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Abstract 

 
Workload characterization involves the understanding of the 

relationship between workload configurations and 

performance characteristics. To better assess the complexity of 

workload behavior, a model based approach is needed. 

Nevertheless, several configuration parameters and 

performance characteristics exhibit non-linear relationships 

that prohibit the development of an accurate application 

behavior model. In this paper, we propose a non-linear model 

based on an artificial neural network to explore such complex 

relationship. We achieved high accuracy and good 

predictability between configurations and performance 

characteristics when applying such a model to a 3-tier setup 

with response time restrictions.  As shown by our work, a non-

linear model and neural networks can increase the 

understandings of complex multi-tiered workloads, which 

further provide useful insights for performance engineers to 

tune their workloads for improving performance. 

1 Introduction 
Workload characterization [1, 8, 9] is a process of 

identifying and characterizing the intrinsic properties of an 

application in terms of quantifiable measures.  It shows how a 

workload behavior responds as its execution environment such 

as hardware, operating system, libraries, etc. changes over 

time.  With detailed understandings of their intricate 

relationship, one can use such information to guide 

performance optimizations.  Nevertheless, as the complexity of 

a computer system and its workloads increases, quantitatively 

analyzing the performance behavior of workloads has become 

very difficult, if not entirely impossible.  The introduction of 

managed runtimes like Java and C# further aggravated the 

situation.  Due to its layered structure of runtime stack, the 

analysis of these workloads is inherently complicated.  

To manage such insurmountable analysis tasks in a more 

effective manner, a model-based approach is indeed needed in 

order to simplify and systemize the analysis work. In the 

abstract level, a model is a multivariate relation between the 

controllable parameters and the performance indicators.  

Constructing this model then amounts to approximating this 

relationship from the collected performance data. With an 

accurate, working model, we can then analyze the workload in 

a continuous fashion, being able to predict how the 

performance metrics will change as the input parameters 

change. 

Difficulties in approximating this relation mostly come 

from the presence of nonlinearity in program behavior.  The 

performance of an application does not necessarily improve or 

degrade in a linear fashion in response to a linear adjustment in 

its input parameters.  

Due to their simplicity, prior research works usually relied 

on linear models to approximate program behavior [2, 20,21].  

Some linear models do demonstrate a remarkable accuracy.  

For example, in [2], Chow et al. introduced a linear model to 

describe the performance behavior of a seemingly complex 

web application and also validated the model with regression 

statistics and average prediction error. To successfully 

approximate a non-linear behavior with a linear model, 

however, may not always be possible.  

To address the shortcomings, in this paper, a new 

methodology based on artificial neural network for 

constructing a non-linear model is proposed.  Via the use of 

neural networks, our performance model can derive intrinsic 

relationship during workload characterization. Since neural 

networks do not make any assumptions for the functions we 

try to approximate and in fact that they can approximate any 

non-linear function, it can lead to a more general framework 

that is applicable to various types of workloads.  

As a case study, we applied the construction of an artificial 

neural network to build a performance model for a 3-tier web 

service workload.  This model investigates the relationship 

amongst programs configurations and workload performance 

characteristics, providing a substantial assistance to the 

performance tuning efforts.  The model is shown to be very 

accurate and reliable. We will detail the methodology, 

limitations and advantages later in this paper.  

In summary, the contributions of this paper are the 

following. 

• We propose and demonstrate a neural network based 

non-linear model approach for characterizing and 

analyzing workloads. 

• Out method provides performance tuning guidance by 

exploiting model prediction. 



The rest of the paper is organized as follows. Section 2 

gives background knowledge that underlies in this study. 

Section 3 details our methodology.  Our experiments are based 

on the settings in Section 4, and the results are presented in 

Section 5. A review of related workload characterization works 

is given in Section 6. Finally, we conclude in Section 7. 

