
Security Refresh: Prevent Malicious Wear-out and Increase
Durability for Phase-Change Memory with Dynamically

Randomized Address Mapping

Nak Hee Seong Dong Hyuk Woo Hsien-Hsin S. Lee
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332

{nhseong, dhwoo, leehs}@ece.gatech.edu

ABSTRACT
Phase change memory (PCM) is an emerging memory technol-
ogy for future computing systems. Compared to other non-volatile
memory alternatives, PCM is more matured to production, and has
a faster read latency and potentially higher storage density. The
main roadblock precluding PCM from being used, in particular, in
the main memory hierarchy, is its limited write endurance. To ad-
dress this issue, recent studies proposed to either reduce PCM’s
write frequency or use wear-leveling to evenly distribute writes.
Although these techniques can extend the lifetime of PCM, most of
them will not prevent deliberately designed malicious codes from
wearing it out quickly. Furthermore, all the prior techniques did
not consider the circumstances of a compromised OS and its secu-
rity implication to the overall PCM design. A compromised OS will
allow adversaries to manipulate processes and exploit side chan-
nels to accelerate wear-out.

In this paper, we argue that a PCM design not only has to con-
sider normal wear-out under normal application behavior, most
importantly, it must take the worst-case scenario into account with
the presence of malicious exploits and a compromised OS to ad-
dress the durability and security issues simultaneously. In this
paper, we propose a novel, low-cost hardware mechanism called
Security Refresh to avoid information leak by constantly migrat-
ing their physical locations inside the PCM, obfuscating the ac-
tual data placement from users and system software. It uses a dy-
namic randomized address mapping scheme that swaps data us-
ing random keys upon each refresh due. The hardware overhead
is tiny without using any table. The best lifetime we can achieve
under the worst-case malicious attack is more than six years. Also,
our scheme incurs around 1% performance degradation for normal
program operations.

Categories and Subject Descriptors
B.3 [Memory Structures]: Semiconductor Memories

; B.6.1 [Design Styles]: Memory control and access

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

General Terms
Design, Experimentation, Performance, Security

Keywords
Phase Change Memory, Security, Wear Leveling, Dynamic Ad-
dress Remapping

1. INTRODUCTION
Phase change memory (PCM) has emerged as one potential mem-

ory technology for improving the performance of the overall sys-
tem memory hierarchy. A PCM cell is made of phase-change ma-
terial based on chalcogenide alloy typically composed of Ge, Sb,
and Te. The material has two distinct phases — a high electri-
cal resistive amorphous phase and a low resistive crystalline phase.
The crystalline phase can be reached by heating the material above
the crystallization temperature while it can be switched into the
amorphous phase by melting and quickly quenching it. A data bit
can be stored in either states, which are non-volatile. Compared
to floating-gate flash memory, PCM has much shorter latency and
longer write endurance. These advantages make it a perfect candi-
date as the alternative to flash memory devices. On the other hand,
the density of current PCM is higher than that of DRAM [1]. Also,
PCM promises better scalability with process technology scaling.
Moreover, if we can utilize its multi-level cell feature [15], the den-
sity will be even greater. Recently, researchers have studied the
trade-off of using PCM as the main memory [9, 14] or even as the
last level cache [22]. Although its latency is currently several times
higher than DRAM latency, these studies showed that its benefit
gained from its high density can outweigh the degradation of ac-
cess time by employing a deeper memory hierarchy [15] or having
a hybrid memory architecture with mixed usage of other memory
technologies [14, 22].

The primary roadblock for using PCM as part of the main mem-
ory is its much lower write endurance compared to DRAM. The
current write endurance of a PCM cell is around 108 although the
number is projected to be increased to 1015 in 2022 according to
ITRS [1]. Several recent studies attempted to address this issue
by either reducing PCM’s write frequency or using wear-leveling
techniques to evenly distribute PCM writes. Although these tech-
niques can extend the lifetime of PCM under normal operations of
typical applications, we found that most of them fail to prevent
an adversary from writing malicious code deliberately designed
to wear out and fail PCM. For instance, the schemes to reducing
write frequency, such as data comparison write [23] and Flip-N-

virtual page number page offset
physical page number page offset

column addrrow addr

rank ID bank ID

Virtual addr. (VA)
Physical addr. (PA)

LL$ indexing

63 33 18 111416 0

tag index line offset
Memory addr. (MA)

21 7

Figure 1: The Addressing Scheme of the Baseline Architecture

Write [3] do not prevent an adversary from wiggling the memory
bits of the same PCM location and wearing them out. Similarly,
the prior wear-leveling schemes are also vulnerable due to the in-
herent weaknesses caused by static randomization, coarse-grained
shuffling, and regular shuffling pattern as we will detail later. Fur-
thermore, all the prior art did not consider the circumstances when
the underlying OS is compromised and its security implication to
PCM design. A compromised OS, (e.g., via simple buffer over-
flow) will allow adversaries to manipulate all processes and exploit
side channels easily, which accelerates the wear-out of targeted
PCM blocks and renders a dysfunctional system. For example, a
compromised OS can thrash or turn off all caches, disabling the
shield from PCM. Moreover, if the compromised OS allows a ma-
licious process to obtain and assemble useful information leaked
from side channels (e.g., timing attacks [7, 20] to deduce shuffling
pattern in a wear-leveling scheme), the wear-leveling scheme will
not stop adversaries from tracking, pinpointing, and wearing out
target PCM blocks. Note that attacking a system with side channels
using time [7, 20], power [8], electromagnetic emission [2], archi-
tectural vulnerability [18, 25], etc., has been successfully demon-
strated in many systems including the Xbox [4]. Designing PCM
without careful consideration for all these implications will lead to
critical data loss in PCM, rendering incorrect computing or trans-
action results, eventually leading to dire financial consequences.

In this paper, we argue that PCM designs not only have to con-
sider wear-out under normal execution of typical applications, most
importantly, they must take the worst-case scenarios into account
with the presence of malicious exploits and a compromised OS.
Such design consideration will address durability and security is-
sues of a PCM system simultaneously. After demonstrating and
analyzing the attack models that exploit the weakness of prior pro-
posals, we will show that we need dynamic runtime randomization
with low-cost hardware implementation to improve wear-out vul-
nerability and to prevent construction of useful knowledge gleaned
from side channels. To achieve this goal, in this paper, we propose
Security Refresh. Similar to the concept of protecting charge leak
from DRAM, Security Refresh, a low-cost hardware embedded in-
side PCM, prevents information leak by constantly migrating phys-
ical locations of PCM data (thus refresh) and obfuscating the actual
data placement from users and system software. The contributions
of our paper are as follows:
• We demonstrate that security is a separate yet more serious

issue from simply extending durability in PCM design.
• We analyze the vulnerability of prior studies and provide their

respective, practical attack models to wear out PCM within a
reasonable amount of time.

• We propose a dynamic, low-cost wear-leveling scheme called
Security Refresh to battle intentional, malicious wear-out and
present the implementation trade-off from the security and
durability standpoint.

The rest of this paper is organized as follows. Section 2 describes
prior proposals and their vulnerabilities with their corresponding
attack models. Section 3 introduces Security Refresh. Section 4
discusses the implementation trade-off. Section 5 proposes two-

level Security Refresh scheme. Section 6 evaluates different con-
figurations of our scheme. We conclude in Section 7.

2. VULNERABILITY OF PRIOR WEAR-OUT
MANAGEMENT SCHEMES

Recently, several architectural techniques were proposed to pro-
long the limited write endurance of PCM. They can be classified
into two groups: the methods to eliminating redundant writes [3, 9,
14, 23, 24] and the ones to evenly wearing out the entire memory
space [14, 15, 24]. Among all the prior schemes, the most recent
proposal, randomized Region Based Start-Gap (RBSG) [15], is the
only proposal that considers the security problem. In this paper,
we will demonstrate that these prior schemes including the ran-
domized RBSG scheme are vulnerable to well-designed malicious
attacks. In our analysis, we evaluate their vulnerabilities using a
baseline architecture similar to the one used in a recent study [15].
Basically, we assume that an off-chip DRAM is used as a last-level
cache backed up with PCM used as the actual main memory. The
interface between the DRAM cache and PCM is a DDR3-1600 like
64-bit bus. The 16GB PCM consists of four ranks while each rank
contains four banks with 32K rows in each bank.1 Furthermore, we
assume that the write endurance of PCM is 108, and its read and
write latencies are 150ns and 450ns, respectively.

