
RecNMP: Accelerating Personalized
Recommendation with Near-Memory Processing

Liu Ke∗, Udit Gupta†, Benjamin Youngjae Cho§,

David Brooks†, Vikas Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee,

Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail Smelyanskiy, Xiaodong Wang,

Brandon Reagen, Carole-Jean Wu, Mark Hempstead‡, Xuan Zhang∗

Facebook, Inc.

Abstract—Personalized recommendation systems leverage deep
learning models and account for the majority of data center
AI cycles. Their performance is dominated by memory-bound
sparse embedding operations with unique irregular memory
access patterns that pose a fundamental challenge to accelerate.
This paper proposes a lightweight, commodity DRAM compli-
ant, near-memory processing solution to accelerate personalized
recommendation inference. The in-depth characterization of
production-grade recommendation models shows that embedding
operations with high model-, operator- and data-level parallelism
lead to memory bandwidth saturation, limiting recommendation
inference performance. We propose RecNMP which provides a
scalable solution to improve system throughput, supporting a
broad range of sparse embedding models. RecNMP is specifically
tailored to production environments with heavy co-location of
operators on a single server. Several hardware/software co-
optimization techniques such as memory-side caching, table-
aware packet scheduling, and hot entry profiling are studied,
providing up to 9.8× memory latency speedup over a highly-
optimized baseline. Overall, RecNMP offers 4.2× throughput
improvement and 45.8% memory energy savings.

I. INTRODUCTION

Personalized recommendation is a fundamental building

block of many internet services used by search engines, social

networks, online retail, and content streaming [4], [19], [20],

[63]. Today’s personalized recommendation systems leverage

deep learning to maximize accuracy and deliver the best user

experience [21], [25], [29], [44], [49]. The underlying deep

learning models now consume the majority of the datacenter

cycles spent on AI. For example, recent analysis reveals

that the top recommendation models collectively contribute to

more than 79% of all AI inference cycles across Facebook’s

production datacenters [75].

Despite the large computational demand and production im-

pact, relatively little research has been conducted to optimize

deep learning (DL)-based recommendation. Most research

efforts within the architecture community have focused on ac-

celerating the compute-intensive, highly-regular computational

∗Washington University in St. Louis, work done while at Facebook.
†Harvard University, work done while at Facebook.
§University of Texas at Austin, work done while at Facebook.
‡Tufts University, work done while at Facebook.

Fig. 1. (a) Compute and memory footprint of common deep learning
operators, sweeping batch size; (b) Roofline lifting effect and the operator-
level (FC, SLS) and end-to-end model (RM) speedup enabled by RecNMP.

patterns found in fully-connected (FC), convolution (CNN),

and recurrent (RNN) neural networks [3], [6]–[8], [11], [12],

[15], [17], [18], [24], [33], [36], [40], [47], [53]–[55], [57],

[60], [68], [71]–[74], [76], [79], [82]. Unlike CNNs and RNNs,

recommendation models exhibit low compute-intensity and

little to no regularity. Existing acceleration techniques either

do not apply or offer small improvements at best, as they tend

to exploit regular reusable dataflow patterns and assume high

spatial locality, which are not the main performance bottle-

neck in recommendation models [75]. Given the volume of

personalized inferences and their rapid growth rate occurring

in the data center, an analogous effort to improve performance

of these models would have substantial impact.

To suggest personalized contents to individual users, recom-

mendation models are generally structured to take advantage

of both continuous (dense) and categorical (sparse) features.

The latter are captured by large embedding tables with sparse

lookup and pooling operations. These embedding operations

dominate the run-time of recommendation models and are

markedly distinct from other layer types.

A quantitative comparison of the raw compute and memory

access requirements is shown in Figure 1(a). Sparse em-

bedding operations, represented by SparseLengthsSum (SLS),

consist of a small sparse lookup into a large embedding

table followed by a reduction of the embedding entries (i.e.,

pooling). They present two unique challenges: First, while the

790

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00070

sparse lookup working set is comparatively small (MBs), the

irregular nature of the table indices exhibits poor predictabil-

ity, rendering typical prefetching and dataflow optimization

techniques ineffective. Second, the embedding tables are on

the order of tens to hundreds of GBs, overwhelming on-

chip memory resources. Furthermore, the circular points in

Figure 1(b) show the operational intensity of SLS is orders

of magnitude less than FC layers. Low intensity limits the

potential of custom hardware including the specialized data-

paths and on-chip memories used in CNN/RNN accelerators.

The result is a fundamental memory bottleneck that cannot be

overcome with standard caching (e.g., tiling [34]), algorithmic

(e.g., input batching), or hardware acceleration techniques.

This paper proposes RecNMP—a near-memory processing

solution to accelerate the embedding operations for DL-

based recommendation. RecNMP is a lightweight DIMM-

based system built on top of existing standard DRAM technol-

ogy. We focus on DIMM-based near-memory processing [5],

[22], [81] instead of resorting to specialized 2.5D/3D inte-

gration processes (e.g. HBM) [17], [38], [45]. The DIMM

form factor with commodity DDR4 devices can support the

100GB+ capacities necessary for production-scale recommen-

dation models with low cost. By eliminating the off-chip

memory bottleneck and exposing higher internal bandwidth we

find that RecNMP provides significant opportunity to improve

performance and efficiency by lifting the roofline by 8×
for the bandwidth-constrained region (Figure 1(b)), enabling

optimization opportunity not feasible with existing systems.

We have performed a detailed characterization of recom-

mendation models using open-source, production-scale DLRM

benchmark [49], [75] as a case study. This analysis quantifies

the potential benefits of near-memory processing in acceler-

ating recommendation models and builds the intuition for co-

designing the NMP hardware with the algorithmic properties

of recommendation. Specifically, it highlights the opportunity

for the RecNMP architecture in which bandwidth-intensive

embedding table operations are performed in the memory and

compute-intensive FC operators are performed on the CPU (or

potentially on an accelerator).

The proposed RecNMP design exploits DIMM- and rank-

level parallelism in DRAM memory systems. RecNMP per-

forms local lookup and pooling functions near memory, sup-

porting a range of sparse embedding inference operators,

which produce the general Gather-Reduce execution pattern.

In contrast to a general-purpose NMP architecture, we make

a judicious design choice to implement selected lightweight

functional units with small memory-side caches to limit the

area overhead and power consumption. We combine this light-

weight hardware with software optimizations including table-

aware packet scheduling and hot entry profiling. Compared

to previous work whose performance evaluation is solely

based on randomly-generated embedding accesses [81], our

characterization and experimental methodology is modeled

after representative production configurations and is evaluated

using real production embedding table traces. Overall, Rec-
NMP leads to significant embedding access latency reduction

(9.8×) and improves end-to-end recommendation inference

performance (4.2×) as illustrated in Figure 1(b). Our work

makes the following research contributions:

• Our in-depth workload characterization shows that pro-

duction recommendation models are constrained by mem-

ory bandwidth. Our locality analysis using production

embedding table traces reveals distinctive spatial and

temporal reuse patterns and motivates a custom-designed

NMP approach for recommendation acceleration.

• We propose RecNMP, a lightweight DDR4-compatible

near-memory processing architecture. RecNMP accel-

erates the execution of a broad class of recommen-

dation models and provides 9.8× memory latency

speedup and 45.9% memory energy savings. Overall,

RecNMP achieves 4.2× end-to-end throughput improve-

ment.

• We examine hardware-software co-optimization
techniques (memory-side caching, table-aware packet

scheduling, and hot entry profiling) to enhance

RecNMP performance, and customized NMP instruction

with 8× DRAM command/address bandwidth expansion.

• A production-aware evaluation framework is developed

to take into account common data-center practices and

representative production configuration, such as model

co-location and load balancing.

II. CHARACTERIZING DEEP LEARNING PERSONALIZED

RECOMMENDATION MODELS

This section describes the general architecture of DL-

based recommendation models with prominent sparse embed-

ding features and their performance bottlenecks. As a case

study, we conduct a thorough characterization of the recently-

released Deep Learning Recommendation Model (DLRM)

benchmark [49]. The characterization—latency breakdown,

roofline analysis, bandwidth analysis, and memory locality—

illustrates the unique memory requirements and access behav-

ior of production-scale recommendation models and justifies

the proposed near-memory accelerator architecture.

A. Overview of Personalized Recommendation Models

Personalized recommendation is the task of recommending

content to users based on their preferences and previous inter-

actions. For instance, video ranking (e.g., Netflix, YouTube),

a small number of videos, out of potentially millions, must be

recommended to each user. Thus, delivering accurate recom-

mendations in a timely and efficient manner is important.

Most modern recommendation models have an extremely

large feature set to capture a range of user behavior and

preferences. These features are typically separated out into

dense and sparse features. While dense features (i.e., vectors,

matrices) are processed by typical DNN layers (i.e., FC,

CNN, RNN), sparse features are processed by indexing large

embedding tables. A general model architecture of DL-based

recommendation systems is captured in Figure 2. A few

examples are listed with their specific model parameters [49],

[52], [63] in Figure 2(b). Similar mixture of dense and

791

Fig. 2. (a) Simplified model-architecture reflecting production-scale recom-
mendation models; (b) Parameters of representative recommendation models.

sparse features are broadly observable across many alternative

recommendation models [1], [25], [49], [52], [63], [83].