2 Background 

2.1 Artificial Neural Networks 

 
Figure 1: A Perceptron 

 

An artificial neural network (ANN) [3, 4, 5] consists of a 

large number of small computational elements, resembling to 

biological neural networks. The building block inside an ANN 

is called a perceptron (or neuron.)  A typical perceptron is 

illustrated in Figure 1.  The perceptron computes a weighted 

sum of its (n + 1) input signals, and then passes the result 

through a nonlinear activation function. Mathematically, the 

output of a perceptron can be represented as 
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where f is a non-linear activation function, wi is the weight 

associated with the i
th 

input, and w0 is a constant threshold (or 

bias) value. 

The activation function is also referred to as a squashing 

function; It limits the amplitude of the output of a perceptron 

to a closed interval, e.g. [0, 1].  The operation of this function 

can be interpreted as a mapping from a linear space to a non-

linear space. Note that the non-linear characteristic of an ANN 

comes from this non-linearity of the activation function.  By 

far the most common form of an activation function is a 

sigmoid function, which is defined as a strictly increasing 

function that exhibits smoothness and asymptotic properties. 

One example of a sigmoid function — logistic function, is 

defined as follows: 
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where a is the slope parameter and is used to determine the 

fuzziness of the decision boundary. 

The behavior of this function is illustrated in Figure 2. The 

function approaches a hard limiter as the absolute value of the 

slope parameter increases. 

Basically, a perceptron forms a hyperplane to bisect the 

sample space; those that have a weighted sum of less than the 

threshold produce an output 0 and the others produce an output 

1. The weights define the orientation of this hyperplane and the 

bias determines the offset of the plane from the origin. 
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Figure 2: A Sigmoid Function 

 

ANNs can be classified into a variety of models depending 

on the topology of network, the activation function used, and 

the training algorithm. Among them, each individual model 

can be designed for a particular purpose with its own 

application where it can excel. In the function approximation 

area, single or multilayer perceptrons and Radial Bases 

Function (RBF) networks are used.  

2.2 Multilayer Perceptrons 

Among those that are used for function approximation, 

multilayer perceptrons (MLPs)
1
 are the most popular types. 

Figure 3 shows the typical topology of an MLP mapping an n 

dimensional space into an m dimensional space. 

An MLP consists of one input layer and one output layer, 

but can have multiple hidden layers in-between.  The MLP 

shown in Figure 3 contains two hidden layers and is a three 

layer perceptron for the input layer usually is not considered a 

layer. Note that each circle in these 3 layers represents a 

perceptron including a summation unit and an activation 

function. 

Each perceptron in the first hidden layer creates bisectors 

in the sample space. Then the second hidden layer is tuned to 

perform logical AND operations to the sections created by the 

input layer. For example, if all the weights from n nodes in the 

first hidden layer to a node in the second hidden layer are 1, 

then setting the threshold in the second hidden layer node to n 

– ε where 0 < ε < 1 corresponds to an AND operation since 

                                                 
1
 In this paper MLP always stands for Multi-layer Perceptrons, 

not Memory Level Parallelism. 



 
Figure 3: Multilayer Perceptron 

 
the output will be 1 only when all the outputs from the first 

hidden layer are 1. Usually 2n perceptrons are needed to create 

a confinement in an n dimensional space. The output layer then 

performs OR operations to those confinements produced from 

the second hidden layer. Setting the threshold in the output 

layer node as 0.5 will suffice if all the weights from the second 

hidden layer are 1. Since any finite volume could be 

approximated as a sum of many confinements, MLPs can 

carve the sample space in an arbitrary manner with 3 layers. 

It has also been shown that these networks can approximate 

any continuous function to a desired degree of accuracy [7]. 

Nevertheless, real world performance can be limited from the 

inordinate number of node count, which in turn requires large 

amounts of sample data and training time. Due to its 

widespread use and availability in software, we chose MLP to 

construct our non-linear model. 

MLPs are trained with samples. In our case a sample is 

represented as a tuple 

),...,,,,...,,(),( 2121 mn yyyxxxYX =  

where ),...,,( 21 nxxxX =  stand for n parameters in the 

configuration of a given workload, and ),...,,( 21 myyyY =  stand 

for m performance indicators collected by running an 

application under the configuration X.  The configuration 

parameters should be those we choose to measure their effect 

on the overall application performance; e.g., JVM heap size, 

thread pool size, injection rate, etc. A performance indicator 

can be any performance metric, e.g., response time, 

throughput, etc.  