To clarify the terminology used in this paper, Figure 1 depicts the
layers of address translation and mapping from virtual address all
the way down to the low level physical memory location. Note that
a memory controller usually maps a given physical address (PA)
into a memory address (MA) that consists of a rank ID, a bank ID, a
row address, and a column address for indexing the main memory.
In the following discussion, we also assume that a memory con-
troller interleaves consecutive row addresses across different banks,
a common mechanism to enhance bank-level parallelism.

2.1 Vulnerability of PCM Without Protection
The simplest way to attack a durability-oblivious PCM is to re-

peatedly write to a fixed location. To force cache misses for PCM
accesses, it is obvious that one can deliberately cook up a program
that continuously write to nine different addresses mapped to the
same set of the 8-way cache with s sets in our baseline [21]. The
first eight instructions inside a loop sequentially write to a[i],
a[i+1*s], to a[i+7*s] filling up one cache set followed by
the subsequent eight instructions that write to a[i] to a[i+6*s]
and then to a[i+7*b*s], where b is a large value to guarantee
a[i+ 7*s] and a[i+7*b*s] do not hit in the same memory
page (i.e., row buffer hit) but located in the same PCM bank. Af-
ter these two write sequences (16 writes) in the loop, we perform
a memory fence operation to ensure addresses will not collapse in
an internal buffer but go to external memory directly. As such, this
simple code will generate conflict misses between a[i+7*s] and

1A conventional 2GB DDR3 SDRAM DIMM is composed of 8
banks, each of which contains 32K 8KB rows. Considering PCM’s
scalability and multi-bit potential, we assume four times larger row
size.

a[i+7*b*s] and create two row buffer misses all the time to up-
date two different PCM locations.

In this attack model, it takes at least 2 × (lw + lr) seconds to
write two separate cache lines into PCM including the time (lw)
to bring two lines into the cache and the time (lr) to write two
dirty lines back to PCM. Given a modern PCM cell can endure no
more than 108 writes, the lifetime of the baseline PCM without any
architectural durability enhancement will be 2 × (lw + lr) × 108,
i.e., about two minutes (= 2 × (450ns+ 150ns) × 108).

2.2 Vulnerability of Prior Redundant Write
Reduction Techniques

We now examine the redundant write reduction schemes. To
eliminate them, Lee et al. [9] and Qureshi et al. [14] proposed to
maintain fine-grained dirty bits as a part of the cache line state to
enable partial writes. These methods require additional partial dirty
bits across all cache hierarchy. On the other hand, Yang et al. [23]
and Zhou et al. [24] proposed data comparison and write schemes,
which replace a write operation with a read-compare-write oper-
ation to eliminate silent stores [10] to PCM. Unfortunately, these
methods still suffer from the same types of malicious wear-out at-
tacks in Section 2.1 as an adversary can always write complemen-
tary values to the same PCM cells. More recently, Cho and Lee [3]
leveraged the bus-invert coding idea [19] and proposed to add a
single bit per PCM word to indicate if a stored word is inverted or
not. With this additional state bit, a PCM chip can write data in an
inverted form if the inverted value reduces the number of bit-flips
when writing new data. However, this method is still subject to
malicious attacks. For example, an attacker can use the same mali-
cious code but repeatedly write 0x00 and 0x01 in turn, which will
never activate Flip-N-Write and eventually wear out a bit in each
byte. In summary, the lifetime of a target location in PCM in these
systems will still be two minutes.

2.3 Vulnerability of Prior Wear-Leveling Tech-
niques

Unlike the techniques described in Section 2.2, wear-leveling
schemes extend the lifetime of PCM by evenly distributing the lo-
cally concentrated writes across the entire PCM space. Transpar-
ent to the users, these techniques periodically change the mapping
between the physical address and the physical PCM location. Al-
though such periodic mapping schemes can reduce the system’s
vulnerability to brute-force type of attacks, they are still vulnerable
to deliberately-designed attacks, especially when the OS is com-
promised, as we will discuss in the following sections.

2.3.1 Row Shifting and Segment Swapping
Zhou et al. [24] proposed an integrated wear-leveling mecha-

nism with two techniques: a fine-grained wear-leveling called Row
Shifting and a coarse-grained one called Segment Swapping. Row
Shifting rotates a physical PCM row one byte at a time for a given
shift interval based on the number of writes to the row. On the
other hand, the Segment Swapping scheme swaps the most fre-
quently written segment with one of the less frequently written
segments by monitoring the number of writes to each segment. A
segment (1MB) contains several rows (32KB). Nevertheless, this
wear-leveling has two main drawbacks: the overhead of a hardware
address mapping table and a sorting network required for picking
a less frequently written segment, both preventing the use of small
segments. Thus, the authors used a large 1MB segment [24].

Unfortunately, such a coarse-grained segment allows an adver-
sary to fail a system easily. For example, if the OS has already
been compromised (e.g., via buffer overflow), an attacker can allo-

physical page number page offset

column addrrow addr

rank ID bank ID

(a) Physical addr.
(a) LL$ indexing

(b) Intermediate addr.

33 18 111416 0

RBSG region offset

tag index line offset

21 7

line offset

RBSG region number

(c) Memory addr. (MA)

26

Static randomizer

RBSG translation

Figure 2: The Address Indexing Scheme of Randomized RBSG

cate all the first physical pages of each of the 1MB PCM segments
to the malicious program. Once the malicious program can access
these 16K pages, it can execute a loop that writes the first byte of
these pages one by one. Once the malicious program iterates this
loop n times where n is the row shift interval, it should write the
second byte of these pages (instead of the first byte) to attack the
same physical cells even after a row is shifted. The attacker can
continue such attack until PCM cells fail. Note that an attacker can
also wear out these 16K pages in parallel using a distributed attack
model with multiple threads on a multi-core processor [21]. This
means that overall execution time of this process will be eventually
limited by the bank-level parallelism of PCM, not by computation.
Consequently, a group of PCM cells will fail after the following
period: (2×# of segments× (line-fill latency+write-back latency)

of possible writes in parallel
×PCM write endurance), where 2 accounts for the worst-case la-
tency due to potentially unsynchronized rotation between the mali-
cious code and actual hardware. For a system with 16 GB 16-bank
PCM, PCM cells will fail within 2048 minutes.

2.3.2 Randomized Region Based Start-Gap
In contrast to a table-based translation scheme, Qureshi et al.

proposed randomized Region Based Start-Gap (randomized RBSG)
wear-leveling method by using an algebraic mapping between phys-
ical addresses and memory addresses [15], which is also the first
work that discussed security threat to PCM. As shown in Figure 2(a)
and (b), a physical address issued from the cache is translated into
an intermediate address through an Address-Space Randomization
method based on Feistel Network or a Random Invertible Binary
Matrix. Note that such a randomization function is only updated
once when the system is booted. In this section, we assumed that
the unit of translation is one PCM row, which the original paper
suggested as the unit of translation when we use an open-row pol-
icy. We chose such a design because it allows a memory controller
to exploit data locality within a row similar to a conventional mem-
ory subsystem. Note that our attack model is not limited to a system
that uses an open-row policy as will be elaborated later.

On the other hand, the intermediate address space is partitioned
into several segments called RBSG regions. Each RBSG region
has an extra storage line that allows us to evenly wear out the entire
memory space within a region by rotating each line one by one.
Furthermore, each RBSG region has a Start pointer that points to
a memory line with the lowest physical address in the region and
a Gap pointer that points to an empty line in the region. These
two pointers along with another algebraic function called Region
Based Start-Gap (RBSG) are used to further translate RBSG region
offset bits (Figure 2(b)) into an actual physical location. Note that
our baseline architecture (Figure 1) assumes that the rank ID and
the bank ID are located between the row address and the column
address like a conventional memory addressing scheme.

Figure 3 illustrates an example of RBSG translation. In this ex-
ample, one RBSG region contains four memory lines across two
banks. When the number of writes in this region exceeds a certain

A

C

Bank 0

B

D

Bank 1

B

D

Bank 1

(a)

D

A

C

Bank 0

B

Bank 1

(b)

D

A

Bank 0

B

C

Bank 1

(c)

D

A

B

Bank 0

C

Bank 1

(d)

D

A

B

Bank 0

A

C

Bank 1

(e)

D

B

Bank 0

A

C

Bank 1

(f)

RBSG region

Start pointer

Gap pointer

Figure 3: An Example of RBSG Translation for One Rotation Phase

threshold, ψ, indicated by an overflowed write counter, the mem-
ory line (D) adjacent to the Gap pointer in this region is shifted
into the extra space while the Gap pointer will point to where the
migrated memory line used to be (Figure 3(b)). Once the write
counter overflows again, the memory line (C) adjacent to the Gap
pointer is shifted following the same direction to the empty space.
Afterward, the Gap pointer points to the empty slot (Figure 3(c)).
Such migration continues for every ψ and finally reaches the state
in Figure 3(f) when all four memory lines are rotated by one from
the initial state (Figure 3(a)). The Start pointer is updated to indi-
cate the current PCM location of the lowest physical address (A)
in this RBSG region. This RBSG scheme enables wear-leveling
without using a large table.

