
An Integrated Framework for Dependable and Revivable
Architectures Using Multicore Processors

Weidong Shi Hsien-Hsin S. Lee Laura Falk† Mrinmoy Ghosh
shiw@cc.gatech.edu leehs@gatech.edu laura@eecs.umich.edu mrinmoy@ece.gatech.edu

School of Electrical and Computer Engineering †Department of Electrical Engineering
College of Computing and Computer Science

Georgia Institute of Technology University of Michigan
Atlanta, GA 30332 Ann Arbor, MI 48109

ABSTRACT
This paper presents a high-availability system architecture
called INDRA — an INtegrated framework for Dependable
and Revivable Architecture that enhances a multicore proces-
sor (or CMP) with novel security and fault recovery mecha-
nisms. INDRA represents the first effort to create remote at-
tack immune, self-healing network services using the emerg-
ing multicore processors. By exploring the property of a
tightly-coupled multicore system, INDRA pioneers several
concepts. It creates a hardware insulation, establishes fine-
grained fault monitoring, exploits monitoring/backup con-
currency, and facilitates fast recovery services with minimal
performance impact. In addition, INDRA’s fault/exploit
monitoring is implemented in software rather than in hard-
ware logic, thereby providing better flexibility and upgradabil-
ity. To provide efficient service recovery and thus improve
service availability, we propose a novel delta state backup
and recovery on-demand mechanism in INDRA that sub-
stantially outperforms conventional checkpointing schemes.
We demonstrate and evaluate INDRA’s capability and per-
formance using real network services and a cycle-level archi-
tecture simulator. As indicated by our performance results,
INDRA is highly effective in establishing a more dependable
system with high service availability using emerging multi-
core processors.

1. INTRODUCTION
Despite a considerable number of software [20, 12, 11] and

hardware techniques [13, 31] proposed for detecting remote
software exploit attacks, little attention was paid to the im-
portance of software and service recovery. The continua-
tion of disrupted services on compromised systems is typi-
cally hard, if not totally impossible. Conventional recovery
practices remain not only cumbersome and error-prone but
also costly in terms of administrative and financial resources.
Sometimes, the disrupted services cannot be recovered for
days or even weeks after the attacks.

Recently, new research has been conducted, such as buffer
overrun aware compilers, automatic self-recovery, and auto-
matic software patch generation [27, 28] for addressing the
issue of service availability in the face of a remote exploit
attack. In a broader sense, loss of network services could
be caused by many reasons. Table 1 classifies the possible
threats to network services and their previously proposed re-
covery schemes. The focus of this research is in the recovery

of network services caused by malicious remote exploit at-
tacks. During such attacks, the hacker sends a huge volume
of network packets targeted at a specific network service or
a network server. These malicious packets can corrupt the
network service or cause the service to terminate thereafter.
When compared with the effect of a random fault, a remote
exploit attack is deterministic in nature. If a system is vul-
nerable, then it is possible that some or all of the packets
sent during an attack are sure to compromise the server and
its services. An unpatched and vulnerable machine will in-
vite frequent and recurring attacks. Therefore, special han-
dling is required when recovering from a service loss due to
these remote attacks. Currently employed solutions such as
replication of services or redundant execution, may not work
for service recovery from remote exploits. When compared
with other service failures, remote exploit attacks are a far
more serious threat to service availability. In some cases,
service providers are blackmailed by the attackers to either
satisfy to their demands or suffer a denial-of-service (DoS)
attack [22].

In this paper, we propose a system architecture called
INDRA — an INtegrated framework for Dependable and
Revivable Architectures.1 INDRA provides necessary hard-
ware support for constructing an efficient self-healing net-
work service infrastructure in the event of a remote exploit
attack. INDRA also introduces a new programming model
to support better security, reliability, and availability for
the emerging multicore processors or chip multiprocessors
(CMP). It exploits the characteristics of a multicore proces-
sor in order to provide secure and non-disruptive network
services. The main characteristics and advantages of our
system are:

• Consolidated security and revivability. INDRA
achieves better security and revivability by leveraging
a multicore platform and designing the system around
one or more protected processing components (called res-
urrector cores) that are insulated from remote attacks.
This is done by imposing an asymmetric configuration
to the different cores on a multicore processor. One or
more cores are configured to run at higher privilege lev-
els and assigned the role of monitoring the rest of the
processor cores (or resurrectee cores). The resurrector
core executes a runtime software module that monitors

1INDRA is a Hindu god who can revive dead warriors on
the battlefield.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

Causes of Network Service Loss
Accidental Aging Intentional

Solutions Permanent Buffer
Transient Heisenbugs Damage DoS Overflow

Replication Software-based [7]
√ √ √

Hardware-based [6, 15, 25]
√ √ √

Rejuvenation [17]
√

Checkpoint App Level [10]
√ √ √

Hardware-based [29, 24]
√ √ √

Remote exploit self-recovery [27, 28]
√ √

Table 1: Taxonomy of Network Service Loss

the services running on the resurrectee cores and detects
traces of corruption. It ensures revivability in the face
of remote exploit attacks and loss of service.

• High efficiency monitoring, backup and recovery.
INDRA executes network services on real processors in
native mode and uses novel architectural features for
concurrent state monitoring and efficient state backup.
When any resurrectee is either compromised or suffer a
service failure as a result of a DoS attack, the resurrector
will trigger the resurrectee to swiftly terminate the faulty
service request, recover its corrupted state on-demand,
and safely revoke the damage done by the remote ex-
ploits.

The rest of the paper is organized as follows. In Section 2,
we briefly discuss service revivability issues caused by re-
mote exploit attacks and network service loss due to these
attacks. Section 3 presents the INDRA architecture. Sec-
tion 4 shows security and performance evaluation, followed
by related work in Section 5. Finally, Section 6 concludes
the paper.

2. REMOTE ATTACK INSULATION AND
SERVICE REVIVABILITY

The objective of this research is to create an autonomic
system that supports revivable network services that are im-
mune from remote exploit attacks. Revivability guarantees
a non-disruptive service and swift recovery from erroneous
states caused by remote exploit attacks. We achieve this
goal by providing three key features in INDRA: 1) the abil-
ity to implement a component which is insulated from re-
mote exploits. This component is the nucleus over which
other security services such as faulty state monitoring and
service recovery can be reliably deployed; 2) the ability to
detect erroneous and corrupted states during software exe-
cution; 3) the ability to automatically recover compromised
services with minimal performance impact.

2.1 Threat and Fault Model
Buffer overflow attacks remain the most popular exploited

vulnerability [5]. Typical buffer overflows include stack smash-
ing, which causes control transfer to maliciously injected
code [5], overwriting of heaps or function pointer tables, and
format string attacks [26]. The ability to exploit a buffer
overflow allows an attacker to possibly inject arbitrary code
into an execution path. If executed, the injected malicious
code could give the attacker unauthorized access or allow
malicious replication of code (e.g., worms). From a service
availability perspective, a buffer overflow may corrupt the
internal state of a service application and cause service fail-
ure. Moreover, even if the hacker did not gain root privileges
through a buffer overflow, the attacks could still bring down
the system due to the corruption of the application’s mem-

ory space.
Furthermore, network services such as DNS and Email

are also vulnerable and sensitive to DoS attacks. For ex-
ample, in Windows NT, it is possible to bring down the
entire system by sending remote out of band data to an es-
tablished Windows connection [1]. Another example is the
teardrop attack and its variants also targeted for NT [1].
These attacks can cause NT to freeze and eventually dis-
play the “blue screen of death” soon after the attack.

2.2 Intrusion Revivable and Instant Recover-
able Multicore System

Remote exploit attack insulation and service revivability
are two separate concepts. A remote exploit attack proof
component within the system is a necessity for creating truly
revivable network services. Such a component serves as the
last line of defense for service recovery. Without it, the
whole system could be compromised or suffers a service fail-
ure in which self-recovery would be impossible. However,
the existence of such a component itself is not sufficient for
creating revivable services unless there is some additional
mechanism for state introspection, backup, and recovery.

