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ABSTRACT
There are several emerging memory technologies looming on the
horizon to compensate the physical scaling challenges of DRAM.
Phase change memory (PCM) is one such candidate proposed for
being part of the main memory in computing systems. One salient
feature of PCM is its multi-level-cell (MLC) property, which can
be used to multiply the memory capacity at the cell level. How-
ever, due to the nature of PCM that the value written to the cell
can drift over time, PCM is prone to a unique type of soft errors,
posing a great challenge for their practical deployment. This paper
first quantitatively studied the current art for MLC PCM in dealing
with the resistance drift problem and showed that the previously
proposed techniques such as scrubbing or error correction mecha-
nisms have significant reliability challenges to overcome.We then
propose tri-level-cell PCM and demonstrate its ability to achieving
10

5× lower soft error rate than four-level-cell PCM and 1.33×
higher information density than single-level-cell PCM. According
to our findings, the tri-level-cell PCM shows 36.4% performance
improvement over the four-level-cell PCM while achieving the soft
error rate of DRAM.

1. INTRODUCTION
Phase change memory (PCM) is a promising alternative memory

technology for future computing systems. Based on chalcogenide
compound made of Ge, Sb, and Te (GST), the value of stored datais
represented with its material state indicated by its current resistance
level. When a PCM cell is heated up to a temperature over the melt-
ing point and cooled down within several tens of nano-seconds, the
cell enters a high resistive amorphous state. In contrast, the PCM
cell enters a low resistive crystalline state when it is exposed to a
temperature lower than the melting point and cooled down slowly.
The resistance of a PCM cell is known to be around103 ohms in
the crystalline state and around106 ohms in the amorphous state.
Moreover, when we alter the temperature and the duration induced
to the PCM cell, it is found that the resistance can be anywhere
in-between these two states. Multi-level-cell (MLC) PCM exploits
these intermediate states in-between the crystalline and amorphous
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states to store more data per cell.
Although the MLC PCM increases information density, this tech-

nique requires a finer-grain control over the resistance of acell. To
locate the resistance of a cell within a predefined range, theMLC
PCM requires an iterative-writing mechanism, which reads the re-
sistance immediately after a write to check whether the cellneeds
to be rewritten or not. This iterative-writing degrades thewrite la-
tency. Recent studies showed that the write latency of a four-level-
cell is about 4x∼ 8x slower than that of a single-level-cell (SLC)
PCM [13].

Besides the performance issue, a far more critical problem of
making MLC PCM practical is its reliability concern caused by the
resistance drift. The resistance drift is the phenomenon that the re-
sistance of a PCM cell increases over time. Such drifting causes
a unique type of soft errors that is different from soft errors of
DRAM. In DRAM, soft errors are produced by particle strikes,and
the error rate is independent of the stored value. In contrast, MLC
PCM cell array is impervious to particle strikes but experiences
soft errors caused by resistance drift. Although reasons for these
two types of soft errors are different, we generally call both soft er-
rors because (1) they are not hard errors, which indicate permanent
hardware failure, and (2) they share solutions such as scrubbing or
error correction mechanisms.

Resistance drift was not a problem in SLC PCM because the rate
of such drift is proportional to the initial resistance of the cell and
is nearly zero for the crystalline state. However, the resistance of
MLC PCM cells at the intermediate states could cross their state
boundary and lead to undesirable errors due to the state changes.
This new type of soft errors caused by resistance drift, if left unad-
dressed, will make MLC PCM unreliable. In this paper, we mathe-
matically formulate the drift-induced soft error rates of MLC PCM.
With this analytical model, we evaluate the previously proposed
ideas for reducing soft errors and show that four-level-cell PCM
still cannot deliver reliability that matches DRAM reliability — it
requires other architectural mechanisms. We then propose tri-level-
cell (3LC) PCM and show that the 3LC PCM can achieve the soft
error rate of DRAM and the performance of SLC PCM.

2. BACKGROUND AND MOTIVATION
A multi-level PCM cell can store more than one bit by defining

the intermediate states between set and reset states [11]. The re-
sistance of a PCM cell is as low as103 ohms in the set state and
106 ohms in the reset state. By further exploiting the resistance
difference, a PCM cell can have two or even more intermediate
states in addition to set and reset to increase data density per cell.
For example, four-level-cell (4LC) PCM stores two bits per cell by
exploiting two additional intermediate states, while eight-level-cell
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(8LC) PCM stores three bits per cell with six more intermediate
states. Such multi-level-cell (MLC) PCM requires the following
operations to function correctly. Firstly, an MLC PCM cell needs
iterative write-and-verify steps to verify its written value. When the
resistance fails to fall into a predefined range, a PCM chip needs
to repeat the write-and-verify step. This iterative writing process
takes up to eight times longer than a typical write in single-level-
cell (SLC) PCM [13]. Secondly, when the resistance of an MLC
PCM cell is drifted and crosses the storage level boundary, asoft
error (i.e., bit flipping) occurs and needs to be recovered by error
correction mechanism, which can be costly.

Unfortunately, the soft error rate (SER) due to resistance drift
in MLC PCM is fairly high. With a detailed model of resistance
drift [20], we calculate the probability of the SER of an MLC PCM
cell. As we will show in Section 4, the SER increases over time
because the resistance of the MLC PCM cell increases over time.
In other words, the chance of crossing the storage level boundary
increases over time along with the resistance. More importantly,
Appendix A shows that the SER of MLC PCM is significantly
higher than that of DRAM. To address such shortcomings, Xuet
al. [20] proposed a time-aware error correction scheme, which em-
ploys extra cells for storing predefined reference resistance values.
The reference cells are adjusted to the predefined values whenever
the other cells in its corresponding data block are written.When
reading the data block, the resistance of the reference cells are used
to compensate the drifted resistance in other cells. By using such
a technique, the SER (called raw bit error rate in [20]) couldbe
reduced from10−3 ∼ 10−1 to 7 × 10−4 ∼ 10−2. On the other
hand, Awasthiet al. proposed an efficient scrub mechanism for
MLC PCM [1]. The mechanism effectively reduced 99.6% of un-
correctable errors; however, the lowest possible SER for long-term
writes1 of 4LC PCM was6.74 × 10−5.

DRAM also experiences soft errors caused by particle strikes. Its
SER is known to be an average of25, 000 ∼ 75, 000 FIT (failures
in time per billion hours of operation) per Mbit,i.e., 25× 10−12 ∼
75 × 10−12 per bit-hour [17]. For example, 16GB of DRAM is
expected to have 3.43 to 10.31 soft errors every hour. In contrast,
4LC PCM with SER of6.74×10−5 (the lowest SER for long-term
writes in [1]) is expected to incur9.26×106 errors, near106 times
more errors than DRAM. Moreover, in this comparison, an eight-
bit correction BCH ECC is assumed [1] whereas no ECC was as-
sumed in DRAM. Nonetheless, 4LC PCM shows several orders of
magnitude higher SER than DRAM even with sophisticated ECC
support.

