
ter, ranges.

As network links approach local DRAM in
terms of performance characteristics such as
bandwidth and power, the arguments for
moving to network-based storage become
more compelling.

Conventional wisdom has focused on min-
imizing network use. Here, we mean to

cast doubt on such a broadly general rule and
to encourage designers to reconsider how
devices will be used as a key to minimizing
power.

For a reasonable, average working set of
32 Kbytes transferred via a network, the link
is more efficient than local DRAM if transfers
occur less frequently than every 4.24 s with a
user-experience delay of only 0.185 s, using
a push model for comparison. This assumes
the network link replaces one local 2-Mbytes
DRAM chip. Removal of larger or multiple
components makes network usage even more
efficient.

Today, network links use 10 to 100 times
the energy of DRAM during accesses, but
consume 10 to 100 times less energy during
sleep. Network devices continue to approach
low-power DRAM performance characteris-

68

POWER- AND COMPLEXITY-AWARE ARCHITECTURE

IEEE MICRO

2 4 8 16 32 64 128 256

Data transferred (Kbytes)

4

8

16

32

64

128

256

512

1,024
T

bu
sy

 (
s)

Wireless USB
Bluetooth
802.11a (6 Mbps)
802.11a (54 Mbps)

Figure 5. Comparing the pull model’s energy-delay equilibrium characteristics with Blue-
tooth, Wireless USB, and 802.11a network modules when TSrv = 10 ms.

tics in terms of speed and power, making net-
work memory increasingly attractive, in par-
ticular, in ubiquitous environment. The
reduction in part count, and thus price, can
aid in the marketing of disposable devices such
as cell phones.

This model, in which users download appli-
cations on demand, also provides a mecha-
nism for pay-per-use services, such as for
custom games or video players. We are work-
ing on detailed simulations to study the
impact of this network memory model on
overall network congestion. MICRO

Acknowledgments
We thank the reviewers for their useful

comments in restructuring this article. This
work was funded in part by the National Sci-
ence Foundation under grants CCR-98-
76180, CCR-01- 21638, and EIA-99-72872.

References
1. NTT Japan, Bluebird Project, 2003,

http://www.ntts.co.jp/java/bluegrid/en/.
2. G.A. Abandah and E.S. Davidson,

“Configuration Independent Analysis for
Characterizing Shared-Memory Applications,”
Proc. 12th Int’l Parallel Processing Symp.,
1998, pp. 357-398.

3. J.B. Fryman et al., Energy Efficient Network
Memory for Ubiquitous Devices, tech. report
GIT-CERCS-03-05, Georgia Institute of
Technology, 2003.

4. C.M. Huneycutt, J.B. Fryman, and K.M.
Mackenzie, “Software Caching Using
Dynamic Binary Rewriting for Embedded
Devices,” Int’l Conf. Parallel Processing,
2002, IEEE CS Press, pp. 621-630.

5. R. Batchu et al., A Study of Program
Behavior to Establish Temporal Locality at
the Function Level, tech. report DCS-TR 475,
Rutgers Univ., 2001.

6. J. Montanaro et al., “A 160-MHz, 32-b, 0.5-
W CMOS RISC Microprocessor,” IEEE J.
Solid-State Circuits, vol. 31, no. 11, Nov.
1996, pp. 1703-1714.

7. D. Pnevmatikatos and E.P. Markatos, “On
Using Network RAM as a Non-Volatile
Buffer,” Cluster Computing, vol. 2, no. 4,
1999, pp. 295-303.

8. S. Dwarkadas et al., “Cashmere-VLM:
Remote Memory Paging for Software
Distributed Shared Memory,” Proc. 13th Int’l

Parallel Processing Symp. and 10th Symp.
Parallel and Distributed Processing
(IPPS/SPDP 1999), IEEE CS Press, 1999, pp.
153-159.

9. P.J.M. Havinga and G.J.M. Smit, “Energy-
Efficient Wireless Networking for
Multimedia Applications,” Wireless
Communications and Mobile Computing,
Wiley, 2001, pp. 165-184.

10. M. Kubisch et al., Applying Ad-Hoc Relaying
to Improve Capacity, Energy Efficiency, and
Immission in Infrastructure-Based WLANs,
tech. report, Tech. Univ. Berlin, 2002.