Revivable computing prolongs service availability by al-
lowing vulnerable software or compromised systems to con-
tinue execution but doing so in an insulated environment
where techniques of self-healing and fully autonomic recov-
ery are applied. In the face of remote attacks, instead of
terminating the vulnerable, corrupted application or sys-
tem, an intrusion revivable system tries to repair damages
instantly and restores the system/application in real-time to
a normal safe flow. The damages include memory corrup-
tion, destruction of critical data structures resulting from
buffer overflows, and system data corruption. The repair
is based on timely backup of important machine states. It
serves as a temporary solution before a complete solution
such as a new patch is available. Recurring exploits may
continue ”infecting” or ”wounding” the system. However,
the system, ideally, can quickly recover from the ”wounds”
and continues to serve legitimate and well-behaved clients.

It is important to note that alternative solutions, such
as restarting the compromised service or using replicated
servers do not guarantee service availability under remote
exploit attacks. The reason behind this is that the adver-
saries can repeatedly launch attacks (e.g. DoS), causing
services to fail. After such a service failure, the data con-
tained in the temporary storage areas such as file buffers
with requests from well-behaved clients would be lost. Af-
ter a reboot, legitimate clients may still suffer from denial of
service because the servers might not be able to handle their
traffic due to repeated attack attempts. INDRA solves this
problem through a swift micro-level recovery. It has two dis-
tinctive features. First, it tries to repair damages caused by
malicious requests in real time. Second, it tries to process
every received service request. In this paper, we propose

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

���������	�
����

�
����
�� �
����
��

��

��������� 	�
����

�
����
�� ��
������������

���������	�
����

��
����� ��
�����
	����
����

�����

�	���	���
����	����

���������	�
����

��
��� ��
���

�
����

�	� ��	���	���
����	�����

�� �����!�������

"!##�����

������
�$��"����
���

%��&�!� ���

��
'�
#�����

���
����

����(��

� �
�����'�)*�

���
����
��

 �
��������+�,*�

��������
���

��''�
�����	-

.�����������

����
��������������

(
����������

��
����
���(��

(��&�����������-

����
������

(��(��

��
��$� ��

(��&�������

�����

	� �
���-�

�� ������������

�
����
�����

#�������

(�

��
-

��/��
��'
�/�����

������'���
�����

#�����������������

����#����&������$�

'�
����������

�� ������-

	��&

��''�����-�

��
����������

����
������

�#���	-�

�� ���������

��

� ���	�����

���
��������-

���(��-���
������

�����������

����������������'�

��
�����-

.����

 �
'�
#�����

���
������'���

��������
��

 � ������

���
��0

1������ �����

��������-�

�� ������'���

�������
��

�	�����

#�#�
��

(�

��
0�

����(��� �
�����'�

��
������������

�����
���2�

��������������-�

)*�����

����

�� ������+�

,*�����#���

���
���

���'����+�

3*��4��� �

(��

��
��$� ���

��$��
������

�''4��� �(�-

	��

�#�������

	��

�������
�

�
����

�� ���-�

� �������

#��������

#�#�
����$�

������������

�� ������

�

5!��
�#���*

	�
���� ���������

� ��������

�����'�
�

���
�#������ �
�

��#������

��������-�� �

����$����
����

#����������(��

�
�����

��$����
-�

�� ����������������������������5�����'�
�
�#������ �����

���

� ����*

Figure 1: Comparison of Different Design
Paradigms

building such a highly dependable and revivable system us-
ing the emerging multicore processors.

2.3 Why Multicore Processors?
All the current multicore (or CMP) designs are config-

ured symmetrically from the perspective of security. We
are proposing a new multicore paradigm called asymmet-
ric configuration. Our asymmetric multicore configuration
would support self-healing and intrusion tolerant comput-
ing by imposing a security structure onto the multiple cores.
Figure 1 compares several different design options for con-
structing self-recoverable services to counter remote exploit
attacks. The figure compares asymmetric multicore, SMT,
virtual machine, SMP, and application instrumentation in
three key metrics. They are: 1) remote exploit attack im-
munity; 2) detectability; and 3) potential performance over-
head. Among all the alternatives, the multicore, virtual
machine, and SMP provide a means for the monitor’s state
to remain isolated from the application’s state, thus may
achieve better remote exploit immunity than the SMT or
the application instrumentation based design. In terms of
detectability, multicore is more flexible because the moni-
toring and the monitored cores are on the same die. It is
possible to inspect internal execution status in finer granu-
larity when using a multicore compared to an SMP. In terms
of performance overhead, multicore enables concurrent state
introspection and service execution, therefore causes less re-
source conflicts than designs that demand more processing
resource sharing, such as virtual machine or SMT. SMP de-
sign is constrained by throughput of the external bus be-
tween processors while multicore can deliver higher inter-
core throughput.

2.3.1 Multi-level Insulation
The processor cores on a multicore die can be configured

with different security privileges. A security enhanced mul-
ticore BIOS may have a configuration setting that allows a
local user to configure security privileges for different cores.
The high privileged ones are granted access to all the hard-
ware resources including the entire memory space and I/O
devices and all the DMA engines. The low privileged cores
can only access memory assigned to them with constrained
physical memory space and limited access to the peripherals.

This asymmetric multicore configuration creates a hard-
ware sandbox for a system running generic services on the
low privileged cores and a system running security services
on the high privileged cores. The two systems are not only
physically insulated but also running different OSes. Such
strong insulation provides high assurance for service recov-
erability and availability.

2.3.2 Fine-grained Internal State Logging
High speed sharing of internal state information between

processors are made possible via a multicore that enables
the privileged cores to examine internal information from
the low privileged cores for security inspection. The infor-
mation obtained from monitoring the low privileged cores
include fetched instructions from the unified L2 cache to L1
exclusive I-cache,2 control flow status, and other information
necessary for detecting system corruption [20]. This capa-
bility can be easily implemented in a multicore because it
only gathers information at the interface and requires no in-
ternal processor pipeline change. The gathered information
is sent to the high privileged cores via a hardware FIFO. The
high privileged core pulls out the information and inspects
for suspicious behavior. A virtual machine monitor [14] is
another technique for internal state inspection. When com-
pared with a virtual machine monitor, a multicore has the
following advantages. First, virtual machines comprise na-
tive execution and emulation. State inspection is only con-
ducted when execution switches from the native mode to
the emulation mode. The execution of native code is not
monitored. This means that it has less inspection coverage.
Second, emulation in a virtual machine is slow. INDRA ex-
ecutes all software in the native mode and achieves better
performance than the virtual machine emulation.

2.3.3 Tight Processor Core Coupling and Control
The tightly coupled processor cores in a multicore system

facilitates an easy implementation of controlling mechanisms
under which the privileged cores can send signals to stall the
corrupted low privileged cores, cause their pipelines to flush,
trigger the state recovery of the compromised services in a
timely manner, and resume their execution from a known
good point.

2.3.4 Reconfigurability
An asymmetric multicore model can be configured to run

in symmetric mode where each processor core has equal priv-
ilege. All the cores can be booted from the same operating
system when security protection is not needed. Mode con-
figuration can be done in the BIOS, thereby making such a
system highly flexible under different given security require-
ments.

2Hardware ensures that codes in the L1 instruction (IL1)
cache cannot be modified. This means that the L2 to L1
interface is the natural point for monitoring injected code
attacks.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

Figure 2: INDRA architecture

3. INDRA ARCHITECTURE
In this section, we detail INDRA and show how it is used

to provide high-availability services. Figure 2 depicts a block
diagram of the INDRA architecture. As illustrated, the ar-
chitecture contains one core called resurrector3 configured as
our high privileged core and several cores called resurrectees
with lower privileges. Service applications are deployed on
the resurrectees. The resurrector runs special software that
is responsible for monitoring the system for state corrup-
tion. The memory subsystem for INDRA is also partitioned
based on privilege levels for the resurrector and resurrectee
cores. The resurrectees may only access the un-shaded part
of the system in the figure. They cannot change or read the
physical memory space of the resurrector. This configura-
tion is used to maintain proper insulation. The resurrector,
however, can read and write the entire address space.