Many architectural and device-level techniques were proposed
to alleviate the downsides of this 4LC PCM reliability [9, 20, 1];
however, we argue that 4LC PCM still requires additional archi-
tectural solutions to be a practical device for main memory.For
one, reference-cell based or time-varying threshold methods intro-
duce the following problems. If we adopt redundant PCM cellsfor
storing reference values to compensate the increase in resistance,
a block of PCM cells must share the redundant cells to mitigate
the capacity overhead [20]. As such, any writing operation should
read and rewrite the entire block of cells including reference cells.
This strategy triggers more writes to the cells, reduces their lifes-
pan, consumes more power, and degrades performance. Secondly,
if the scrub mechanism is used for reducing soft errors [1], the
memory controller will spend more time in scrubbing than DRAM,
which degrades the overall performance of the memory subsystem.
Lastly, DRAM-style self-refresh cannot directly be applied to MLC

1The original paper [1] defined a long-term write as follows. Some
PCM cells experience sufficiently high timing gap between writes.
These types of writes are called long-term writes.

PCM. Refreshing a PCM cell does not consume off-chip bandwidth
nor utilize memory controller; however, such refresh cannot bene-
fit from error correcting codes. In this case, cells must be refreshed
while they still hold the correct information. Therefore, refresh in-
terval should be as short as hundreds of milliseconds. Such frequent
refresh introduces new problems: (1) higher chip-level power, (2)
slower responsiveness of PCM because writing a 4LC PCM cell
takes 1.15µs, a few orders slower than DRAM, and (3) decreased
lifespan of PCM cells due to frequent writes. In summary, 4LC
PCM not only has a higher SER than DRAM even with sophisti-
cated techniques but also requires extra overheads that have yet to
be quantitatively evaluated.

The motivation of this research stems from these observations.
As we will show in later sections, if we reduce the number of
storage levels from four to three, a PCM cell shows fewer errors
than DRAM, and thus eliminates the need of ECC, reference cells,
and scrubbing. We compare our proposed tri-level-cell (3LC) PCM
over 4LC PCM throughout this paper to demonstrate that 3LC PCM
is a cost-effective solution for putting multi-level cellsinto practical
use.

3. TRI-LEVEL-CELL (3LC) PCM
A straightforward approach toward 3LC PCM is removing the

most error-prone state from 4LC PCM. To do so, we first discuss
the physical parameters of 4LC PCM. By measuring the resistance
drift of reset and set states from iterative experiments, Ielmini et
al. [7, 8] showed that the drift can be represented by a power-law
model as

Rdrift(t) = R × { t

t0
}α

. (1)

In Equation (1),R and t0 are normalization constants andα is a
drift exponent. Because the main cause of the drift is the structural
relaxation of the amorphous state, the drift exponent of thereset
state is much larger than that of the set state in the experiments. In
other words, the drift exponent will increase as the portionof the
amorphous state of a cell increases.

As mentioned earlier, the resistance drift causes soft errors in
MLC PCM. To estimate the impact of resistance drift on relia-
bility in MLC PCM, we make the following assumptions for the
normalization constants and the drift exponent for storagelevels.
According to the experiments performed by Nirschlet al. [11],
the iterative write-and-verify method adjusts the programmed re-
sistance,R, to be located within a desired resistance range. In ad-
dition, log10 R follows a normal (Gaussian) distribution. In this
paper, we assume that the logarithm of a normalization resistance,
log10 R will follow a normal distribution ofN(µR, σ2

R). In ad-
dition, a desired programmed resistance range for a given state is
set to the range within10µR±2.75×σR Ω and the upper and lower
sensing boundaries for the state are set to10µR±3×σR Ω. The value
of a drift exponent is also assumed to follow a normal distribution
of N(µα, σ2

α). The parameters in our drift analysis are based on
prior work [1, 20] and summarized in Table 1. Note that Table 1
takes process variation into account by using normal distribution
for modeling both the resistance and the rate of the resistance drift.
By using such distribution, we assume that PCM cells are not man-
ufactured equally.

A soft error occurs when the resistance of a MLC PCM cell is
drifted above the upper boundary of its programmed state. From
the state-boundary settings described above, the condition of a soft
error can be represented as

Rdrift(t) > 10µR+3×σR . (2)

441



Table 1: Configuration Variables of Four-Level-Cell (4LC)
PCM When t0 = 1 s.

Storage Level Data
log10 R α

µR σR µα σα

0 01 3.0
1

6

0.001

0.4 × µα
1 11 4.0 0.02
2 10 5.0 0.06
3 00 6.0 0.10

Table 2: Configuration Variables of Tri-Level-Cell (3LC) PCM
When t0 = 1 s.

Storage Level
log10(R) α

µR σR µα σα

0 3.0
1

6

0.001
0.4 × µα1 4.0 0.02

2 6.0 0.10

In other words, Table 1 shows that the target resistance values for
the four storage levels are103, 104, 105, and106Ω, respectively,
and the sensing boundaries are103.5, 104.5, and105.5Ω. For in-
stance, when the resistance of a cell programmed for storagelevel
2 drifts and becomes larger than105.5 Ω, the cell is read as the next
storage level and generates a soft error.

With assumptions thatlog10 R andα follow normal distribution
in Table 1, we can calculate the probability of soft errors asa func-
tion of time. The detailed formula is derived in Appendix A. As
we will show in later sections, the most error-prone state in4LC
PCM is the third storage level for the following reasons. Forone,
the fourth storage level (amorphous state) in the highest resistance
range does not generate soft errors. In addition, becauseα is pro-
portional toR, the third storage level experiences the rapidest re-
sistance drift among all levels. On the other hand, however,if we
remove the third storage level, this will not only remove theerrors
generated by itself but also reduce most of the errors created by
the second storage level. For instance, the majority of errors gen-
erated by the second storage level occurs on the boundary between
the second and the third storage levels, which can be avoidedby
not using the third storage level. Table 2 shows our design points
for 3LC PCM. Note that 3LC PCM is different from 3LC NAND,
which commonly refers to three layer cell NAND that stores 3 bits
per cell. More specifically, 3LC NAND implements eight different
storage levels per cell and do not require binary to ternary conver-
sion, which will be discussed in Section 5. Therefore, our 3LC
PCM design is unique in that it introduces a new way of storing
binary information on a ternary device.