However, we found that a deliberately-contrived malicious code
can still fail such systems by exploiting side channels given the
OS is compromised. Such an attack is made possible (1) because
the randomly shuffled address mappings remain unchanged once
booted and (2) because the migration of their scheme performs lin-
ear shifting, which is deterministic. How a malicious process iden-
tifies consecutive physical addresses in a region is shown below.

We calculated a ψ value and the corresponding region size for
our baseline architecture as recommended by the original paper [15].
To limit write overhead less than 1%, we set ψ to 100 as proposed
in the original paper. This configuration leads the region size to
be 16GB because the original paper recommended the maximum
number of lines,K, in each region to meet the following condition:
K <

(PCM Write endurance)
ψ

. Now, we will explain our attack
model as follows:

Step 1: Finding a set of physical addresses mapped to the
same bank. First, the malicious process picks an arbitrary phys-
ical address b0. For every memory line ax, timing attacks [7] are
applied to see if b0 is in the same bank of an ax. The rationale
is simple — if the measured data access time to two back-to-back
accesses a1 and b0 is longer than that to another back-to-back ac-
cesses a2 and b0, we can conclude that a1 and b0 are located within
the same bank while a2 and b0 are accessed in parallel from differ-
ent banks. (In a system with a closed row policy, our attack model
is still valid because it uses latency differences caused by the bank-
level parallelism.) Note that a compromised OS can schedule only
the malicious process to perform such profiling. Using this attack,
the malicious process find all the lines in the same bank with b0.
We call this set of memory lines T0. Similarly, by choosing an-
other arbitrary physical address b1 in the complementary set of the
T0 and measuring data access time for every memory line ay in
T c0 , another set of memory lines, T1, will be revealed. By repeating
this measuring sequence, the malicious process finally can classify
all physical memory lines according to their bank locations within
1.33 seconds.

Step 2: Forcing one memory line to migrate to an adjacent
bank. After that, the malicious process shifts one memory line by
writing a randomly chosen physical address, v0, 100 times. This
causes one memory line shifted to an adjacent bank like the previ-
ous example. This step takes a negligibly small amount of time.

Step 3: Finding a memory line that is migrated to the ad-
jacent bank. Then, the malicious process repeats the measuring
sequence (Step 1) and figures out the physical address p0 of the
shifted memory line by comparing the current bank sets with the
previous bank sets. Obviously, this step takes another 1.33 seconds.

Step 4: Forcing one more line to migrate to the adjacent
bank. Now, we update v0 again 100 times. Because the Gap
Pointer points to the old location of p0 after Step 3, these 100 writes
of Step 4 will force another line, p1, to be migrated to the old loca-
tion of p0.

Step 5: Finding a memory line that is migrated to the old
location of p0. Then, the malicious process again repeats the mea-
suring sequence (Step 3) to find out a new physical address p1 that
is newly migrated to the old location of p0. This step again takes
1.33 seconds. After this step, we can detect that p1 will always
take a previous location of p0 upon one rotation because of the de-
terministic migration pattern of the randomized RBSG scheme.

Step 6: Attacking a specific PCM line. The final step is to
fail the memory line indicated by the physical address p0. The
malicious process can attack the memory line until the entire region
is rotated by one. After the rotation, the physical address p1 will
be mapped to the same PCM cells. Thus, the malicious process
can still attack the same PCM cells by repeatedly updating p1 for
another rotation period. After these two rotation phases, the target
PCM cells will fail because of the following reason. According to
the original paper, a physical address is mapped to one memory line
for ψ×K writes before this physical address is migrated to another
memory line. In particular, ψ×K is large enough to consume one
half of the lifetime of one physical cell, thus two rotation phases
are good enough to fail the system. We found that Step 6 can be
completed within 62.9 seconds.

Note that up to this point, we did not account for delayed write
factor (DWF), which is proposed by the original RBSG paper to
enhance security. The DWF basically delays a write request until
the predefined number of writes to different addresses are queued
in the write queue. If we assume the DWF to be 16 as in the origi-
nal paper, we found that our side-channel attack needs to figure out
32 physical addresses adjacently located in the region, because a

memory line can be written
ψ ×K

DWF times for one rotation period.
Consequently, it takes around 17.5 minutes to fail one PCM mem-
ory line.2 In sum, our side-channel attack exploits the deterministic
mapping pattern of the randomized RBSG to fail PCM cells effi-
ciently.

So far, we mainly exploited the fact that a region is spread across
bank boundaries following a conventional addressing scheme as ex-
plained previously. If a region is located inside a bank, then our
current side-channel attack model cannot identify the exact map-
ping from a physical address to a memory line. However, the
side-channel attack performed in Step 1 can still reveal all phys-

2In the case of a system using a closed row policy, the memory line
size can be as small as the last-level cache line size. In this case, an
attacker can fail the system within 13 minutes.

MA 0

MA 1

MA 2

MA 3

A

B

C

D

region

memory

block

?

?

?

?

R MA 0

R MA 1

R MA 2

R MA 3

M
A

P

MA 0

MA 1

MA 2

MA 3

A

B

C

D

MA 0

MA 1

MA 2

MA 3

MA 0

MA 1

MA 2

MA 3

A

B

C

D

A

B

C

D

region

memory

block

?

?

?

?

R MA 0

R MA 1

R MA 2

R MA 3

region

memory

block

?

?

?

?

?

?

?

?

R MA 0

R MA 1

R MA 2

R MA 3

R MA 0

R MA 1

R MA 2

R MA 3

M
A

P

(a) A Region and A Memory Block

time

Security Refresh Interval
Security Refresh Round

A write

Re
fre

sh
M

A
2

Re
fre

sh
M

A
2

Re
fre

sh
M

A
3

Re
fre

sh
M

A
3

Re
fre

sh
M

A
0

Re
fre

sh
M

A
0

Re
fre

sh
M

A
0

Re
fre

sh
M

A
1

Re
fre

sh
M

A
1

Re
fre

sh
M

A
1

(b) Security Refresh Interval and Round

Figure 4: Security Refresh Terminology

ical addresses mapped to the same bank. After figuring out a set
of physical addresses mapped to the same bank, we can perform a
brute-force attack similar to the attack used in Section 2.3.1. This
takes around 23 days to fail all memory lines in the bank. This is
mainly because the number of memory lines in the bank is at most
215 when we use a 32KB memory line for an open-row scheduling
policy.

Another recent research work by Seznec [17] submitted concur-
rently with our paper demonstrated that a common birthday para-
dox attack (BPA) can be used to attack RBSG rather efficiently.
The BPA works in the following context: if one randomly selects
any element among M elements and repeat this experiment until
the same element is selected twice, the expected number of tri-
als until the second occurrence is surprisingly small. According
to his analysis, the BPA can fail an architecture with the random-
ized RBSG scheme within a reasonable amount of time. When a
region is located inside a bank, we found that our side-channel at-
tack model can further accelerate Seznec’s attack model because
our attack method done in Step 1 can help an attacker to figure out
all memory lines mapped to a single bank, effectively shrinking the
number of elements, M .

3. SECURITY REFRESH
As mentioned earlier, prior studies mainly focused on extending

the lifetime of a PCM-based system that runs conventional appli-
cations but failed to protect the system against deliberately-crafted
malicious attacks. A malicious application can exploit the proper-
ties of a durability solution to destruct a PCM portion easily. Al-
though durability and security seem to be two separate issues in
PCM design, they share a common goal and should be addressed
at the same time. In this paper, we argue that a correct, usable
PCM design should consider the worst-case wear-out under mali-
cious attacks such as side channel exploits to make PCM practical
and commercially viable. In general, if PCM can sustain malicious
attacks, they should simultaneously address the durability issue.
To circumvent these intentional exploits, we must keep adversaries
from inferring an actual physical PCM location. Furthermore, the
address space must be shuffled dynamically over time to avoid use-
ful information leaked through side-channels.