3.1 Asymmetric Multicore and Insulation
INDRA enhances a multicore with security features to en-

able revivable services. The key idea is to create a security
hierarchy among different processing cores by assigning dif-
ferent privilege levels and tasks to different cores. For clarity,
we limit our discussion to a multicore configured with one
single resurrector core and multiple resurrectee cores. The
design principle, however, can be extended easily to a mul-
ticore with more than one resurrector. Now we present how
INDRA enhances insulation for security services in order to
prevent remote exploits.

3.1.1 Remote exploit insulation
Specific design features are proposed in INDRA in order

to enable remote attack insulation of the resurrector. These
features isolate the resurrector and the resurrectees in such a
manner so that the resurrector is invisible and transparent
from the resurrectees. Corrupted memory space or a bad
state in the resurrectees are self-contained which makes it
impossible for them to affect the state of the resurrector.
This is guaranteed by the following specific design features.

• Dual or multiple-systems: The resurrector and the res-
urrectees run different operating systems. Corruption or
compromise of the system executed by the resurrectees

3Only one resurrector core is shown in the figure for clarity.
Having more resurrector cores is possible.

Table 2: Remote Exploit Inspection
Inspection Stack Injected Function Pointer /

Smash Codes Virtual Function

Function Call /
√

Return
Code Origin

√

Control Transfer
√

Inspection

have no effect on the system of the resurrector. The two
systems are isolated from each other. In addition, the
two systems may be even two different operating sys-
tems. For example one is Windows and the other is
Linux.

• Memory space isolation: The resurrector has access to
all the physical memory space while the resurrectees can
only access the physical memory space allocated to them
by the resurrector. The limited access privilege to the
physical memory space is enforced by the INDRA hard-
ware memory watchdog.

• Network isolation: The resurrector does not host net-
work services. The resurrector is basically quarantined
from the remote exploits.

3.1.2 Boot sequence
The booting procedure of INDRA is also unique. When an

INDRA multicore system is configured to run in the asym-
metric mode with one or more processing elements as the
resurrectors, one resurrector will be selected as the boot-
strap processor and boot first from the regular BIOS and
run the light-weight RTS stored in the flash memory. Af-
ter the resurrector core is successfully booted, it sets security
parameters and assigns access rights to the physical memory
space to the resurrectee cores. The resurrector will hide the
original BIOS and the RTS from the resurrectees and exclu-
sively allocate space for itself. Each memory access issued
by either the resurrector or a resurrectee core is tagged with
the core’s ID. A simple hardware check is implemented to
guarantee that the resurrectees are prohibited from access-
ing space belonging to the resurrector core. The resurrector
duplicates a version of the BIOS in the space accessible by
the resurrectees. Then it informs the resurrectees so that
they can start to boot from the full operating system.

3.2 Monitoring and Introspection
One of the primary tasks of the resurrector is monitoring.

It not only detects corruption caused by remote exploit at-
tacks, but also checks for the well-being of the resurrectees.
All the monitoring services are implemented in software,
hence it is straightforward to configure the monitoring ser-
vice based on the security requirements and policies. When
any error, misbehavior, or corruption is detected, the resur-
rector will stall the affected resurrectee core and signal the
recovery process.

To monitor the resurrectees, necessary information about
them must be provided to the resurrector. This is achieved
by the resurrectee core hardware (alternatively, traces or
necessary information can also be provided by instrumented
software on the resurrectee cores). Different exploit attacks
can be detected using different types of trace or log infor-
mation.4 Table 2 summaries the exploits and how they can
be detected. The resurrector receives trace information from

4How to use trace information for detecting remote attacks
were well studied and is outside the scope of this paper.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

either a designated port or from specially mapped I/O regis-
ters. For example, The resurrectee sends committed instruc-
tion information traces to the resurrector through a FIFO.
The resurrector fetches data from the FIFO through spe-
cial input registers. The following subsections discuss state
inspection in details.

3.2.1 Function Call/Return
In one approach, the resurrectee can spit a trace of func-

tion calls (target address, return address, and stack pointer)
and function returns to the resurrector. The resurrectee di-
rects the function call/return trace into the shared FIFO.
The resurrector retrieves the information and verify that for
every function call, execution always returns to the correct
next instruction after the function call is returned. This is
sufficient for detection of remote exploit attacks that over-
write the function return address, which accounts for the
majority of buffer overflow based attacks. The resurrector’s
monitor ensures that each function always returns to the
next instruction following the call. Some special cases in-
clude setjmp or longjmp. Setjmp or longjmp targets need to
be verified against the list of valid control transfer targets,
thus it is also considered as part of the introspection mech-
anism. The env by setjmp will restore the register state,
thus the call/return monitoring and introspection will be
resumed after the longjmp completes and program resumes
from the instruction after setjmp.

3.2.2 Code Origin Inspection
Inspecting the origin of the executing code is a simple,

effective way to prevent the majority of code injection at-
tacks. Using a patched kernel based on IA32, non-executable
restriction can be applied to both stack pages [2] and data
pages [3]. In [20], a dynamic software rewriting kernel called
RIO is used to inspect the code origin during code transfor-
mation. Implementing code origin inspection in INDRA is
straightforward. Either the application or the OS process
manager can inform the resurrector regarding the execution
privileges associated with the application’s memory pages
once the application’s binary is loaded from disk. During
runtime, the resurrector must ensure that only the instruc-
tions loaded from the original memory pages, along with its
assigned execution privileges, can be moved to the instruc-
tion L1 cache. Inspection is performed only once before the
instructions are moved to the IL1 and they cannot be al-
tered in any way through software exploits. In INDRA, if
the code does not come from the original memory page with
the designated execution privilege, loading it to the IL1 will
trigger a fault.

INDRA also supports dynamically modifiable code and
self-modified code in a manner similar to [20]. The code
must be explicitly declared and given a reserved memory
space. The resurrectee provides the address space of any self-
modifying code to the resurrector. Execution of dynamic
code is restricted to its own memory space and enforced by
the resurrector. Since the information is kept in the resur-
rector and hidden from the resurrectees, it is impossible for
remote attacks to forge security attributes of an arbitrary
memory page. As shown in [20], inspecting code origin can
prevent most of the buffer overflow attacks.

The workload of code origin verification will be propor-
tional to the number of IL1 misses. To further reduce the
workload of code origin monitoring, INDRA uses a simple
filtering mechanism which maintains a small set of recently
encountered fetched code page addresses in a content ad-
dressable memory (CAM). When a line is fetched, the res-

urrectee core will look up the block’s page address in the
CAM, if there is no match, the resurrectee will send the
page address to the monitor for inspection. Our research
shows that a CAM of only 32 page addresses can effectively
filter out more than 90% code origin checks.

Note that the proposed code origin verification approach
provides better protection than the simple hardware based
solution using execution flag for memory pages because the
execution flag does not prevent tampering of the execution
flag, thus a non-executable page can become executable [20].

3.2.3 Control Transfer Inspection
INDRA allows arbitrary security policies on program con-

trol transfer. As discussed in [20], many of the deployed ex-
ploits on program control transfer can be stopped by enforc-
ing a restricted control transfer policy. For example, func-
tion export and import lists created by the compiler can be
used to verify the validity of each cross segment function call.
Indirect function calls to shared libraries can be checked to
ensure that they always invoke library functions through de-
fined entry points. A piece of software on the resurrector can
inspect executed control transfer instructions and verifies
the target and source address against application’s symbol
table and the shared library’s export/import list. Such con-
trol transfer information can be provided by the resurrectee
to the resurrector when a service program is started. Under
the assumption that code pages are protected with read-only
restriction, only computed control transfer and indirect calls
require vigorous target address inspection.