Given the physical parameters in Table 2, we calculate the SER
of 4LC PCM and 3LC PCM. Note that we use the analytical model
in Appendix A and present the results in Tables 3 and 4. Table 3
shows the SER of two intermediate storage levels of 4LC PCM as
a function of time since they were written while Table 4 showsthe
SER of the first two storage levels of 3LC PCM. For example, if a
3LC PCM cell is written to the second storage level att = 0, the
SER of the cell is5.93×10−14 at t = 245. Note that we mark “too
small” in the tables when Mathematica 8.0 outputs zero due tolack
of precision. As Table 4 shows, there is no error in 3LC PCM up
to 234 seconds or more than 500 years. Because of such low SER,
scrubbing will be unnecessary for 3LC PCM in the time range of
interest. For the same reason, ECC or other similar techniques can
be waived. In summary, the SER of 3LC PCM is even lower than
that of DRAM. It does not require scrubbing nor ECC to achieve

Table 3: Probability of Soft Error of Four-Level-Cell (4LC)
PCM by Equation (7) in Appendix A

Time (s) Storage Level 1 Storage Level 2

2 (too small) 5.85E-06%
22 1.59E-12% 0.02%
23 5.85E-06% 0.12%
24 7.45E-04% 0.28%

Table 4: Probability of Soft Error of Tri-Level-Cell (3LC) P CM
by Equation (7) in Appendix A

Time (s) Crystalline State Intermediate State

2 ∼ 234 (too small) (too small)
235 2.28E-16% (too small)
240 1.59E-14% (too small)
245 5.71E-10% 5.93E-14%

the satisfactory level of reliability. To further justify the use of 3LC
PCM over 4LC PCM, we quantitatively compare and evaluate these
two design options in the subsequent sections.

4. REVISITING FOUR-LEVEL-CELL (4LC)
PCM

Given the soft error rates in Table 3, it is clear that 4LC PCM is
unusable as main memory without additional architectural mecha-
nisms for reducing SER. Researchers have proposed several drift-
tolerant approaches such as error correction schemes [1, 22, 12,
20], data encoding schemes using relative resistance difference [12,
22], a reference cell scheme [6], a time-aware drift estimation mech-
anism [20], and most recently an efficient scrubbing scheme [1].
Among them, we focus on the most recent work by Awasthiet al.
[1] that studied an architectural mechanism combining a memory
scrubbing scheme with a strong error-correction method forlower-
ing soft error rates of 4LC PCM. However, as we will show, even
with the most efficient scrubbing mechanism, the SER of 4LC PCM
is still much higher than that of DRAM.

4.1 Estimating Scrubbing Overhead
In this section, we compare the SER of 4LC PCM to that of con-

temporary DRAM. First, we assume a 16GB PCM main memory
with eight banks (i.e., 2GB per bank) using a 256B data block2 as a
basic access unit as assumed in prior literature [19, 18]. According
to recent work by Choiet al. [3], the read and write latencies in
SLC PCM are120ns and150ns, respectively. Considering that
iterative write-and-verify steps are required for MLC PCM,we as-
sume that scrubbing a cache line takes1.15µs.

The rationale behind such high scrubbing time,1.15µs, is the
following. PCM scrubbing must rewrite all cells even without er-
rors. For DRAM, scrubbing writes only when error happens; how-
ever, PCM scrubbing is different because of the time-dependent
error characteristics as discussed in Equation (1). For example,
we assume that a PCM cell is written att = 0s and has 100 sec-
onds of scrubbing period. We also assume that a memory controller
cannot find an error from this cell in the first scrubbing attempt
at t = 100s. In other words, even though the resistance became
Rdrift(t) = R × { 100s

t0
}α, Rdrift(t) did not cross the decision

boundary. If the memory controller does not rewrite the cellat t =

2A large last-level DRAM cache is typically used to compensate
for the relatively slower PCM access latencies. Its cache-line size
is assumed to be 256B
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Table 5: Maximum Capacity Per Bank of Four-Level-Cell
(4LC) PCM by Soft Error Rates and Scrubbing Overhead

Scrubbing Overhead
Scrubbing
Period (s)

SERcombined 100% 12.5% 1%

2 1.46E-06% 488MB 61.0MB 4.88MB
22 0.005% 977MB 122MB 9.77MB
23 0.030% 1.95GB 244MB 19.5MB
24 0.071% 3.91GB 488MB 39.1MB
25 0.132% 7.81GB 977MB 78.1MB

100s, the cell will spend another 100 seconds until the next scrub-
bing round, or a total of 200 seconds since the initial writing oper-
ation. On the second scrubbing attempt att = 200s, the amount
of resistance drift for this cell becomesRdrift(t) = R×{ 200s

t0
}α,

significantly larger than when it was att = 100s. All in all, scrub-
bing in PCM must rewrite all cells on every visit to avoid exponen-
tially increasing chances of errors. Given that scrubbing acache
line must rewrite cells with or without errors, scrubbing a cache
line takes a read operation (0.15µs) and a consecutive write opera-
tion (1.00µs), a total of1.15µs. In addition to the scrubbing time,
we also assume that each storage level has the same probability of
occurrences.

The first column in Table 6 shows that the scrubbing overhead
decreases as the scrubbing period increases. Here, the scrubbing

overhead is defined asTime used for scrubbing
Scrubbing period . A 2GB PCM bank

has 8M cache lines. Thus,9.65 seconds (≃ 8 × 220 × 1.15µs) are
required for scrubbing the entire physical PCM even if all eight
PCM banks are scrubbed in parallel. As shown in Table 3, even
when the memory controller performs nothing but scrubbing (100%
overhead,i.e., the memory controller will not have time to respond
to any memory request), the SER of storage level 2 in 4LC PCM
is 0.12%, which is significantly higher than that of DRAM. More-
over, if we use the scrubbing period of 45 minutes as in the DRAM
for real-world servers [17], the SER of a PCM cell programmedto
storage level 2 will escalate to 5%, which is intolerable. Clearly,
4LC PCM with scrubbing mechanisms cannot guarantee the most
basic reliability by any standard. To reach a low SER and reduce
the scrubbing overhead simultaneously, the maximum PCM capac-
ity per bank must be limited. Our next section will show the largest
capacity of 4LC PCM that the scrubbing mechanism can support.

4.2 Reducing Capacity to Achieve Low Soft
Error Rates

Another way of lowering the SER of 4LC PCM is to limit the
maximum capacity. We assumed that the capacity of 4LC PCM is
2GB per bank in Section 4.1 when estimating the scrubbing over-
head. Since the scrubbing overhead increases proportionally with
the capacity, 4LC PCM can achieve lower SER if we continue to
cut down the capacity. Table 5 shows the results.