A set of training samples are collected by running the 

identical application under various configurations; each sample 

amounts to one specific configuration and the performance of 

the application under the configuration. Each time a training 

sample is presented, an MLP predicts the performance 

indicator value Y
~

 by examining the configuration setting X. 

Training algorithms then tune the weights and biases with a 

goal to minimize the error between the predicted value (Y
~

) 

and the actual value (Y), i.e. YY −
~ . This process is repeated 

over all the training samples until a desired error threshold is 

met. Thus learned knowledge is kept in MLPs by memorizing 

their weights and biases. When an unseen workload 

configuration X
~

 is presented, MLP can predict the 

performance value based on the prior knowledge. 

Among various training methods, a gradient descent based 

back-propagation method is by far the most popular [5].  

Details of the method are outside the scope of this paper. 

Interested readers are referred to the literature [5]. 

3 Constructing a Neural Network Model 

In this section we discuss the details concerning the 

construction of the neural network model. Sample pre-

processing, discussed in Section 3.1, is a data manipulation 

process required for maximizing the model accuracy. This 

process should be applied to sample collection before they are 

used to build the model. Section 3.2 then explains the model 

parameters and settings that are required during the training 

process. Section 3.3 describes how to maintain the model 

flexibility for unseen samples, and its correlation with model 

validity. 

3.1 Pre-Processing the Samples 

As described in Section 2.2, a neural network is trained 

with a set of samples. Constructing a sample collection is a 

necessity. One set of samples should be prepared for each 

application to characterize.  After the samples are collected, 

they need to be processed in order to bring about the best 

accuracy of the constructed model. 

For configuration parameters ),...,,( 21 nxxxX = , each 

parameter must be standardized. By standardization we mean 

the process of subtracting the mean and then dividing it by the 

standard deviation of a feature. This results in a feature of 

which the mean is 0 and the standard deviation is 1. This 

process is crucial to avoid the possibility of MLPs ending up in 

a local minimum. Since the back-propagation method is based 

on a gradient descent approach, without proper caution it is 

highly likely to stop at a local minimum, missing the global 

minimum and leading to a model that fails to fit the samples in 

a global manner. 



More specifically, this attributes to the fact that the weights 

and biases of the network are initialized with random values 

when the training process begins. Each perceptron then shoots 

a hyperplane against a cloud of samples to cut it into half. 

However, when the input values to perceptrons are with their 

usual magnitude, the initial distance of the hyperplane from the 

origin may be too small to cut through the cloud; the plane 

then misses all the samples. This tends to lead the system to a 

local minimum. 

Standardizing the performance indicators 

),...,,( 21 myyyY =  depends on the approximation task. If we 

only approximate one performance indicator, there is no need 

to standardize. On the other hand, when approximating 

multiple performance indicators at the same time, we might as 

well standardize those performance indicators. This is also due 

to the fact that we are using a gradient based training method.  

When one of the performance indicators has a higher 

magnitude compared to the others, MLPs will spend most of 

the time to fit that indicator since it will produce more 

gradient. This has the effect of ignoring small variations from 

the other indicators. 

3.2 Choosing Model Parameters  

In choosing model parameters, the first question will be 

how many MLPs should be used.  Note that an n configuration 

parameter to m performance indicator approximation can be 

done by approximating m instances of n configuration 

parameter to 1 performance indicator relation. However, 

although the prediction accuracy will suffer to a small extent, 

we opt to approximate each workload with 1 instance of n-to-

m relation in the belief that it will model the synthetic behavior 

of the application more accurately.  The next question will 

concern the node count in the hidden layers of MLP. When it 

comes to this question there seems to be no definite answer. In 

[6], the authors mention that the node count depends on the 

following: 

• The numbers of configuration parameters and 

performance indicators  

• The number of training samples  

• The amount of noise in the collected samples 

• The complexity of the workload to be learned  

• The structure of the MLP 

• The type of the activation function  

• The training algorithm  

It depends on the complexity of the distribution of the 

samples which in turn determines the complexity of the 

function. Each node in an MLP can be thought of as a point 

that pins down the function in a virtual space. This notion 

gives us a rough order of nodes that are needed. 

