
Hierarchical Means: Single Number Benchmarking
with Workload Cluster Analysis

Richard M. Yoo†, Hsien-Hsin S. Lee†, Han Lee‡, and Kingsum Chow‡

School of Electrical and Computer Engineering†

Georgia Institute of Technology, Atlanta, GA 30332

Managed Runtime Division, Software and Solutions Group‡

Intel Corp., Hillsboro, OR 97123

{yoo, leehs}@ece.gatech.edu†, {han.lee, kingsum.chow}@intel.com‡

Abstract— Benchmark suite scores are typically calculated by
averaging the performance of each individual workload. The
scores are inherently affected by the distribution of workloads.
Given the applications of a benchmark suite are typically con-
tributed by many consortium members, workload redundancy
becomes inevitable. Especially, the merger of the benchmarks
can significantly increase artificial redundancy. Redundancy in
the workloads of a benchmark suite renders the benchmark
scores biased, making the score of a suite susceptible to malicious
tweaks. The current standard workaround method to alleviating
the redundancy issue is to weigh each individual workload during
the final score calculation. Unfortunately, such a weight-based
score adjustment can significantly undermine the credibility of
the objectiveness of benchmark scores. In this paper, we propose
a set of benchmark suite score calculation methods called the
hierarchical means that incorporate cluster analysis to amortize
the negative effect of workload redundancy. These methods not
only improve the accuracy and robustness of the score, but also
improve the objectiveness over the weight-based approach. In
addition, they can also be used to analyze the inherent redundancy
and cluster characteristics in a quantitative manner for evaluating
a new benchmark suite. In our case study, the hierarchical
geometric mean was applied to a hypothetical Java benchmark
suite, which attempts to model the upcoming release of the
new SPECjvm benchmark suite. In addition, we also show that
benchmark suite clustering heavily depends on how the workloads
are characterized.

I. INTRODUCTION

Processor architects use benchmark suites composed of real

applications of interests to set the performance goals for a

particular market segment a processor is designed for. These

benchmark suites are used in early architecture planning phases

to perform design space exploration and to obtain the trade-off

among cost, performance, complexity-effectiveness, and energy

consumption. Thus, the success of a new processor design can

heavily depend on the selection and the method of calculating

the overall benchmark score. Furthermore, different system ven-

dors also rely on (standard) benchmark suites to compare their

products against those offered by their competitors, making

an accurate evaluation and a fair representation of the overall

benchmarking results highly desirable.

The selection and inclusion of programs for a standard

benchmark suite are typically done by a consortium formed

by several member companies and academic institutions. Due

to the aggregation of benchmark programs contributed from

different parties, a composite benchmark suite often contains

workload redundancy — i.e., several programs exhibit similar

execution behavior. To be more specific, there are actually two

types of workload redundancy: natural redundancy and artificial

redundancy. Natural redundancy occurs when we sample the

user workload space evenly. For example, since a large number

of the consumer workloads are memory-intensive, it is likely

that the final benchmark suite includes more memory intensive

workloads instead of floating-point or I/O intensive workloads

if we sample the user workload space. Since natural redundancy

reflects the actual user workload spectrum, it is hard to conclude

that natural redundancy is harmful.

In contrast, artificial redundancy happens when a new bench-

mark suite is created by merging a set of benchmark suites.

Due to the increasing pressure from time and the lack of

domain knowledge, it is getting more popular to release a

new benchmark by merging workloads directly from existing

benchmark suites. This trend is not limited to academic bench-

marks, but also extends to standard benchmarks. For instance,

the next release of MineBench [1], a data mining benchmark

from academia, will incorporate workloads from ClusBench

[2], a clustering workloads benchmark. Moreover, it has been

indicated that the next version of the SPECjvm benchmark

suite, SPECjvm2007, will incorporate workloads from the

SciMark2 benchmark suite [3], [4]. Besides, the credibility

of the new benchmark suite can also be inherited from the

proven credibility of those existing workloads, providing a good

justification for including them.

Unfortunately, such a workload adoption process tends to sig-

nificantly increase artificial redundancy. Suddenly introducing

a couple of foreign workloads into a self-contained benchmark

suite can dramatically increase the workload redundancy, if the

characteristics of the newly added workloads fail to demonstrate

evenly diversified behavior across the entire workload spectrum.

As such, these injected workloads will form an exclusive cluster

of their own, hence rendering each other in the adoption set

redundant.

For a proprietary benchmark suite, workload redundancy

only affects the accuracy of the benchmark suite itself. How-

ever, workload redundancy in a standard benchmark suite can

lead to many problems. When there exists homogeneous work-

loads in a benchmark suite, their similarity can significantly

distort the scoring metric by amplifying their aggregated effect

on the overall score. For example, if only two homogeneous

workloads benefit from the increased cache size, the effect of

this architectural parameter will be erroneously evaluated twice,

thereby undesirably enlarging the benefit from using a larger

cache. Note that compiler or hardware enhancement techniques

will be misleadingly targeted for those redundant workloads for

such improvements. This not only affects the accuracy, but also

the robustness of the scoring metric, therefore jeopardizing the

credibility of the benchmark itself. As we can see, workload

redundancy, especially the artificial redundancy, is a significant

problem.

If detected, it would be the best to remove those redundant

workloads from the benchmark suite. However, mutual interests

from different parties can make this task rather difficult and

political. As an example, consider the case where we create

a benchmark suite by merging data mining and bioinformatics

workloads. Since bioinformatics workloads are a subset of data

mining workloads, most of the bioinformatics workloads would

be redundant, when compared to the more general data mining

workload. Nonetheless, if those applications in bioinformatics

benchmark are equally important in bioinformatics area, it

would be hard to drop any of those workloads. Although it

might sound far fetched, this example accurately reflects the

dilemma of a consortium-driven benchmark creation process.

Based on some publicly available information [3], [4], it seems

highly likely that most of the SciMark2 workloads will be

included in SPECjvm2007 despite of the potential redundancy

issue.