Table 5 calculates the maximum capacity of 4LC PCM for dif-
ferent combinations of SER and scrubbing overhead. The leftmost
column represents the scrubbing period for each 256B memory
block. The next column represents the combined SER which is an
average of SER of all four states in 4LC PCM. However, because
the third storage level shows significantly larger SER than the oth-
ers, the combined SER is close to one fourth of that of the third
storage level. Then, we show the maximum capacity by scrubbing
overhead. When the overhead is 100%, the memory controller can-
not service any request from the upper memory hierarchy. Since

100% scrubbing overhead is infeasible, the third column of Table 5
is the upper bound.

Table 5 also shows the maximum capacity when the scrubbing
overheads are set to 12.5% and 1%, respectively. For example, if
we design 4LC PCM with the scrubbing overhead of 1.0%, leaving
99% of the time for servicing memory requests, the maximum PCM
capacity will be merely 4.88MB for achieving an average SER of
1.46×10−6%. Note that when 4LC PCM comprises multiple ranks
or banks, scrubbing can be performed in parallel. Thus, whenone
bank is being scrubbed, the other banks can respond to requests
from the CPU. However, even with eight banks, the maximum ca-
pacity amounts to 39.1MB, which is still substantially below the
needed main memory capacity. In sum, although a lower SER can
be achieved by reducing the total capacity of 4LC PCM, the mem-
ory capacity becomes too small to be useful.

4.3 Using Error-Correcting Codes
Error-correcting codes (ECC) can be applied to compensate the

SER of 4LC PCM. For example, the industry standard (72,64) Ham-
ming code [4] can correct single bit errors by adding 8 redundant
bits on top of 64-bit data.3 This scheme is commonly found in
main memory of server systems because of the simplicity in en-
coding and decoding [21]. Moreover, stronger ECC can also be
used to protect data from multiple bit errors. For example, BCH
codes [2, 5] correct 8-, 16-, 24-, or 40-bit errors from 256, 512,
1024 bytes of data depending on the size of redundant bits. Be-
cause decoding BCH codes requires more computing power and
time than (72,64) Hamming code, these codes are not frequently
used for latency-sensitive devices such as main memory but com-
monly found in slower devices such as NAND-based storage. With
the combined SER for each cell of 4LC PCM developed in pre-
vious sections, we calculate the error rates after applying(72,64)
Hamming code and various BCH codes. Note that for every ECC
evaluated in this section, we fix the data size at 512 bits, thesame
size as in the previous study[1].

(72,64) Hamming code corrects one bit error, and thus, having
more than two bit errors among 72 bits is uncorrectable. In addi-
tion, since storing 72 bits requires 36 4LC PCM cells, the prob-
ability of having more than two bit errors out of 36 cells can be
calculated as follows. Note that by using Gray codes as described
in Table 1, one step change in storage levels is limited to affect only
one bit in two-bit data. Thus, two bit errors can happen only when
two 4LC PCM cells are changed due to resistance drift.

Probability of having at least two bit errors in 72 bits is

=1 − P (no errors) − P (one bit error)

=1 − (1 − SERcombined)36

−
 

36

1

!

(1 − SERcombined)35(SERcombined)

=Perror(72b).

(3)

Now we calculate the probability of uncorrectable errors in512
bits. 512 bits comprises eight of 64 bits data, therefore, tore-
construct the entire 512 bits, all eight blocks should not generate
any uncorrectable error. If we define the result of Equation (3) as
Perror(72b), then the probability of uncorrectable error for 512 bits
is defined as

Perror(512b) = 1 − (1 − Perror(72b))8.

The fourth column in Table 6 shows the results. In Table 6, we cal-

3The capacity overhead is 12.5%.
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Table 6: Probability of Uncorrectable Errors by ECC and SERcombined for 2GB per Bank 4LC PCM

Probability of Uncorrectable Errors for 512 bits
= Perror(512b)

Scrubbing Period
(Overheads)

SERcombined No ECC (72, 64)
BCH-8

(512b+80b)
BCH-16

(512b+160b)
BCH-24

(512b+240b)
BCH-32

(512b+320b)

23 seconds (100+%) 0.030% 7.4% 0.05% (too small) (too small) (too small) (too small)
24 seconds (60.29%) 0.070% 16.4% 0.24% 1.44E-10% (too small) (too small) (too small)
25 seconds (30.15%) 0.133% 28.9% 0.86% 3.80E-8% (too small) (too small) (too small)
26 seconds (15.07%) 0.218% 42.8% 2.26% 2.64E-6% (too small) (too small) (too small)
27 seconds (7.54%) 0.325% 56.5% 4.84% 7.45E-5% (too small) (too small) (too small)
28 seconds (3.77%) 0.475% 70.4% 9.76% 1.54E-3% 1.27E-10% (too small) (too small)
29 seconds (1.88%) 0.668% 82.0% 17.8% 0.02% 2.32E-8% 4.11E-13% (too small)
210 seconds (0.94%) 0.91% 90.4% 29.4% 0.18% 2.15E-6% 2.81E-12% (too small)
211 seconds (0.47%) 1.21% 95.6% 44.2% 1.08% 1.10E-4% 1.34E-9% (too small)
212 seconds (0.24%) 1.57% 98.3% 60.6% 4.61% 3.14E-3% 2.66E-7% 8.69E-12%

culate the probability of uncorrectable errors by scrubbing period,
scrubbing overheads, andSERcombined. If we compare the error
rates of 4LC PCM to that without ECC, (72,64) Hamming code re-
duces the error rates, but those rates are still too high for practice.
The results indicate that 4LC PCM must use stronger ECC that re-
quires more redundant bits and higher computational overheads.

Now we calculate the probability of having uncorrectable errors
with stronger ECC. On top of the 512-bit data, BCH-8 correctsup
to 8 bits errors by adding 80 redundant bits, and BCH-16 corrects
up to 16 bits errors by adding 160 redundant bits.4 We generalize
Equation (3) for calculating the probability of having at leastn bit
errors out ofm bits as follows.

Probability of having at leastn bit errors out ofm bits is

= 1 −
n−1
X

k=0

 

m

k

!

(1 − SERcombined)m−k(SERcombined)k
.

(4)

Table 6 also shows the results from Equation (4). When the scrub-
bing period is28 seconds, the scrubbing overhead is 3.77%, and
Perror(512b) is 1.54×10−3% for BCH-8. The error rate is signif-
icantly smaller than that of 4LC PCM with (72,64) Hamming code;
however, still106 ∼ 107 times higher than the SER of DRAM
without ECC support.