3.2.4 False Positive vs. False Negative
It is important to point out that INDRA’s security inspec-

tion is behavior based. Unlike some intrusion detection sys-
tems that use circumstantial evidence or packet signatures,
INDRA rarely has false positives. When one of the three
aforementioned inspection conditions is satisfied, something
is certainly wrong. For instance, if a function does not re-
turn to its caller, there is certainly an error. According to
the code origin inspection, if information stored in a stack
or data page is executed, one can conclude that functional-
ity is incorrect. If, during control flow inspection, execution
jumps to an instruction that was not originally defined as
a jump target by the compiler, one can conclude that the
functionality is incorrect.

However, the above three inspection schemes are not suffi-
cient to cover all possible state corruptions and consequences
of remote attacks. Therefore, INDRA could potentially gen-
erate false negatives, meaning some corruption triggered by
remote exploit attacks may not be detected. This issue may
be fixed at the software level as the inspection module itself
is based on software. How to detect new exploits is a topic
for security computing and requires future research.

3.2.5 Synchronization
The relative speed between regular software execution in

the resurrectees and the speed of monitoring in the resur-
rector is a critical determinant in the overall performance
of INDRA. In many cases, tens or even hundreds of in-
structions on the resurrector side need to be executed for
every instruction from the resurrectees that requires veri-
fication. However, the real gap between these two is far
less than the disparity shown by counting the number of in-
structions because the resurrectee cores may stall and wait
for cache misses or I/O inputs to continue, which provides
needed slack for the resurrector. Furthermore, the resur-
rector does not check every retired or executed instruction.
For example, to verify code origin, only code missing IL1 re-

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

quires checking. In certain situations, the resurrectees and
the resurrector have to synchronize with each other. First,
when the resurrectees are writing to the I/O memory or
DMA-writing to peripheral devices such as the hard-drive
or network interface, the resurrectees will stall their I/O op-
erations until all the previous instructions are verified by
the resurrector. Second, when a resurrectee issues a sys-
tem call, software interrupt, or context switch, it will stall
until all the previous instructions are properly verified and
checked. Third, when the shared FIFO queue is full, the
resurrectees who want to add more check requests to the
queue will stall until some space in the queue is released.
According to our profile analysis, a buffer of a few KB is
sufficient to eliminate the majority of stalls caused by buffer
synchronization.

3.3 State Backup and Recovery
High efficiency memory state backup is crucial for instant

service recovery. INDRA’s state backup and recovery are
based on the observation that the majority of network ser-
vice applications are driven by network requests. The idea
itself is simple. Upon the receipt of a new network service
request by a server application, the server will issue a re-
quest to the hardware. The hardware will take a virtual
state snapshot to allow rollback to this state later if an ex-
ploit or memory corruption is detected. INDRA’s backup
and recovery mechanism handles three types of states, ap-
plication’s execution state (register context and program
counter), memory state, and system resource allocation state.

3.3.1 Memory State Backup and Recovery
There are many existing software [27, 28] and hardware

techniques [30] for memory state backup. INDRA uses a
novel and efficient delta page based approach for high speed
memory state backup and instant rollback. The cost of state
backup is amortized over regular software execution. The
technique assigns a physical backup page in memory to each
virtual page requiring backup. Only the cache lines that are
modified are stored in the backup page.

Table 3 compares several macro-level memory backup
schemes. Note that INDRA cannot take advantage of some
of the micro level checkpointing schemes that keep check-
pointing state or incremental memory updates in on-chip
cache or buffer [18, 24, 29]. Most of these techniques were
designed to support state recovery for branch misprediction,
precise interrupt, or transient faults that often have a short
time window between checkpointing and recovery. This does
not apply to corruption induced by remote exploits such as
buffer overflow. It often takes hundreds of thousands to
even million of instructions for a server application to pro-
cess a network service request. In this large time window,
there could be tens of thousands to hundreds of thousands of
memory updates or even context switches. It is impractical
to hold all backup changes or memory logs on-chip.

Note that using hardware to incrementally store memory
update into a log stack [18, 33] is fast in terms of backup
speed but slow at recovery because the hardware has to undo
the changes sequentially for each record in the log. Another
technique of replacing an active page with an entire backup
page in TLB facilitates fast recovery but with very slow
backup because it has to back up the entire active page
regardlessly. Our profiling study shows that for each net-
work request, a server application may modify many mem-
ory pages but for each modified page, only a small number
of lines are modified. The traditional virtual checkpoint-
ing technique of copying an entire dirty memory page incurs

Figure 3: Backup Page Record

too much overhead. INDRA’s memory backup is designed to
address this problem by storing only dirty lines on-demand.

Global and Local Checkpointing Timestamp. Vir-
tual memory checkpointing employs a global memory check-
point counter, called Global TimeStamp (GTS).5 Each time
a server application receives a new network request, the
server application issues a system call that increments the
GTS register. For each virtual memory page, there is a Lo-
cal memory checkpoint TimeStamp (LTS). When the resur-
rectee core writes a memory page, if the GTS is greater than
the page’s LTS, it implies that the dirty line needs backup.
If a backup page is not assigned yet, the hardware will allo-
cate a new backup page. A backup page stores the original
values of all the first time modified lines of a virtual page
since a global checkpoint. The virtual page with all the cur-
rent values is called an active page. For example, a backup
page for virtual page x with LTS=5 means that it stores the
original memory lines of page x that are modified since the
GTS becomes 5. INDRA also assigns a dirty block bitvector
to indicate which lines were backed up prior to modification.

Backup Page Record. For each backup page, there is a
backup page record stored in the external memory as shown
in Figure 3. The backup page record maintains four fields:
the physical address of a backup page, the LTS, the dirty
bitvector, and the rollback bitvector. The rollback bitvector
is a bitmap of all the memory lines whose values in an ac-
tive page should be replaced by the values of its backup page
during a recovery. The use of these two bitvectors enables
INDRA to perform incremental backup and state rollback
concurrently without the overhead of an “explicit” memory
rollback. In other words, whenever a malicious exploit is
detected, INDRA will immediately process the next request
without inducing an explicit rollback, i.e. no memory copy-
ing. During the processing of the subsequent request, IN-
DRA will automatically store new changes and rollback the
previous changes made by the previous troublesome request.
This way, both the overheads of memory checkpointing and
recovery are amortized with the application’s execution.

To expedite the access, INDRA extends the TLB to in-
clude the corresponding backup page record for each page
stored in TLB as illustrated in Figure 3. For clarity, the ex-
ample assumes that there are only eight cache lines for each
memory page. When a new virtual page is brought into the
TLB, its corresponding backup page record is also brought

5This GTS is maintained in a hardware register for each
service application as part of the process context. It needs
to backup during context switches.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

Table 3: Comparison of Macro Memory Backup Approaches Supporting Recovery
Approach Explanation Backup Recovery

software checkpointing [23] backup entire page when modified copy all dirty pages, slow fast, modify page translation
memory update log [28] transactional memory update, fast undo update according to

memory update log the log, slow
hardware supported backup dirty pages on demand copy dirty page on demand, slow fast, modify TLB entry

virtual checkpointing [8]
INDRA delta backup pages, fast, no page copy fast, no page copy

backup only dirty cache lines

DirtyBV(p,1) = 1
Update Page(p,1)

DirtyBV(p,1) == 1 ?

Write to line 1
of Page p

No

YesNo

No

Raise Exception
− allocate a new
 backup page

 RollbackBV(p)
− clear

− clear DirtyBV(p)

DirtyBV(p,1) = 0
LTS(p) = GTS

Update Page (p,1)

Yes

Allocated ?
Backup Page(p)

 == 1?
RollbackBV(p,1) NoYes

BackupPage(p,1)
= Page(p,1)

RollbackBV(p,1) = 0

Yes GTS > LTS(p)?