In such scenarios, we should rely on score calculation metrics

to remove redundancy. Calculating averages over the workloads

simply overlooks this redundancy problem. To cope with the

problem, the scoring method itself should be aware of the

workload redundancy. One possible solution, the one currently

in use, is to augment the plain mean calculation with different

weights for different workloads: the weighted mean approach.

Nevertheless, this approach can undermine the objectiveness

of a benchmark, since determining the exact value of those

weights is always subjective.

To address these issues, in this paper, we propose a method

that incorporates workload cluster information directly into the

shape of the scoring equation. Specifically, we propose a set of

new scoring methods called the hierarchical means, which are

based on statistical analysis. These methods effectively cancel

out the negative effects of workload redundancy. In our case

study, we first conjured up a benchmark suite which attempts to

model the upcoming new SPECjvm benchmark suite, based on

some publicly available information. Then we applied one form

of our hierarchical means, the hierarchical geometric mean, to

this benchmark suite to study and analyze its behavior.

In summary, the main contribution of this paper is twofold.

• We propose a statistical approach to incorporate workload

cluster information in benchmark suite score calculation.

• Based on this approach, we propose the use of a new set

of scoring metrics.

The rest of the paper is organized as follows. In the next

section we introduce the hierarchical means. Section III dis-

cusses the technique to detect clusters in a benchmark suite.

The experimental settings and the results of our case study are

presented in Section IV and Section V, respectively. Related

research in workload characterization was described in Section

VI. Finally, we conclude in Section VII.

II. THE HIERARCHICAL MEANS

In benchmark suite cluster analysis, workloads that demon-

strate similar characteristics such as similar cache behavior,

number of page faults, computational intensity, etc., are classi-

fied into the same cluster. Assuming that this workload cluster

information is available, in this section we show how we

incorporate this information into our new scoring methods —

the hierarchical means. We discuss clustering and workload

characterization in Section III.

For a benchmark suite comprised of n workloads, where the

ith workload showing performance value Xi, a plain geometric

mean is calculated as:

n
√

X1X2...Xn

For the same benchmark suite, given the workload

cluster information, if the benchmark suite forms i = 1, ..., k
clusters, Hierarchical Geometric Mean (HGM) is calculated as:

k

√

n1

√

X11...X1n1
... nk

√

Xk1...Xknk

where ni stands for the number of workloads in the ith

cluster, and Xij stands for the performance of the jth workload

in the ith cluster.

Simply put, HGM is a geometric mean of geometric means;

each inner geometric mean reduces each cluster to a single

representative value, which effectively cancels out the workload

redundancy, while the outer geometric mean equalizes each

cluster. Note that, when each workload is assigned a single

cluster, the HGM gracefully degenerates to the plain geometric

mean as shown below.

n
√

1
√

X11
1
√

X21...
1
√

Xn1 = n
√

X1X2...Xn

The key approach of HGM is to apply averaging process in

a hierarchical manner to eliminate the workload redundancy.

This approach can be readily extended to the arithmetic mean

and the harmonic mean. For example, for the arithmetic mean,

the Hierarchical Arithmetic Mean (HAM) can be calculated as:

X11+...+X1n1
n1

+...+
Xk1+...+Xknk

nk

k

while for the harmonic mean, the Hierarchical Harmonic

Mean (HHM) is calculated as:

k

Σ
n1
j=1

1
X1j

n1
+ ... +

Σ
nk
j=1

1
Xkj

nk

Similar to the HGM, the HAM and HHM also gracefully

degenerate to their respective plain means when each cluster

contains only one single workload.

Compared to the conventional workaround relying on hu-

man’s intervention for weighing workloads to reduce redun-

dancy, the hierarchical means are more objective given that the

clustering is performed based on a quantitative method.

III. DETECTING CLUSTERS IN A BENCHMARK SUITE

Clustering the applications for a benchmark suite is essen-

tially a workload characterization problem. Workload charac-

terization is a process that maps a workload to a characteristic

vector which is comprised of elements that best characterize

the workloads such as the number of cache misses, the number

of page faults, the ratio of computation to communication, etc.

These elements can be anything from hardware performance

counters, operating system counters, and Java Virtual Machine

(JVM) counters, to microarchitecture-independent character-

istics [5], [6] of the characterized workload. The values of

the elements are usually obtained by sampling the execution

behavior.

Clusters in a benchmark suite can be detected by first

applying workload characterization to each workload and then

performing distance based clustering analysis over the charac-

teristic vectors. However, due to the high dimensionality of the

characteristic vectors and the correlation among characteristic

vector elements, dimension reduction and transformation will

be necessary. We apply the Self-Organizing Map [7], [8] to

satisfy this aim. Then the Hierarchical Clustering is applied to

the reduced dimension, which yields the workload clusters.

A. Self-Organizing Map

Self-Organizing Map (SOM) [7], [8] is a special type of

neural network which effectively maps high-dimensional data

to a much lower dimension, typically 1-D or 2-D. It creates

a visual map on the lower dimension such that two vectors

that were close in the original n-dimension appear closer,

and those distant ones appear farther apart from each other.

Note that the reduced dimension has no physical interpretation

as to the original dimension but the relative distance among

the n-dimensional vectors. Due to this characteristic, SOMs

are usually applied to obtain a better visualization for higher

dimensional data.

By applying the SOM to a set of characteristic vectors for

each workload, we can construct a visual map that discerns

which workloads are similar. When two workloads appear

closely on the map, it means that their n-dimensional char-

acteristic vectors were close, in other words, these workloads

are homogeneous.

The construction of a SOM is shown in Figure 1. Similar to

the illustration, a SOM is typically comprised of a 2-D array of

neurons, called units. Each unit contains a weight vector wi and

a location vector ri. The weight vector has the same dimension

with each characteristic vector, and the location vector specifies

the unit’s location in the 2-D grid. Note that, each characteristic

vector will be broadcast to all the units. In the figure, for clarity,

we only show the connections in the bottom row.