3.3 Maintaining Model Flexibility and Validity 

Theoretically, MLPs can approximate a function to any 

precision level. However, in a modeling problem, if we 

approximate a function too much, the model will lose its 

flexibility to adapt to unseen data. This phenomenon is called 

overfitting. It is better to loosely fit to the training sample to 

maintain the flexibility of a model. A threshold value is needed 

to indicate when to stop training.  

Flexibility is also highly correlated with the validity of the 

model. The more flexible the model is, the lower the prediction 

error gets for unseen samples; which also mean that the model 

is valid over a wider range of samples.  Prediction error over 

unseen samples can be used to quantify the validity of the 

model. Toward this we used k-fold cross validation [22]. In k-

fold cross validation, a training set is divided into k sets of 

equal size. Then the model is trained for k times. For each trial, 

one set is excluded from those k sets; k - 1 sets, called training 

set, are used to train the model, and the excluded set, termed 

validation set, is used to calculate the error metric for the 

model. Thus collected error values are then averaged over k 

trials. For error metric, harmonic mean of (absolute error) / 

(actual value) is used. 

4 Experiment Settings 
To demonstrate the validity and usefulness of our 

methodology, we applied the method as an aid to application 

performance tuning. 

The workload used is a 3-tier web service modeling the 

transactions among a manufacturing company, its clients and 

suppliers. The workload is composed of a driver to inject the 

load to the system, a middle-tier server running a leading 

commercial Java application server
2
 and a backend database 

system to provide data storage. Both the driver and the 

database server are not CPU-bound. The performance 

characteristics of our study focus on the middle-tier application 

server. Inside the application server, different thread counts 

can be assigned to three different queues modeling the work 

flow including an mfg queue that models the manufacturing 

domain, a web queue for modeling the web front end, and a 

default queue which handles the rest.  These are considered to 

be our input parameters.  The selection of these thread pool 

sizes was found to be difficult and sometimes not quite 

intuitive to the experienced performance engineers. The 

performance measurements demonstrate non-linearity when 

we varied the thread pool size. Another input parameter, 

denoted as injection rate, is the rate of requests injected to the 

software system. Overall, there are four input parameters in 

this application including the thread counts assigned to the mfg 

queue, web queue, default queue, and the injection rate.  

In this model, there are five performance indicators.  The 

first four indicators are designated by the workload itself that 

specifies four response time constraints. They include 

manufacturing response time, dealer purchase response time, 

dealer manage response time, and the dealer browse autos 

response time.  In addition, the throughput, i.e., effective 

transactions per second, is also included as one performance 

indicator. In summary, our model amounts to a 4-input, 5-

output relation. 

                                                 
2
 The name of the application cannot be disclosed due to 

commercial confidentiality. 



The system hardware used in our experiment is listed in 

Table 1. As the workload has a steady state behavior, the 

averages of collected counter values are used to reduce the 

effect of sampling error. 

With the constructed model, 5-fold cross validation was 

performed. The MLP node count and the termination threshold 

were manually tuned for the first trial; then the next four trials 

were generated automatically with the same node count and 

the same threshold value.  

 
Table 1: Experiment Hardware Settings 

CPU  
4 Intel® Xeon® dual core 3.4 GHz with 

Hyper-Threading enabled 

L2 Cache 1 MB per core 

Memory 16 GB 

 

 After validating the model, we drew 3D diagrams of the 

model to demonstrate and analyze the workload behavior.  

Note that this model pertains to the specific combination of our 

experimental systems and the workload.  

5 Experimental Results 

  With data samples collected from the experiments 

described previously, we modeled the mapping from 

application configuration to macroscopic application 

performance indicators to provide aids to the application 

performance tuning process.  