Table 6 shows that if we limit the maximum scrubbing overhead
to 1%, 4LC PCM is only usable with BCH-32. However, such re-
quirement prevents 4LC PCM from being used as main memory
for the following reasons. For one, a memory controller witha
complex error-correcting mechanism requires extra chip area and
design effort, raising the chip cost. Since memory controllers are
typically integrated in the same die with processor cores these days,
designers need to design and fabricate a customized CPU for sup-
porting 4LC PCM. In addition, the higher computational overhead
in decoding increases the memory latency and degrades the per-
formance. For these reasons, the majority of commodity systems
typically implement no ECC schemes or at most the (72,64) Ham-
ming code.

Moreover, the most critical downside of BCH-32 is the capacity
overhead. To correct up to 32 errors from 512 bits of data, we must
add 320 parity bits to make a total of 832 bits of data. In storing
832 bits, 416 4LC PCM cells are needed. On the other hand, 416
3LC PCM cells can store 659 bits (= ⌊log2(3

416)⌋). Note that
because 3LC PCM has no soft error in the time range of interest, all

4The capacity overheads are 15.6% and 31.3%, respectively.

659 bits can be used to store useful information without parity bits.
In summary, 3LC PCM theoretically achieves higher information
density than 4LC PCM.

4.4 Increasing Programming Precision
We discussed earlier that the parameters in our analysis arebased

on previous studies [1, 20], which assumed that desired programmed
resistance ranges are10µR±2.75σR for µR andσR in Table 1. If we
can increase the programming precision or fine-tune the resistance
levels from10µR±2.75σR to 10µR±1.375σR , for example, then SER
of 4LC PCM will decrease; however, at a cost of more write itera-
tions.

Although the relationship between resistance ranges and the num-
ber of write iterations has yet to be discovered, we estimateit by ex-
tending the previous study, which proposed a mathematical model
for calculating write iterations [13]. Their method plugged the
ratio between the number of desired storage levels and the num-
ber of levels that can be reached in a single write attempt into
the Bernoulli distribution. We extend this model to calculate how
many iterations will be required in increasing programmingpre-
cision. More specifically, 4LC PCM with half of the resistance
range (10µR±1.375σR ) can be considered as 8LC PCM with unused
four storage levels in-between four storage levels.5 Such narrow
range triggers almost 2x more write iterations, resulting into the
following problems. Extra iterations slow down the writingpro-
cess, degrade the performance, wear out PCM cells, and consume
extra power. Nevertheless, SER of such 4LC PCM in 32 seconds is
1.9×10−7%, which is more than1010 more errors than 3LC PCM.
In summary, one can decrease SER of 4LC PCM by increasing pro-
gramming precision; however, 4LC PCM with such high precision
compromises write latency and lifespan of PCM cells while still
suffering from significantly higher SER than 3LC PCM or DRAM.
The next section explains practical implementation for 3LCPCM.

5. TRI-LEVEL-CELL (3LC) PCM IN PRAC-
TICE

5.1 Binary-to-Ternary Conversion
Since tri-level cells do not match any conventional binary digital

system, we need an efficient way of converting binary information
to the ternary number system and vice versa. The efficiency of

5According to the original notation,F changes from0.5 to 0.25.
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conversion methods can be evaluated by cell utilization andimple-
mentation feasibility. In other words, it is always desirable for a
conversion method to fully utilize the cell capacity with minimal
hardware overheads.

First, we need a way to evaluate the cell utilization of a conver-
sion method. For example, if a conversion method usesn

2
four-

level cells to storen-bit data, then the four-level cells can be re-
garded as fully utilized. On the contrary, if a conversion method
needsn four-level cells to storen-bit data, then its cell utilization
is halved. This concept can be generalized as follows. When a
conversion method usesm k-level cells to storen-bit data, its cell
utilization is

Cell Utilization =
logk 2n

m
=

n

m
logk 2. (5)

In this equation,2n is the number of different states represented by
n-bit data andlogk 2n is the theoretically minimum number ofk-
level cells to storen-bit data. For instance, if a 4LC PCM requires
a BCH-32 error correction scheme to prevent drift-induced soft er-
rors, the cell utilization of the binary to quaternary conversion is
calculated as512

416
log4 2 ≃ 0.615 where BCH-8 requires 320 more

parity bits to recover 512-bit data from eight errors.
As mentioned in Section 3, the 3LC PCM does not require any

complicated error correction scheme. However, some capacity loss
of 3LC PCM is unavoidable due to binary-to-ternary conversion. In
other words, when usingn bits as a basic store unit, the minimum
number of 3LC PCM cells to store then bits is⌈n log3 2⌉(= m).
For example, storing three-bit data requires at least two 3LC PCM
cells. The two 3LC PCM cells are used for differentiating23 states
even though they can represent maximum32 states. Thus, one of
the states represented by two 3LC PCM cells is remained unused.
Figure 1 shows the achievable cell utilization for〈n, m〉 binary-
to-ternary conversion methods by the size of a basic store unit, n,
from one to 32. Among those conversion methods, the〈19, 12〉
conversion storing 19 bits to 12 3LC PCM cells can achieve the
highest cell utilization of0.999, while the cell utilization of a〈8, 6〉
conversion method is at most0.841. For reference, in the〈1, 1〉 and
〈2, 2〉 conversion methods, a 3LC PCM cell acts like a SLC PCM
cell and the cell utilization is0.631.

In evaluating conversion methods, another important factor that
should be considered is implementation complexity. Those〈n, m〉
conversion methods for 3LC PCM can be implemented using ei-
ther look-up tables (LUT), arithmetic units, or basic logicgates.
Each implementation method has its own advantages and disad-
vantages. Using a look-up table can reduce the conversion latency,
while the number of table entries is exponentially increased when
we increase the size of a basic store unit,n. On the other hand, cal-
culating ternary numbers using arithmetic units occupies less hard-
ware overhead than LUT; however, the latency is compromiseddue
to slow arithmetic operations. In general, increasing a basic store
unit, n, to achieve higher cell utilization results in higher hard-
ware costs or longer access latencies. Moreover, since a conversion
method should be embedded inside a memory chip, its hardware
cost and access latency are critical for its implementationfeasibil-
ity.

Therefore, we propose to use a simple number mapping method
such as〈1, 1〉, 〈2, 2〉, and〈3, 2〉 conversion methods that are imple-
mentable with simple logic gates. With a combination of the three
conversion methods, we can build any conversion method whose
cell utilization is less than or equal to the cell utilization of 〈3, 2〉,
0.946. For example, a〈8, 6〉 conversion can be translated to two
〈3, 2〉 conversions and one〈2, 2〉 conversion,i.e., 2〈3, 2〉+〈2, 2〉 =
〈8, 6〉, and a〈16, 11〉 conversion can be translated to five〈3, 2〉

Table 7: An example of the〈3, 2〉 number mapping method.