Training the SOM is simple. It is based on competitive

learning [8]; each unit competes to resemble more about each

input characteristic vector representing one application. The

pseudo code is listed as follows.

Given:

A 2-D array of units, and a set of characteristic vectors

Initialize:

Assign a random initial value to each unit’s weight vector

Repeat:

Randomly select a characteristic vector

Characteristic Vector

Units

Ne
igh

bo
rs

Best Matching Unit (BMU)

Fig. 1. A Typical Structure of SOM

Get the best matching unit

Adjust the weight of itself and its neighbors

Continue until converge

The first step in constructing a SOM is to initialize the

weight vectors. The initial values of these weights are usually

determined by sampling a subspace generated by the two

major principal components [9] of the characteristic vectors.

Nonetheless, the selection of the initial weights does not affect

the final result significantly.

After initialization, at each step, a characteristic vector rep-

resenting a workload is randomly chosen, and a unit that best

matches this characteristic vector is selected. A best matching

unit (BMU) is defined as the unit that has the minimum

Euclidean distance (di =
√

∑

j ||xj − wij ||2) between an input

characteristic vector (x) and its weight vector(wi).

In Figure 1, a BMU is highlighted in the middle of its

neighbors. When a BMU is found for a given characteristic

vector, the weight vector of that BMU is adjusted using the

following equation. As a result, the BMU’s weight vector will

become even more similar to that characteristic vector. In the

same way, the weight vectors of the neighbors of that unit are

also adjusted.

wi(n + 1) = wi(n) + hci(n)[x(n) − wi(n)], where

hci(n) = α(n) ∗ exp(− ||rc−ri||
2

2σ2(n))

In this weight vector adjustment, the new weight vector

wi(n + 1) is incrementally updated by a product of two

items: the neighborhood kernel, hci, and the difference of the

characteristic vector x(n) and the current weight vector wi(n).

The neighborhood kernel is essentially a Gaussian function

of the distance from the BMU. In this function, the rc and

ri denotes the location vectors of the BMU and the ith unit,

respectively. Moreover, α(n) denotes the “learning-rate factor.”

This value determines the magnitude of the hci function; the

larger the α(n) value, the larger the assimilation. The function

σ(n) controls the radius of the “neighbor”; neighborhood is

defined as the range where hci assumes a non-zero value. Both

α(n) and σ(n) monotonically decreases as we progress for each

learning step n. Figure 2 plots an hci function as n increases.

−10 −5 0 5 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distance from BMU

h
_

{c
i}

alpha = 1, sigma = 3
alpha = 0.67, sigma = 2
alpha = 0.45, sigma = 1

Fig. 2. Behavior of the hci Function

As the training process continues, the units that resembled

the characteristic vector gets more like the characteristic vector,

while the other units that did not become less alike the

characteristic vector.

When the training is finished, we have a 2-D array of units

where each unit responds to a specific input characteristic

vector, in other words, each workload will be mapped to one

particular unit. Note that when two or more workloads are

similar enough, they can map to the same unit.

Compared to the previous approaches [5], [10], [11], [12]

which used Principal Components Analysis (PCA) as a di-

mension reduction tool, SOM has a benefit that it preserves

the entire information contained in the original dimension. In

PCA, selectively choosing a few major principal components

results in loss of information. This loss of information can

be significant when the input characteristic vectors do not

show a strict tendency over the dimension on which principal

components span. Since PCA tries to map the input data with

only linear components, the reduced dimension generated by

the linear combinations of principal components can be a poor

approximation of the original data if the inherent characteristic

of input data is non-linear [9].

Moreover, when there are more than 2 principal components,

it is hard to visualize the workload distribution in an intuitive

manner. SOM is a good alternative for an accurate representa-

tion of high dimensional data in 2-D.
Using the 2-D map generated by SOM, we now focus on

how to perform clustering.

B. Hierarchical Clustering

To obtain workload cluster information, we then apply hi-

erarchical clustering to the reduced dimension generated by

SOM. The pseudo code for hierarchical clustering is illustrated

as follows.

Given:

X, a set of m training points

Initialize:

Assign each training point(Xi) to a single cluster(wi)

(wi = Xi, i = 1, ...,m)

Repeat:

Compute cluster-to-cluster distance d(wi,wj) for

all pairs of clusters

Find two clusters (wp, wq) such that their distance is

the minimum among all pairs of clusters

Create a new cluster by merging those two clusters

(wk = wp ∪ wq)

Continue until all the points result in a single cluster

In this notation, d(wi,wj) stands for cluster-to-cluster dis-

tance. Among the many cluster-to-cluster distance definitions,

in our specific case we chose it to be the distance of the furthest

pair of points from each cluster. In mathematical notation,

d(wi,wj) = maxx∈wi,y∈wj
d(x, y). Again, in this notation,

d(x, y) stands for point-to-point distance. We chose Euclidean

distance as the point-to-point distance.
In the beginning, the algorithm assigns each point a cluster.

At each iteration the closest pair of clusters are merged to

create a new cluster, reducing the number of clusters by one

each time. The algorithm proceeds until all the points result

in a single cluster. Clustering result can be represented as a

dendrogram which visualize which workloads form a cluster

at which merging distance. At a specific merging distance,

clusters that are located closer than the merging distance should

merge. The lower the merging distance the more “similarity”

those workloads have. By varying the merging distance, we can

determine how many workload clusters exist in a benchmark

suite.

IV. EXPERIMENTAL SETTINGS

In this section we discuss our settings for the case study

to demonstrate our methodology. For the experiments, we

composed a hypothetical Java benchmark suite which attempts

to model the upcoming new SPECjvm benchmark suite. This

benchmark suite is detailed in Section IV-A. The benchmark

was then executed on two different machines to compare

Workload Benchmark Suite Version Input Set Description

201.compress SPECjvm98 1.04 s100
A Java port of the 129.compress benchmark from SPEC CPU95,
which implements modified Lempel-Ziv method (LZW).