3.1 Security Refresh Controller
First, we define one more address space, the Refreshed or Remapped

Memory Address (RMA), inside a PCM bank to dissociate a mem-
ory address (MA) (defined in Figure 1) from the actual data loca-
tion. After receiving an access command (in MA) from the memory
controller, each PCM bank re-calculates its own internal row and
column address (in RMA). To allow such mapping, in this work,
we propose Security Refresh. Similar to DRAM refresh that pre-
vents charge leaking from a DRAM cell, our Security Refresh pre-
vents address information leaked from PCM accesses by dynami-
cally randomizing mapping between MAs and RMAs. On the other

hands, rather than refreshing based on time in DRAM cell, our Se-
curity Refresh scheme refreshes a PCM region based on usage, i.e.,
the number of writes. Our Security Refresh is controlled by Secu-
rity Refresh Controller (SRC), which is embedded inside the PCM
bank. The SRC not only remaps an MA into an RMA but also peri-
odically changes the mapping between these two address domains
with extremely low-overhead hardware. The rationale and advan-
tages of employing an SRC inside a PCM bank are as follows:
• To obfuscate the address information regarding the actual phys-

ical data placement from applications, the (compromised) OS,
and the memory controller.

• To obfuscate potential side-channel leakage, if any.
• To prohibit any physical tampering, e.g., memory bus probing.
• To allow a memory controller to exploit bank-level parallelism

for better scheduling.
• To provide high efficiency without disturbing the off-chip bus

during data shuffling and swapping.
• To enable a high-bandwidth data swapping mechanism with-

out being constrained by limited, off-chip pin bandwidth.
• To allow PCM vendors to protect their product without relying

on a third-party such as the OS or the memory controller.

3.2 Basics of Distributed Security Refresh
Since our proposed SRC will be implemented inside each PCM

bank that will likely be manufactured with a process optimized for
PCM cell density, the hardware overhead for the SRC should be
kept low to make it practical. Furthermore, as demonstrated pre-
viously, information can leak through side channels. A sufficient
amount of such information allows an adversary to assemble use-
ful knowledge and devise a side-channel attack for target PCM lo-
cations. Simply hiding internal memory addresses alone will not
address this issue properly. Thus, we need to constantly update the
address mapping to obfuscate any relationship among information
leaked from side channels.

Before explaining our algorithm, we first introduce our nomen-
clature in Figure 4. First of all, we treat one PCM bank as one
region. As shown in Figure 4(a), one region is composed of many
memory blocks (To simplify, we show only four in the figure). A
memory block should be no smaller than a cache line in order to
keep address lookup simple. For every r writes (r = 2 in Fig-
ure 4(b)), the SRC will “refresh” a memory block by potentially
remapping it to a new PCM location using a randomly generated
key. We will detail our algorithm in Section 3.3.3 We call this
number of writes, r, which denotes the security refresh interval
analogous to DRAM’s refresh rate. The refresh operations con-
tinue for all memory blocks in each region. A complete iteration
of refreshing every single memory block in a region is called a se-

3We differentiate these two terms: refresh and remapping. A re-
fresh will be evaluated upon the due of a security refresh interval,
however, as we will show later, it may or may not lead to an address
remapping in PCM space.

A
B
C
D
E
F
G
H

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

A
B
C
D

E
F
G
H

MA RMA

(a) Initial State

A
B

D

F
G
H

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

C
H

E
F

A
D

G

B

C

E

(b) 1st Refresh

A
B
C

F
E
D

G
H

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

G

D

E
F

A
B

C
H

(c) 2nd Refresh

A
B
C

F
E
D

G
H

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

G

D

E
F

A
B

C
H

(d) 3rd Refresh

A
B
C

H

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

G

D

E
F

A
B

C

H

D
E
F
G

(e) Final State

k0 (=4)
k1 (=6)

CRP

Figure 5: An Example of One Complete Security Refresh Round

curity refresh round, similar to DRAM’s refresh period. To begin
another security refresh round, the SRC will generate a new ran-
dom key and use it together with the key from its previous refresh
round.

3.3 Security Refresh Algorithm
Now we use an example to walk through our algorithm followed

by its formal definition and description. Figure 5 depicts an ex-
ample of one security refresh round. From Figure 5(a) to (e), we
start from an initial state with eight successive security refreshes
for eight memory blocks in one PCM region. In each sub-figure,
the left column shows MAs (memory addresses) of these blocks
with their data in capital letters while the right column shows the
RMAs (refreshed memory addresses) and the actual data placement
in PCM. We explain each sub-figure in the following.

1. Figure 5(a) shows the initial state in which all eight RMAs
were generated by XORing their corresponding MAs with a
key k0 where k0 = 4. For example, the memory address
MA0 (000) XOR k0 (100) is mapped to RMA4 (100) in the
physical PCM. Also note that, Figure 5(a) has reached the
end of a security refresh round as all the MAs have been
refreshed with k0. Upon each security refresh, the candidate
MA to be refreshed is pointed by a register called Current
Refresh Pointer (CRP) shown as a shaded box in the figure.
The CRP is incremented after each security refresh.

2. Upon the next security refresh (Figure 5(b)), a new security
refresh round will be initiated because CRP has reached the
first MA of a region. Consequently, a new key (k1 = 6)
will be generated by a hardware random number generator
in the SRC for refreshing all MAs in the current round. At
this point, MA0 is refreshed and remapped from RMA4 to
RMA6. Since the data (A) of MA0 is now moved to RMA6
where the data (C) of MA2 used to be. Hence, C should
be evicted from RMA4 and stored somewhere else. Inter-
estingly, due to the nature of XOR, MA2 will actually be
mapped to RMA4 using the new key (2 ⊕ k1 = 4), i.e.,
the RMA of MA0 from the previous round (0 ⊕ k0 = 4).
This security refresh, essentially, swaps data between MA0
and MA2 in their PCM locations. We call this interesting
property the pairwise remapping property, which will be de-
fined and proved formally later. Note that the SRC will be
responsible for reading and writing two memory blocks to
physically swap the data between them.

3. Similarly, in the next security refresh (Figure 5(c)), data for
MA1 and MA3 (a victim evicted by MA1) in PCM are swapped
between RMA5 and RMA7.

4. In Figure 5(d), MA2 pointed by CRP is supposed to be remapped
after its security refresh. However, it has been swapped pre-
viously (Figure 5(b)) in the current security refresh round.

Thus, we will not swap again but simply increment the CRP
pointer. To test whether an MA has already been swapped in
the current round can easily be done by exploiting the pair-
wise remapping property. All we need to do is to XOR the
current candidate MA with the key used in the prior refresh
round and the key used in the current round. If the outcome
is smaller than CRP, it indicates the memory block has been
swapped in the current round. For instance in Figure 5(d),
we XOR MA2 with 4 (k0) and 6 (k1) giving a result of 0
(2 ⊕ 4 ⊕ 6 = 0). Since it is smaller than CRP (=2), it in-
dicates that MA2 has been swapped in the current refresh
round. We will show the formal proof later in this section.

5. The next five memory blocks are refreshed in the same man-
ner. After the eighth security refresh in the current round,
CRP will wrap around and reach MA0 again, completing the
current security refresh round (Figure 5(e)). Upon the next
refresh, a new key, k2, will be generated and a new round
starts using k1 and k2. k0 will no longer be needed. Note
that, for each refresh round, only the most recent two keys
are needed.

Now, we formally explain the pairwise remapping property, which
allows us to exchange a pair of memory blocks only with two keys.
For our address remapping, assume that we use a binary operation,
⊕, closed on a set S, which satisfies the following properties for all
x, y, and z, the elements of S where S is a set of possible addresses
in a PCM region.
• Associative Property: (x⊕ y) ⊕ z = x⊕ (y ⊕ z).
• Commutative Property: x⊕ y = y ⊕ x.
• Self-Inverse Property: x ⊕ x = e, where e is an identity ele-

ment so that x⊕ e = x.
Basically, we find an RMA for a given MA by simply performing

this binary operation between MA and a randomly generated key
(k) of the same length i.e., MA ⊕ k = RMA. Here, we define
several notations used in this proof as shown in Table 1.

