
Constructing a Non-Linear Model with

Neural Networks for Workload Characterization

Richard M. Yoo
1
, Han Lee

2
, Kingsum Chow

2
, and Hsien-Hsin S. Lee

1

1
School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, GA 30332
2
Middleware Products Division, Software and Solutions Group

Intel Corp., Hillsboro, OR 97123

{yoo, leehs}@ece.gatech.edu, {han.lee, kingsum.chow}@intel.com

Abstract

Workload characterization involves the understanding of the

relationship between workload configurations and

performance characteristics. To better assess the complexity of

workload behavior, a model based approach is needed.

Nevertheless, several configuration parameters and

performance characteristics exhibit non-linear relationships

that prohibit the development of an accurate application

behavior model. In this paper, we propose a non-linear model

based on an artificial neural network to explore such complex

relationship. We achieved high accuracy and good

predictability between configurations and performance

characteristics when applying such a model to a 3-tier setup

with response time restrictions. As shown by our work, a non-

linear model and neural networks can increase the

understandings of complex multi-tiered workloads, which

further provide useful insights for performance engineers to

tune their workloads for improving performance.

1 Introduction
Workload characterization [1, 8, 9] is a process of

identifying and characterizing the intrinsic properties of an

application in terms of quantifiable measures. It shows how a

workload behavior responds as its execution environment such

as hardware, operating system, libraries, etc. changes over

time. With detailed understandings of their intricate

relationship, one can use such information to guide

performance optimizations. Nevertheless, as the complexity of

a computer system and its workloads increases, quantitatively

analyzing the performance behavior of workloads has become

very difficult, if not entirely impossible. The introduction of

managed runtimes like Java and C# further aggravated the

situation. Due to its layered structure of runtime stack, the

analysis of these workloads is inherently complicated.

To manage such insurmountable analysis tasks in a more

effective manner, a model-based approach is indeed needed in

order to simplify and systemize the analysis work. In the

abstract level, a model is a multivariate relation between the

controllable parameters and the performance indicators.

Constructing this model then amounts to approximating this

relationship from the collected performance data. With an

accurate, working model, we can then analyze the workload in

a continuous fashion, being able to predict how the

performance metrics will change as the input parameters

change.

Difficulties in approximating this relation mostly come

from the presence of nonlinearity in program behavior. The

performance of an application does not necessarily improve or

degrade in a linear fashion in response to a linear adjustment in

its input parameters.

Due to their simplicity, prior research works usually relied

on linear models to approximate program behavior [2, 20,21].

Some linear models do demonstrate a remarkable accuracy.

For example, in [2], Chow et al. introduced a linear model to

describe the performance behavior of a seemingly complex

web application and also validated the model with regression

statistics and average prediction error. To successfully

approximate a non-linear behavior with a linear model,

however, may not always be possible.

To address the shortcomings, in this paper, a new

methodology based on artificial neural network for

constructing a non-linear model is proposed. Via the use of

neural networks, our performance model can derive intrinsic

relationship during workload characterization. Since neural

networks do not make any assumptions for the functions we

try to approximate and in fact that they can approximate any

non-linear function, it can lead to a more general framework

that is applicable to various types of workloads.

As a case study, we applied the construction of an artificial

neural network to build a performance model for a 3-tier web

service workload. This model investigates the relationship

amongst programs configurations and workload performance

characteristics, providing a substantial assistance to the

performance tuning efforts. The model is shown to be very

accurate and reliable. We will detail the methodology,

limitations and advantages later in this paper.

In summary, the contributions of this paper are the

following.

• We propose and demonstrate a neural network based

non-linear model approach for characterizing and

analyzing workloads.

• Out method provides performance tuning guidance by

exploiting model prediction.

The rest of the paper is organized as follows. Section 2

gives background knowledge that underlies in this study.

Section 3 details our methodology. Our experiments are based

on the settings in Section 4, and the results are presented in

Section 5. A review of related workload characterization works

is given in Section 6. Finally, we conclude in Section 7.

2 Background

2.1 Artificial Neural Networks

Figure 1: A Perceptron

An artificial neural network (ANN) [3, 4, 5] consists of a

large number of small computational elements, resembling to

biological neural networks. The building block inside an ANN

is called a perceptron (or neuron.) A typical perceptron is

illustrated in Figure 1. The perceptron computes a weighted

sum of its (n + 1) input signals, and then passes the result

through a nonlinear activation function. Mathematically, the

output of a perceptron can be represented as

)(
1

0∑
=

−=

n

i

ii wxwfy

where f is a non-linear activation function, wi is the weight

associated with the i
th

input, and w0 is a constant threshold (or

bias) value.