202.jess SPECjvm98 1.04 s100

A Java Expert Shell System based on NASA’s CLIPS
expert shell system. The workload solves a set of puzzles
commonly used with CLIPS by applying a set of if-then
statements to a set of data.

213.javac SPECjvm98 1.04 s100 The Java compiler from the JDK 1.0.2.

222.mpegaudio SPECjvm98 1.04 s100
An application that decompresses audio files that conform to
the ISO MPEG Layer-3 audio specification.

227.mtrt SPECjvm98 1.04 s100
A multi-threaded raytracer that works on a scene depicting a
dinosaur.

FFT SciMark2 2.0 regular

Performs a one-dimensional forward transform of 4K
complex numbers. This kernel exercises complex arithmetic,
shuffling, non-constant memory references and trigonometric
functions.

LU SciMark2 2.0 regular
Computes the LU factorization of a dense 100x100 matrix
using partial pivoting. Exercises linear algebra kernels
(BLAS) and dense matrix operations.

MonteCarlo SciMark2 2.0 regular

Approximates the value of Pi by computing the integral of

the quarter circle y =

√
1 − x2 on [0,1]. It chooses

random points with the unit square and compute the ratio
of those within the circle.

SOR SciMark2 2.0 regular
Performs Jacobi Successive Over-relaxation (SOR) on a
100x100 grid. Exercises typical access patterns in finite
difference applications.

Sparse SciMark2 2.0 regular
Uses an unstructured sparse matrix stored in compressed-row
format with a prescribed sparsity structure. This kernel
exercises indirection addressing and non-regular memory
references.

Hsqldb DaCapo 2006-08 default
Executes a JDBCbench-like in-memory benchmark, executing
a number of transactions against a model of a banking
application.

Chart DaCapo 2006-08 default
Uses JFreeChart to plot a number of complex line graphs
and renders them as PDF.

Xalan DaCapo 2006-08 default Transforms XML documents into HTML.

TABLE I

CONSTRUCTED BENCHMARK SUITE

their performance; individual workload scores and workload

cluster information were obtained from those two machines.

A reference machine was also introduced for the baseline

workload score. The hardware settings will be discussed in Sec-

tion IV-B. Section IV-C describes our workload characterization

methodology.

A. Benchmark Suite Composition

Based on the publicly available information, we composed

a hypothetical Java benchmark suite which attempts to model

the upcoming new SPECjvm benchmark suite by adopting

workloads from 3 different benchmark suites: SPECjvm98 [13],

SciMark2, and DaCapo [14] benchmark suite. Table I describes

the composed benchmark. In total, there are 13 workloads in

our benchmark suite. Among those workloads, 5 of them are

retained from the SPECjvm98, the other 5 of them are adopted

from SciMark2, and the rest are from DaCapo.

SPECjvm98 [13] has been by far the standard in client

side Java benchmark. SciMark2 is a Java benchmark suite for

scientific and numerical computing, and has been indicated to

be included in the next release of SPECjvm benchmark suite

[3], [4]. It specifically addresses the numeric computation ca-

pability of the underlying Java framework. In contrast, DaCapo

benchmark suite [14] is being developed for garbage collection

research; it shows significantly increased execution time and

object creation, large enough to trigger frequent garbage col-

lection. Inclusion of DaCapo suite reflects the prolonged needs

for a longer and heavier benchmark from the virtual machine

researchers. As a score metric for the individual workload, we

use the execution time speedup over a reference machine.

To the best of our knowledge, we believe that this benchmark

suite would be representative enough to imitate the current

status of the upcoming SPECjvm benchmark suite although the

actual release version is yet to be disclosed and may eventually

be different.

B. Hardware Settings

We executed the above benchmark on 3 different machines:

machine A, B, and a reference machine listed in Table II. Ma-

chine A and B are the machines for performance comparison,

while the reference machine is used to normalize the execution

time of each workload. Each workload was executed 10 times

on each machine, and the average execution time was used as

a representative program execution time.

C. Workload Characterization

We applied two types of workload characterization. In the

first approach (Section V-B), to determine the effect of machine

specific cluster information on the hierarchical means, we

used the SAR counters provided by Linux. The SAR program

collects operating system level performance counters such as

CPU utilization, the numbers of context switches, interrupts,

Machine A

CPU
Dual Intel Xeon CPU 3.00 GHz
HyperThreading disabled

L2 Cache 2 MB
Bus Speed 800 MHz
Memory 2 GB

OS
Red Hat Enterprise Linux WS release 4
2.6.9-34.0.1.ELsmp

JVM
BEA JRockit R26.4.0-jdk1.5.0 06
32 bit Edition

Machine B

CPU
Intel Pentium 4 CPU 3.00 GHz
HyperThreading disabled

L2 Cache 512 KB
Bus Speed 800 MHz
Memory 512 MB

OS
Red Hat Enterprise Linux WS release 4
2.6.9-42.0.3.ELsmp

JVM
BEA JRockit R26.4.0-jdk1.5.0 06
32 bit Edition

Reference Machine

CPU Sun UltraSPARC III Cu 1.2 GHz
L2 Cache 8 MB External
Bus Speed 800 MHz
Memory 1 GB
OS Solaris 8
JVM Sun Java HotSpot build 1.5.0 09-b01

TABLE II

HARDWARE SETTINGS

page misses, etc. Due to the virtual execution environment

of Java applications, operating system level counters become

significant in characterizing Java workloads [15], [16]. We used

a couple hundred counters by collecting all the counters that

SAR provides. While the workload was executed till completion

for 10 times, 15 samples were collected for each counter,

with an even time interval. In characteristic vector for each

workload, the average value of those samples was used as

a representative counter value. Those counters that did not

vary over workloads were discarded because they provide no

useful information in distinguishing workloads. Moreover, each

counter was standardized prior to the cluster analysis, i.e.,

subtract the mean and divide by standard deviation.