Embedding table lookup and pooling operations provide

an abstract representation of sparse features learned during

training and are central to DL-based recommendation models.

Embedding tables are organized as a set of potentially millions

of vectors. Generally, embedding table operations exhibit

Gather-Reduce pattern; the specific element-wise reduction

operation varies between models. For example, Caffe [2] com-

prises a family of embedding operations, prefixed by Sparse-
Lengths (i.e., SparseLengthsWeightedSum8BitsRowwise), that

perform a similar Gather-Reduce embedding operation with

quantized, weighted summation. The SLS operator primitive

is widely employed by other production-scale recommendation

applications (e.g. YouTube [63] and Fox [52]). Our work aims

to alleviate this performance bottleneck and improve system

throughput by devising a novel NMP solution to offload the

SLS-family embedding operations thus covering a broad class

of recommendation systems.

B. A Case Study—Facebook’s DLRM Benchmark

To demonstrate the advantages of near-memory process-

ing for at-scale personalized recommendation models, we

study Facebook’s deep learning recommendation models (DL-

RMs) [49]. Dense features are initially processed by the

BottomFC operators, while sparse input features are processed

through the embedding table lookups. The output of these

operators are combined and processed by TopFC producing

a prediction of click-through-rate of the user-item pair.

This paper focuses on performance acceleration strategies

for four recommendation models representing two canonical

classes of the models, RMC1 and RMC2 [75]. These two

recommendation model classes consume significant machine

learning execution cycles at Facebook’s production datacenter,

with RMC1 over 29%, RMC2 over 31%. Parameters to config-

ure are shown in Figure 2(b). The notable distinguishing factor

across these configurations is the number of the embedding

Fig. 3. Model-, operator- and data-level parallelism in production system.

Fig. 4. Inference latency and breakdown across models (RMC1-small, RMC1-
large, RMC2-small, RMC2-large) with varying batch sizes (8, 64, 128, 256).

tables. RMC1 is a comparatively smaller model with few

embedding tables; RMC2 has tens of embedding tables.

Recommendation systems employ three levels of paral-

lelism, shown in Figure 3, to achieve high throughput under

strict latency constraints [75]. Model-level parallelism grows

by increasing the number of concurrent model inference (m)

on a single machine, operator-level parallelism adds parallel

threads (n) per model and data-level parallelism is scaled

by increasing batch size. An SLS operator performs a batch

of pooling operations; one pooling operation performs the

summation for a set of vectors. The inputs to SLS, for

one batch of embedding lookups, include an indices vector

containing sparse-IDs, and optionally a weight vector.

C. Operator Bottleneck Study

We observe that the SLS-family of operators is the largest
contributor to latency in recommendation models especially as

batch size, data-level parallelism, increases. Figure 4 depicts

the execution time breakdown per operator with the majority

of the time spent executing FC and SLS Caffe2 operators [75].

With a batch size of 8, SLS accounts for 37.2% and 50.6% of

the total model execution time of RMC1-small and RMC1-

large, respectively. Whereas for larger models represented

by RMC2-small and RMC2-large, a more significant por-

tion of the execution time goes into SLS (73.5%, 68.9%).

Furthermore, the fraction of time spent on the embedding

table operations increases with higher batch-size — 37.2%

to 61.1% and 50.6% to 71.3% for RMC1-small and RMC1-

large respectively. Note, the execution time of RMC2-large

is 3.6× higher than RMC1-large because RMC2 comprises a

higher number of embedding tables. Embedding table sizes are

expected to increase further for models used in industry [81].

D. Roofline Analysis

Applying the roofline model [70], we find recommendation
models lie in the memory bandwidth-constrained region, close

792

Fig. 5. Roofline of multi-threaded
RMC1-large, RMC2-large sweep-
ing batch size (1-256). Darker
color indicates larger batch.

Fig. 6. Memory bandwidth saturation
with increasing number of parallel SLS
threads and batch sizes.

to the theoretical roofline performance bound. We construct

a roofline describing the theoretical limits of the test system

described in Section IV. We use Intel’s Memory Latency

Checker (MLC)1 to derive the memory bound. We derive the

compute bound by sweeping the number of fused multiply-

add (FMA) units in the processor and the operating frequency

of the CPU (Turbo mode enabled).

Figure 5 presents the roofline data points for the models,

RMC1 and RMC2, as well as their corresponding FC and

SLS operators separately. We sweep batch size from 1 to

256 with darker colors indicating a larger batch size. We

observe that the SLS operator has low compute but higher

memory requirements; the FC portion of the model has higher

compute needs; and the combined model is in between. SLS

has low and fixed operational intensity across batch sizes, as

it performs vector lookups and element-wise summation. FC’s

operational intensity increases with batch size, as all requests

in the batch share the same FC weights, increasing FC data

reuse. With increasing batch size, the FC operator moves from

the region under the memory-bound roofline to the compute-

bound region. For the full model, we find RMC1 and RMC2

in the memory bound region, as the operational intensity

is dominated by the high percentage of SLS operations. It

also reveals that, with increasing batch size, the performance

of SLS, as well as RMC1 and RMC2, is approaching the

theoretical performance bound of the system.

More importantly, our roofline analysis suggests that the
performance of the recommendation model is within 35.1% of
the theoretical performance bound and there is little room
for further improvement without increasing system memory
bandwidth. By performing the embedding lookups and pooling

operations before crossing the pin-limited memory interface,

near-memory processing can exploit higher internal band-

width of the memory system, thus effectively lifting up the

roofline and fundamentally improving the memory bandwidth-

constrained performance bound.

E. Memory Bandwidth of Production Configurations

Executing embedding operations on real systems can satu-
rate memory bandwidth at high model-, operator- and data-
level parallelism. Figure 6 depicts the memory bandwidth

consumption as we increase the number of parallel SLS

1Intel MLC [30] measures the bandwidth from the processor by creating
threads that traverse a large memory region in random or sequential stride as
fast as possible.

Fig. 7. (a) Temporal data locality sweeping cache capacity 8-64MB with
fixed cacheline size of 64B; (b) Spatial data locality sweeping cacheline size
64-512B with fixed cache capacity 16MB.

threads for different batch sizes (blue curves). The green

horizontal line represents the ideal peak bandwidth (76.8 GB/s,

4-channel, DDR4-2400) and the red curve is an empirical

upper bound measured with Intel MLC [30]. We observe

that memory bandwidth can be easily saturated by embedding

operations especially as batch size and the number of threads

increase. In this case, the memory bandwidth saturation point

occurs (batch size = 256, number of SLS threads = 30) where

more than 67.4% of the available bandwidth is taken up by

SLS. In practice, a higher level of bandwidth saturation beyond

this point becomes undesirable as memory latency starts to

increase significantly [37]. What is needed is a system that
can perform the Gather-Reduce operation near memory such
that only the final output from the pooling returns to the CPU.

F. Embedding Table Locality Analysis

Prior work [75], [81] has assumed that embedding table

lookups are random, however we show, for traces from pro-
duction traffic, there exists modest level of locality mostly due
to temporal reuse. While recommendation models are limited

by memory performance generally, we wanted to study the

memory locality to see if caching can improve performance.

We evaluate both a random trace and embedding table (T1-T8)

lookup traces from production workloads used by Eisenman

et al. [10]. In production systems, one recommendation model

contains tens of embedding tables and multiple models are co-

located on a single machine. To mimic the cache behavior of a

production system, we simulate the cache hit rate for multiple

embedding tables co-located on one machine. In Figure 7(a),

Comb-8 means that 8 embedding tables are running on the

machine and the T1-T8 traces (each for a single embedding

table) are interleaved for the 8 embedding tables. For Comb-

16, Comb-32 and Comb-64 we multiply the 8 embedding

tables 2, 4, and 8 times on the same machine, which also

approximates larger models with 16, 32 and 64 embedding

tables. We use the LRU cache replacement policy and 4-way

set associative cache. We assume each embedding table is

stored in a contiguous logical address space and randomly

mapped to free physical pages.

To estimate the amount of temporal locality present, we

sweep the cache capacity between 8-64MB with fixed cache-

line size of 64B. In Figure 7(a), the random trace has a low

hit rate of <5% representing the worst case locality. We see

that the combined simulation of production traces is much

higher than random with a hit rate between 20% and 60%.

More importantly, hit rate increases as cache size increases. In

Section III-D, we will show how optimizations to RecNMP can

793

take advantage of this locality through table-aware packet

scheduling and software locality hints from batch profiling.

Spatial locality can be estimated by sweeping the cacheline

size of 64-512B with a fixed cache capacity of 16MB. Fig-

ure 7(b) illustrates this sweep for the Comb-8. We observe that

as the cacheline size increases, in fact, hit rate decreases. In

order to isolate the effect of increased conflict misses we run

the same experiment on a fully-associative cache and observe

similar trends of decreasing hit rate. Thus, we conclude that

embedding table lookup operations have little spatial locality.