The activation function is also referred to as a squashing

function; It limits the amplitude of the output of a perceptron

to a closed interval, e.g. [0, 1]. The operation of this function

can be interpreted as a mapping from a linear space to a non-

linear space. Note that the non-linear characteristic of an ANN

comes from this non-linearity of the activation function. By

far the most common form of an activation function is a

sigmoid function, which is defined as a strictly increasing

function that exhibits smoothness and asymptotic properties.

One example of a sigmoid function — logistic function, is

defined as follows:

)exp(1

1
)(

ax
xf

+

=

where a is the slope parameter and is used to determine the

fuzziness of the decision boundary.

The behavior of this function is illustrated in Figure 2. The

function approaches a hard limiter as the absolute value of the

slope parameter increases.

Basically, a perceptron forms a hyperplane to bisect the

sample space; those that have a weighted sum of less than the

threshold produce an output 0 and the others produce an output

1. The weights define the orientation of this hyperplane and the

bias determines the offset of the plane from the origin.

-10 -5 0 5 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x
f(

x
)

Figure 2: A Sigmoid Function

ANNs can be classified into a variety of models depending

on the topology of network, the activation function used, and

the training algorithm. Among them, each individual model

can be designed for a particular purpose with its own

application where it can excel. In the function approximation

area, single or multilayer perceptrons and Radial Bases

Function (RBF) networks are used.

2.2 Multilayer Perceptrons

Among those that are used for function approximation,

multilayer perceptrons (MLPs)
1
 are the most popular types.

Figure 3 shows the typical topology of an MLP mapping an n

dimensional space into an m dimensional space.

An MLP consists of one input layer and one output layer,

but can have multiple hidden layers in-between. The MLP

shown in Figure 3 contains two hidden layers and is a three

layer perceptron for the input layer usually is not considered a

layer. Note that each circle in these 3 layers represents a

perceptron including a summation unit and an activation

function.

Each perceptron in the first hidden layer creates bisectors

in the sample space. Then the second hidden layer is tuned to

perform logical AND operations to the sections created by the

input layer. For example, if all the weights from n nodes in the

first hidden layer to a node in the second hidden layer are 1,

then setting the threshold in the second hidden layer node to n

– ε where 0 < ε < 1 corresponds to an AND operation since

1
 In this paper MLP always stands for Multi-layer Perceptrons,

not Memory Level Parallelism.

Figure 3: Multilayer Perceptron

the output will be 1 only when all the outputs from the first

hidden layer are 1. Usually 2n perceptrons are needed to create

a confinement in an n dimensional space. The output layer then

performs OR operations to those confinements produced from

the second hidden layer. Setting the threshold in the output

layer node as 0.5 will suffice if all the weights from the second

hidden layer are 1. Since any finite volume could be

approximated as a sum of many confinements, MLPs can

carve the sample space in an arbitrary manner with 3 layers.

It has also been shown that these networks can approximate

any continuous function to a desired degree of accuracy [7].

Nevertheless, real world performance can be limited from the

inordinate number of node count, which in turn requires large

amounts of sample data and training time. Due to its

widespread use and availability in software, we chose MLP to

construct our non-linear model.

MLPs are trained with samples. In our case a sample is

represented as a tuple

),...,,,,...,,(),(2121 mn yyyxxxYX =

where),...,,(21 nxxxX = stand for n parameters in the

configuration of a given workload, and),...,,(21 myyyY = stand

for m performance indicators collected by running an

application under the configuration X. The configuration

parameters should be those we choose to measure their effect

on the overall application performance; e.g., JVM heap size,

thread pool size, injection rate, etc. A performance indicator

can be any performance metric, e.g., response time,

throughput, etc.

A set of training samples are collected by running the

identical application under various configurations; each sample

amounts to one specific configuration and the performance of

the application under the configuration. Each time a training

sample is presented, an MLP predicts the performance

indicator value Y
~

 by examining the configuration setting X.

Training algorithms then tune the weights and biases with a

goal to minimize the error between the predicted value (Y
~

)

and the actual value (Y), i.e. YY −
~ . This process is repeated

over all the training samples until a desired error threshold is

met. Thus learned knowledge is kept in MLPs by memorizing

their weights and biases. When an unseen workload

configuration X
~

 is presented, MLP can predict the

performance value based on the prior knowledge.