Table 1: Notations Used in the Proof
kp A previous key generated in the previous security refresh round
kc A current key generated in the current security refresh round
Am An MA to be refreshed in the current refresh
Arp

An RMA to which Am was mapped with kp (i.e., Arp
= Am ⊕ kp)

Arc
An RMA to which Am will be mapped with kc (i.e., Arc

= Am ⊕ kc)
Bm An MA mapped to Arc

with kp, thus to be evicted by Am

Brp
An RMA to which Bm was mapped with kp (i.e., Brp

= Bm ⊕ kp)
Brc

An RMA to which Bm will be mapped with kc (i.e., Brc
= Bm ⊕ kc)

According to associative and self-inverse properties, when Am
newly occupies Arc

, Bm can be easily detected by performing
⊕ operation between Arc

and kp because Arc
⊕ kp = (Bm ⊕

kp) ⊕ kp = Bm. More interestingly, the new location (Brc
) that

Bm should be mapped to with kc is the old location (Arp
) that

Am used to be mapped to with kp because Brc
= Bm ⊕ kc =

R andom

key

generator

(R K G)

K ey0 register

(K E Y 0)

K ey1 register

(K E Y 1)

Current refresh ptr.

(CR P)

Global write ctr.

(GWC)

A ddress

translation

logic (A T L)

R emapping

checker (R C)

Swapping

logic (SW L)

MA

R MA

R MA old

R MAnew

(a) Secure Refresh Controller

0 1

K E Y 0 K E Y 1

A lready

remapped

MA

R MA old R MAnew

R MA

0 1

K E Y 0 K E Y 1K E Y 0 K E Y 1

A lready

remapped

MA

R MA old R MAnew

R MA

(b) ATL

< CR P < CR P

K E Y 0 K E Y 1

A lready

remapped

MA (for A T L) or

CR P (for SW L)

(c) RC

A lready

remapped

Micro-

controller

K E Y 0 K E Y 1

CR P

R MAold R MAnew

A lready

remapped

Micro-

controller

K E Y 0 K E Y 1K E Y 0 K E Y 1

CR P

R MAold R MAnew

R MA old R MAnewR MA old R MAnew

(d) SWL

Figure 6: Secure Refresh Controller

(Arc
⊕ kp) ⊕ kc = ((Am ⊕ kc) ⊕ kp) ⊕ kc = Am ⊕ kp = Arp

.
In short, we can simultaneously map a pair of MAs into their new
RMA locations by simply swapping the physical data of their old
PCM blocks. Consequently, the actual swapping operations in a se-
curity refresh round will be done by one half of all security refresh
operations. The simplest function that satisfies all three proper-
ties is an eXclusive-OR although we have proved that any func-
tion satisfying the above three properties can be used as the re-
fresh/remapping function. For the rest of this paper, we use XOR.

3.4 Key Selection for Address Translation
To correctly find the data location in PCM, we need to translate

the given MA to its current RMA using the right key. It seems
that the most straightforward way to find the right key is to add
one bit in SRC for each MA to indicate whether it needs to be
translated using the key in previous refresh round or the current
key. Even though 1-bit per block seems small, for a 1GB PCM
region with 16KB memory blocks, we will need 8KB (=216 bits)
extra space. In fact, hardware overhead for maintaining translation
information of each block is the main reason why the prior table-
based approach [24] cannot support fine-granularity segments.

Fortunately, in our scheme, the pairwise remapping property along
with the use of the linearly increasing CRP value property allows
us to determine the right key without any table. In particular, when
a memory controller wants to read from or write to an MA Cm, we
need to use the current key (kc) in the following two cases, other-
wise, the key in previous refresh round (kp) should be used.
• If Cm is less than the value of CRP, we should use the current

key (kc) since Cm has already been refreshed in the current
security refresh round.

• IfCm⊕kp⊕kc is less than the value of CRP, we should use the
current key, too. This is not very intuitive, so we will describe it
with a formal method. What we want to detect in this condition
is whether Cm was a victim that is evicted when another MA,
Dm, is remapped to the old RMA value of Cm, i.e., Cm ⊕

kp. As explained in Section 3.3, we can reconstruct Dm by
simply performing an XOR operation between the RMA value
and the current key, which is (Cm ⊕ kp) ⊕ kc. If we compare
Dm against the value of CRP, we can detect whether Cm was a
victim that is already remapped when Dm was remapped.

3.5 Implementing Security Refresh Controller
The main additional hardware for supporting Security Refresh

is the Security Refresh Controller (SRC) (Figure 6(a)) per region.
Each SRC consists of four registers, a random key generator (RKG),
address translation logic (ATL), remapping checker (RC), swap-
ping logic (SWL), and two swap buffers. The four registers re-
quired are: (1) KEY0 register to store a prior key (log2 n bits where

n is the number of memory blocks in a region), (2) KEY1 register
to store a current key, (3) a global write counter (GWC) to count
the total number of writes to a region for triggering security refresh,
and (4) the current refresh pointer (CRP) that points to the next MA
to be refreshed. A new key is generated by RKG in-between two
security refresh rounds using thermal noise generated by undriven
resistors in the SRC [5]. These keys can never be accessed or leave
outside the PCM chip.

The ATL (Figure 6(b)) performs address translation. It essen-
tially maps an MA from the memory controller to a corresponding
RMA. As explained earlier, the translation process needs to under-
stand whether a given MA has been remapped in the current round.
This algorithm is implemented in the RC (Figure 6(c)), which con-
sists of only two bitwise XOR gates, two comparators, and one
OR gate. Additionally, the RC is also responsible for finding an
address to be remapped. Upon every security refresh, the RC pro-
vides the same output to the SWL (Figure 6(d)) so that SWL can
decide whether the MA should be remapped or not. And if needed,
the SWL performs a swap operation with a pair of swap buffers.

3.6 Memory Controller Design Issues
In a conventional DRAM-based system, a memory controller un-

derstands whether a given memory request will hit in a row buffer
or not. Consequently, it can schedule its commands so that the re-
turn data of those commands will not conflict in a memory bus.
However, in our proposed PCM system that obfuscates internal ad-
dress information, the memory controller cannot schedule the ex-
ternal PCM bus alone like a conventional DRAM memory con-
troller. To utilize the bus more efficiently, we envision that future
PCM chips should be actively involved in bus arbitration. For ex-
ample, a PCM chip can send a data ready signal to the memory
controller once the requested data are brought into a row buffer.
Based on this ready signal, the memory controller can utilize the
bus more intelligently. However, detailed PCM memory controller
design issues are outside of the scope of this paper.

3.7 Testability
As mentioned earlier, our Security Refresh scheme is embedded

inside PCM to avoid leaking useful information. However, it is also
important to make the memory module testable when our scheme
is applied. To suppress randomized address remapping due to Se-
curity Refresh so the physical data locations can be determined,
we can set both the key registers KEY0 and KEY1 to zero in test
mode. Also, to make the access latency deterministic, the refresh
asserting signal from the GWC should be masked. By doing the
above, we can use existing test methods to test the memory cell ar-
ray, the address decoding logic, and the data path. Lastly, a scan
chain along with an isolation ring can be used to test the SRC it-

Rank 0Rank 0Rank 0Rank 0
Chip0

Bank0Bank0Bank0Bank0Bank0Bank0Bank0Bank0

Data

Chip1

Bank0Bank0Bank0Bank0Bank0Bank0Bank0Bank0

Data

Chip7

Bank0Bank0Bank0Bank0Bank0Bank0Bank0Bank0

DataMA

Region
SRC

RMA
MA

(a) One-Level Security Refresh

Rank 0Rank 0Rank 0Rank 0
Chip0

Bank0Bank0Bank0Bank0Bank0Bank0Bank0Bank0

Data

Chip1

Bank0Bank0Bank0Bank0Bank0Bank0Bank0Bank0

Data

Chip7

Bank0Bank0Bank0Bank0Bank0Bank0Bank0Bank0

DataMA

Region

Sub-region

Sub-region
SRC

Region
SRC

RMA
MA

IRMA

(b) Two-Level Security Refresh

Figure 7: One-Level vs. Two-Level Security Refresh (Four Ranks, Four Banks per Rank)

self. Note that this test mode must be disabled to forbid potential
side-channel attacks.

4. IMPLEMENTATION TRADE-OFF OF SE-
CURITY REFRESH

So far, we have discussed how Security Refresh works and its
advantage from the standpoint of malicious wear-out. However,
there are several trade-offs in the PCM design space. For example,
if the total number of writes required to start a new security refresh
round is larger than the PCM write endurance limit, an adversary
could wear a PCM block out before a new refresh round is triggered
(robustness). On the other hand, extra PCM writes are induced for
swapping two blocks upon remapping. Frequent swaps may unnec-
essarily increase the total number of PCM writes even for normal
applications (write overhead), leading to performance degradation
(performance penalty). Thus, we must carefully examine these
design trade-offs of Security Refresh to maximize its robustness
while minimizing the write overheads and its performance penalty.
To quantify the trade-off, we used simple analytical models to esti-
mate robustness and write overhead. From our analysis, we made
the following observations:

1. A larger region distributes localized writes across a larger
memory space.

2. A large region requires a shorter refresh interval to increase
the frequency of randomized mapping changes. Otherwise,
if one refresh round is too long, it may inadvertently leave
a mapping unchanged for too long as well, making potential
side channel attacks possible.