Legend
GTS: Global Timestamp
LTS(p): Local Timestamp

DirtyBV(p,1): Dirty status
of Page(p,1)
if set, BackupPage(p,1)
contains backup line

for page p
Page(p,1): Line 1, Page p
BackupPage (p,1):

Backup copy of Page(p,1)

RollbackBV(p, 1): Rollback

if set BackupPage
(p,1) contains rollback
memory line

status of Page(p,1)

Figure 4: Processing of Memory Write

RollbackVld(p) = 0

return Page(p,1)

RollbackVld(p): Some
line of page p
requires rollback

contains rollback line
if set BackupPage(p,1)
status of line 1 of page p

RollbackBV(p, 1): Rollback

of page p
Backup Page of line 1

BackupPage (p,1):

Page(p,1): Line 1 og page p

for page p
LTS(p): Local Timestamp

GTS: Global Timestamp

Legend

 == 0?

Yes

No Yes

−RollbackBV(p,1) = 0

RollbackBV(p,1)
 == 1?

 == 1?

RollbackVld(p)

Read Line 1
of Page p

−Page(p,1) = BackupPage(p,1)

RollbackBV(p)
Yes No

No

Figure 5: Processing of Memory Read

into the backup page table by the recovery system.
Flowcharts in Figure 4 and Figure 5 show how INDRA

processes server application’s memory read and write ac-
cesses. Figure 6 illustrates how a server application uses IN-
DRA’s backup and recovery mechanism. To elucidate these
flowcharts, the following example is provided.

An Example of INDRA Recovery. This example il-
lustrates how INDRA incrementally stores memory backup
and performs rollback recovery when a malicious network
request triggers a fault. We use one application memory
page, called page p as example. Figure 7 shows the history
of memory accesses to page p for several network requests
and the status related to page p’s backup information.

Action 1 (the first row) shows the initial state of page
p’s backup page. Assume that page p’s LTS is 3 while the
GTS was increased to 5. Action 2 is a memory write to

Handle Network
Service Request

Failed? YesNo

−for every backup page p−GTS++ RollbackBV(p) =

Start

RollbackBV(p) | DirtyBV(p)−record system resource
 allocation status
−record process context −restore system resource allocation

RollbackValid(p) = 1

−restore process context (PC, regfile, etc.)

Figure 6: Processing of Service Request

1

2

3

0

05

3Last Request OK
GTS =5

Wr Memory Line 7

BackupPage(p,2)

DirtyBV(p) = 0
= Page(p,7)

= Page(p,2)

Dirty Blocks
Bitvector
Rollback Rollback

Valid
Operation LTSAction

History(page p) Bitvector
Memory Access

4

5

6

7

8

9

10

11

12

5

5

5

5

5

5

5

5

5

6

GTS =6

GTS =5

Wr Memory Line 2

GTS =5

Failure

Failure

OK

Next Request

Next Request

Next Request

0

0

1

1

1

1

1

0

0

0

| DirtyBV(p)

DirtyBV(p) = 0

BackupPage(p,1)

Page(p,1)

BackupPage(p,6)

RollbackBV(p) = RollbackBV(p)

RollbackBV(p,7) = 0

RollbackBV(p) = RollbackBV(p)

RollbackBV(p,1) = 0

RollbackBV(p,2) = 0
RollbackVld(p) = 0

DirtyBV(p,2) = 1

DirtyBV(p,2) = 1

RollbackVld(p) = 1
DirtyBV(p) = 0

= BackupPage(p,7)Page(p,7)

DirtyBV(p,1) = 1
= Page(p,1)

DirtyBV(p) = 0
RollbackVld(p) = 1

= BackupPage(p,1)

= Page(p,6)

GTS =5

Wr Memory Line 2
GTS =5

GTS =5

Page p Initial State

Rd Memory Line 7
GTS =5

Wr Memory Line 1
GTS =5

Rd Memory Line 1
GTS =5

Wr Memory Line 2
GTS =5

Wr Memory Line 6
GTS =6

LTS(p) = GTS
DirtyBV(p,6) = 1

| DirtyBV(p)

DirtyBV(p,7) = 1
BackupPage(p,7)

LTS(p) = GTS

Figure 7: Example — History of Backup States

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

line 7 of page p. Since the current GTS is greater than the
page’s LTS, INDRA clears the old dirty bitvector, copies
line 7 into a backup page before overwriting it, sets the
corresponding bit of the dirty bitvector, and updates the
page’s LTS with the GTS. Action 3 is another memory write
to page p that sets the dirty bitvector and backs up line 2
without updating p’s LTS as p’s LTS was synchronized to
the GTS already. The next Action is yet another write to
the same line 2. INDRA checks the dirty bitvector which
indicates that a backup copy prior to the current request
already exists. Therefore, INDRA overwrites line 2 directly.

If a buffer overrun or other type of intrusion or state cor-
ruption is detected by the resurrector core, the resurrector
will interrupt and stall the resurrectee core. For each backup
page, the resurrector will set the rollback valid bit, update
the rollback bitvector by bitwise OR-ing the backup page’s
dirty bitvector and its current rollback bitvector, and clears
the page’s dirty bitvector. The 5th Action in Figure 7 shows
the resulting status. Then the resurectee’s interrupt handler
will rollback the application’s context (e.g. PC, regsiter file)
back to the state when the GTS is incremented to 5, which
corresponds to the state before the faulty request was pro-
cessed. Then the resurrectee resumes the server application
and continues processing the next service request.

Action 6 shows that the server application issues a mem-
ory read to line 7 of p while its corresponding rollback bit is
set. Instead of reading the line from the active page, INDRA
will copy the same line from the backup page, and clear the
corresponding bit of the rollback bitvector to indicate that
the line has been recovered. The 7th Action shows a mem-
ory write to line 1 of p. The same operations in Action 3
are applied.

Assume that the next network request is also malicious,
causing the server application to fail again. In this case,
INDRA has to rollback damages caused by both the current
network request and the one before. INDRA needs only
to follow the same procedure as shown in Action 5. After
that, the server application is resumed to process the next
request.

If nothing goes wrong during the process of this request,
the server application will increment the GTS for the next
request. The last Action in Figure 7 shows a memory write
to page p after the GTS is increased.

Overhead of Backup Space. It is important to point
out that INDRA allocates delta backup pages on demand.
Thus it does not have significant physical memory overhead.
Our profiling study shows that on average about 50 pages are
touched during the inter-packet processing interval. Note
that the actual number of dirty lines inside the 50 pages are
much smaller. The overall overhead is small comparing with
the size of today’s system memory.

Protection of Backup Space. The backup page records
and all backup pages are allocated and managed by the IN-
DRA’s operating system and invisible to the service applica-
tions. Therefore, they cannot be corrupted by the exploits
into the application’s virtual memory space. Note that the
rollback, when a recovery is needed, is completely handled
by the INDRA recovery mechanism, not the service appli-
cation itself.