3-digit binary 2-digit ternary
control signals

cell1 for t1 cell0 for t0
(b2b1b0) (t1t0) s11 s10 s01 s00

000 00 0 0 0 0
001 01 0 0 0 1
010 12 0 1 1 x
011 02 0 0 1 x
100 10 0 1 0 0
101 20 1 x 0 0
110 22 1 x 1 x
111 21 1 x 0 1

Relationship between ternary levels and control signals:
“Programming”
tc pc1 pc0

2 1 x
1 0 1
0 0 0

“Reading”
tc rc1 rc0

2 1 x
1 0 1
0 0 0

where “x” means redundant condition

conversions and one〈1, 1〉 conversion,i.e., 5〈3, 2〉 + 〈1, 1〉 =
〈16, 11〉.

Table 7 shows an example of the〈3, 2〉 number mapping method.
In this example, eight ternary states except for the11 state are used
to represent three-bit binary data. This simple number mapping
method can be implemented using several logic gates. We assume
that three-bit data,b2b1b0, is stored to two tri-level cells,t1t0, and
each cell uses two control signals,pc1 and pc0, to select a pro-
gramming current corresponding to its state, wherec indicates a
corresponding cell number. When the relationship between the cell
states and their control signals is defined as in Table 7, the control
signals can be represented by the three binary bits as

p11 = b2 · b1 + b2 · b0, p10 = b2 + b1 · b0

p01 = b2 · b1 + b1 · b0, p00 = b1 + b2 · b0.

Similarly, when reading a 3LC PCM cell, its programmed resis-
tance is represented by the outputs of two sense-amplifiers,rc1 and
rc0 as described in Table 7. From the four outputs of two cells, the
three-bit data can be decoded by simple logic gates as

b2 = r11 + r10 · r01 · r00

b1 = r01 + r11 · r00

b0 = r11 · r01 + r11 · r10 · r01 + r11 · r10 · r00.

Our ternary-to-binary conversion employs AND, OR, and NOT
gates, and the critical path of the conversion is maximally three-
gate delay. Considering that the typical operating frequency of
main memory is significantly lower than that of CPU, three more
gate delays will not result in a major impact in timing.

In this section, we show that by using a〈3, 2〉 number mapping
method we can achieve the cell utilization of up to0.946 with low-
cost hardware. Thus, when using an〈8, 6〉 conversion composed of
two 〈3, 2〉 and one〈2, 2〉 conversion methods, 512-bit data can be
stored in 384 tri-level cells. Here, it is noteworthy that 4LC PCM
requires 416 cells to store 512-bit data when using a BCH-32 error
correcting scheme to achieve a confident level of reliability.

5.2 Bandwidth Enhancement
So far, we achieved the desired reliability with 3LC PCM by

eliminating the most error-prone state from the four-levelcell PCM
as shown in Figure 2(a). To program a cell to the intermediatestate,
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Figure 2: Cell Distribution vs. Programming Sequence

“L1”, 3LC PCM uses the same write-and-verify iterations as 4LC
PCM. Since a prime concern in 4LC PCM is to maximize its re-
liability, it is desirable to precisely tune the resistanceof interme-
diate levels to secure drift margins between storage levelsas large
as possible. However, such precise programming leads to a long
write latency, which is the root cause of low write bandwidthin
MLC PCM. The question is whether the tight resistance rangesfor
intermediate levels achieved by write-and-verify iterations are still
necessary for 3LC PCM.

According to our analytical model, the 3LC PCM using the same
resistance ranges with 4LC PCM is virtually free from drift-induced
soft errors. As described in Table 4, its SER is extremely small
even comparing with that of DRAM, indicating that the resistance
range for the intermediate level is unnecessarily tight. Since the
tight resistance range is obtained by sacrificing the write latency,
we can reduce the write latency by relaxing the resistance range
and eventually improve the overall write bandwidth. Therefore, we
propose bandwidth-enhanced 3LC (BE-3LC) PCM using a relaxed
resistance range for the intermediate level.
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(a) Error transition of 
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(c) State mapping of
<3,2> conversion

Figure 3: State mapping of〈3, 2〉 conversion for efficient error
correction in 3LC PCM

Figure 2(b) shows two examples to program a relaxed interme-
diate level in 3LC PCM. The relaxed intermediate level can be
programmed with less number of write iterations because of its
widened resistance range. Another choice in programming the re-
laxed intermediate level is to use the moderate-quenched (MQ)
programming which controls the falling slope of a reset current
pulse [10]. By using the MQ programming method, the write la-
tency of an intermediate level in 3LC PCM cell can be reduced
below the set latency,i.e., the write latency of SLC PCM.

As mentioned earlier, relaxing the acceptable resistance range
for the intermediate level helps to reduce the write latencyand en-
hance write bandwidth. However, it reduces the drift marginbe-
tween resistance levels, and the new narrower margin increases
drift-induced SER. In Section 5.3, we will introduce how to use
conventional ECC schemes for the slightly increased SER of BE-
3LC PCM. Also, we will evaluate the SER of both 3LC PCM and
BE-3LC PCM in Section 6.1.

5.3 Efficient 〈3, 2〉 Conversion for Error Cor-
rection

Using error correcting codes can improve the reliability of3LC
PCM as in other memory systems. The problem is that how 3LC
PCM can efficiently use the conventional ECC schemes. In the case
of 4LC PCM, four states of a cell is encoded with two-bit Gray
code. By doing so, one state transition in a four-level cell affects
only one bit in binary data, which enables to use a binary error-
correcting code for correcting the state transition of four-level cells.
Similarly, if one drift-induced error in a tri-level cell affects only
one bit in the corresponding binary code, a binary error correcting
code can be used for recovering the data from the drift-induced
error.

In this section, we propose a state mapping method of〈3, 2〉 con-
version for using binary error correcting codes. Figure 3(a) shows
possible state transitions caused by drift-induced errorsin two 3LC
PCM cells. Because the resistance drift increases the resistance
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level of a PCM cell,i.e., from level 0 to level 1 or from level 1 to
level 2, the state transitions are uni-directional. The main idea is
to map the state transition graph of two 3LC PCM cells into the
transition graph of the three-bit Gray code depicted in Figure 3(b).