III. RECNMP SYSTEM DESIGN

Considering the unique memory-bounded characteristics

and the sparse and irregular access pattern of personal-

ized recommendation, we propose RecNMP—a practical and

lightweight near-memory processing solution to accelerate the

dominated embedding operations. It is designed to maximize

DRAM rank-level parallelism by computing directly and lo-

cally on data fetched from concurrently activated ranks.

First, we employ a minimalist style hardware architecture

and embed specialized logic units and a rank-level cache

to only support the SLS-family inference operators instead

of general-purpose computation. The modified hardware is

limited to the buffer chip within a DIMM without requiring

any changes to commodity DRAM devices. Next, the sparse,

irregular nature of embedding lookups exerts a high demand

on command/address (C/A) bandwidth. This is addressed by

sending a compressed instruction format over the standard

memory interface, conforming to the standard DRAM physical

pin-outs and timing constraints. Other proposed NMP solu-

tions have employed special NMP instructions without ad-

dressing the C/A limitation of irregular and low spatial locality

memory accesses pattern [22], [81]. We also present a hard-

ware/software (HW/SW) interface for host-NMP coordination

by adopting a heterogeneous computing programming model,

similar to OpenCL [35]. Finally, we explore several HW/SW

co-optimization techniques–memory-side caching, table-aware
scheduling and hot entry profiling–that provide additional per-

formance gains. These approaches leverage our observations

from the workload characterization in the previous section.

A. Hardware Architecture

System overview. RecNMP resides in the buffer chip on the

DIMM. The buffer chip bridges the memory channel interface

from the host and the standard DRAM device interface, using

data and C/A pins, as illustrated in Figure 8(a). Each buffer

chip contains a RecNMP processing unit (PU) made up of a

DIMM-NMP module and multiple rank-NMP modules. This

approach is non-intrusive and scalable, as larger memory ca-

pacity can be provided by populating a single memory channel

with multiple RecNMP-equipped DIMMs. Multiple DDR4

channels can also be utilized with software coordination.

The host-side memory controller communicates with a

RecNMP PU by sending customized compressed-format NMP

instructions (NMP-Inst) through the conventional memory

channel interface; the PU returns the accumulated embedding

pooling results (DIMM.Sum) to the host. Regular DDR4-

compatible C/A and data signals (DDR.C/A and DDR.DQ)

are decoded by the RecNMP PU from the NMP-Insts and

then sent to all DRAM devices across all parallel ranks in a

DIMM. By placing the logic at rank-level, RecNMP is able to

issue concurrent requests to the parallel ranks and utilize, for

SLS-family operators, the higher internal bandwidth present

under one memory channel. Its effective bandwidth thus

aggregates across all the parallel activated ranks. For example,

in Figure 8(a), a memory configuration of 4 DIMMs×2 ranks

per DIMM could achieve 8× higher internal bandwidth.

The DIMM-NMP module first receives a NMP-Inst through

DIMM interface and then forwards it to the corresponding

rank-NMP module based on the rank address. The rank-

NMPs decode and execute the NMP-Inst to perform the

local computation of the embedding vectors concurrently.

We do not confine a SLS operation to a single rank but

support aggregation across ranks within the PU. This simplifies

the memory layout and increases bandwidth. DIMM-NMP

performs the remaining element-wise accumulation of the

partial sum vectors (PSum) from parallel ranks to arrive at the

final result (DIMM.Sum). In the same fashion, Psums could

be accumulated across multiple RecNMP PUs with software

coordination. We will next dive into the design details on the

DIMM-NMP and rank-NMP modules. While they are on the

same buffer chip, having separate logical modules makes it

easy to scale to DIMMs with a different number of ranks.

DIMM-NMP Module. To dispatch the NMP-Inst received

from the DIMM interface, the DIMM-NMP module employs

DDR PHY and protocol engine similar to the design of a

conventional DIMM buffer chip relaying the DRAM C/A and

DQ signals from and to the host-side memory controller.

The instruction is multiplexed to the corresponding ranks

based on the Rank-ID as shown in Figure 8(b). DIMM-NMP

buffers the Psum vectors accumulated by each rank-NMP in its

local registers and performs final summation using an adder

tree before sending the final result back to the host via the

standard DIMM interface. Depending on the memory system

configuration, the number of ranks within a DIMM can vary,

changing the number of inputs to the adder tree.

Rank-NMP Module. RecNMP uses the internal bandwidth

on a DIMM to increase the effective bandwidth of embedding

table operations, thus the majority of the logic is replicated

for each rank. Three crucial functions are performed by

the rank-NMP module—translating the NMP-Inst into low-

level DDR C/A commands, managing memory-side caching
and computing SLS-family operators locally. As illustrated in

Figure 8(c), the NMP-Inst is decoded to control signals and

register inputs. To address C/A bus limitations, all of the DDR

commands for a single SLS vector is embedded in one NMP-

Inst. Three fields in NMP-Inst (Figure 8(d))—DDR cmd (the

presence/absence of {ACT, RD, PRE} with bit 1/0), vector

size (vsize), and DRAM address (Daddr)—determine the DDR

command sequence and the burst length. These are fed to

the local command decoder (Rank.CmdDecoder) to generate

standard DDR-style ACT/RD/PRE commands to communicate

794

Fig. 8. (a) Architecture overview of RecNMP architecture; (b) DIMM-NMP; (c) Rank-NMP; (d) NMP instruction format.

with DRAM devices. The tags are set at runtime by the

host-side memory controller based on the relative physical

address location of consecutive embedding accesses. This

keeps the CmdDecoder in rank-NMP lightweight, as the host-

side memory controller has performed the heavy-lifting tasks

of request reordering, arbitration, and clock and refresh signal

generation. If a 128B vector (vsize=2) requires ACT/PRE from

a row buffer miss, the command sequence to DRAM devices

for the NMP-Inst is {PRE, ACT Row, RD Col, RD Col+8}
decoded from {ACT, RD, PRE} and vsize tags.

Our locality analysis in Section II shows that the modest

temporal locality within some embedding tables as vectors

are reused. The operands of each SLS-family operator vary

so caching the final result in the DIMM or CPU will be

ineffective. We incorporate a memory-side cache (RankCache)

in each rank-NMP module to exploit the embedding vectors

reuse. The RankCache in RecNMP takes hints from the Lo-

calityBit in the NMP-Inst to determine whether an embedding

vector should be cached or bypassed. The detailed method to

generate the LocalityBit hint through hot entry profiling will

be explained in Section III-D. Entries in RankCache are tagged

by the DRAM address field (Daddr). If the LocalityBit in the

NMP-Inst indicates low locality, the memory request bypasses

the RankCache and is forwarded to Rank.CmdDecoder to

initiate a DRAM read. Embedding tables are read-only during

inference, so this optimization does not impact correctness.

The datapath in the rank-NMP module supports a range

of SLS-family operators. The embedding vectors returned by

the RankCache or DRAM devices are loaded to the input

embedding vector registers. For weighted sum computation,

the weight registers are populated by the weight fields from

the NMP-Inst. For quantized operators such as the SLS-8bits

operator, the dequantized parameters Scalar and Bias are

stored with the embedding vectors and can be fetched from

memory to load to the Scalar and Bias registers. The Weight

and Scalar/Bias registers are set to be 1 and 1/0 during execu-

tion of non-weighted and non-quantized SLS operators. The

PsumTag decoded from the NMP-Inst is used to identify the

embedding vectors belonging to the same pooling operations,

as multiple poolings in one batch for one embedding table

could be served in parallel. The controller counter, vector

size register, and final sum registers in the both the DIMM-

NMP and rank-NMP modules are all memory-mapped, easily

accessible and configurable by the host CPU.

B. C/A Bandwidth Expansion

Although the theoretical aggregated internal bandwidth of

RecNMP scales linearly with the number of ranks per channel,

in practice, the number of concurrently activated ranks is

limited by the C/A bandwidth. Due to frequent row buffer

misses/conflicts from low spatial locality, accessing the em-

bedding table entries in memory requires a large number of

ACT and PRE commands. The reason is that the probability of

accessing two embedding vectors in the same row is quite low,

as spatial locality only exists in continuous DRAM data burst

of one embedding vector. In production, embedding vector size

ranges from 64B to 256B with low spatial locality, resulting

in consecutive row buffer hits in the narrow range of 0 to 3.

To fully understand the C/A bandwidth limitation, we ana-

lyze the worst-case scenario when the embedding vector size

is 64B. A typical timing diagram is presented in Figure 9(a).

It shows an ideal sequence of bank-interleaved DRAM reads

that could achieve one consecutive data burst. In this burst

mode, the ACT command first sets the row address. Then the

RD command is sent accompanied by the column address.