3.3.2 Hybrid Recovery Scheme
Each time INDRA increments the GTS register, it as-

sumes that either the application is in a healthy state or
the application has recovered from a previous failure. This
assumption is generally true if a malicious request imme-
diately triggers corruption or service failure after it is pro-

− issue application Checkpoint

−for every backup page p
RollbackBV(p) | DirtyBV(p)RollbackBV(p) =

−restore system resource allocation
RollbackValid(p) = 1

−restore process context

Failed? YesNo

−GTS++
fails > threshold ? No

Yes

No Yes

−rollback to previous
application checkpoint

of consecutive

of processed
requests>10,000

Handle Network
Service Request

Start

 allocation
−record system resource

−record process context

Figure 8: Hybrid Recovery Scheme

cessed. This covers a majority of the DoS exploit attacks.
In other words, INDRA’s micro recovery mechanism always
rolls back by one service request when something is wrong.
However, there may exist some well-contrived exploit at-
tacks we call ”dormant” attacks. These ”dormant” attacks
may cause damage to server applications but the server is
able to continue serving many new requests before it fails
due to damage inflicted by past requests. It is recommended
that INDRA combine slow paced macro checkpointing tech-
nique with its swift request based recovery. After responding
to a number of requests, the server OS will issue an appli-
cation checkpoint [23]. The result is a hybrid dual recov-
ery mechanism as shown in Figure 8. INDRA combines its
micro-level per request based recovery with the slow and in-
frequent application level recovery. Since the software check-
point is performed infrequently. e.g. once every 10,000 pro-
cessed requests, the performance impact will be small. If
something bad happens, INDRA first tries the micro recov-
ery process by assuming that the damages are caused by the
previous handled service request. If INDRA cannot recover
a corrupted server application using this swift recovery ap-
proach, it will use the traditional application checkpointing
instead.

3.3.3 System Resource Recovery
With respect to process context and resources, INDRA

maintains the file descriptors, the environment of the pro-
cess and other allocated system resources. During recovery,
resources allocated after the backup request will be freed.
Files opened after the checkpoint will be closed. Opened files
before the checkpoint will remain open after rollback. All
child processes (might be a malicious child process) spawned
by the application after backup are killed and newly allo-
cated memory pages are reclaimed. However, INDRA does
not restore all the possible system states. States associated
with inter-process communication, messages, and signals are
not recovered. The system does not rollback any changes to
the files, or messages and signals already sent. If the ap-
plication logs the malicious request to a log file, then the
information will remain in the file for audit and inspection.
Note that INDRA’s recovery approach is designed for the
scenario of network oriented server applications and remote
exploit attacks. It is not meant to be a general recovery
approach for any type of programs. In case the application
cannot be properly recovered, the system will use traditional

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

recovery approach.

3.3.4 Connection State Recovery
It is important to point out that INDRA recovers at the

application level, not the network or transport protocol level.
INDRA does not cause connection upset at transport layer
for both stateless protocol such as UDP or state protocol
such as TCP. In addition, different from system network,
transport protocols designed for Internet such as TCP has
built-in support for tolerating lost packets and re-synchronizing
states between two end points. Furthermore, different from
the conventional transaction based recovery, INDRA does
not intend to recover the failed request and respond to it
again. INDRA does not care or bother to recover the connec-
tion between the server application and a malicious client.
As a response of recovery, a server application may after
recovery terminate the faulty or malicious connection. For
most server applications such as HTTP and DNS, the appli-
cation level connection is stateless. This means that every
new network request will initiate a new connection and the
connection is terminated after the request is served. It is
important to keep in mind that INDRA only cares for con-
nections from well-behaved clients who have not sent any
requests that corrupt the server.

3.4 Limitation
Although INDRA provides better capability of intrusion

tolerance and service revivability than prior approaches, there
are limitations. INDRA does not promise to handle all con-
ceivable attacks and recover from all possible corrupted ma-
chine states. It focuses mainly on service loss caused by
malicious network input. However, INDRA does create a
system architecture that allows for future advanced detec-
tion and recovery techniques to be studied and deployed.
In addition, INDRA’s architectural design does not attempt
any file system recovery assuming that all disk writes are
issued by verified program execution (synchronization de-
scribed in Section 3.2.5) and properly checked. In addition,
the resurrector, even though insulated from remote exploit
attacks, is subject to physical tampering, e.g. re-flashing the
flash memory that activates the resurrector. INDRA is also
not a replacement for the conventional means of patching
software vulnerabilities. Last, INDRA does not handle at-
tacks that jam a network channel, e.g. router flooding. Such
problems are outside the server and should be countered by
network-oriented security solutions.

4. EVALUATION
To evaluate the proposed INDRA and its monitoring and

recovery techniques, we used Bochs [19] and TAXI [32] frame-
work. Bochs, a full-system x86 emulator, models the entire
platform including network device, hard drive, VGA, and
other devices to support the execution of a complete OS
and its applications. TAXI is a Simplescalar simulator with
x86 front-end for our performance analysis. Architectural
support for INDRA such as automatic L2 cache to instruc-
tion L1 cache trace, memory state backup/rollback and the
required processor state rollback were implemented.

Our hardware framework emulates a dual-core processor
with shared memory for synchronization and data commu-
nication. One core is configured to run a full-blown Redhat
Linux 6.0 and network applications and the second core is
designated as the resurrector running a simple runtime sys-
tem based on a stripped down tiny Linux stored in a flash
memory. The resurrector boots from the runtime system;
the entire system including the security software is less than

Parameters Values

Fetch/Decode width 8
Issue/Commit width 8

L1 I-Cache DM, 16KB, 32B line
L1 D-Cache DM, 16KB, 32B line
L2 Cache 4way, Unified, 64B line, WB cache

512KB for each core
L1/L2 Latency 1 cycle / 8 cycles (512KB)

I-TLB 4-way, 128 entries
D-TLB 4-way, 256 entries

Memory Bus 200MHz, 8B wide
Memory Latency X-5-5-5 (core clocks)

X depends on page status
CAS latency 20 mem bus clocks

Pre-charge latency (RP) 7 mem bus clocks
RAS-to-CAS (RCD) latency 7 mem bus clocks

Table 4: Processor model parameters

10MB.
Within our security software framework, we implemented

a simple software security monitor based on our prior de-
scription. The program receives snooped monitor traces
from the other processor through designated I/O ports. Upon
the receipt of a new instruction, the monitor first verifies the
code origin against recorded code page attributes. Informa-
tion of the application code space is determined by the res-
urrectee and posted to the resurrector through the shared
FIFO queue. Applications are distinguished according to in-
formation in the CR3 control register which is used to store
the physical address of a process’s page table. It is unique
for each process. An instruction sent to the resurrector is
paired with the CR3 value so that the resurrector can decide
which set of informations should be used for security check.
Alternatively, the trace information can be tagged with its
process ID. As a result, the resurrector’s monitoring pro-
gram decides whether the instruction is a function call or a
control transfer instruction based on the opcode. For con-
trol transfer, the program uses recorded application symbol
table, function export/import lists to verify the legitimacy
of the control transfer. Mechanism of memory state check-
pointing and rollback is implemented in both the Bochs and
the performance simulator. We also integrated an accurate
DRAM model [16] to improve the system memory modeling,
in which bank conflicts, page miss, row miss are all modeled
based on the PC SDRAM specification. The processor pa-
rameters are listed in Table 4.

Six popular open source network server applications were
used: file transfer server (ftp daemon), web server (apache
http daemon), email sever (imap daemon), domain name
server (bind daemon), mail transmission server (sendmail),
and network file system server (nfs daemon). All server ap-
plications are executed as standalone daemons.

4.1 Security Evaluation
The effectiveness of using code origin, return address, and

control flow restriction to detect real world remote exploit
attacks and server fault is extensively tested and verified in
[20] using a security monitor implemented inside a dynamic
binary code rewriter. Though INDRA’s monitor implemen-
tation is different from [20], both schemes check the same
types of information. The idea of recovering server appli-
cations on per request basis by repairing the damages has
been validated by a number of recent studies [27, 28]. All
the studies used real world exploits and showed that typi-
cal network applications can effectively recover from faults
induced by remote exploit attacks on per network request
basis.