First, we exclude “11” state from the state mapping of our〈3, 2〉
conversion. Note that the state “11” was excluded because ithas
four transition edges, which cannot be mapped into the Gray code,
and also because two tri-level cells have one more state thana three-
bit binary code. Then, the rest of states and edges are mappedinto
the Gray code graph as shown in Figure 3(c)6, which indicates that
all one-hop error transitions of the two-ternary-cell states except
ones from/to the “11” state are translated to one-hop error tran-
sitions of the three-bit binary code. Note that we need a special
process for the “11” state because removing the “11” state from
the state mapping cannot prevent error transitions to the “11” state.
When the “11” state is read from two 3LC-PCM cells, it indicates
that the state results from one or more drift-induced errors. Also,
considering the monotonically increasing nature of resistance drift,
only “00”, “01”, and “10” states can be shifted to the “11” state.
Thus, when the “11” state is read from the two tri-level cells, we
can limit the maximum number of transition-error hops to oneby
substituting it with a “00” state. By doing so, one state transition
error caused by resistance drift affects only one data bit. For exam-
ple, we assume that (72,64) Hamming code is used for single error
correction and double error detection (SECDED). The 72-bitcode
can be stored in 48 3LC PCM cells when using〈3, 2〉 conversion.
With the state mapping of〈3, 2〉 conversion, the (72,64) Hamming
code detects two drift-induced errors in the 48 tri-level cells and
corrects one drift-induced error.

Furthermore, it is noteworthy that a 72-bit PCM DIMM com-
prises 8 PCM chips, and each PCM chip has a 9-bit datapath, which
are matched to three〈3, 2〉 conversion units. Otherwise, if eight 8-
bit PCM chips are used to build a 64-bit PCM DIMM for symmetry,
each chip is forced to use〈8, 6〉 conversion. As a result, the 64-bit
data is stored in 48 3LC PCM cells, which is the same amount of
3LC PCM cells that are used to store 72 bits. Therefore, when
plugged into a realistic PCM DIMM organization, our〈3, 2〉 state
mapping method allows to use the (72,64) Hamming code without
additional storage overhead.

5.4 Temperature dependency
Throughout this paper, we compare 3LC and 4LC with the as-

sumption that they are operated at the same ambient temperature.
When they are operating at a higher temperature, 4LC suffersmore
from the high error rates because 4LC makes use of more stor-
age levels and secures smaller safety margin among storage levels.
Therefore, 3LC holds clear benefit over 4LC even at a higher tem-
perature. Moreover, previous study showed that PCM cells are not
sensitive to thermal disturbance [19]. Such observation isnotable
when considering that the temperature of GST material in PCM
should be raised up to300 ∼ 600◦C when programming. Since
typical operating temperature of PCM device is under100◦C, we
argue that temperature dependency will show little impact on the
findings presented on this paper.

6. EVALUATION

6.1 Soft Error Rate of BE-3LC PCM
As discussed in Section 5.2, 3LC PCM can reduce writing la-

tency by using fewer writing iterations. As such, the distribution
of the resistance is compromised, and which will increase the SER

6This state mapping is the same as one in Table 7.

Table 8: Physical Parameters for the Second Storage Level of
3LC PCM When t0 = 1 s.

Writing Strategy
log10(R) α

µR σR µα σα

Iterative 4.0 0.167 0.02
0.4 × µαNon-iterative 4.255 0.188 0.02157

of the PCM cell. In this section, we formulate the relationship be-
tween writing latency and the SER of 3LC PCM and argue that 3LC
PCM can achieve the writing latency close to SLC-PCM without
compromising the SER.

Kang et al. [10] shows the distribution of the resistance of a
PCM cell by two different writing strategies; (i) iterativewriting
(write and verify) and (ii) writing without iterations. As 3LC PCM
does not use the third storage level, we focus on the distribution of
the second storage level. More specifically, we read the distribution
of the resistance of the second storage level from Figure 1 based
on [10] and calculate the mean and the variance of the resistance
when a cell is written without iterations. As we show in Table8,
σR andµα are worsened from 4.0 to 4.255 and from 0.167 to 0.188,
respectively.

In Table 8, physical parameters for two different writing meth-
ods, iterative and non-iterative methods, are taken from two differ-
ent technology nodes. However, we compensate such differences
by not taking the exact numbers but taking relative ratios between
two different writing methods from [10]. In addition, we assume
linear increment inµα andσα by σR for estimating the distribution
of α. For example, we use the physical parameters in Table 1 and
apply 0.04 increment inµα for every 10x inR.

After obtaining the physical parameters of the second storage
level of 3LC PCM, we calculate the SER of 3LC PCM by using an-
alytical models discussed in Appendix A. The summary of results
is as follows. Firstly, the majority of the errors happen in between
the set state and the second storage level. Such errors are not due
to the resistance drift, but because of the initial writing failure. For
example, the memory controller writes 01 to a 3LC PCM cell, and
the cell reads 00 immediately after the writing. The error rate for
this case is3.04 × 10−3%. Secondly, if we exclude such initial
writing failures, the SER of 3LC PCM caused by resistance drift is
negligible untilt = 220 seconds. Table 9 shows the error rate for
this case.

When a PCM chip reads PCM cells immediately after writing
them, the chip can detect and rewrite the cells to fix the initial
writing failures. More specifically, we assume that the PCM chips
rewrite the cells by sensing the written values immediatelyafter
writing. Even though such strategy is similar to the iterative writing
commonly used in 4LC-PCM, this strategy is different in terms of
the expected numbers of iterations. For the(100− 3.04× 10−3)%
of the time, writing to our proposed BE-3LC-PCM finishes at the
first attempt. The second attempt is required for only3.04×10−3%
of the time, and the expected numbers of writing iterations in this
case is close to one. Moreover, we also show the SER of 3LC-
PCM with industry standard (72,64) ECC support in the rightmost
column of Table 9. This column is calculated based on the factthat
48 3LC-PCM cells store 72 bits, and (72,64) ECC corrects one bit
error. Again, the proposed PCM with (72,64) ECC shows a negligi-
ble SER untilt = 225 seconds. In summary, writing to 3LC PCM
cells must be followed by reading and verifying. Such small over-
head will remove majority of the errors, and 3LC PCM experiences
no errors in the time range of our interest.
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Table 9: Soft Error Rates of Intermediate Storage Level of BE-
Tri-Level-Cell (BE-3LC) PCM

Scrubbing
Period (s)

Iterative
Writing

BE Writing
BE Writing

+(72, 64) ECC

25

(too small)

(too small) (too small)
210 (too small) (too small)
215 (too small) (too small)
220 3.60E-16% (too small)
225 1.28E-10% 2.66E-15%