After tRL DRAM cycles, the first set of two 64-bit data (DQ0

and DQ1) appear on the data bus. The burst mode lasts for 4

DRAM cycles (burst length = 8) and transmits a total of 64B

on the DQ pins at both rising and falling edges of the clock

signal. Modern memory systems employ bank interleaving,

therefore in the next burst cycle (4 DRAM cycles), data from

a different bank can be accessed in a sequential manner. In this

ideal bank interleaving case, every 64B data transfer takes 4

DRAM cycles and requires 3 DDR commands (ACT/RD/PRE)

to be sent over the DIMM C/A interface, this consumes

75% of the C/A bandwidth. Activating more than one bank

concurrently would require issuing more DDR commands,

thus completely exhausting the available C/A bandwidth of

conventional memory interface.

To overcome C/A bandwidth limitation, we propose a

customized NMP-Inst with a compressed format of DDR

commands to be transmitted from memory controller to Rec-

NMP PUs. Figure 9(b) illustrates the timing diagram of

795

Fig. 9. Timing diagram of (a) ideal DRAM bank interleaving read operations;
(b) The proposed RecNMP concurrent rank activation.

interleaving NMP-Inst to a 4 DIMMs × 2 Ranks per DIMM

memory configuration. Eight NMP-Insts can be transferred be-

tween memory controller and DIMMs interfaces in 4 DRAM

data burst cycles on double data rate. In low spatial locality

case (64B embedding vector and one NMP-Inst per vector)

and ideal bank interleaving, we could potentially activate 8

parallel ranks to perform 8×64B lookups concurrently in 4

DRAM data burst cycles. Although customized instructions

have been proposed before [5], [22], [81], our solution is the

first one to directly deal with the C/A bandwidth limitation

using DDR command compression that enables up to 8×
bandwidth expansion for small-sized embedding vectors (i.e.

64B) with low spatial locality. Higher expansion ratio can be

achieved with larger vector size.

C. Programming Model and Execution Flow

Like previous NMP designs [22], [32], RecNMP adopts a

heterogeneous computing programming model (e.g. OpenCL),

where the application is divided into host calls running on

the CPU and NMP kernels being offloaded to RecNMP

PUs. NMP kernels are compiled into packets of NMP-Insts

and transmitted to each memory channel over the DIMM

interface to RecNMP PUs. Results of NMP kernels are then

transmitted back to the host CPU. In Figure 8(d), each 79-bit

NMP-Inst contains distinctive fields that are associated with

different parameters in an embedding operation, locality hint

bit (LocalityBit) and pooling tags (PsumTag) passed between

the HW/SW interface. The proposed NMP-Inst format can fit

within the standard 84-pin C/A and DQ interface.

Using a simple SLS function call in Figure 10(a) as an

example, we walk through the execution flow of the proposed

RecNMP programming model. First, memory is allocated

for SLS input and output data, and is marked up as either

Host (cacheable) or NMP (non-cacheable) regions to simplify

memory coherence between the host and RecNMP. Variables

containing host visible data, such as the two arrays Indices
and Lengths, are initialized and loaded by the host and are

cachable in the host CPU’s cache hierarchy. The embedding

table (Emb) in memory is initialized by the host as a host non-

cacheable NMP region using a non-temporal hint (NTA) [31].

Fig. 10. (a) RecNMP SLS example code; (b) NMP packet; (c) NMP kernel
offloading; (d) NMP-enabled memory controller.

Next, the code segment marked as a NMP kernel is com-

piled to packets of NMP-Insts (Figure 10(b)). A single SLS

NMP kernel containing one batch of embedding poolings can

be split into multiple NMP packets, with each packet having

one or more pooling operations. The NMP-Insts belonging to

different embedding poolings in one NMP packet are tagged

by PsumTag, and the maximum number of poolings in one

packet is determined by the number of bits of the PsumTag.

We use a 4-bit PsumTag in our design. At runtime, the NMP

kernel is launched by the host with special hardware/driver

support to handle NMP packet offloading; access to the

memory management unit (MMU) to request memory for

NMP operations; and the virtual memory system for logical-

to-physical addresses translation (Figure 10(c)). The offloaded

NMP packets bypass L1/L2 and eventually arrive at the host-

side memory controller with an NMP extension. To avoid

scheduling the NMP packets out-of-order based on FR-FCFS

policy, the NMP extension of the memory controller includes

extra scheduling and arbitration logic.

As illustrated in Figure 10(d), the memory controller with

the NMP extension receives concurrent NMP packets from

parallel execution of multiple host cores, which are stored

in a queue. Once scheduled, each NMP packet is decoded

into queued NMP-Insts. Physical-to-DRAM address mapping

is then performed and a FR-FCFS scheduler reorders the

NMP-Insts within a packet only and not between packets.

Instead of sending direct DDR commands, ACT/RD/PRE

actions are compressed into the 3-bit DDR cmd field in the

NMP-Inst. The host-side memory controller also calculates the

correct accumulation counter value to configure the memory-

mapped control registers in the RecNMP PU. Finally, after

the completion of all the counter-controlled local computation

inside the RecNMP PU for one NMP packet, the final summed

796

Fig. 11. NMP packet scheduling scheme that prioritizes batch of single table.

Fig. 12. Hit rate of 1MB cache without optimization, with table-aware packet
scheduling optimization, with both table-aware packet scheduling and hot
entry profiling optimization, and ideal case without interference.

result is transmitted over the DIMM interface and returned to

the Output cacheable memory region visible to the CPU.

D. HW/SW Co-optimization

Our locality analysis of production recommendation traffic

in Section II-F illustrates intrinsic temporal reuse opportuni-

ties in embedding table lookups. We propose memory-side

caches (RankCache) inside rank-NMP modules. To extract

more performance from memory-side caching, we explore two

additional HW/SW co-optimization techniques. This locality-

aware optimization results in 33.7% memory latency im-

provement and 45.8% memory access energy saving (detailed

performance benefits will be presented in Section V).

First, to preserve the intrinsic locality from embedding

lookups residing in one table, we propose to prioritize schedul-

ing NMP packets from a single batch requests to the same

embedding table together – table-aware packet scheduling. In

production workloads, the memory controller receives NMP

packets from parallel SLS threads with equal scheduling

priority. The intra-embedding table temporal locality is not

easily retained because of the interference from lookup op-

erations of multiple embedding tables. This locality can be

further degraded when multiple recommendation models are

co-located. Therefore, as illustrated in Figure 11, we propose

an optimized table-aware NMP packet scheduling strategy

to exploit the intrinsic temporal locality within a batch of

requests by ordering packets from the same embedding table

in one batch first, allowing the embedding vectors to be

fetched together, thereby retaining the temporal locality. SLS

operators access separate embedding tables as running in

parallel threads, the mechanics of our implementation comes

from the thread-level memory scheduler [61].

Next, we propose another optimization technique – hot
entry profiling, built on top of the observation that a small

subset of embedding entries exhibit relatively higher reuse

characteristics. We profile the vector of indices used for

embedding table lookup in an NMP kernel and mark the

entries with high locality by explicitly annotating NMP-Insts

with a LocalityBit. NMP-Inst with LocalityBit set will be

cached in the RankCache; otherwise, the request will bypass

Fig. 13. RecNMP experimental methodology.

the RankCache. This hot entry profiling step can be performed

before model inference and issuing SLS requests and only

costs <2% of total end-to-end execution time. We profile the

indices of each incoming batch of embedding lookups and

set LocalityBit if the vectors are accessed > t times within

the batch. Infrequent (< t times) vectors will bypass the

RankCache and are read directly from the DRAM devices.

We sweep the threshold t and pick the value with the highest

cache hit rate to use in our simulation. This hot entry profiling

optimization reduces cache contention and evictions caused by

the less-frequent entries in the RankCache.

Figure 12 depicts the hit rate improvement when the dif-

ferent optimizations are applied. Comb-8 indicates the overall

hit rate at model level of 8 embedding tables (T1-T8). To gain

more insights, we investigate the hit rate of embedding tables

(T1 to T8) in Comb-8. The ideal bar indicates the theoretical

hit rate with an infinitely sized cache. With the proposed co-

optimization, the measured hit rate closely approaches the

ideal case across the individual embedding tables, even for

the trace with limited locality (T8), illustrating the proposed

technique can effectively retain embedding vectors with high

likelihood of reuse in RankCache.

IV. EXPERIMENTAL METHODOLOGY

Our experimental setup combines real-system evaluations

with cycle-level memory simulations, as presented in Figure

13. For real-system evaluations, we run production-scale rec-

ommendation models on server-class CPUs found in the data

center. This allows us to measure the impact of accelerating

embedding operations as well as the side-effect of improved

memory performance of FC operations on end-to-end models.

Cycle-level memory simulations allow us to evaluate the de-

sign tradeoffs when DRAM systems are augmented with Rec-
NMP. Table I summarizes the parameters and configurations

used in the experiments. We run experiments on an 18-core

Intel Skylake with DDR4 memory. The DRAM simulation

used standard DDR4 timing from a Micron datasheet [51].

Real-system evaluation. We configure the DRLM bench-

mark with the same model parameters and traces in Figure 2(b)

and Section II. The workload characterization (Section II) and

real-system experiments (Section V) are performed on single

socket Intel Skylake servers, specifications in Table I.