In our second approach (Section V-C), to workaround the

dependency of hierarchical means on machine characteristics,

we employed a totally architecture independent characteristic:

the Java methods usage. Note that this characteristic totally

depends on the organization of the source code itself. Since

Java provides heavy library support via standardized API, char-

acterization of Java workloads by method profiling has been

popular in many researches [17], [18]. While the workloads

are running, we collect the method coverage information with

hprof facility provided by recent JVMs. Then we create a list of

the complete method names (e.g., java.lang.String.subString,

java.lang.Object.hashCode, etc.) that appear on the hprof
result along with a characteristic vector of the same width

as the number of Java methods. When a certain method is

called by a workload, the corresponding bit in the character-

istic vector for that workload is set to 1; otherwise it is set

to 0. The characteristic vectors are then used to determine

workload clusters. We discarded those methods that 1) only

one workload used, or 2) all the workloads used, since these

two extremes tend to bias the SOM learning process. The bit

fields in characteristic vectors were also standardized. Note

that SOM shows robust behavior over PCA approach, for this

type of discrete data shows high nonlinearity [9]. For non-

Java workloads, other microarchitecture independent workload

features such as instruction mix, memory strides, etc. [5], [6]

can be used instead.

V. RESULTS

In section V-A we provide the speedup of each workload on

machine A and B, with respect to the reference machine. Then

we study the behavior of hierarchical means in Section V-B

and Section V-C when the workload cluster is determined with

operating system level counters, and when determined with the

language level feature.

A. Workload Execution Time

A B ratio(=A/B)

jvm98.201.compress 4.75 3.99 1.19
jvm98.202.jess 5.32 3.65 1.46
jvm98.213.javac 3.97 2.37 1.68
jvm98.222.mpegaudio 6.50 6.11 1.06
jvm98.227.mtrt 2.57 1.41 1.82
SciMark2.FFT 1.09 1.07 1.02
SciMark2.LU 1.19 0.90 1.32
SciMark2.MonteCarlo 0.75 0.98 0.76
SciMark2.SOR 1.22 1.31 0.93
SciMark2.Sparse 0.71 0.90 0.80
DaCapo.hsqldb 1.16 2.31 0.50
DaCapo.chart 5.12 2.77 1.85
DaCapo.xalan 1.88 2.62 0.71

Geometric Mean 2.10 1.94 1.08

TABLE III

RELATIVE WORKLOAD SPEEDUP ON MACHINES A AND B

The relative speedup of workloads on each machine is

given in Table III. At the end of the table shows the overall

score calculated by plain geometric means. In this scoring

metric, machine A shows an 8% performance improvement

over machine B. This will be used as our base of improvement

in the following sections.

B. Cluster Analysis Based on SAR Counters

Clustering results can appear differently on different ma-

chines. To study the effect of this behavior on the hierarchical

means, we analyzed the cluster distribution on both machine A

and B. Then we compare the scoring results from hierarchical

means. Section V-B.1 and Section V-B.2 discuss about the

results on machine A and B, respectively.

1) Cluster Analysis on Machine A: Figure 3 illustrates the

results of applying the SOM to SAR counter samples collected

on machine A. In this figure, colored cells represent the location

of the workloads on the reduced dimension. The closer the

two cells are, the more similar the two workloads represented

by those cells. For example, workloads FFT and LU from

SciMark2, and mtrt and jess from SPECjvm98 are similar

when characterized based on SAR counters.

2 4 6 8 10 12 14

2
4

6
8

1
0

1
2

1
4

Dimension 1

D
im

e
n
s
io

n
 2

jvm98.201.compress jvm98.202.jess

jvm98.213.javac

jvm98.222.mpegaudio

jvm98.227.mtrt

SciMark2.FFT
SciMark2.LU

SciMark2.MonteCarlo
SciMark2.SOR

SciMark2.Sparse

DaCapo.hsqldb

DaCapo.chart

DaCapo.xalan

Fig. 3. Workload Distribution on Machine A

Moreover, darker cells indicate that there are multiple work-

loads that map to the same cell. These workloads can be re-

garded as particularly similar. MonteCarlo, SOR, and Sparse
from SciMark2 fall in this case. Compress and mpegaudio
from SPECjvm98 also tends to highly resemble each other.

Note that the distance among the workloads represent only

the relative similarity in the benchmark suite under consid-

eration. So in a different benchmark suite composition, two

workloads that appear similar in our benchmark suite might

appear distinct. Nonetheless, one noticeable trend from the

figure is the coagulation of SciMark2 workloads. Workloads

from DaCapo benchmark suite tend to spread across Dimension

2, while SPECjvm98 workloads spread across Dimension 1.

In contrast, workloads from SciMark2 form a dense cluster

around (Dimension 1, Dimension 2) = (5, 7). This means that

when compared to the other workloads in the benchmark suite,

SciMark2 workloads are radically different that they fail to mix

in with the rest. Moreover, since they form a highly dense

cluster of their own, workloads in SciMark2 become redundant

to each other. Nonetheless, since they occupy the majority of

the benchmark suite, 5 out of 13 workloads, it is highly likely

that these workloads might significantly affect and bias the

overall scoring metric. This particular behavior of SciMark2

workloads is somewhat expected, because SciMark2 explicitly

stresses numerical computation capabilities of the underlying

Java framework.

The clustering behavior of SciMark2 becomes prominent

when we draw dendrograms to determine the number of clus-

ters. Figure 4 represents the clustering results based on the

relative distances measured from Figure 3.

In each of these dendrograms, the y-axis indicates the

merging distance, and the boxes grouping the workloads rep-

resent the cluster formation at that particular merging distance.

Workloads that locate closer to each other than the merging

distance form a cluster; so with the same workload distribution,

depending on the value of the merging distance we choose,

multiple clustering decisions can be made. For example, in

Figure 4(a), when the merging distance is set to 4, the entire

benchmark suite is divided into 4 clusters — javac cluster of

its own, two clusters comprising jess and mtrt, and chart
and xalan, and the other cluster comprised of the rest of

the workloads. In a similar manner, Figure 4(b) shows that

6 clusters are formed when the merging distance is set to 2.