3. A shorter refresh interval will, nonetheless, inflict higher write
overheads due to its more frequent swapping, which can lead
to higher performance penalty.

Given the first observation, we first evaluated a region size as
large as a PCM bank as illustrated in Figure 7(a). Note that the
reason why we did not evaluate multiple banks in a PCM chip as a
region is to allow a memory controller to exploit bank-level paral-
lelism for better scheduling. As explained in our second and third
observations, we found that the write overhead of a bank-sized re-
gion is undesirably high in this one-level scheme of Figure 7(a),
which motivates us to investigate other techniques to mitigate them.

5. TWO-LEVEL SECURITY REFRESH
To address the issues of write overheads and performance penalty

while still taking advantage of a large region size, in this paper, we
propose a hierarchical, two-level Security Refresh scheme as illus-
trated in Figure 7(b). In lieu of using a very small refresh interval
that increases write overheads, we break up a region into multiple,

smaller sub-regions. Each sub-region contains its own Sub-region
SRC to perform address remapping itself based on an inner-level re-
fresh interval. In addition, an outer-level Region SRC is employed
to distribute writes across the entire region with its own refresh in-
terval. The rationale behind our two-level Security Refresh scheme
is that, given a refresh interval, a small sub-region effectively trig-
gers address remapping more frequently because of a smaller num-
ber of memory blocks within each sub-region. On the other hand,
an outer-level SRC occasionally remaps an MA of a given memory
block across sub-regions. This additional level effectively enlarges
a region size as will be detailed later.

So far, we have laid out a logical basis for the two-level Secu-
rity Refresh scheme. Now, we will explain how a security refresh
of each level is performed and how it maintains the integrity of its
own address remapping. Each individual Security Refresh level can
be regarded as an independent layer. In other words, each level per-
forms the Security Refresh algorithm with its own register values
and settings, and the Security Refresh algorithm guarantees the in-
tegrity of the address remapping as mentioned in Section 3.3. Even
at the same level, different regions can have different settings such
as their memory block sizes and refresh intervals, though they are
preset in a manufacturing phase for the maximum lifetime and the
hardware feasibility.

Figure 7(b) depicts a block diagram of the two-level Security
Refresh embedded in a PCM bank. Basically, the two-level Secu-
rity Refresh works in a recursive fashion. An outer-level Security
Refresh controller (i.e.,, Region SRC) accepts a demand memory
request from the memory controller as its input. The Region SRC
remaps a memory address (MA) of the demand request to an in-
termediate remapped memory address (IRMA). Meanwhile, if the
demand request is a write that triggers a new refresh, the Region
SRC performs the demand write request and then generates a swap
operation that consists of two read requests and two write requests
for two IRMAs. Note that the region size of the outer-level Secu-
rity Refresh is the size of a bank. Consequently, every ro writes to
a given bank (where ro is the security refresh interval of the outer-
level Security Refresh) will trigger one new refresh operation in
the bank. Furthermore, in order to keep the integrity of its address
remapping, the outer SRC should halt other requests until the swap
is completed. The demand request or the swap requests generated
by the outer SRC are forwarded to their own corresponding sub-
regions according to a sub-region index field (Figure 8) in their
IRMAs.

On the other hand, each sub-region operates the Security Re-
fresh algorithm with its own sub-region SRC. The sub-region SRC
takes a request from the Region SRC, which can be either a de-
mand request or a swap request generated by the Region SRC.
The sub-region SRC will use the IRMA of those requests to find
a corresponding RMA, which is the actual physical cell location
inside the sub-region. Meanwhile, if the request from the Region

physical page number page offset(a) Physical addr.
(a) LL$ indexing

33 18 111416 0

tag index line offset

21 7

rank ID bank ID

column addrrow addr(a) Memory addr. (MA)

column addrrow addr(b) Intermediate
(b) Refreshed MA (IRMA)

column addrrow addr(c) Refreshed MA (RMA)

24

XOR w/
an outer key

XOR w/
an inner key

Sub-region
index

Memory
block size

Figure 8: Two-Level Security Refresh (Within a bank)

SRC triggers an inner-level, sub-region refresh, the sub-region SRC
atomically performs a swap operation of two RMAs inside the sub-
region. Consequently, every ri writes to a given sub-region (where
ri is the security refresh interval of the inner-level sub-region Se-
curity Refresh) will trigger one new refresh operation in the sub-
region. Also note that when the first write request of a swap opera-
tion from the Region SRC triggers a sub-region refresh, the second
write request of the outer-level swap operation is performed after
the completion of the inner-level refresh to guarantee the integrity
of the address remapping in the sub-region.

Figure 8 shows an example of address remapping from MA to
IRMA through the outer-level Security Refresh and that from IRMA
to RMA through the inner-level Security Refresh. In this example,
each 1GB bank is divided into 512 sub-regions while the memory
block sizes for both region and sub-region are 256B. As shown,
nine MSBs from a row address is used as a sub-region index. In
other words, a row in one PCM bank is virtually partitioned into
512 sub-regions. Basically, in each sub-region, the inner-level SRC
will perform the operations of Security Refresh as explained Sec-
tion 3. Similarly, the Region SRC will perform the same opera-
tion across the entire bank. Note that the Region SRC may swap
two memory blocks that belong to different sub-regions because the
sub-region index is a part of output values of the XOR operation.
Such swapping between distinct sub-regions triggered by Region
SRC allows us to distribute localized writes across the entire bank
without using a large region at the inner-level.

6. EVALUATION
6.1 Robustness and Write Overhead

To evaluate the robustness, we evaluated the average lifetime for
both our single-level and two-level Security Refresh mechanisms
by exercising as many writes as the system can possibly take. As
mentioned in Section 2.3.2, birthday paradox attacks (BPA) [6]
based on a randomized function could fail wear-leveling schemes
employing randomization with a high probability. To evaluate the
vulnerability of Security Refresh against BPA, we implemented our
mechanisms, iteratively simulated each configuration, and calcu-
lated the average lifetime under a pinpoint attack that writes to one
single logical non-cacheable address by toggling its data bits. Note
that this attack method has the same effect with BPA because our
Security Refresh remaps all memory addresses with a new random
key for every refresh round. Throughout this subsection, we as-
sume the same baseline architecture used in Section 2.

6.1.1 Single-Level Security Refresh
Figure 9 shows the average lifetime of the single-level Security

Refresh. Here, we varied the memory block size from 256B to 8KB
and the refresh interval from 1 to 128. We keep the same 1GB bank

size for PCM with four banks and four ranks used in Section 2.
The read and write latencies are 150ns and 450ns, respectively. As
shown, for a given memory block size, as we refresh more fre-
quently with a shorter refresh interval, our system is more robust.
Unfortunately, such benefit comes at the cost of higher write over-
head, which is calculated by the number of additional writes

the total number of writes to PCM .
Note that, the extra write overheads were all accounted for when
calculating the average lifetime. For example, if our refresh inter-
val is one, the write overhead is 50%. Such additional writes can
accelerate the wear-out, but we found that the additional latency
caused by these additional writes effectively delays the attack as
well, resulting in a longer lifetime. (Note that our lifetime result
here accounts for additional latency of performing those additional
writes.)

Refresh Intervals
(Write Overhead)

0

50

100

150

200

250

300

350

400

450

256 512 1024 2048 4096 8192
Memory Block Size (B)

Av
g.

 L
ife

tim
e

(d
ay

s)

1 (50.0%)
2 (33.3%)
4 (20.0%)
8 (11.1%)
16 (5.9%)
32 (3.0%)
64 (1.5%)
128 (0.8%)

Figure 9: Single-Level Robustness

On the other hand, given a fixed region size, if a smaller mem-
ory block is used, we get more blocks in a region. As a result,
the probability of a randomly selected block mapped to the same
physical cell decreases, thus robustness is increased. However, a
smaller memory block often negatively affects robustness because,
given a fixed refresh interval and a fixed region size, more blocks
in a region increases the required number of writes to trigger a new
security refresh round. In other words, the frequency of generat-
ing a new random key is reduced. These trade-offs are manifested
in Figure 9. As shown, the average lifetime tends to increase as
we reduce the memory block size down to 512B, then it decreases
when we further reduce it to 256B. Note that for blocks smaller
than 256B (the cache line size of the last-level cache) may require
multiple PCM accesses to retrieve a single cache line, thus we did
not simulate such configurations.