Cycle-level memory simulation. We build the Rec-
NMP cycle-level simulation framework with four main compo-

797

TABLE I
SYSTEM PARAMETERS AND CONFIGURATIONS

Real-system Configurations
Processor 18 cores, 1.6 GHz L1I/D 32 KB
L2 cache 1 MB LLC 24.75 MB

DRAM

DDR4-2400MHz 8Gb ×8, 64 GB,
4 Channels × 1 DIMM × 2 Ranks, FR-FCFS

32-entry RD/WR queue, Open policy,
Intel Skylake address mapping [66]

DRAM Timing Parameters
tRC=55, tRCD=16, tCL=16, tRP=16, tBL=4

tCCD S=4, tCCD L=6, tRRD S=4, tRRD L=6, tFAW=26

Latency/Energy Parameters
DDR Activate = 2.1nJ, DDR RD/WR = 14pJ/b, Off-chip IO = 22pJ/b

RankCache RD/WR = 1 cycle, 50pJ/access,
FP32 adder = 3 cycles, 7.89pJ/Op, FP32 mult = 4 cycles, 25.2pJ/Op

nents: (1) physical addresses mapping module; (2) packet gen-

erator; (3) locality-aware optimizer; and (4) a cycle-accurate

model of a RecNMP PU consisting of DRAM devices,

RankCache, arithmetic and control logic. We use Ramulator

[80] to conduct cycle-level evaluations of DDR4 devices.

On top of Ramulator, we build a cycle-accurate LRU cache

simulator for RankCache and model of the 4-stage pipeline

in the rank-NMP module. Cacti [58] is used to estimate the

access latency and area/energy of RankCache. The hardware

implementation used to estimate the latency, area and power of

the arithmetic logic is built from Synopsys Design Compiler

with a commercial 40nm technology library. To estimate the

DIMM energy, we use Cacti-3DD [41] for DRAM devices and

Cacti-IO [59] for off-chip I/O at the DIMM level.

During simulation we emulate the scheduling packet gener-

ation steps taken by the software stack and the memory con-

troller. First, we apply a standard page mapping method [50]

to generate the physical addresses from a trace of embedding

lookups by assuming the OS randomly selects free physical

pages for each logical page frame. This physical address trace

is fed to Ramulator to estimate baseline memory latency. For

RecNMP workloads, the packet generator divides the physical

address trace into packets of NMP-Insts that are sent to

the cycle-accurate model. Next, the when evaluating systems

with HW/SW co-optimizations, the locality-aware optimizer

performs table-aware packet scheduling and hot entry profiling

and decides the sequence of NMP-Insts. RecNMP activate

all memory ranks in parallel and traditional DRAM bank-

interleaving is also used. For each NMP packet, performance

is determined by the slowest rank that receives the heaviest

memory request load. Rank-NMP and DIMM-NMP logic units

are pipelined to hide the latency of memory read operations.

The total latency of RecNMP includes extra DRAM cycles

during initialization to configure the accumulation counter

and the vector size register and a cycle in the final stage to

transfer the sum to the host. The latency, in DRAM cycles, of

the major components including RankCache, rank-NMP logic

performing weighted-partial sum and final sum are in Table I.

V. EVALUATION RESULTS

This section presents a quantitative evaluation of Rec-
NMP and shows it accelerates end-to-end personalized rec-

Fig. 14. (a) Normalized latency of RecNMP-base to the baseline DRAM with
different memory configuration (DIMM x Rank) and NMP packet size; (b)
Distribution of rank-level load imbalance for 2-, 4-, and 8-rank systems.

ommendation inference by up to 4.2×. We first present the

latency improvement of the offloaded SLS operators on a base-

line system before analyzing different optimizations including

placement with page coloring, memory-side caching, table-

aware packet scheduling and hot-entry profiling. We compare

RecNMP with state-of-the-art NMP systems TensorDIMM

and Chameleon [22], [81]. We also analyze the effect of

RecNMP on co-located FC operators. Finally, an end-to-end

evaluation of throughput improvement and energy savings at

the model level and the area/power overhead is presented.

A. SLS Operator Speedup

In theory, because RecNMP exploits rank-level parallelism,

speedup will scale linearly with the number of ranks and

number of DIMMs in a system. Therefore, we choose four

memory channel configurations (# of DIMMs × # of ranks

per DIMM) that correspond to 1 × 2, 1 × 4 and 2 × 2, and

4× 2 to demonstrate a range of system implementations.

Basic RecNMP design without RankCache. We start by

evaluating RecNMP without a RankCache (RecNMP-base). In

addition to varying the DIMM/rank configuration, we sweep

the number of poolings in one NMP packet, where one

pooling, in DLRM, is the sum of 80 embedding vectors. In

Figure 14(a), we find 1) SLS latency indeed scales linearly

as we increase the number of active ranks in a channel; 2)

latency also decreases when there are more pooling operations

in an NMP packet. The variation we observe, as well as the

performance gap observed between the actual speedup and

the theoretical speedup (2× for 2-rank, 4× for 4-rank, and

8× for 8-rank systems) is caused by the uneven distribution

of embedding lookups across the ranks. As the ranks operate

in parallel, the latency of the SLS operation is determined by

the slowest rank, the rank that runs more embedding lookups.

Figure 14(b) shows the statistical distribution of fraction of the

work run on the slowest rank. When the NMP packet has fewer

NMP-Insts, the workload distributes more unevenly, resulting

in a longer tail that degrades average speedup.

To address the load imbalance, we experiment with software

methods to allocate an entire embedding table to the same

rank. One software approach to perform such data layout op-

798

Fig. 15. (a) Normalized latency of RecNMP-cache and RecNMP-opt with
schedule and hot-entry profile optimization to the baseline DRAM system;
(b) Cache size sweep effects in RecNMP-opt.

timization is page coloring [78]. As indicated in Figure 14(a),

page coloring could achieve 1.96×, 3.83× and 7.35× speedup

in 2-rank, 4-rank and 8-rank system compared with the DRAM

baseline. The specific page coloring mechanism can be imple-

mented in the operating system by assigning a fixed color

to the page frames used by an individual embedding table.

The virtual memory system would need to be aware of the

DRAM configuration to allocate pages of the same color to

physical addresses that map to the same rank. This data layout

optimization can lead to near-ideal speedup, but it requires

maintaining high model- and task-level parallelism such that

multiple NMP packets from different SLS operators can be

issued simultaneously to all the available ranks.

RecNMP with RankCache and co-optimization. Memory-

side caching at the rank-level with table-aware packet schedul-

ing and hot entry profiling is one of the notable features of

RecNMP; these optimizations are described in Section III-D.

Figure 15(a) depicts the performance benefits (i.e. latency

reduction) enabled by applying different optimization tech-

niques: 1) adding a RankCache, 2) scheduling accesses to

the same table together, 3) adding a cachability hint bit from

software. Using a configuration with 8-ranks 8 poolings per

packet, we observe 14.2% latency improvement by adding a

128KB RankCache and an additional 15.4% improvement by

prioritizing the scheduling of NMP packets from the same

table and batch. In the final combined optimization, schedule
+ profile, we pass cacheability hint after profiling the indices

in the batch which reduces cache contention and allows

low-locality requests not marked for caching to bypass the

RankCache, delivering another 7.4% improvement. The total

memory latency speedup achieved by offloading SLS to an

optimized design (RecNMP-opt) is 9.8×.

In Figure 15(b), we sweep RankCache capacity from 8KB

to 1MB and display how cache size affects the normalized

latency and cache hit rate. When RankCache is small (e.g.

8KB), the low cache hit rate (e.g. 24.9%) leads to high

DRAM access latency. The performance reaches the optimal

design point at 128KB. Further increase of cache size has

marginal improvement on hit rate, since it already reaches the

compulsory limit in the trace. Yet it incurs longer cache access

latency and degrades overall performance.

Performance comparison. We compare RecNMP with

state-of-the-art NMP designs such as Chameleon [22] and Ten-

sorDIMM [81]. Both are DIMM-based near-memory process-

ing solutions. TensorDIMM scales the embedding operation

Fig. 16. Comparison between Host baseline, RecNMP-opt, TensorDIMM [81]
and Chameleon [22] with both random and production traces

performance linearly with the number of parallel DIMMs.

Since non-SLS operators are accelerated by GPUs in Ten-

sorDIMM, which is orthogonal to near-memory acceleration

techniques, we only compare its memory latency speedup with

RecNMP. Chameleon does not directly support embedding

operations. We estimate its performance of Chameleon by

simulating the temporal and spatial multiplexed C/A and

DQ timing of Chameleon’s NDA accelerators. In Figure 16,

as RecNMP exploits rank-level parallelism, its performance

scales when either the number of DIMMs and ranks increase,

whereas Chameleon and TensorDIMM only scale by increas-

ing the number of DIMMs. This is evident as we sweep the

memory channel configuration. When we increase the number

of ranks per-DIMM, RecNMP can deliver 3.3-6.4× and 2.4-

4.8× better performance than Chameleon and TensorDIMM.

It is also worth noting that RecNMP has performance advan-

tages (1.9× and 1.4×) even in configurations with one rank per

DIMM, thanks to the memory-side caching, table-aware packet

scheduling, and hot-entry profiling optimization techniques.