Even though our approaches are quite straightforward, our 

model is shown to be very accurate. For the workloads, we use 

a training set and a validation set for our evaluation.  The 

training set was used to train our neural network model while 

the validation set was used to evaluate the effectiveness based 

on the training outcome.  Using the training set, Figure 5 

shows the predicted values of one of the 5 trials based on the 

5-fold cross validation. On the other hand, Figure 6 shows the 

values predicted for the validation set after our model was 

trained by the training set.  In these figures, each “o” denotes 

the actual value while each “x” denotes the predicted value; 

each sample index corresponds to a specific application 

configuration.  For both figures, all 5 plots were generated 

from the same trial.  The first 4 plots show the four response 

times respectively (shown in the titles of Y-axis) while the last 

plot at the bottom shows the effective number of transactions 

(throughput). As can be seen from Figure 5, the MLP is 

loosely fit to the training set on purpose to avoid overfitting. 

As we explained earlier, such fitting leaves some certain 

flexibility to the model and guarantees smaller prediction 

errors. 

The average prediction errors for the validation set are 

given in Table 2. The errors for the performance indicators are 

small, ranged from 0.2% to 10%, achieving an overall average 

prediction accuracy of 95%. Note that only the first trial was 

hand tuned, and the rest is generated automatically. If we hand 

tuned each trial, the error could have been reduced even more.  

In application tuning process, it is important to find the 

best configuration that delivers the best application 

performance. The next step will be to minimize the test cases 

to reduce the amount of heuristic effort. Now we will show 

how we perform an in-depth analysis using 3D diagrams of 

performance indicators predicted by our model.  Based on the 

characteristics of the 3D diagrams of the workload, we classify 

their variation behavior into three categories: parallel slope, 

valleys, and hills and discuss them subsequently. These typical 

behaviors appeared repetitively across diverse configuration 

settings. 

Note that each 4-tuple on the top of Figure 4, Figure 7, and 

Figure 8 stands for a tuple comprised of (injection rate, default 

queue, mfg queue, web queue). In this particular analysis we 

focus on (560, x, 16, y) case, which means that the figures 

were obtained by fixing the injection rate and the mfg queue 

thread count at 560 and 16, respectively, then adjusting the 

default queue and the web queue thread count. The Z-axis 

indicates the predicted performance indicator values. 

Moreover, those dots indicate the location of the actual data. 

They spread over (or under) the surface with the same 

accuracy described in Table 2. Lastly, each figure has been 

rotated to increase readability which resulted in different 

orientations of x and y axis amongst the figures. 

5.1 Parallel Slopes 

Figure 4 shows a particular example belonging to this type. 

In this case one of the configuration parameters does not affect 

the performance indicator value much once the values of the 

other parameters are fixed. For example, once the web queue is 

set to 18, the manufacturing response time maintains at value 4 

regardless of the default queue sizes. From the tuning 

perspective, it means that it will be of no use if one attempts to 

tune the default queue to achieve a better manufacturing 

response time. 
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Figure 4: Case of Parallel Slopes 
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Figure 5: Actual (o) and Predicted (x) Values for the Training Set 
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Figure 6: Actual (o) and Predicted (x) Values for the Validation Set 
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Table 2: Average Prediction Error for the Validation Set 

Trial 
Manufacturing 

Response Time 

Dealer 

Purchase 

Response Time  

Dealer Manage 

Response Time 

Dealer Browse 

Autos 

Response Time 

Effective 

Transactions 

per second 

1 3.3 % 10.1 % 5.7 % 9.5 % 0.1 % 

2 1.5 % 7.3 % 2.7 % 4.2 % 0.3 % 

3 4.5 % 8.9 % 3.3 % 5.0 % 0.2 % 

4 4.0 % 12.6 % 12.6 % 11.3 % 0.1 % 

5 1.4 % 11.3 % 10.7 % 6.4 % 0.2 % 

Average 3.0 % 10.0 % 7.0 % 7.3 % 0.2 % 

5.2 Valleys 

As shown in Figure 7, the Valley type of trends may be 

the cases that show the most dramatic benefit of using our 

model. Note that the meaning of the valley changes depending 

on the performance indicator category.  For the response times 

it is better to have smaller values. Figure 7 shows this case. 