11. D. Kim et al., “Power-Aware Routing Based
on the Energy Drain Rate for Mobile Ad Hoc
Networks,” Proc. 11th Int’l Conf. Computer
Comm. and Networks (ICCCN 2002), IEEE
Press, pp. 565-569.

12. S. Baatz et al., “Building Efficient Bluetooth
Scatternet Topologies from 1-Factors,” Proc.
IASTED Int’l Conf. on Wireless and Optical
Communications (IASTED 2002), Acta
Press, 2002, pp. 300-305.

Joshua B. Fryman is a PhD student at the
College of Computing, Georgia Institute of
Technology; he also has several years in indus-
try, working in the cable and satellite TV area.
His research interests include low-power
architectures, embedded systems, and high-
performance computing. Fryman has a B.S.
in Computer Engineering from University of
Florida. He is a student member of the IEEE
and ACM.

Chad Huneycutt is a PhD student at the Col-
lege of Computing, Georgia Institute of Tech-
nology. His research interests include soft
computer architectures and dynamic compi-
lation techniques. Huneycutt has a B.S. in
Computer Science from Furman University.
He is a student member of the IEEE, ACM,
and Upsilon Pi Epsilon.

Hsien-Hsin (Sean) Lee is an assistant profes-
sor in the School of Electrical and Computer
Engineering, Georgia Institute of Technology.
His research interests include microarchitec-
ture, memory systems, information security,
and autonomic systems. Lee has a BSEE from
National Tsinghua University in Taiwan, and
an MSE and PhD in computer science and

69SEPTEMBER–OCTOBER 2003

engineering from the University of Michigan,
Ann Arbor. He is a member of ACM, IEEE,
Tau Beta Pi, and Sigma Xi.

Kenneth M. Mackenzie is a member of the
technical staff at Reservoir Labs, New York.
His research interests include parallel systems,
embedded computing, and compilers.
Mackenzie has an SB, SM, and PhD from the
Department of Electrical Engineering and
Computer Science at the Massachussetts Insti-
tute of Technology. He is a member of ACM.

David. E. Schimmel is an associate professor
in the School of Electrical and Computer
Engineering, Georgia Institute of Technology.
His research interests include algorithms and
interconnection networks for parallel, recon-
figurable, and asynchronous computer archi-
tectures; and the impact of technology on
systems. Schimmel has a BSEE and PhD from
Cornell University. He is a member of IEEE,
Tau Beta Pi, and Eta Kappa Nu.

Direct questions and comments about this
article to Joshua B. Fryman, College of Com-
puting, Georgia Institute of Technology, 801
Atlantic Drive, Atlanta, GA, 30332-0280;
fryman@cercs.gatech.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://computer.org/publications/dlib.

70

POWER- AND COMPLEXITY-AWARE ARCHITECTURE

IEEE MICRO

Contact Us
Subscription questions

Paper, electronic, or combination subscriptions to IEEE
Micro are available. Send subscription change-of-address
requests to address.change@ieee.org. Be sure to specify IEEE
Micro.

Membership Change of Address
Send change-of-address requests for the IEEE Computer
Society membership directory to directory.updates@
computer.org.

IEEE Micro on the Web
Visit our Web site at http://computer.org/micro/ for
article abstracts, access to back issues, and information
about IEEE Micro. Full articles are available online to
subscribers of the magazine’s electronic version.

Writers
Author Guidelines and IEEE copyright forms are
available from dt-ma@computer.org, or access http://
computer.org/micro/author.htm.

Letters to the Editor
Send letters to Group Managing Editor,
micro@computer.org; or IEEE Micro, 10662 Los Vaqueros
Circle, PO Box 3014, Los Alamitos, CA 90720. Please
provide an e-mail address.

Article Reprints
For price information or to order reprints, send e-mail to
dt-ma@computer.org or fax to IEEE Micro at (714) 821-
4010.

Reprint Permission
To obtain permission to reprint an article or column, con-
tact William Hagen, IEEE Copyrights and Trademarks
Manager, w.hagen@ieee.org.

Missing or Damaged Copies
If you did not receive an issue or you received a damaged
copy, contact help@computer.org.

News Releases
Mail microprocessor, microcontroller, operating system,
embedded system, microsystem, and related systems
announcements to IEEE Micro, 10662 Los Vaqueros Circle,
PO Box 3014, Los Alamitos, CA 90720.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