We also validated our recovery approach using a set of
real exploits against the selected popular server applica-
tions. Exploit codes or scripts are collected from various

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

 0

 1

 2

 3

 4

 5

ftpd
httpd

bind
sendmail

imap
nfs average

L
1

In
st

ru
ct

io
n

C
ac

he
 M

is
s

R
at

e
%

Figure 9: L1 instruction cache miss rate

 0

 2

 4

 6

 8

 10

ftpd
httpd

bind
sendmail

imap
nfs averagePe

rc
en

ta
ge

 o
f

R
eq

ue
st

s
A

ft
er

 F
ilt

er
in

g
%

32-entry 64-entry

Figure 10: Effectiveness of Code Origin Check Fil-
tering

hackers’ websites or security agent websites.6 Particularly,
we launched remote exploit attacks targeted for the fol-
lowing server vulnerability, CVE documented attack CAN-
2003-0651 [1] on HTTP server, exploit (VU#196945) [4] on
bind daemon, documented exploits (CAN-2003-0466) [1] on
FTP server, and documented exploit (CAN-2004-0640) [1]
on SSLtelnet daemon. Experiment shows that INDRA can
detect and recover from these exploit attacks.

4.2 Performance
One major difference between INDRA and other per-request

based self-recovery approaches is INDRA’s efficiency in mon-
itoring and memory state recovery. We wrote a set of scripts
to automatically send network requests to the simulated
platform and handle the responses. For DNS service, the
script sends a sequence of queries to the server. For FTP,
the script automatically logs in into the simulated machine,
downloads and uploads a few files. For imap, a python script
is used to automatically authenticate and check new emails.
For http, wget is used to download a set of web pages from
the simulated server recursively. For sendmail, a shell script
is used to automatically send a sequence of text mail files to
the server continuously. For NFS, a shared file directory in
the simulated machine is mounted by the simulation host.
NFS is tested with a script that first copies a whole direc-
tory of Apache html manual files to the simulated server
then copies them back to the client.

4.2.1 Monitor
We evaluated the time overhead required to complete the

service requests for the six network applications. We imple-
mented a network packet dump module inside our simulator
so that it can produce a trace of network packets that help
identify each packet’s receiving and sending time by the sim-
ulated server. The results are based on five runs of the test
scripts. As aforementioned, code origin check workload is

6They include www.securiteam.com, www.insecure.org, and
www.k-otik.com.

 0

 2

 4

 6

 8

 10

ftpd
httpd

bind
sendmail

imap
nfs average

Se
rv

ic
e

R
es

po
ns

e
T

im
e

O
ve

rh
ea

d
%

Figure 11: Monitoring Overhead

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 10 20 30 40 50 60

N
or

m
al

iz
ed

 S
er

vi
ce

 R
es

po
ns

e
T

im
e

Queue Entry Size

Response Time Slowdown

Figure 12: Impact of Shared Queue Size

proportional to the IL1 miss rate. Figure 9 shows the IL1
miss rates. As can be seen, the miss rates are relatively low.
Figure 10 shows the percentage of code origin checks af-
ter using the simple page address filtering mechanism. The
filter CAM removes the majority of redundant code origin
checks. According to the figure, on average, 92% and 95% of
the code origin checks can be waived with a 32 and 64-entry
filter CAM, respectively.

Figure 11 shows the service response time overhead with
monitoring against a system without monitoring support.
Overheard due to backup and rollback are not accounted for
and will be discussed in Section 4.2.2. As suggested by the
results, INDRA monitoring incurs only a small percentage
of performance degradation.

Another factor that affects the performance of INDRA
is the size of the request FIFO between the resurrectee and
the resurrector. Figure 12 shows average normalized request
response time with 16, 32, and 64 entries of monitor request
FIFO. As indicated by the results, a queue of 16 request
entries is too small and it could cause extra stall of the
resurrectee cores. When it is increased to 32 or more, the
performance starts to saturate.

4.2.2 State Backup and Recovery
Figure 13 shows the average instruction count between

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

ftpd
httpd

bind
sendmail

imap
nfs Average

In
te

rv
al

 B
et

w
ee

n
Se

rv
ic

e
R

eq
ue

st
s

Figure 13: Number of instructions between requests

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

 2
 4
 6
 8

 10
 12
 14

ftpd
httpd

bind
sendmail

imap
nfs average

N
or

m
al

iz
ed

 S
er

vi
ce

 R
es

po
ns

e
T

im
e

Figure 14: Slowdown using traditional memory vir-
tual checkpointing

 0

 10

 20

 30

 40

 50

ftpd
httpd

bind
sendmail

imap
nfs averagePe

rc
en

ta
ge

 o
f

B
ac

ku
pe

d
D

ir
ty

 C
ac

he
 L

in
es

 %

Figure 15: Percentage of backup dirty lines

two back-to-back requests. The numbers are in the range
from hundreds of thousands to millions of instructions. Since
the interval is relatively short, using traditional memory
checkpointing schemes will incur intolerable overhead. Fig-
ure 14 shows the slowdown of response time if dirty memory
pages are backed up using the conventional memory virtual
checkpointing. Most of the overhead is due to the frequent
page-to-page memory copying. Figure 15 suggests that the
dynamic number of cache lines that require backup over all
the modified lines is relatively small, showing that INDRA’s
delta page based backup can be orders of magnitude more
efficient.

Figure 16 shows the results of service response time slow-
down for two configurations. The left bar shows the slow-
down caused by monitoring and backup, while the right bar
shows the slowdown when a rollback is needed for every
other network request. The results indicate that both IN-
DRA’s memory backup and rollback are more efficient than
the page copy based checkpointing scheme shown in Fig-
ure 14. The only outlier is bind (DNS) having a more than
2x slowdown. The reasons are twofold. First, the interval
(150,000 instructions) is much shorter than the others as
shown in Figure 13. Second, the number of dirty lines is also
much higher in Figure 15. As shown by our results, INDRA

 0.5
 1

 1.5
 2

 2.5
 3

ftpd
httpd

bind
sendmail

imap
nfs averageN

or
m

al
iz

ed
 S

er
vi

ce
 R

es
po

ns
e

T
im

e

Monitor+Backup
Monitor+Backup+Rollback

Figure 16: Slowdown by backup and rollback

is suitable for recovering server applications from frequent
maliciously induced faults with reasonable overhead.

5. RELATEDWORK
We discuss related work on the area of automatic service

recovery from faults caused by remote exploit attacks. Stud-
ies of recovery from transient fault, random circuitry fault
or hardware design fault [6, 15, 21, 25] are different issues
because faults caused by remote exploit attacks often have
different characteristics and require different recovery ap-
proach as described earlier. INDRA is also different in both
solution and purpose from the studies of software rejuve-
nation that are aimed to solve software reliability problems
caused by software aging [17].

5.1 Exploit Detection
Compiler techniques such as StackGuard [12] have been

developed to detect buffer overflow attacks. Another tech-
nique called program shepherding [20] uses binary inter-
preter to prevent an attack from executing injected codes.
In [13, 31], hardware support for tracking information flow
is proposed for preventing external untrusted information
from being executed as code or used as function pointers.
Most of those techniques focus on intrusion detection only
and does not provide means for swift recovery like what IN-
DRA does.

5.2 Recovery

5.2.1 Traditional Recovery
Traditional error recovery terminates faulty applications

or reboots the entire system. Many techniques have been
proposed to speed up the reboot process including recent
study on microreboot [9]. INDRA is different from these
solutions because it attempts to maintain the service avail-
ability by recovering it from crash or corrupted states with-
out reboot or disruption to the legitimate users.

5.2.2 Reactive Immune System and DIRA
[27] uses instrumented applications and program emula-

tion to discover and fix faulty or vulnerable server software.
Another approach called DIRA [28] was proposed for ser-
vice recovery by repairing damaged memory states based on
memory log obtained by instrumenting application source
codes. The approaches in [27, 28] implement intrusion mon-
itor and service recovery at the application level which re-
lies on the availability of the application itself. This kind
of design severely limits the effectiveness of service recovery
because the applications themselves are vulnerable to direct
remote exploits.