Among various training methods, a gradient descent based

back-propagation method is by far the most popular [5].

Details of the method are outside the scope of this paper.

Interested readers are referred to the literature [5].

3 Constructing a Neural Network Model

In this section we discuss the details concerning the

construction of the neural network model. Sample pre-

processing, discussed in Section 3.1, is a data manipulation

process required for maximizing the model accuracy. This

process should be applied to sample collection before they are

used to build the model. Section 3.2 then explains the model

parameters and settings that are required during the training

process. Section 3.3 describes how to maintain the model

flexibility for unseen samples, and its correlation with model

validity.

3.1 Pre-Processing the Samples

As described in Section 2.2, a neural network is trained

with a set of samples. Constructing a sample collection is a

necessity. One set of samples should be prepared for each

application to characterize. After the samples are collected,

they need to be processed in order to bring about the best

accuracy of the constructed model.

For configuration parameters),...,,(21 nxxxX = , each

parameter must be standardized. By standardization we mean

the process of subtracting the mean and then dividing it by the

standard deviation of a feature. This results in a feature of

which the mean is 0 and the standard deviation is 1. This

process is crucial to avoid the possibility of MLPs ending up in

a local minimum. Since the back-propagation method is based

on a gradient descent approach, without proper caution it is

highly likely to stop at a local minimum, missing the global

minimum and leading to a model that fails to fit the samples in

a global manner.

More specifically, this attributes to the fact that the weights

and biases of the network are initialized with random values

when the training process begins. Each perceptron then shoots

a hyperplane against a cloud of samples to cut it into half.

However, when the input values to perceptrons are with their

usual magnitude, the initial distance of the hyperplane from the

origin may be too small to cut through the cloud; the plane

then misses all the samples. This tends to lead the system to a

local minimum.

Standardizing the performance indicators

),...,,(21 myyyY = depends on the approximation task. If we

only approximate one performance indicator, there is no need

to standardize. On the other hand, when approximating

multiple performance indicators at the same time, we might as

well standardize those performance indicators. This is also due

to the fact that we are using a gradient based training method.

When one of the performance indicators has a higher

magnitude compared to the others, MLPs will spend most of

the time to fit that indicator since it will produce more

gradient. This has the effect of ignoring small variations from

the other indicators.

3.2 Choosing Model Parameters

In choosing model parameters, the first question will be

how many MLPs should be used. Note that an n configuration

parameter to m performance indicator approximation can be

done by approximating m instances of n configuration

parameter to 1 performance indicator relation. However,

although the prediction accuracy will suffer to a small extent,

we opt to approximate each workload with 1 instance of n-to-

m relation in the belief that it will model the synthetic behavior

of the application more accurately. The next question will

concern the node count in the hidden layers of MLP. When it

comes to this question there seems to be no definite answer. In

[6], the authors mention that the node count depends on the

following:

• The numbers of configuration parameters and

performance indicators

• The number of training samples

• The amount of noise in the collected samples

• The complexity of the workload to be learned

• The structure of the MLP

• The type of the activation function

• The training algorithm

It depends on the complexity of the distribution of the

samples which in turn determines the complexity of the

function. Each node in an MLP can be thought of as a point

that pins down the function in a virtual space. This notion

gives us a rough order of nodes that are needed.

3.3 Maintaining Model Flexibility and Validity

Theoretically, MLPs can approximate a function to any

precision level. However, in a modeling problem, if we

approximate a function too much, the model will lose its

flexibility to adapt to unseen data. This phenomenon is called

overfitting. It is better to loosely fit to the training sample to

maintain the flexibility of a model. A threshold value is needed

to indicate when to stop training.

Flexibility is also highly correlated with the validity of the

model. The more flexible the model is, the lower the prediction

error gets for unseen samples; which also mean that the model

is valid over a wider range of samples. Prediction error over

unseen samples can be used to quantify the validity of the

model. Toward this we used k-fold cross validation [22]. In k-

fold cross validation, a training set is divided into k sets of

equal size. Then the model is trained for k times. For each trial,

one set is excluded from those k sets; k - 1 sets, called training

set, are used to train the model, and the excluded set, termed

validation set, is used to calculate the error metric for the

model. Thus collected error values are then averaged over k

trials. For error metric, harmonic mean of (absolute error) /

(actual value) is used.