Neither Chameleon nor TensorDIMM includes a memory-side

cache to explicitly take advantage of the available locality in

the memory access patterns, hence their performance, with

respect to memory latency, is agnostic to traces with different

amounts of data reuse. In contrast, RecNMP design can extract

40% more performance (shown as shaded) from production

traces when compared to fully random traces.

B. FC Operator Speedup

Although RecNMP is designed to accelerate the execution

of SLS operators, it can also improve FC performance by

alleviating cache contention caused by model co-location. As

the degree of data-level parallelism increases, the FC weights

brought into the cache hierarchy have higher reuse, normally

resulting in fewer cache misses. However, when co-located

with other models, reusable FC data are often evicted early

from the cache by SLS data, causing performance degradation.

Figure 17 shows the degree of performance degradation

on the co-located FC operations. The amount of performance

degradation experienced by the FC layers varies by the FC

sizes, the degree of co-location, and the pooling values.

When examining the FC performance in baseline systems, we

observe worsening FC performance with larger FC weights at

higher co-location degrees and higher pooling values. Rec-
NMP effectively reduces the pressure from the cache con-

tention, we show the base RecNMP design but RecNMP-opt

impacts FC performance equally as it offloads the same SLS

computation. This beneficial effect ranging from 12% to 30%

is more pronounced for larger FCs whose weight parameters

exceed the capacity of the L2 cache and reside mainly inside

799

Fig. 17. Effect of model co-location on latency of (a) TopFC in RMC2-small
model; (b) TopFC in RMC2-large model.

Fig. 18. (a) Single end-to-end speedup of recommendation inference with
2-rank, 4-rank and 8-rank RecNMP systems; (b) Single model speedup with
different batch size; (c) Host and RecNMP-opt co-located model latency-
throughput tradeoff.

the LLC cache. For smaller FCs whose working set fits inside

the L2 cache (e.g. all BottomFC and RMC1’s TopFC), the

relative improvement is comparatively lower (∼ 4%).

C. End-to-end Model Speedup

Throughput improvement. To estimate the improvement

of end-to-end recommendation inference latency, we calculate

the total speedup by weighting the speedup of both SLS

and non-SLS operators. We measure model-level speedup

across all four representative model configurations, shown in

Figure 18(a). Not surprisingly, the model that spends the most

time running SLS operators (RMC2-large) receives the high-

est speedup. In Figure 18(b), the performance improvement

obtained by RecNMP varies with batch size. In general, the

model-level speedup increases with a larger batch size, as the

proportion of time spent in accelerated SLS operators grows.

Figure 18(c) looks at the overall effect of increasing co-

location in the presence of random or production traces for

both the CPU baseline and our proposed RecNMP solution.

Co-location generally increases the system throughput at the

cost of degrading latency. Compared to random traces, the

locality present in production traces improves performance.

However, this locality performance “bonus” wears off as the

level of model co-location increases due to the cache interfer-

ence from the growing number of embedding tables in multiple

models. Applying RecNMP in a 8-rank system results in 2.8-

3.5× and 3.2-4.0× end-to-end speedup of RMC1-large and

RMC2-small as the number of co-located models increases,

TABLE II
SUMMARY OF RecNMP DESIGN OVERHEAD

RecNMP PU Chameleon [22]
(8 CGRA

accelerators)
RecNMP-base

w/o RankCache
RecNMP-opt

with RankCache

Area (mm2) 0.34 0.54 8.34
Power (mW) 151.3 184.2 3138.6-3251.8

because the fraction of SLS latency rises.The improvement of

both latency and throughput enabled by RecNMP is clearly

observed compared to the baseline system.

Memory energy savings. Comparing with the baseline

DRAM system, RecNMP provide 45.8% memory energy

saving. RecNMP saves the energy from the reduced data

movement between the processor and the memory by perform-

ing local accumulation near DRAM devices and the leakage

saving from reduced latency. In addition, by incorporating

memory-side caching and applying co-optimization techniques

to improve RankCache hit rate, RecNMP achieves extra energy

savings by reducing the number of DRAM accesses.

Area/power overhead. We estimate RecNMP design over-

head assuming 250MHz clock frequency and 40nm CMOS

technology. The area and power numbers are derived from

Synopsys Design Compiler (DC) for the arithmetic and control

logic and Cacti [58] for SRAM memory (i.e. RankCache).

Table II summarizes the overhead of each RecNMP processing

unit for both the basic configuration without cache and the

optimized configuration with cache optimization.

Compared with Chameleon, which embeds 8 CGRA cores

per DIMM, our RecNMP PU consumes a fraction of the area

(4.1%, 6.5% for RecNMP-base and RecNMP-opt) and power

(4.6-5.9%). When scaling RecNMP PUs to multiple ranks in

the DIMM, the total area and power will grow linearly, but

it also translates to linearly-scaled embedding speedup. Given

that a single DIMM consumes 13W [81] and a typical buffer

chip takes up 100mm2 [62], RecNMP incurs small area/power

overhead that can easily be accommodated without requiring

any changes to the DRAM devices.

VI. RELATED WORK

Performance characterization of recommendation mod-
els. Recent publications have discussed the importance and

scale of personalized recommendation models in data cen-

ter [1], [14], [49], [64], [65], [75], [77]. Compared to CNNs,

RNNs, and FCs [12], [69], [72], [82], the analysis demon-

strates how recommendation models have unique storage,

memory bandwidth, and compute requirements. For instance,

[75] illustrates how Facebook’s personalized recommendation

models are dominated by embedding table operations. To the

best of our knowledge, RecNMP is the first to perform lo-

cality study using production-scale models with representative

embedding traces.

DRAM-based near-memory and near-data acceleration.
Many prior works explore near-memory processing using

3D/2.5D-stacked DRAM technology (e.g. HMC/HBM) [5],

[13], [17], [39], [42], [43], [45], [46], [48], [56], [67].

Due to their limited memory capacity (16-32GB) and high

800

cost of ownership, these schemes are not suitable for large-

scale deployment of recommendation models (10s to 100s of

GBs) in production environment. Chameleon [22] introduces

a practical approach to performing near-memory processing

by integrating CGRA-type accelerators inside the data buffer

devices in a commodity LRDIMM [22]. Unlike Chameleon’s

DIMM-level acceleration, RecNMP exploits rank-level paral-

lelism with higher speedup potential. RecNMP also employs a

lightweight NMP design tailored to sparse embedding opera-

tors with much lower area and power overheads than CGRAs.

Supporting error correction (e.g. ECC) is important for

reliable operation. Since RecNMP keeps the rank as the

minimal logical device, all DRAM chips in a rank being

addressed simultaneously, this preserves design simplicity for

ECC operations (8 data chips and 1 parity chip). Alternatively,

error detection/correction logic could be placed on the buffer

chip before the compute logic, incurring very low hardware

overhead, such as [9], [16], [26]–[28]. General ECC designs

tailored for near memory processing remain an open question.

System optimization for memory-constrained learning
models. Sparse embedding representations have been com-

monly employed to augment deep neural network (DNN)

models with external memory to memorize previous history.

Eisenman et al. explore the use of NVMs for large embed-

ding storage [10]. Although the proposed techniques result

in 2 − 3× improvement of effective NVM read bandwidth

(2.3GB/s), it remains far below typical DRAM bandwidth

(76.8GB/s) and cannot fundamentally address the memory

bandwidth bottleneck in recommendation models. MnnFast

targets optimization for memory-augmented neural network

and proposes a dedicated embedding cache to eliminate the

cache contention between embedding and inference opera-

tions [23]. However, these techniques do not directly apply to

personalized recommendation consisting order-of-magnitude

larger embedding tables. TensorDIMM [81] proposes a custom

DIMM module enhanced with near-memory processing cores

for embedding and tensor operations in deep learning. The

address mapping scheme in TensorDIMM interleaves consec-

utive 64B within each embedding vector across the DIMM

modules. Its performance thus scales at the DIMM level and

relies on the inherent high spatial locality of large embedding

vectors, it is unable to apply to this approach to small

vectors (e.g. 64B). Given the same memory configuration,

our design can outperform TensorDIMM in memory latency

speedup by extracting additional performance gains from rank-

level parallelism and memory-side caching optimizations. The

introduction of a customized compressed NMP instruction in

RecNMP also fundamentally addresses the C/A bandwidth

constraints, without the restrictions on small embedding vec-

tors as imposed by TensorDIMM.

VII. CONCLUSION

We propose RecNMP—a practical and scalable near-

memory solution for personalized recommendation. We per-

form a systematic characterization of production-relevant rec-

ommendation models and reveal its performance bottleneck.

A light-weight, commodity DRAM compliant design, Rec-
NMP maximally exploits rank-level parallelism and temporal

locality of production embedding traces to achieve up to 9.8×
performance improvement of sparse embedding operation (car-

ried out by the SLS-family operators). Offloading SLS also

offers alleviated cache contention for the non-SLS operators

that remain in the CPU, resulting in up to 30% latency

reduction for co-located FC operators. Overall, our system-

level evaluation demonstrates that RecNMP offers up to 4.2×
throughput improvement and 45.8% memory energy saving

with representative production-relevant model configurations.