5.2.3 Reliability and Security Engine
[21] presents a study, called RSE, using dedicated hard-

ware modules and logic for detecting various faults including
both buffer overflow based and transient faults. RSE can
recover processor pipeline from many transient faults. How-
ever, the nature of faults induced through remote exploits
requires some special treatment which is absent in RSE’s
checkpointing and recovery approach.

5.2.4 Memory State Recovery
Memory state backup and recovery have been studied ex-

haustively in the past using designs such as virtual check-
pointing, on-chip history file, on-chip checkpoint buffer, mem-
ory update stack, and etc [30, 8, 29]. However, as we
have discussed before, due to some unique properties of

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

remote attack induced memory error or corruption, many
of the efficient memory state recovery techniques designed
for recovering from miss-branch prediction, transient fault,
or miss-speculation are not directly applicable to the cases
of swift recovery of damaged network services. First, the
inter-request execution window for network server applica-
tions is too large for micro-level checkpointing, in the range
of millions of instructions or even more. Second, recovery
of network applications involves possible system resource re-
allocation and recovery. Third, to fight against DoS attacks,
INDRA has to provide both high speed state back up and
high speed frequent rollback. The proposed INDRA recov-
ery scheme is sufficient for such purpose.

6. CONCLUSION
In this paper, we present INDRA — a framework that in-

tegrates novel security mechanisms into the emerging mul-
ticore platform to provide highly available, revivable, and
continuous services in the face of remote network attacks
and network attacks induced memory errors. The frame-
work also introduces a new configurable programming model
to address dependability concerns in the enterprising com-
puting domain using multicore systems. In contrast to the
previous research conducted on software-based recovery, IN-
DRA creates a remote attack immune hardware sandbox
based on asymmetric configuration among different cores to
create a solid insulation against malicious exploits. Cores
configured as the resurrectors perform monitoring and intro-
spection for service applications running on the resurrectee
cores. Furthermore, INDRA proposes a novel delta backup
scheme for resurrectees to enable high speed recovery when
an attack or a fault is detected by their resurrector. As
shown in our experiments, INDRA not only provides better
dependability and availability for high performance produc-
tion servers hosting high volume networked services but also
facilitates a fast backup and recovery mechanism that shows
a substantial improvement against the conventional check-
pointing schemes.

7. ACKNOWLEDGMENT
This work is supported in part by NSF grants CCF-0326396,

CNS-0325536, Intel’s Multicore curriculum development fund,
and a Department of Energy Early CAREER Award. The
authors also thank Professor Trevor Mudge for his support
and valuable comments.

8. REFERENCES

[1] CVE: Common Vulnerabilities and Exposures.
http://www.cve.mitre.org/.

[2] PaX Team, Non Executable Data Pages.
http://pageexec.virtualave.net/pageexec.txt.

[3] Solar Designer, Non-executable User Stack.
http://www.openwall.com/linux/.

[4] US-CERT Vulnerability Notes, http://www.kb.cert.org/vuls.
[5] Aleph One. Smashing The Stack For Fun And Profit. Phrack,

7(49), November 1996.
[6] T. M. Austin. DIVA: a reliable substrate for deep submicron

microarchitecture design. In Proceedings of the 32nd
International Symposium on Microarchitecture, 1999.

[7] A. Avizienis. The Methodology of N-Version Programming,
1995.

[8] N. S. Bowen and D. K. Pradhan. Virtual Checkpoints:
Architecture and Performance. IEEE Transactions on
Computers, 41(5):516–525, 1992.

[9] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot – A Technique for Cheap Recovery. In Proc. 6th
Symposium on Operating Systems Design and
Implementation, 2004.

[10] P.-Y. Chung and C. Kintala. Checkpointing and Its
Applications. In Proceedings of the 25th International
Symposium on Fault-Tolerant Computing, pages 22–31, 1995.

[11] C. Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman.
FormatGuard: Automatic Protection From printf Format
String Vulnerabilities. In Proceedings of the 10th USENIX
Security Symposium, 2001.

[12] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. StackGuard:
Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. In Proceedings of the 7th USENIX
Security Symposium, 1998.

[13] J. R. Crandall and F. T. Chong. MINOS: Control Data Attack
Prevention Orthogonal to Memory Model. In Proceedings of
the 37th International Symposium on Microarchitecture, 2004.

[14] T. Garfinkel and M. Rosenblum. A Virtual Machine
Introspection Based Architecture for Intrusion Detection. In In
Proc. Net. and Distributed Sys. Sec. Sym, February 2003.

[15] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz.
Transient-Fault Recovery for Chip Multiprocessors. In
Proceedings of the 30th annual International Symposium on
Computer Architecture, pages 98–109, 2003.

[16] M. Gries and A. Romer. Performance Evaluation of Recent
DRAM Architectures for Embedded Systems. In TIK Report
Nr. 82, Computing Engineering and Networks Lab (TIK),
Swiss Federal Institute of Technology (ETH) Zurich,
November 1999.

[17] Y. Huang, N. Kolettis, and N. D. Fulton. Software
Rejuvenation: Analysis, Module and Applications. In
Proceedings of the 25th International Symposium on
Fault-Tolerant Computing, 1995.

[18] W.-M. W. Hwu and Y. N. Patt. Checkpoint Repair for
Out-of-order Execution Machines. In Proceedings of the
International Symposium on Computer Archtecture, 1987.

[19] K. Lawton. Welcome to the Bochs x86 PC Emulation Software
Home Page. http://www.bochs.com.

[20] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure
Execution Via Program Shepherding. In Proceedings of the
11th Usenix Security Symposium, 2002.

[21] N. Nakka, J. Xu, Z. Kalbarczyk, and R. K. Iyer. An
Architectural Framework for Providing Reliability and Security
Support. In Proceedings of International Conference on
Dependable Systems and Networks, June. 2004.

[22] D. Neal. Online Blackmail Grows. In IT Week, 08, Mar 2005.
[23] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:

Transparent Checkpointing under Unix. Technical report, 1994.
[24] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost-effective

Architectural Support for Rollback Recovery in Shared-memory
Multiprocessors. In Proceedings of the 29th Annual
International Symposium on Computer Architecture, 2002.

[25] J. Ray, J. C. Hoe, and B. Falsafi. Dual Use of Superscalar
Datapath for Transient-fault Detection and Recovery. In
Proceedings of the 34th International Symposium on
Microarchitecture, 2001.

[26] Scut. Exploiting Format String Vulnerabilities.
http://www.team-teso.net/articles/ formatstring/, 2001.

[27] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D.
Keromytis. Building a Reactive Immune System for Software
Services. In Proceedings of the USENIX Annual Technical
Conference, pages 149–161, April 2005.

[28] A. Smirnov and T. Chiueh. DIRA: Automatic Detection,
Identification, and Repair of Control-Hijacking Attack. In The
12th Annual Network and Distributed System Security
Symposium, 2005.

[29] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood.
SafetyNet: Improving the Availability of Shared Memory
Multiprocessors With Global Checkpoint/recovery. Proceedings
of the 29th Annual International Symposium on Computer
Architecture, 2002.

[30] M. E. Staknis. Sheaved Memory: Architectural Support for
State Saving and Restoration in Pages Systems. In Proceedings
of the International Conference on Architectural Support for
Programming Languages and Operating System, 1989.

[31] G. E. Suh, J. Lee, and S. Devadas. Secure Program Execution
via Dynamic Information Flow Tracking. In Proceedings of the
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2004.

[32] S. Vlaovic and E. S. Davidson. TAXI: Trace Analysis for X86
Interpretation. In Proceedings of the 2002 IEEE International
Conference on Computer Design, 2002.

[33] K. L. Wu, W. K. Fuchs, and J. H. Patel. Error Recovery in
Shared Memory Multiprocessors Using Private Caches. IEEE
Transactions on Parallel and Distributed Systems, 1(2), 1990.

Proceedings of the 33rd International Symposium on Computer Architecture (ISCA’06)
0-7695-2608-X/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