4 Experiment Settings
To demonstrate the validity and usefulness of our

methodology, we applied the method as an aid to application

performance tuning.

The workload used is a 3-tier web service modeling the

transactions among a manufacturing company, its clients and

suppliers. The workload is composed of a driver to inject the

load to the system, a middle-tier server running a leading

commercial Java application server
2
 and a backend database

system to provide data storage. Both the driver and the

database server are not CPU-bound. The performance

characteristics of our study focus on the middle-tier application

server. Inside the application server, different thread counts

can be assigned to three different queues modeling the work

flow including an mfg queue that models the manufacturing

domain, a web queue for modeling the web front end, and a

default queue which handles the rest. These are considered to

be our input parameters. The selection of these thread pool

sizes was found to be difficult and sometimes not quite

intuitive to the experienced performance engineers. The

performance measurements demonstrate non-linearity when

we varied the thread pool size. Another input parameter,

denoted as injection rate, is the rate of requests injected to the

software system. Overall, there are four input parameters in

this application including the thread counts assigned to the mfg

queue, web queue, default queue, and the injection rate.

In this model, there are five performance indicators. The

first four indicators are designated by the workload itself that

specifies four response time constraints. They include

manufacturing response time, dealer purchase response time,

dealer manage response time, and the dealer browse autos

response time. In addition, the throughput, i.e., effective

transactions per second, is also included as one performance

indicator. In summary, our model amounts to a 4-input, 5-

output relation.

2
 The name of the application cannot be disclosed due to

commercial confidentiality.

The system hardware used in our experiment is listed in

Table 1. As the workload has a steady state behavior, the

averages of collected counter values are used to reduce the

effect of sampling error.

With the constructed model, 5-fold cross validation was

performed. The MLP node count and the termination threshold

were manually tuned for the first trial; then the next four trials

were generated automatically with the same node count and

the same threshold value.

Table 1: Experiment Hardware Settings

CPU
4 Intel® Xeon® dual core 3.4 GHz with

Hyper-Threading enabled

L2 Cache 1 MB per core

Memory 16 GB

 After validating the model, we drew 3D diagrams of the

model to demonstrate and analyze the workload behavior.

Note that this model pertains to the specific combination of our

experimental systems and the workload.

5 Experimental Results

 With data samples collected from the experiments

described previously, we modeled the mapping from

application configuration to macroscopic application

performance indicators to provide aids to the application

performance tuning process.

Even though our approaches are quite straightforward, our

model is shown to be very accurate. For the workloads, we use

a training set and a validation set for our evaluation. The

training set was used to train our neural network model while

the validation set was used to evaluate the effectiveness based

on the training outcome. Using the training set, Figure 5

shows the predicted values of one of the 5 trials based on the

5-fold cross validation. On the other hand, Figure 6 shows the

values predicted for the validation set after our model was

trained by the training set. In these figures, each “o” denotes

the actual value while each “x” denotes the predicted value;

each sample index corresponds to a specific application

configuration. For both figures, all 5 plots were generated

from the same trial. The first 4 plots show the four response

times respectively (shown in the titles of Y-axis) while the last

plot at the bottom shows the effective number of transactions

(throughput). As can be seen from Figure 5, the MLP is

loosely fit to the training set on purpose to avoid overfitting.

As we explained earlier, such fitting leaves some certain

flexibility to the model and guarantees smaller prediction

errors.

The average prediction errors for the validation set are

given in Table 2. The errors for the performance indicators are

small, ranged from 0.2% to 10%, achieving an overall average

prediction accuracy of 95%. Note that only the first trial was

hand tuned, and the rest is generated automatically. If we hand

tuned each trial, the error could have been reduced even more.

In application tuning process, it is important to find the

best configuration that delivers the best application

performance. The next step will be to minimize the test cases

to reduce the amount of heuristic effort. Now we will show

how we perform an in-depth analysis using 3D diagrams of

performance indicators predicted by our model. Based on the

characteristics of the 3D diagrams of the workload, we classify

their variation behavior into three categories: parallel slope,

valleys, and hills and discuss them subsequently. These typical

behaviors appeared repetitively across diverse configuration

settings.