In particular, Figure 4(b) aligns well with the information

we obtained by analyzing Figure 3. In this figure, SciMark2

forms a cluster of their own at a merging distance around 2.

The low merging distance also means that the clusters formed

in the figure are more dense when compared to those clusters

formed at a higher merging distance. Note that, at the same

merging distance, workloads from DaCapo and SPECjvm98

are already divided into multiple clusters. Thus, not only from

the observation of the SOM diagram in Figure 3, but also from

these dendrograms, it is confirmed that SciMark2 workloads

form a dense cluster of their own on machine A.

A B ratio(=A/B)

2 Clusters 2.58 2.06 1.25
3 Clusters 2.62 2.18 1.20
4 Clusters 2.89 2.22 1.30
5 Clusters 2.70 2.24 1.21
6 Clusters 2.77 2.31 1.20
7 Clusters 2.63 2.40 1.10
8 Clusters 2.34 2.15 1.09

Geometric Mean 2.10 1.94 1.08

TABLE IV

HIERARCHICAL GEOMETRIC MEAN BASED ON CLUSTERING RESULTS

FROM MACHINE A

With these clustering results, we can then apply the hierarchi-

cal geometric mean to calculate the overall score that offsets the

effect from workload redundancy. Table IV shows the results.

Each row in the table denotes the score calculated from the

hierarchical geometric mean at the specific cluster distribution.

Note that, as the number of clusters increases, the ratio of two

scores over machine A and B converges to the ratio of the plain

geometric mean (=1.08). Also, note that the ratio could be quite

different from the case of the plain geometric mean when the

effect from workload redundancy has been removed. For the

score distribution on machine A, we recommend the 6 clusters

case as the norm since 1) it aligns well with the SOM analysis

results, and 2) since the fluctuation of ratio values tends to

dampen around 5, 6 cluster cases.

2) Cluster Analysis on Machine B: The same cluster analy-

sis as in Section V-B.1 was performed on the SAR counters

collected for machine B. Firstly, Figure 5 shows the SOM

analysis results for workloads executed on machine B.

Although the distribution is somewhat different from Figure

3, workloads from DaCapo and SPECjvm98 suite still spread

across Dimension 2 and Dimension 1, respectively. As shown,

the SciMark2 workloads again form a dense cluster near the

lower left of the figure. This behavior is significant since

SciMark2 workloads appear as a single cluster on two different

machines. This again endorses that SciMark2 workloads are

jv
m

9
8
.2

1
3
.j
a
v
a
c

jv
m

9
8
.2

0
2
.j
e
s
s

jv
m

9
8
.2

2
7
.m

tr
t

D
a
C

a
p
o
.c

h
a
rt

D
a
C

a
p
o
.x

a
la

n

S
c
iM

a
rk

2
.S

p
a
rs

e

S
c
iM

a
rk

2
.M

o
n
te

C
a
rl
o

S
c
iM

a
rk

2
.S

O
R

S
c
iM

a
rk

2
.F

F
T

S
c
iM

a
rk

2
.L

U

D
a
C

a
p
o
.h

s
q
ld

b

jv
m

9
8
.2

0
1
.c

o
m

p
re

s
s

jv
m

9
8
.2

2
2
.m

p
e
g
a
u
d
io

0
2

4
6

8
1
0

M
e
rg

in
g
 D

is
ta

n
c
e

(a) 4 Clusters

jv
m

9
8
.2

1
3
.j
a
v
a
c

jv
m

9
8
.2

0
2
.j
e
s
s

jv
m

9
8
.2

2
7
.m

tr
t

D
a
C

a
p
o
.c

h
a
rt

D
a
C

a
p
o
.x

a
la

n

S
c
iM

a
rk

2
.S

p
a
rs

e

S
c
iM

a
rk

2
.M

o
n
te

C
a
rl
o

S
c
iM

a
rk

2
.S

O
R

S
c
iM

a
rk

2
.F

F
T

S
c
iM

a
rk

2
.L

U

D
a
C

a
p
o
.h

s
q
ld

b

jv
m

9
8
.2

0
1
.c

o
m

p
re

s
s

jv
m

9
8
.2

2
2
.m

p
e
g
a
u
d
io

0
2

4
6

8
1
0

M
e
rg

in
g
 D

is
ta

n
c
e

(b) 6 Clusters

Fig. 4. Clustering Results on Machine A

2 4 6 8 10 12 14

2
4

6
8

1
0

1
2

1
4

Dimension 1

D
im

e
n
s
io

n
 2

jvm98.201.compress

jvm98.202.jess

jvm98.213.javac

jvm98.222.mpegaudio

jvm98.227.mtrtSciMark2.FFT

SciMark2.LU

SciMark2.MonteCarlo
SciMark2.SOR

SciMark2.Sparse

DaCapo.hsqldb

DaCapo.chart
DaCapo.xalan

Fig. 5. Workload Distribution on Machine B

indeed similar, when characterized with SAR operating system

level counters.

Figure 6 shows the dendrogram for the cluster analysis

performed for machine B. When the merging distance is chosen

as 3, SciMark2 workloads again manifest as an exclusive

cluster.

The overall benchmark scores calculated by the hierarchical

geometric mean, based on the clustering result on machine B,

is given in Table V.