Overall, we found that the longest lifetime, 422 days, is achieved
when we use 512B as the memory block size. This, however, may
not satisfy the current average server’s replacement cycle which is
usually three to four years [13, 12].

6.1.2 Two-Level Security Refresh
Figure 10 shows the average lifetime of our two-level Security

Refresh scheme when the refresh interval of an outer-level Security
Refresh is 128. In this evaluation, we use the same memory block
size, 256B, for both inner and outer levels. Since the last-level
cache line size is 256B, it is likely that the datapath of the baseline
PCM, with respect to power and performance, will be optimized for
256B as well. Furthermore, we found that the PCM with a memory
block size of 256B under two-level Security Refresh demonstrated
reasonably long lifetimes. Therefore, we only present results with
256B memory blocks.

To study the sensitivity, we varied the number of sub-regions
and the inner-level refresh interval. Note that we did not simulate

Inner-level Refresh Interval
(Write Overhead)

0
10
20
30
40
50
60
70
80
90

100

16 32 64 128 256 512 1024
The Number of Sub-regions

Av
g.

 L
ife

tim
e

(m
on

th
s)

8 (11.8%) 16 (6.6%)
32 (3.8%) 64 (2.3%)
128 (1.5%) 256 (1.2%)
512 (1.0%) 1024 (0.9%)

Figure 10: Two-Level Robustness vs. Sub-regions

extremely short inner-level refresh intervals simply because they
incur too much write overhead. As shown in the figure, we found
that the configuration with 512 sub-regions and refreshing memory
blocks every eight writes inside a sub-region can sustain around
78.8 months. This achieves 81.2% of the lifetime of the perfect
wear-leveling scheme, which is 97.1 months with the same block
size. It is noteworthy that this average lifetime is very pessimistic
as we assume that an attacker can monopolize the entire system re-
sources to perform a pinpoint attack continuously for 78.8 months.

Figure 11 shows the average lifetime of the two-level Security
Refresh scheme with 64 or higher outer-level refresh intervals. The
results suggest that the average lifetime is more sensitive to the
inner-level refresh interval than the outer-level. This is explained
by the following. Since a sub-region (inner level) contains fewer
memory blocks, a shorter refresh interval will provide better wear-
leveling.

Outer-level Refresh Interval

0

10

20

30

40

50

60

70

80

64 128 256 512 64 128 256 512 64 128 256 512

256 Sub-regions 512 Sub-regions 1024 Sub-regions
Inner-level Refresh Interval

Av
g.

 L
ife

tim
e

(m
on

th
s)

64 128
256 512
1024

Figure 11: Two-Level Robustness vs. Refresh Intervals

6.2 Hardware Overhead
In this subsection, we describe the hardware cost of our Security

Refresh. To calculate the size of registers required to implement
the single-level Security Refresh, we need a detailed configuration.
First, assume that a 4GB PCM rank is composed of eight PCM
chips as in a conventional SDRAM DIMM while each chip consists
of four banks. Then, to build a 16GB PCM system, we need 32
PCM chips. If an SRC is in charge of a PCM bank, 128 SRCs exist
in the 16GB PCM system. When a memory block size is 256B and
SRC’s refresh rate is 64, each SRC consists of three 22-bit registers
for KEY0, KEY1, and CRP, and a 6-bit register for GWC. Since
eight chips are accessed in parallel to serve a 256B request, each
chip has a pair of 32B swap buffers per bank. In sum, the total
register size required for a chip is 292B (= 4banks× (3×22bit+
6bit+ 2 × 32Byte)).

In case of the two-level Security Refresh, each sub-region also
has a dedicated inner-level SRC. To model the area overhead, we
assume the followings: 1) an outer region is divided into n sub-
regions, 2) the outer region and each inner sub-region contains 2p

and 2q memory blocks, respectively, and 3) their refresh intervals
are 2x and 2y , respectively, then the total hardware cost per outer
region without considering swap buffers can be calculated like (x+
3× p) +n× (y+ 3× q) bits. On the other hand, swap buffers can
be shared in the same level because a bank allows only one request
to access its PCM cell array at a time, which serializes all requests.
This serialization property, along with the atomicity of the inner
refresh, allows all sub-regions to share physical swap buffers. That
is, each level needs one pair of swap buffers.

Outer-level Refresh Interval

0

5

10

15

20

25

64 128 256 512 64 128 256 512 64 128 256 512

256 Sub-regions 512 Sub-regions 1024 Sub-regions
Inner-level Refresh Interval

H
ar

dw
ar

e
C

os
t (

KB
)

64 128
256 512
1024

Figure 12: Two-Level Hardware Cost per Chip (512MB PCM
Cells)

Figure 12 shows the hardware cost of those configurations used
in Section 6.1.2. The hardware cost grows exponentially as the
number of sub-regions increases. Thus, if more than 5 years of at-
tack endurance is required, dividing a bank into 512 sub-regions
can satisfy this requirement with around 12KB of the hardware
cost. (Note that these configurations can sustain for 64.5, 63.3,
and 61.5 months as indicated in Figure 11.) It is the trade-off be-
tween the cost and higher security requirement due to worst-case or
malicious wear-out. Unlike the conventional DRAM process, PCM
fabrication process is compatible with CMOS, thus those hardware
overhead will not be significant.

6.3 Wear-Leveling
In this section, we study how well writes generated by an attack

are distributed across the memory space. To count the number of
writes for each memory block, we use PIN [11]. In this simulation,
we use the two-level Security Refresh scheme with four 1GB PCM
banks, each divided into 512 subregions. Each PCM bank is one
region. Furthermore, we use the same memory block size (256B)
for both the region and the subregion while the refresh interval for
Region SRC (outer level) is 128 writes. To study the sensitivity
of inner-level refresh intervals, we use three different inner-level
refresh intervals — 32, 64, and 128 writes.

Figure 13 shows the accumulated number of writes (including
swap write overhead in our scheme) for a given pinpointed phys-
ical address (134518272) for 108 times and 1011 times. The y-
axis of this chart plots the accumulated number of writes across
the memory addresses on the x-axis. To read the number of writes
to a particular PCM address A, one has to obtain the values of A
and (A-1) on y-axis in this chart and take a subtraction. As shown
in Figure 13(a), without any wear-leveling scheme, all 108 writes
hit the same location. With our two-level Security Refresh, these
writes are distributed across the entire memory space. The more
linear a curve is, the more evenly distributed the writes are. Based

0.0e+00

2.0e+07

4.0e+07

6.0e+07

8.0e+07

1.0e+08

1.2e+08

1.1e+098.1e+085.4e+082.7e+080.0e+00

Ac
cu

m
ul

at
ed

 n
um

be
r o

f w
rit

es

1GB address space

No Security Refresh
Inner Refresh Rate = 32
Inner Refresh Rate = 64

Inner Refresh Rate = 128

(a) 108 pinpoint attacks

0.0e+00

2.0e+10

4.0e+10

6.0e+10

8.0e+10

1.0e+11

1.2e+11

1.1e+098.1e+085.4e+082.7e+080.0e+00

Ac
cu

m
ul

at
ed

 n
um

be
r o

f w
rit

es

1GB address space

No Security Refresh
Inner Refresh Rate = 32
Inner Refresh Rate = 64

Inner Refresh Rate = 128

(b) 1011 pinpoint attacks

Figure 13: Accumulated Number of Writes over the Memory Space

on this, as shown in Figure 13(a), we found that a finer-grained
swap interval tends to lead to a more balanced wear-out distribu-
tion. Not surprisingly, as the number of writes is increased to 1011,
they are even better distributed as shown in Figure 13(b).

The figures also show how many writes are additionally gener-
ated due to the swap operations during refreshes. For example,
in Figure 13(a), the difference between the final accumulated num-
ber (on the right) and 108 tick on y-axis represents the extra writes
contributed by swap operations. The percentage increase of writes
for the three different inner-level refresh intervals are 3.8%, 2.3%
and 1.5%, respectively.

6.4 Performance Impact
Finally, we evaluate the performance impact of our Security Re-

fresh scheme using SESC [16] with 26 SPEC2006 benchmark pro-
grams. Similar to previous studies [14, 15], our system employs
an 8MB L3 DRAM cache for hiding PCM’s relatively long read
latency. Also, we modeled a memory controller that exploits bank-
level parallelism and arbitrates requests to improve PCM row buffer
hits. We used a two-level Security Refresh scheme with the same
configuration in Section 6.3 to compare against a baseline without
any wear-leveling technique.