Note that each 4-tuple on the top of Figure 4, Figure 7, and

Figure 8 stands for a tuple comprised of (injection rate, default

queue, mfg queue, web queue). In this particular analysis we

focus on (560, x, 16, y) case, which means that the figures

were obtained by fixing the injection rate and the mfg queue

thread count at 560 and 16, respectively, then adjusting the

default queue and the web queue thread count. The Z-axis

indicates the predicted performance indicator values.

Moreover, those dots indicate the location of the actual data.

They spread over (or under) the surface with the same

accuracy described in Table 2. Lastly, each figure has been

rotated to increase readability which resulted in different

orientations of x and y axis amongst the figures.

5.1 Parallel Slopes

Figure 4 shows a particular example belonging to this type.

In this case one of the configuration parameters does not affect

the performance indicator value much once the values of the

other parameters are fixed. For example, once the web queue is

set to 18, the manufacturing response time maintains at value 4

regardless of the default queue sizes. From the tuning

perspective, it means that it will be of no use if one attempts to

tune the default queue to achieve a better manufacturing

response time.

d
e
fa

u
lt

5

10

15

20

webQueue

16

18

20

22

24

m
a
n
u
fa

c
tu

rin
g
.re

s
p
_
tim

e 2

3

4

5

(560, x, 16, y)

Figure 4: Case of Parallel Slopes

0 10 20 30 40

0
2

4
6

8
1

0

Sample Index

m
a

n
u

fa
c
tu

ri
n

g
.r

e
s
p

_
ti
m

e

0 10 20 30 40

0
2

4
6

8
1

0

Sample Index

D
e

a
le

r.
P

u
rc

h
a

s
e

.r
e

s
p

_
ti
m

e

0 10 20 30 40

0
2

4
6

8
1

0

Sample Index

D
e

a
le

r.
M

a
n

a
g

e
.r

e
s
p

_
ti
m

e

0 10 20 30 40

0
2

4
6

8
1

0

Sample Index

D
e

a
le

r.
B

ro
w

s
e

A
u

to
s
.r

e
s
p

_
ti
m

e

Figure 5: Actual (o) and Predicted (x) Values for the Training Set

0 10 20 30 40

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Sample Index

th
ro

u
g
h
p
u
t

2 4 6 8 10

0
2

4
6

8
1

0

Sample Index

m
a

n
u

fa
c
tu

ri
n

g
.r

e
s
p

_
ti
m

e

2 4 6 8 10

0
2

4
6

8
1

0

Sample Index

D
e

a
le

r.
P

u
rc

h
a

s
e

.r
e

s
p

_
ti
m

e

2 4 6 8 10

0
2

4
6

8
1

0

Sample Index

D
e

a
le

r.
M

a
n

a
g

e
.r

e
s
p

_
ti
m

e

2 4 6 8 10

0
2

4
6

8
1

0

Sample Index

D
e

a
le

r.
B

ro
w

s
e

A
u

to
s
.r

e
s
p

_
ti
m

e

Figure 6: Actual (o) and Predicted (x) Values for the Validation Set

2 4 6 8 10

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Sample Index

th
ro

u
g
h
p
u
t

Table 2: Average Prediction Error for the Validation Set

Trial
Manufacturing

Response Time

Dealer

Purchase

Response Time

Dealer Manage

Response Time

Dealer Browse

Autos

Response Time

Effective

Transactions

per second

1 3.3 % 10.1 % 5.7 % 9.5 % 0.1 %

2 1.5 % 7.3 % 2.7 % 4.2 % 0.3 %

3 4.5 % 8.9 % 3.3 % 5.0 % 0.2 %

4 4.0 % 12.6 % 12.6 % 11.3 % 0.1 %

5 1.4 % 11.3 % 10.7 % 6.4 % 0.2 %

Average 3.0 % 10.0 % 7.0 % 7.3 % 0.2 %

5.2 Valleys

As shown in Figure 7, the Valley type of trends may be

the cases that show the most dramatic benefit of using our

model. Note that the meaning of the valley changes depending

on the performance indicator category. For the response times

it is better to have smaller values. Figure 7 shows this case.

Note the valley formed from (default queue, web queue) = (0,

18) to (20, 20). In this figure the minimum dealer purchase

response time could be obtained when we adjust two

configuration parameters concurrently to stay in the valley.

However, for throughput measures it is better to stay out of the

valley.