In this score distribution, as with the same reason for the

jv
m

9
8
.2

0
2
.j
e
s
s

jv
m

9
8
.2

2
2
.m

p
e
g
a
u
d
io

jv
m

9
8
.2

2
7
.m

tr
t

jv
m

9
8
.2

0
1
.c

o
m

p
re

s
s

jv
m

9
8
.2

1
3
.j
a
v
a
c

D
a
C

a
p
o
.c

h
a
rt

D
a
C

a
p
o
.x

a
la

n

D
a
C

a
p
o
.h

s
q
ld

b

S
c
iM

a
rk

2
.S

p
a
rs

e

S
c
iM

a
rk

2
.S

O
R

S
c
iM

a
rk

2
.L

U

S
c
iM

a
rk

2
.F

F
T

S
c
iM

a
rk

2
.M

o
n
te

C
a
rl
o

0
2

4
6

8
1
0

M
e
rg

in
g
 D

is
ta

n
c
e

Fig. 6. Clustering Results on Machine B

case of machine A, 5 or 6 cluster case seems to be the most

representative. However, the ratio for this case, 1.02 ∼ 1.04

is quite different from the case for machine A which shows a

ratio of 1.20 ∼ 1.21 in its 5, 6 cluster cases. This seemingly

different result comes from the different cluster distributions on

each machine. We should emphasize that, in order to accept the

hierarchical means as a standard, a reference cluster distribution

on a reference machine should be determined first since clusters

might appear differently on different machines. On the contrary,

since the SciMark2 workloads appeared as a single cluster on

A B ratio(=A/B)

2 Clusters 2.42 2.12 1.14
3 Clusters 2.39 2.14 1.11
4 Clusters 2.88 2.42 1.19
5 Clusters 2.39 2.34 1.02
6 Clusters 2.75 2.64 1.04
7 Clusters 2.30 2.27 1.01
8 Clusters 2.11 2.10 1.00

Geometric Mean 2.10 1.94 1.08

TABLE V

HIERARCHICAL GEOMETRIC MEAN BASED ON CLUSTERING RESULTS

FROM MACHINE B

both machines, we can now assert that SciMark2 workloads

should be treated as a single cluster no matter which cluster

distribution is chosen.

To amortize the effect of machine specific clustering infor-

mation on the hierarchical means, in the following section,

we study the behavior of the hierarchical geometric means

when the cluster information is obtained from a totally machine

independent feature: the utilization of Java methods.

C. Cluster Analysis Based on Java Method Utilization

As a workaround to the dependence of hierarchical means

on the machine specific clustering results, we characterize the

workloads by their Java method utilization. Method utilization

of each workload was represented as a bit vector. These

vectors were then used as characteristic vectors to determine the

workload cluster. This clustering result is totally independent

from the architectural characteristics.

2 4 6 8 10 12 14

2
4

6
8

1
0

1
2

1
4

Dimension 1

D
im

e
n
s
io

n
 2

jvm98.201.compress

jvm98.202.jess

jvm98.213.javac

jvm98.222.mpegaudio

jvm98.227.mtrt

SciMark2.FFT
SciMark2.LU

SciMark2.MonteCarlo
SciMark2.SOR

SciMark2.Sparse

DaCapo.hsqldb

DaCapo.chart

DaCapo.xalan

Fig. 7. Workload Distribution When Characterized with Java Method
Utilization

Figure 7 shows the results of SOM analysis. It can be seen

that the clustering result is quite different from the clustering

results based on SAR counters. For example, jess and mtrt

jv
m

9
8
.2

2
2
.m

p
e
g
a
u
d
io

jv
m

9
8
.2

2
7
.m

tr
t

D
a
C

a
p
o
.x

a
la

n

D
a
C

a
p
o
.c

h
a
rt

jv
m

9
8
.2

0
1
.c

o
m

p
re

s
s

S
c
iM

a
rk

2
.S

p
a
rs

e

S
c
iM

a
rk

2
.S

O
R

S
c
iM

a
rk

2
.M

o
n
te

C
a
rl
o

S
c
iM

a
rk

2
.F

F
T

S
c
iM

a
rk

2
.L

U

jv
m

9
8
.2

1
3
.j
a
v
a
c

jv
m

9
8
.2

0
2
.j
e
s
s

D
a
C

a
p
o
.h

s
q
ld

b

0
2

4
6

8
1
0

1
2

1
4

M
e
rg

in
g
 D

is
ta

n
c
e

Fig. 8. Clustering Results Based on Java Method Utilization

from SPECjvm98 were fairly similar when characterized by

SAR counters. In this analysis, however, they are located on the

two extremes. DaCapo benchmark’s chart and xalan also show

improved separation. On the contrary, SciMark2 workloads

form an even denser cluster. This shows that SciMark2 work-

loads differ from other workloads not only in their execution

time behavior, but also in their source code characteristics. This

is due to the fact that SciMark2 workloads heavily rely on self

contained math libraries. Since SciMark2 workloads map to the

same single cell, they appear in a single cluster no matter which

merging distance is chosen. This behavior is shown in Figure

8.

A B ratio(=A/B)

2 Clusters 2.76 2.30 1.20
3 Clusters 2.65 2.31 1.15
4 Clusters 2.82 2.36 1.20
5 Clusters 2.59 2.38 1.09
6 Clusters 2.57 2.46 1.05
7 Clusters 2.75 2.52 1.09
8 Clusters 2.89 2.52 1.15

Geometric Mean 2.10 1.94 1.08

TABLE VI

HIERARCHICAL GEOMETRIC MEAN BASED ON JAVA METHOD

UTILIZATION

Table VI summarize the hierarchical geometric mean scores

based on this clustering result.

It is by now clear that workload clustering heavily depends

on how the workloads are characterized. By employing other

microarchitecture independent workload features, e.g., instruc-

tion mix, memory stride, etc. [5], [6], we expect the workload

clusters to appear similar over a variety of machines.

VI. RELATED WORK

Studies in workload clustering behavior in a benchmark suite

are well described in [5], [10], [11], [12]. Cluster information

has been usually applied for benchmark subsetting. Especially,

in [10], [11] the authors apply the cluster information to subset

a benchmark suite while preserving the inherent benchmark

characteristics intact. Different from these studies, our study

apply the workload cluster information to provide insight on

benchmark behavior for improving the workload selection

process and the scoring metric in a quantitative manner.

These studies usually incorporate PCA as a dimension re-

duction technique. Compared to the usual PCA approach, our

approach utilizes SOM which effectively performs non-linear

regression over high dimensional data without losing the infor-

mation contained in the original domain. This characteristic

was particularly suitable for our bit-vectorized Java method

utilization information. Moreover, compared to PCA, SOM has

significantly better visualization capabilities.