REFERENCES

[1] “Breakthroughs in Matching and Recommenda-
tion Algorithms by Alibaba.” [Online]. Avail-
able: https://www.alibabacloud.com/blog/breakthroughs-in-matching-
and-recommendation-algorithms-by-alibaba 593976

[2] “Caffe2.” [Online]. Available: https://caffe2.ai///
[3] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubra-

monian, John Paul Strachan, Miao Hu, R. Stanley Williams, Vivek
Srikumar, “ISAAC: A Convolutional Neural Network Accelerator with
In-Situ Analog Arithmetic in Crossbars,” in ISCA, 2016, pp. 14–26.

[4] Amazon Personalize, https://aws.amazon.com/personalize/.
[5] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and Nam

Sung Kim, “NDA: Near-DRAM Acceleration Architecture Leveraging
Commodity DRAM Devices and Standard Memory Modules,” in HPCA,
2015.

[6] Amir Yazdanbakhsh, Kambiz Samadi, Hadi Esmaeilzadeh, Nam Sung
Kim, “GANAX: A Unified SIMD-MIMD Acceleration for Generative
Adversarial Network,” in ISCA, 2018.

[7] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli,
Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W.
Keckler, William J. Dally, “SCNN: An accelerator for compressed-
sparse convolutional neural networks,” in ISCA, 2017.

[8] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, Gennady
Pekhimenko, “Gist: Efficient Data Encoding for Deep Neural Network
Training,” in ISCA, 2018.

[9] Aniruddha N. Udipi, Naveen Muralimanohar, Rajeev Balasubramonian,
Al Davis, Norman P. Jouppi, “LOT-ECC: LOcalized and Tiered Relia-
bility Mechanisms for Commodity Memory Systems,” in ISCA, 2012.

[10] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy,
Sergey Pupyrev, Kim Hazelwood, Asaf Cidon, Sachin Katti, “Bandana:
Using non-volatile memory for storing deep learning models,” in SysML,
2019.

[11] Ben Feinberg, Shibo Wang and Engin Ipek, “Making Memristive Neural
Network Accelerators Reliable,” in HPCA, 2018.

[12] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama,
Hyunkwang Lee, Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-
Yeon Wei, David Brooks, “Minerva: Enabling low-power, highly-
accurate deep neural network accelerators,” in ISCA. IEEE, 2016, pp.
267–278.

[13] Byungchul Hong, Gwangsun Kim, Jung Ho Ahn, Yongkee Kwon,
Hongsik Kim, John Kim, “Accelerating linked-list traversal through
near-data processing,” in PACT, 2016, pp. 113–124.

[14] Carole-Jean Wu, Robin Burke, Ed H. Chi, Joseph Konstan, Julian
McAuley, Yves Raimond, Hao Zhang, “Developing a Recommendation
Benchmark for MLPerf Training and Inference,” in arXiv preprint
arXiv:2003.07336, 2020.

[15] Christopher De Sa, Matthew Feldman, Christopher Ré, Kunle Olukotun,
“Understanding and Optimizing Asynchronous Low-Precision Stochas-
tic Gradient Descent,” in ISCA, 2017.

[16] Doe Hyun Yoon, Mattan Erez, “Virtualized and Flexible ECC for Main
Memory,” in ASPLOS, 2010.

[17] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, Saibal
Mukhopadhyay, “Neurocube: A Programmable Digital Neuromorphic
Architecture with High-Density 3D Memory,” in ISCA, 2016.

[18] Eunhyeok Park, Dongyoung Kim, Sungjoo Yoo, “Energy-Efficient Neu-
ral Network Accelerator Based on Outlier-Aware Low-Precision Com-
putation,” in ISCA, 2018.

801

[19] Fortune, https://fortune.com/2019/04/30/artificial-intelligence-walmart-
stores/.

[20] Google Cloud Platform, https://cloud.google.com/solutions/
recommendations-using-machine-learning-on-compute-engine.

[21] Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu, Xiao
Ma, Yanghui Yan, Junqi Jin, Han Li, Kun Gai, “Deep Interest Network
for Click-Through Rate Prediction,” in KDD, 2018, pp. 1059–1068.

[22] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, Nam Sung
Kim, “Chameleon: Versatile and Practical Near-DRAM Acceleration
Architecture for Large Memory Systems,” in MICRO, 2016.

[23] Hanhwi Jang, Joonsung Kim, Jae-Eon Jo, Jaewon Lee, Jangwoo
Kim, “MnnFast: a fast and scalable system architecture for memory-
augmented neural networks,” in ISCA, 2019.

[24] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson
Chau, Vikas Chandra, Hadi Esmaeilzadeh, “Bit Fusion: Bit-Level
Dynamically Composable Architecture for Accelerating Deep Neural
Network,” in ISCA, 2018.

[25] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar
Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain,
Xiaobing Liu, Hemal Shah, “Wide & Deep Learning for Recommender
Systems,” in RecSys, 2016, pp. 7–10.

[26] Hsing-Min Chen, Akhil Arunkumar, Carole-Jean Wu, Trevor Mudge,
Chaitali Chakrabarti, “E-ecc: Low power erasure and error correction
schemes for increasing reliability of commodity dram systems,” in
MEMSYS, 2015.

[27] Hsing-Min Chen, Carole-Jean Wu, Trevor Mudge, Chaitali Chakrabarti,
“RATT-ECC: Rate adaptive two-tiered error correction codes for reliable
3D die-stacked memory,” in ACM Transactions on Architecture and
Code Optimization, vol. 13, no. 3, 2016.

[28] Hsing-Min Chen, Supreet Jeloka, Akhil Arunkumar, David Blaauw,
Carole-Jean Wu and Trevor Mudge and Chaitali Chakrabarti, “Using
low cost erasure and error correction schemes to improve reliability of
commodity dram systems,” vol. 65, no. 12, 2016.

[29] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He,
Zhenhua Dong, “DeepFM: An End-to-End Wide & Deep Learning
Framework for CTR Prediction,” in IJCAI, 2017.

[30] Intel Memory Latency Checker (MLC), https://software.intel.com/en-
us/articles/intelr-memory-latency-checker.

[31] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc, “When Prefetching
Works, When It Doesn’t, and Why,” in ACM TACO, vol. 9, no. 1, 2012.

[32] Jiawen Liu, Hengyu Zhao, Matheus Almeida Ogleari, Dong Li, Jishen
Zhao, “Processing-in-Memory for Energy-efficient Neural Network
Training: A Heterogeneous Approach,” in MICRO, 2018, pp. 655–668.

[33] Jiecao Yu, Andrew Lukefahr, David J. Palframan, Ganesh S. Dasika,
Reetuparna Das, Scott A. Mahlke, “Scalpel: Customizing DNN Pruning
to the Underlying Hardware Parallelism,” in ISCA, 2017.

[34] Jiquan Ngiam, Zhenghao Chen, Daniel Chia, Pang W. Koh, Quoc V. Le,
Andrew Y. Ng, “Tiled convolutional neural networks,” in NIPS, 2010,
pp. 1279–1287.

[35] John E. Stone, David Gohara, Guochun Shi, “OpenCL: A Parallel
Programming Standard for Heterogeneous Computing Systems,” in
IEEE Computing in Science and Engineering, vol. 12, no. 3, 2010.

[36] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie
Enright Jerger, Andreas Moshovos, “Cnvlutin: Ineffectual-neuron-free
Deep Neural Network Computing,” in ISCA, 2016.

[37] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya
R. Dulloor, Jishen Zhao, Steven Swanson, “Basic Performance Mea-
surements of the Intel Optane DC Persistent Memory Module,” in arXiv
preprint arXiv:1903.05714, 2018.

[38] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, Kiyoung Choi, “PIM-Enabled
Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory
Architecture,” in ISCA, 2015, pp. 336–348.

[39] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, Kiyoung
Choi, “A scalable processing-in-memory accelerator for parallel graph
processing,” pp. 105–117, 2015.

[40] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael
Pellauer, Christopher W. Fletcher, “UCNN: Exploiting Computational
Reuse in Deep Neural Networks via Weight Repetition,” in ISCA, 2018.

[41] Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay B.
Brockman, Norman P. Jouppi, “Cacti-3dd: Architecture-level modeling
for 3d die-stacked dram main memory,” in DATE, 2012.

[42] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee,
Mike O’Connor, Nandita Vijaykumar, Onur Mutlu, Stephen W. Keckler,
“Transparent Offloading and Mapping (TOM): Enabling Programmer-
Transparent Near-Data Processing in GPU Systems,” in ISCA, 2016, pp.
204–216.

[43] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang,
Amirali Boroumand, Saugata Ghose, Onur Mutlu, “Accelerating pointer
chasing in 3d-stacked memory: Challenges, mechanisms, evaluation,” in
ICCD, 2016, pp. 25–32.

[44] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, James Law, Kevin Lee, Jason Lu, Pieter Noordhuis, Misha
Smelyanskiy, Liang Xiong, Xiaodong Wang, “Applied machine learning
at Facebook: a datacenter infrastructure perspective,” in HPCA, 2018,
pp. 620–629.