Two other response time measures, i.e., dealer manage

response time and dealer browse autos response time, also

showed similar distribution.

default

5

10

15

20

w
eb

Q
ue

ue

16

18

20

22

24

D
e
a
le

r.P
u
rc

h
a
s
e
.re

s
p
_
tim

e

2

4

6

8

(560, x, 16, y)

Figure 7: Case of Valleys

5.3 Hills

This type of plot characteristics is the opposite of valleys.

In Figure 8, it is clear that the best throughput can be obtained

only when the (web queue, default) = (20, 10). If performance

engineers try to tune the throughput by varying the web queue

while setting the value for default at 7, it is highly likely that

they miss the local maximum regardless of how many

experiments they perform. Without such modeling, a huge

optimization effort will be futile.

default

5

10

15

20

w
ebQ

ueue

16

18

20

22

24

th
ro

u
g
h
p
u
t

860

880

900

920

(560, x, 16, y)

 Figure 8: Case of Hills

As can be readily seen from these cases, our model can

effectively narrow down the configuration combinations which

we should concentrate, thus radically reducing ineffectual

experiments. On the other hand, as we demonstrated, our

model also provides a much larger scope for the overall

performance trend, unveiling many otherwise lost

opportunities for performance tuning. In addition, we can

further build a system that recommends the best configuration

according to a scoring function.

Regardless, it is hard to perform a quantitative analysis for

a complete understanding of the individual contribution of a

particular feature to the output. This could be attributed to the

fact that neural network gives no assumption on the function it

is approximating. By removing the assumption on the

underlying function, we are trading off the analytical power of

the model for generality.

Moreover, neural network models cannot be used for

extrapolation. That is, it cannot be used to predict the

performance for the configuration that is far apart from the

training data. The prediction accuracy of MLPs drop rapidly

outside the range of training data. This is a known limitation of

MLP, and researchers in neural network area proposed variants

of MLPs [23] to overcome this limitation.

6 Related Work
Several prior works to characterize Java and object oriented

application behavior are well described in [16,17,18]. Li et al.

[16] utilize a full system simulator to incorporate operating

system kernel behavior into workload characterization.

Hauswirth et al. attempt to characterize a workload by

collecting samples over vertical layers of the system execution

stack [17,18]. Different from our work that highlights the

workload performance variation across multiple executions

with different configurations, these prior efforts were targeted

to understand the chronological application behavior change in

a single execution.

Previous thrusts on approximating a multi-tier workload

with linear models can be found in [2,20,21]. These works

attempted to train the model in the Design of Experiments

(DOE) approach. First, a fixed order linear model is assumed,

and the coefficients are then determined by a carefully

designed set of experiments. Compared to their approach, our

methodology is more general — (1) it does not make any

assumption on the approximating function, and (2) it can

readily construct a model from a rough mixture of data points.

This paper is in line with the researches applying advanced

statistical methods to characterize computer workloads.

Principal Components Analysis has been extensively used for

Java workload characterization [10,11] and benchmark

analysis and subsetting [12,13,14,19].

7 Conclusion and Future Work
In this paper we apply artificial neural networks to

construct a non-linear program behavior model to characterize

workload performance behavior. The main contribution

includes (1) introducing the use of neural network models to

derive intrinsic relationships in workload characterization, and

(2) providing performance tuning guidance by exploiting our

model prediction. Through case studies using real commercial

application workloads, we show that our model can

approximate non-linear workload behavior with an average

prediction accuracy of 95%.

Now that we have better understandings in non-linear

behavior of the workload, we can try to approximate it with

other non-linear functions such as polynomial and logarithmic

functions. As pointed out, neural network compromises the

analytical power of the model for generality. By analyzing the

behavior of the workload with prototype model constructed

with neural networks, we will establish an analytic non-linear

model that can fit the specific workload.

Acknowledgements
This research was conducted under the Software and

Solutions Group Research Intern Program at Intel Corp. Intel

Corp. generously supplied all the data and experimental

equipments used in this work.

References

[1] L. K. John, P. Vasudevan, and J. Sabarinathan,

 “Workload characterization: Motivation, goals and

 methodology,” in Workload Characterization:

 Methodology and Case Studies, pp. 3-14, November

 1998.

[2] K. Chow, M. Bhat, and J. A. Davidson, “Minimizing

 performance test cases for multi-tiered software

 systems,” in Proceedings of the Pacific Northwest

 Software Quality Conference, October 2002.

[3] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial

 neural networks: A tutorial,” IEEE Computer, vol. 29,

 no. 3, pp. 31–44, 1996.