Benchmark suite scoring metric has been a controversial

topic. Good consensus on the debate can be found in [19],

[20], [21]. Simply put, it is a war between arithmetic mean and

geometric mean. Our scoring metrics do not stand on either

side; rather, they improve upon both.

VII. CONCLUSION

In this paper we focus on workload redundancy problem in

a benchmark suite. Redundancy in workloads of a benchmark

suite is inevitable as a new benchmark suite is often contributed

by several parties; sometimes they are constructed by simply

combining several benchmark suites into one, which substan-

tially increases the likelihood of redundancy. Such redundancy,

in particular the artificial redundancy, renders the benchmark

scores biased, making the score of a suite susceptible to

malicious tweaks and generating misrepresented performance

indices. To address this problem, we propose a set of new scor-

ing methods, the hierarchical means that incorporate workload

cluster information in overall score calculation. In addition,

one can use our methods to characterize and evaluate a new

benchmark suite in a quantitative, objective manner.

As a case study, we apply our proposed scoring methods over

a hypothetical Java benchmark suite, which attempts to model

the upcoming new SPECjvm benchmark suite. Throughout the

case study, we show that workload clustering heavily depends

on how the workloads are characterized. Nonetheless, the work-

loads from SciMark2 benchmark suite consistently coagulate

into an exclusive cluster, regardless of which characterization

method is applied. These workloads significantly increase the

workload redundancy in a benchmark suite. We expect that our

scoring method can offer a quantitative and objective analy-

sis, providing insightful information for improving benchmark

selection process as well as effectively reducing the negative

effects from the redundant workloads wherever needed.

ACKNOWLEDGMENTS

This research was initiated under the Software and Solutions

Group Research Intern Program at Intel Corp. We thank Dr.

Shih-wei Liao for his interest and support in this research. He

first suggested the use of the term ‘Hierarchical Geometric

Mean.’ We also thank Ben Matasar and Yanping Wang for

initial comments and inputs on this research.

REFERENCES

[1] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choud-
hary, “MineBench: A benchmark suite for data mining workloads,” in
Proceedings of the 2006 IEEE International Symposium on Workload
Characterization, October 2006, pp. 182–188.

[2] O. Altun, N. Dursunoglu, and M. Amasyali, “Clustering application
benchmark,” in Proceedings of the 2006 IEEE International Symposium
on Workload Characterization, October 2006, pp. 178–181.

[3] R. Pozo and B. Miller, “SciMark, a web-based benchmark for numerical
computing in Java,” In Summary of Activities for Fiscal Year 2005,
Mathematical and Computational Sciences Division, NIST Information
Technology Laboratory, pp. 46–47, 2005.

[4] LAPACK/ScaLAPACK Development Forum, http://icl.cs.utk.edu/
lapack-forum/archives/lapack/msg00190.html.

[5] L. Eeckhout, J. Sampson, and B. Calder, “Exploiting program microarchi-
tecture independent characteristics and phase behavior for reduced bench-
mark suite simulation,” in Proceedings of the 2005 IEEE International
Symposium on Workload Characterization, 2005, pp. 2–12.

[6] K. Hoste and L. Eeckhout, “Comparing benchmarks using key
microarchitecture-independent characteristics,” in Proceedings of the
2006 IEEE International Symposium on Workload Characterization,
October 2006, pp. 83–92.

[7] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Ed.
Prentice Hall, July 1998.

[8] T. Kohonen, Self-Organizing Maps, 3rd Ed. Springer, May 2006.
[9] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd Ed.

Wiley-Interscience, October 2000.
[10] H. Vandierendonck and K. D. Bosschere, “Experiments with subsetting

benchmark suites,” in Proceedings of the IEEE 7th Annual Workshop on
Workload Characterization, October 2004, pp. 55–62.

[11] J. J. Yi, R. Sendag, L. Eeckhout, A. Joshi, D. J. Lilja, and L. K.
John, “Evaluating benchmark subsetting approaches,” in Proceedings of
the 2006 IEEE International Symposium on Workload Characterization,
October 2006, pp. 93–104.

[12] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy and
application balance in the SPEC CPU2006 benchmark suite,” in ISCA ’07:
Proceedings of the 34th annual international symposium on Computer
architecture. New York, NY, USA: ACM Press, 2007, pp. 412–423.

[13] “SPEC JVM98 benchmarks.” Standard Performance Evaluation Corpo-
ration, http://www.spec.org/jvm98/.

[14] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The
DaCapo benchmarks: Java benchmarking development and analysis,” in
OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference
on Object-Oriented Programming, Systems, Languages, and Applications.
New York, NY, USA: ACM Press, Oct. 2006.

[15] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind, “Vertical profiling:
Understanding the behavior of object-oriented applications,” in Proceed-
ings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2004, pp. 251–269.

[16] K. Chow, R. Morin, and K. Shiv, “Enterprise Java performance: Best
practices,” in Intel Technology Journal, volume 7, issue 1, February 2003,
pp. 32–46.

[17] G. Chen, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “PennBench:
A benchmark suite for embedded Java,” in the IEEE 5th Annual Workshop
on Workload Characterization, November 2005.

[18] M. T. Conte, A. R. Trick, J. C. Gyllenhaal, and W.-M. W. Hwu, “A
study of code reuse and sharing characteristics of Java applications,” in
the IEEE 1st Annual Workshop on Workload Characterization, November
1998.

[19] J. E. Smith, “Characterizing computer performance with a single number,”
Communications of the ACM, vol. 31, no. 10, pp. 1202–1206, 1988.

[20] J. R. Mashey, “War of the benchmark means: time for a truce,” SIGARCH
Computer Architecture News, vol. 32, no. 4, pp. 1–14, 2004.

[21] L. K. John, “More on finding a single number to indicate overall
performance of a benchmark suite,” SIGARCH Computer Architecture
News, vol. 32, no. 1, pp. 3–8, 2004.