Note the valley formed from (default queue, web queue) = (0, 

18) to (20, 20). In this figure the minimum dealer purchase 

response time could be obtained when we adjust two 

configuration parameters concurrently to stay in the valley. 

However, for throughput measures it is better to stay out of the 

valley. 

Two other response time measures, i.e., dealer manage 

response time and dealer browse autos response time, also 

showed similar distribution. 

 

default

5

10

15

20

w
eb

Q
ue

ue

16

18

20

22

24

D
e
a
le

r.P
u
rc

h
a
s
e
.re

s
p
_
tim

e

2

4

6

8

(560, x, 16, y )

 
Figure 7: Case of Valleys 

5.3 Hills 

This type of plot characteristics is the opposite of valleys.  

In Figure 8, it is clear that the best throughput can be obtained  

 

only when the (web queue, default) = (20, 10). If performance 

engineers try to tune the throughput by varying the web queue 

while setting the value for default at 7, it is highly likely that 

they miss the local maximum regardless of how many 

experiments they perform. Without such modeling, a huge 

optimization effort will be futile.  
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 Figure 8: Case of Hills 

 

As can be readily seen from these cases, our model can 

effectively narrow down the configuration combinations which 

we should concentrate, thus radically reducing ineffectual 

experiments.  On the other hand, as we demonstrated, our 

model also provides a much larger scope for the overall 

performance trend, unveiling many otherwise lost 

opportunities for performance tuning.  In addition, we can 

further build a system that recommends the best configuration 

according to a scoring function. 

Regardless, it is hard to perform a quantitative analysis for 

a complete understanding of the individual contribution of a 

particular feature to the output. This could be attributed to the 

fact that neural network gives no assumption on the function it 

is approximating. By removing the assumption on the 



underlying function, we are trading off the analytical power of 

the model for generality. 

Moreover, neural network models cannot be used for 

extrapolation. That is, it cannot be used to predict the 

performance for the configuration that is far apart from the 

training data. The prediction accuracy of MLPs drop rapidly 

outside the range of training data. This is a known limitation of 

MLP, and researchers in neural network area proposed variants 

of MLPs [23] to overcome this limitation. 

6 Related Work 
Several prior works to characterize Java and object oriented 

application behavior are well described in [16,17,18]. Li et al. 

[16] utilize a full system simulator to incorporate operating 

system kernel behavior into workload characterization. 

Hauswirth et al. attempt to characterize a workload by 

collecting samples over vertical layers of the system execution 

stack [17,18]. Different from our work that highlights the 

workload performance variation across multiple executions 

with different configurations, these prior efforts were targeted 

to understand the chronological application behavior change in 

a single execution.  

Previous thrusts on approximating a multi-tier workload 

with linear models can be found in [2,20,21]. These works 

attempted to train the model in the Design of Experiments 

(DOE) approach. First, a fixed order linear model is assumed, 

and the coefficients are then determined by a carefully 

designed set of experiments. Compared to their approach, our 

methodology is more general — (1) it does not make any 

assumption on the approximating function, and (2) it can 

readily construct a model from a rough mixture of data points. 

This paper is in line with the researches applying advanced 

statistical methods to characterize computer workloads. 

Principal Components Analysis has been extensively used for 

Java workload characterization [10,11] and benchmark 

analysis and subsetting [12,13,14,19].  

7 Conclusion and Future Work 
In this paper we apply artificial neural networks to 

construct a non-linear program behavior model to characterize 

workload performance behavior. The main contribution 

includes (1) introducing the use of neural network models to 

derive intrinsic relationships in workload characterization, and 

(2) providing performance tuning guidance by exploiting our 

model prediction.  Through case studies using real commercial 

application workloads, we show that our model can 

approximate non-linear workload behavior with an average 

prediction accuracy of 95%. 

Now that we have better understandings in non-linear 

behavior of the workload, we can try to approximate it with 

other non-linear functions such as polynomial and logarithmic 

functions. As pointed out, neural network compromises the 

analytical power of the model for generality. By analyzing the 

behavior of the workload with prototype model constructed 

with neural networks, we will establish an analytic non-linear 

model that can fit the specific workload. 
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