[4] R. P. Lippmann, “An introduction to computing with

 neural nets,” IEEE ASSP Magazine, vol. 4, no. 2, pp.

 4–22, April 1987.

[5] S. Haykin, Neural Networks: A Comprehensive

 Foundation. Macmillan College Publishing Company,

 Inc., 1994.

[6] “AI FAQ/Neural Nets.” http://www.faqs.org/faqs/ai-

 faq/neural-nets.

[7] K. Hornik, M. Stinchcombe, and H. White,

 “Multilayer feedforward networks are universal

 approximators,” Neural Networks, vol. 2, no. 5, pp.

 359–366, 1989.

[8] T. M. Conte and W. W. Hwu, “Benchmark

 characterization,” IEEE Computer, vol. 24, no. 1, pp.

 48–56, 1991.

[9] P. Bose, “Workload characterization: A key aspect of

 microarchitecture design,” IEEE Micro, vol. 26, no. 2,

 pp. 5–6, 2006.

[10] K. Chow, A. Wright, and K. Lai, “Characterization of

 Java workloads by principal components analysis and

 indirect branches,” in Proceedings of the Workshop

 on Workload Characterization, pp. 11–19, November

 1998.

[11] L. Eeckhout, A. Georges, and K. D. Bosschere, “How

 Java programs interact with virtual machines at the

 microarchitectural level,” in Proceedings of the 18th

 Annual ACM SIGPLAN Conference on Object-

 Oriented Programming, Systems, Languages, and

 Applications, pp. 169–186, October 2003.

[12] H. Vandierendonck and K. D. Bosschere, “Many

 benchmarks stress the same bottlenecks,” in the 4th

 Workshop on Computer Architecture Evaluation

 using Commercial Workloads, January 2001.

[13] H. Vandierendonck and K. D. Bosschere, “Eccentric

 and fragile benchmarks,” in Proceedings of the 2004

 IEEE International Symposium on Performance

 Analysis of Systems and Software, pp. 2–11, March

 2004.

[14] L. Eeckhout, J. Sampson, and B. Calder, “Exploiting

 program microarchitecture independent

 characteristics and phase behavior for reduced

 benchmark suite simulation,” in Proceedings of the

 2005 IEEE International Symposium on Workload

 Characterization, pp. 2–12, October 2005.

[15] L. Eeckhout, R. Sundareswara, J. J. Yi, D. J. Lilja,

 and P. Schrater, “Accurate statistical approaches for

 generating representative workload compositions,” in

 Proceedings of the 2005 IEEE International

 Symposium on Workload Characterization, pp. 56–

 66, October 2005.

[16] T. Li, L. K. John, V. Narayanan, A.

 Sivasubramaniam, J. Sabarinathan, and A. Murthy,

 “Using complete system simulation to characterize

 SPECjvm98 benchmarks,” in Proceedings of the 14th

 International Conference on Supercomputing, pp. 22–

 33, 2000.

[17] M. Hauswirth, P. F. Sweeney, A. Diwan, and M.

 Hind, “Vertical profiling: Understanding the behavior

 of object-oriented applications,” in Proceedings of the

 19th Annual ACM SIGPLAN Conference on Object-

 Oriented Programming, Systems, Languages, and

 Applications, October 2004.

[18] M. Hauswirth, A. Diwan, P. F. Sweeney, and M. C.

 Mozer, “Automating vertical profiling,” in

 Proceedings of the 20th Annual ACM SIGPLAN

 Conference on Object-Oriented Programming,

 Systems, Languages, and Applications, October 2005.

[19] H. Vandierendonck and K. D. Bosschere,

 “Experiments with subsetting benchmark suites,” in

 Proceedings of the IEEE 7th Annual Workshop on

 Workload Characterization, pp. 55–62, October 2004.

[20] K. Chow, “Methods for e-commerce web

 performance prediction and capacity planning,” in

 Proceedings of the Intel Quality and Reliability

 Conference, October 2000.

[21] K. Chow and M. Bhat, “Methods for web

 performance prediction and capacity planning,” in

 BEA eWorld 2002.

[22] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern

 Classification. 2nd ed., Wiley Interscience, 2000.

[23] J. W. Hines, "A logarithmic neural network

 architecture for unbounded non-linear function

 approximation," IEEE International Conference on

 Neural Networks, vol. 2, pp. 1245-1250 vol. 2, June

 1996.