[45] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith
Kumar, Hyesoon Kim, “GraphPIM: Enabling Instruction-Level PIM
Offloading in Graph Computing Frameworks,” in HPCA, 2017.

[46] M. Gao, J. Pu, X. Yang, M. Horowitz ,and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,”
in ASPLOS, 2017, pp. 751–764.

[47] Marc Riera, Jose Maria Arnau, Antonio Gonzalez, “Computation Reuse
in DNNs by Exploiting Input Similarity,” in ISCA, 2018.

[48] Mario Drumond, Alexandros Daglis, Nooshin Sadat Mirzadeh, Dmitrii
Ustiugov, Javier Picorel, Babak Falsafi, Boris Grot, Dionisios N Pnev-
matikatos, “The mondrian data engine,” in ISCA, 2017, pp. 639–651.

[49] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman
Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong,
Misha Smelyanskiy, “Deep Learning Recommendation Model for
Personalization and Recommendation Systems,” in arXiv preprint
arXiv:1906.00091, 2019. [Online]. Available: https://arxiv.org/abs/1906.
00091

[50] Mel Gorman, “Understanding the Linux virtual memory manager,” 2004.
[51] Micron, “MT40A2G4, MT40A1G8, MT40A512M16, 8Gb: x4, x8, x16

DDR4 SDRAM Features.”
[52] Miguel Campo, Cheng-Kang Hsieh, Matt Nickens, J.J. Espinoza,

Abhinav Taliyan, Julie Rieger, Jean Ho, and Bettina Sherick,
“Competitive Analysis System for Theatrical Movie Releases Based on
Movie Trailer Deep Video Representation,” in Arxiv, 2018. [Online].
Available: https://arxiv.org/abs/1807.04465

[53] Mingcong Song, Jiaqi Zhang, Huixiang Chen, Tao Li, “Towards Efficient
Microarchitectural Design for Accelerating Unsupervised GAN-Based
Deep Learning,” in HPCA, 2018.

[54] Mingcong Song, Jiechen Zhao, Yang Hu, Jiaqi Zhang, Tao Li, “Predic-
tion based Execution on Deep Neural Networks,” in ISCA, 2018.

[55] Mingcong Song, Kan Zhong, Jiaqi Zhang, Yang Hu, Duo Liu, Weigong
Zhang, Jing Wang, Tao Li, “In-Situ AI: Towards Autonomous and
Incremental Deep Learning for IoT Systems,” in HPCA, 2018.

[56] Mingyu Gao, Grant Ayers, Christos Kozyrakis, “Practical Near-Data
Processing for In-Memory Analytics Frameworks,” in PACT, 2015, pp.
113–124.

[57] Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, Youngeun
Kwon, Stephen W. Keckler, “Compressing DMA Engine: Leveraging
Activation Sparsity for Training Deep Neural Networks,” in HPCA,
2018.

[58] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P.
Jouppi, “Cacti 6.0: A tool to model large caches,” in HP laboratories,
2009, pp. 22–31.

[59] Norman P. Jouppi, Andrew B. Kahng, Naveen Muralimanohar, Vaishnav
Srinivas, “Cacti-io: Cacti with off-chip power-area-timing models,” in
VLSI, 2015, pp. 1254–1267.

[60] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al
Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara
Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert
Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt,
Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan,
Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan

802

Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps,
Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn,
Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy
Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick
Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, Doe
Hyun Yoon, “In-datacenter performance analysis of a tensor processing
unit,” in ISCA, 2017, pp. 1–12.

[61] Onur Mutlu, Thomas Moscibroda, “Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors,” in MICRO, 2007, pp. 146–160.

[62] Patrick J. Meaney, Lawrence D. Curley, Glenn D. Gilda, Mark R.
Hodges, Daniel J. Buerkle, Robert D. Siegl, Roger K. Dong, “The IBM
z13 Memory Subsystem for Big Data,” in IBM Journal of Research and
Development, 2015.

[63] Paul Covington, Jay Adams, Emre Sargin, “Deep Neural Networks for
YouTube Recommendations,” in RecSys, 2016, pp. 191–198.

[64] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius
Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis,
Victor Bittorf, David Brooks, Dehao Chen, Debojyoti Dutta, Udit Gupta,
Kim Hazelwood, Andrew Hock, Xinyuan Huang, Atsushi Ike, Bill
Jia, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Guokai
Ma, Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian
Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John, Tsug-
uchika Tabaru, Carole-Jean Wu, Lingjie Xu, Masafumi Yamazaki, Cliff
Young, Matei Zaharia, “MLPerf Training Benchmark,” arXiv preprint
arXiv:1910.01500, 2019.

[65] Peter Mattson, Paulius Micikevicius, Vijay Janapa Reddi, David Patter-
son, Christine Cheng, Guenther Schmuelling, Cody Coleman, Hanlin
Tang, Greg Diamos, Gu-Yeon Wei, David Kanter, Carole-Jean Wu,
“MLPerf: An Industry Standard Benchmark Suite for Machine Learning
Performance,” IEEE Micro, vol. 40, no. 2, pp. 8–16, 2020.

[66] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, Stefan
Mangard, “Drama: Exploiting dram addressing for cross-cpu attack,” in
USENIX Security Symposium, vol. pp.565-581, 2016.

[67] Qi Guo, N. Alachiotis, Berkin Akin, F. Sadi, G. Xu, Tze-Meng
Low, Lawrence Pileggi, James C. Hoe, Franz Franchetti , “3d-stacked
memory-side acceleration: Accelerator and system design,” in WoNDP,
2014.

[68] Reza Yazdani, Marc Riera, Jose-Maria Arnau, Antonio Gonzalez, “The
Dark Side of DNN Pruning,” in ISCA, 2018.

[69] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, David
Brooks, “Fathom: Reference workloads for modern deep learning meth-
ods,” in IISWC, 2016, pp. 1–10.

[70] Samuel Williams, Andrew Waterman, and David Patterson, “Roofline:
An Insightful Visual Performance Model for Floating-Point Programs
and Multicore Architectures,” in Communications of the ACM, 2009.

[71] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li,
Qi Guo, Tianshi Chen, Yunji Chen, “Cambricon-x: An accelerator for
sparse neural networks,” in MICRO, 2016.

[72] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark
A Horowitz, William J Dally, “EIE: efficient inference engine on
compressed deep neural network,” in ISCA, 2016, pp. 243–254.

[73] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar
Das, Sasikanth Avancha, Ashok Jagannathan, Ajaya Durg, Dheemanth
Nagaraj, Bharat Kaul, Pradeep Dubey, Anand Raghunathan, “ScaleDeep:
A Scalable Compute Architecture for Learning and Evaluating Deep
Networks,” in ISCA, 2017.

[74] Udit Gupta, Brandon Reagen, Lillian Pentecost, Marco Donato, Thierry
Tambe, Alexander M Rush, Gu-Yeon Wei, David Brooks, “MASR: A
Modular Accelerator for Sparse RNNs,” in PACT, 2019, pp. 1–14.

[75] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon
Reagen, David Brooks, Bradford Cottel, Kim Hazelwood, Bill Jia,
Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail
Smelyanskiy, Liang Xiong, Xuan Zhang, “The Architectural Impli-
cations of Facebook’s DNN-based Personalized Recommendation,” in
HPCA, 2020.

[76] Vahide Aklaghi, Amir Yazdanbakhsh, Kambiz Samadi, Hadi Es-
maeilzadeh, Rajesh K. Gupta, “SnaPEA: Predictive Early Activation
for Reducing Computation in Deep Convolutional Neural Networks,”
in ISCA, 2018.

[77] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien
Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody

Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick,
J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff
Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton
Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin
Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip
Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson,
Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George
Yuan, Aaron Zhong, Peizhao Zhang, Yuchen Zhou, “Mlperf inference
benchmark,” in arXiv preprint arXiv:1911.02549, 2019.

[78] Xiao Zhang, Sandhya Dwarkadas, Kai Shen, “Towards practical page
coloring-based multicore cache management,” in EuroSys, 2009, pp. 89–
102.

[79] Yongming Shen, Michael Ferdman, Peter Milder, “Maximizing CNN
Accelerator Efficiency Through Resource Partitioning,” in ISCA, 2017.

[80] Yoongu Kim, Weikun Yang and Onur Mutlu, “Ramulator: A fast and
extensible DRAM simulator,” in IEEE Computer architecture letters,
vol. 15, no. 1. IEEE, 2015, pp. 45–49.

[81] Youngeun Kwon, Yunjae Lee, Minsoo Rhu, “TensorDIMM: A Practi-
cal Near-Memory Processing Architecture for Embeddings and Tensor
Operations in Deep Learning,” in MICRO, 2019, pp. 740–753.

[82] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer and Vivienne Sze, “Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional
neural networks,” in IEEE Journal of Solid-State Circuits, vol. 52, no. 1,
2017, pp. 127–138.

[83] Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn
Andrews, Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi,
Ed Chi, “Recommending What Video to Watch Next: A Multitask
Ranking System,” in RecSys, 2019, pp. 43–51.

803