As shown in Figure 14, the performance of most of the bench-
mark programs is barely affected with our Security Refresh for the
three inner-level refresh intervals experimented. The two excep-
tional cases are 433.milc and 459.GemsFDTD, which contain not
only many PCM writes but also many PCM reads. As such, the la-
tency of the reads is often increased due to the swapping operations
for Security Refresh. However, the geometric means of IPC vari-
ations are found to be −1.2%, −0.7%, and −0.5% when we use
32, 64, and 128 as our inner-level refresh interval, respectively. Not
surprisingly, such trend is analogous to our write overhead of those
configurations, 3.8%, 2.3%, and 1.5%.

Furthermore, note that our scheme allows the memory controller
to utilize data locality at a row buffer due to the nature of bitwise
XOR operations. In particular, as shown in Figure 8, our remap-
ping method uses a bitwise operation without shuffling address bit
positions. This means that one MA row address is mapped to one
RMA row address, which allows the memory controller to utilize
spatial locality inside a row for better scheduling. Furthermore, the
bitwise remapping allows us to send a row address of MA to a PCM
chip separately from a column address of the MA similar to con-
ventional DRAM memory commands. As a result, even though a
refresh often closes a row opened by a previous demand request,

our simulation results show that the row hit rates decrease by only
0.4%, 0.3%, and 0.2%, for the three inner-level refresh intervals we
simulated, respectively. Overall, the performance impact with our
Security Refresh scheme is negligible.

7. CONCLUSION
In this paper, we argue that a robust PCM design must take both

security and durability issues into account simultaneously. More
importantly, it must be able to circumvent the scenarios of inten-
tional, malicious attacks with the presence of a compromised OS
and potential information leak from side channels. By analyzing
prior durability techniques at architectural level, we demonstrated
practical attacking models to wear out and fail PCM blocks. For
example, prior redundant write reduction techniques do not obfus-
cate addresses, making a victim memory block easy to target. Some
wear-leveling technique performs address randomization, however,
the mapping was static at boot time, leaving open side channels for
adversaries to glean and assemble useful information.

To address these shortcomings, we propose Security Refresh,
a novel, low-cost hardware-based wear-leveling scheme that per-
forms dynamic randomization for placing PCM data. Security Re-
fresh relies on an embedded controller inside each PCM to pre-
vent adversaries from tampering the bus interface or aggregating
meaningful information via side channels. Furthermore, we eval-
uated the implementation trade-off of Security Refresh and quan-
tified the reliability for a two-level Security Refresh mechanism.
Given a 1GB PCM bank with 512 sub-regions at the inner-level,
our two-level security refresh can endure more than 5 years with
a 256B memory block using 128 and 64 writes for the outer- and
inner-level refresh intervals. In addition, we also applied pinpoint
attacks to understand the wear-out distribution using Security Re-
fresh. We found that as the number of pinpoint writes to the same
memory address is increased, our technique will distribute the data
placement more uniformly, improving durability. Finally, we an-
alyzed the performance impact of Security Refresh with normal
applications (SPEC2006) and showed the average IPC degradation
is below 1.2%.

8. ACKNOWLEDGMENT
This research is supported in part by an NSF grant CCF-0811738,

NSF CAREER Award (CNS-0644096), and Samsung Electronics
Global Scholarship program. The authors would like to thank Moin-
uddin Qureshi and Doug Burger for their constructive suggestions

Inner-level Refresh Interval (Write Overhead)

-7%
-6%
-5%
-4%
-3%
-2%
-1%
0%
1%

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

42
9.

m
cf

44
5.

go
bm

k

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
3.

xa
la

nc
bm

k

41
0.

bw
av

es

41
6.

ga
m

es
s

43
3.

m
ilc

43
5.

gr
om

ac
s

43
6.

ca
ct

us
AD

M

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
7.

de
al

II

45
0.

so
pl

ex

45
3.

po
vr

ay

45
4.

ca
lc

ul
ix

45
9.

G
em

sF
D

TD

48
1.

w
rf

48
2.

sp
hi

nx
3

G
eo

m
ea

n

IP
C

 V
ar

ia
tio

ns
32 (3.78%) 64 (2.30%) 128 (1.54%)

Figure 14: Relative IPC

and technical discussions that highly improved the quality of this
paper.

9. REFERENCES
[1] International Technology Roadmap for Semiconductors,

Emerging Research Devices, 2007.
[2] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The

EM Side-Channels. In Cryptographic Hardware and
Embedded Systems, 2002.

[3] S. Cho and H. Lee. Flip-N-Write: A Simple Deterministic
Technique to Improve PRAM Write Performance, Energy
and Endurance. In Proceedings of the International
Symposium on Microarchitecture, 2009.

[4] A. Huang. Hacking the Xbox: An Introduction to Reverse
Engineering. No Starch Press, 2003.

[5] B. Jun and P. Kocher. The Intel Random Number Generator.
Technical report, Cryptography Research, Inc., 1999.

[6] M. Klamkin and D. Newman. Extensions of the birthday
surprise. Journal of Combinatorial Theory, 3(3):279–282,
1967.

[7] P. C. Kocher. Timing Attacks on Implementations of
Diffie-Hellman RSA, DSS, and Other Systems. In Advances
in Cryptology, 1996.

[8] P. C. Kocher, J. Jaffee, and B. Jun. Differential Power
Analysis. In Cryptography Research, 1999.

[9] B. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting Phase
Change Memory as a Scalable DRAM Alternative. In
Proceedings of the International Symposium on Computer
Architecture, 2009.

[10] K. M. Lepak and M. H. Lipasti. On the Value Locality of
Store Instructions. In Proceedings of the International
Symposium on Computer Architecture, 2000.

[11] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building Customized Program Analysis Tools with Dynamic
Instrumentation. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation, 2005.

[12] S. Madara. The Future of Cooling High Density Equipment.
2007 IBM Power and Cooling Technology Symposium.

[13] L. Price and G. McKittrick. Setting the Stage: The “New
Economy” Endures Despite Reduced IT Investment. In
Digital Economy, 2002.

[14] M. Qureshi, V. Srinivasan, and J. Rivers. Scalable High
Performance Main Memory System Using Phase-Change
Memory Technology. In Proceedings of the International
Symposium on Computer Architecture, 2009.

[15] M. K. Qureshi, J. Karidis, M. Fraceschini, V. Srinivasan,
L. Lastras, and B. Abali. Enhancing Lifetime and Security of
Phase Change Memories via Start-Gap Wear Leveling. In
Proceedings of the International Symposium on
Microarchitecture, 2009.

[16] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic,
L. Ceze, S. Sarangi, P. Sack, K. Strauss, and P. Montesinos.
SESC simulator, 2005. http://sesc.sourceforge.net.

[17] A. Seznec. A Phase Change Memory as a Secure Main
Memory. IEEE Computer Architecture Letters,
99(RapidPosts), 2010.

[18] W. Shi and H.-H. S. Lee. Authentication Control Point and
its Implications for Secure Processor Design. In Proceedings
of the International Symposium on Microarchitecture, 2006.

[19] M. R. Stan and W. P. Burleson. Bus-Invert Coding for
Low-Power I/O. IEEE Transactions on VLSI, 3(1), 1995.

[20] Z. Wang and R. B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In Proceedings of
the International Symposium on Computer Architecture,
2007.

[21] D. H. Woo and H.-H. S. Lee. Analyzing Performance
Vulnerability due to Resource Denial of Service Attack on
Chip Multiprocessors. In Workshop on Chip Multiprocessor
Memory Systems and Interconnects, 2007.

[22] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie.
Hybrid Cache Architecture with Disparate Memory
Technologies. In Proceedings of the International
Symposium on Computer Architecture, 2009.

[23] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and
B.-G. Yu. A Low Power Phase-Change Random Access
Memory using a Data-Comparison Write Scheme. In
Proceeding of IEEE International Symposium on Circuit and
Systems, 2007.

[24] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A Durable and
Energy Efficient Main Memory Using Phase Change
Memory Technology. In Proceedings of the International
Symposium on Computer Architecture, 2009.

[25] X. Zhuang, T. Zhang, H.-H. S. Lee, and S. Pande. Hardware
Assisted Control Flow Obfuscation for Embdedded
Processors. In Proceedings of International Conference on
Compilers, Architecture, Synthesis for Embedded System,
2004.