6.2 Performance
4LC PCM requires a scrubbing mechanism and a multiple-error

correction scheme for a confident level of reliability. However, to
use the 4LC PCM, we have to consider other aspects such as per-
formance and hardware overhead. If the gain from its high den-
sity needs other considerable cost, the 4LC PCM will be regarded
as infeasible. First, to evaluate the performance impact ofusing
MLC PCM, we simulated 26 applications from SPEC2006 bench-
mark using SESC [16]. The read and write latencies of SLC PCM
are assumed to be 150ns including a row activation latency (tRC)
of 120ns, and 200ns considering an internal write verification de-
lay, respectively [3]. For 3LC and 4LC PCMs, its read latencyis
assumed to be the same as that of SLC’s because 3LC and 4LC
can be read as fast as SLC if they have multiple sense amplifiers
in parallel. On the contrary, 3LC and 4LC’s write latency is as-
sumed to be 1000ns because of its iterative write-and-verify iter-
ations [1]. Similar to other studies [14, 15], an 8MB L3 DRAM
cache composed of 256B cache-lines is employed to hide the PCM
access latency. Also, we assumed a PCM main memory composed
of eight 2GB banks and we modeled a memory controller that can
efficiently schedule memory requests by exploiting bank-level par-
allelism and PCM row buffer hits. Note that in the request schedul-
ing, read requests have higher priority than write requestsbecause
write accesses are typically not on the critical path in terms of per-
formance.

Figure 4 shows the relative instruction-per-cycle (IPC) values
normalized to the IPC of SLC PCM. As in the recent paper [1],
the two 4LC PCM configurations are assumed to use a BCH code
capable of eight error corrections for a 512-bit data block.7 Ac-
cording to our analysis, the 4LC PCM with the BCH code has to
scrub the entire memory space every eight seconds to achievea
DRAM-level soft error rate. However, the eight-second scrubbing
is impossible because the minimum latency to scrub a 2GB PCM
bank is about 9.6 seconds. Thus, we chose a 16 second scrubbing
for 4LC PCM.

Awasthiet al. proposed a scrubbing overhead reduction scheme
called Light Array Read for Drift Detection (LARDD) [1]. For
LARDD scheme, we assume an eight-second LARDD period, again,
to achieve a DRAM-level soft error rate. More specifically, BCH-
8 column in Table 6 shows that LARDD with eight-second period
has sufficiently low SER. However, we argue that the actual SER
for this scheme is higher than what we show in Table 6 for the fol-
lowing reasons. The benefit of LARDD comes from the fact that
LARDD skips scrubbing rounds for data blocks. In other words, if
LARDD cannot skip scrubbing rounds, then its behavior is exactly
the same as typical scrubbing. As a result, some data blocks are
revisited in at least2× of the period, which will increase the SER.

7We assumed the encoding and decoding latencies of the eight-
error-correction BCH code take one memory clock cycle because
the encoding and decoding logic can be fully parallelized byac-
cepting its exponentially increased area overhead.
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Figure 6: Information density of 4LC PCM

As shown in Figure 4, the 4LC PCM scrubbed every 16 sec-
onds experienced 72.2% performance degradation on average. Es-
pecially,429.mcf that shows the highest write frequency (2.81 per
1000 instructions) incurred 95.2% performance degradataion. This
is because of the five times longer write latency of 4LC PCM and
its scrubbing overhead occupying 60.0% of total execution time.
This tremendous performance degradation can be reduced by em-
ploying the LARDD scheme. However, the LARDD still experi-
enced 26.7% performance degradation. This means that although
LARDD reduces the write frequency to PCM, there are still too
many read-and-check operations performed inside a chip, leading
to substantial performance degradation. On the other hand,the 3LC
PCM experienced only 10.4% performance degradation on aver-
age, although its write latency is also 1000 ns as in 4LC PCM.

Furthermore, the performance of 3LC PCM can be improved by
using the bandwidth-enhanced (BE) 3LC. Figure 5 shows the rela-
tive IPC of BE-3LC PCM which is normalized to the IPC value
of SLC PCM. The write latency of BE-3LC PCM is obviously
decreased close to SLC PCM’s latency, however, estimating the
accurate write latency is beyond this research scope. Thus,we
performed a sensitivity study varying its write latency from 350ns
down to 200ns monotonically decremented by a 50ns interval.In
addition, the SER of BE-3LC is confined to less than3.6 × 10−18

when the BE-3LC is scrubbed every220 seconds, as mentioned
in Section 6.1. Thus, all the BE-3LC PCM configurations are as-
sumed to use a220 second scrubbing scheme. The relative IPC of
the four configurations are 0.982, 0.988, 0.994, and 1.000, respec-
tively. As a result, BE-3LC PCM makes it feasible to achieve the
increment of memory capacity with negligible performance degra-
dation, compared with SLC PCM.

6.3 Information Density
Another way to reinforce 4LC PCM reliability is to increase the

number of correctable errors in a data block. However, if thenum-
ber of additional cells required for a multiple error correction code
is equal to or larger than the number of data cells, then it is mean-
ingless to use 4LC PCM. For example, since the BCH code cor-
recting nine errors in a 64-bit data block requires additional 64 bits,
a total of 64 4LC PCM cells should be used to store the 128 bits.
Then, the 4LC PCM using a nine-bit correction (128,64) BCH code
is no better than using SLC PCM.

Here, we defineinformation density as the number of data bits
stored in one cell to measure the cell efficiency. For instance, in-
formation density of SLC PCM is1.00 because every SLC PCM
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Figure 4: Performance comparison with 4LC and 3LC
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Figure 5: Sensitivity study of bandwidth-enhanced 3LC

cell stores one data bit, and SLC PCM does not require capacity
overheads from ECC. In the case of 3LC PCM, it uses an〈8, 6〉
conversion scheme and thus its information density is8

6
≃ 1.33.

In the proposed BE-3LC PCM, a (72,64) hamming code is stored
to 48 cells. Thus, its information density is still64

48
≃ 1.33.

In Figure 6, we compare the information density of 4LC PCM
with SLC PCM and our proposed 3LC PCM. For example, the
eight-bit correction (592,512) BCH code uses592

2
cells to store

a 512-bit data block and its information density is1.73. How-
ever, the 4LC PCM using a (592,512) BCH code requires an eight-
second scrubbing scheme to achieve confident reliability, which se-
riously degrades performance as discussed in Section 6.2. If we
use a strong error correction code recovering a data block from
more errors, we can reduce the scrubbing frequency and diminish
its performance degradation caused by scrubbing operations. Thus,
we evaluate the SER of each configuration when a scrubbing pe-
riod is 210 seconds. Because it spends 9.65 seconds to scrub all
256B memory lines in a 2GB PCM bank, the maximum perfor-
mance degradation caused by scrubbing operations can be limited
to less than 1.00% (> 9.65

210 ). According to our analytical model,
when the size of a data block is 512 bits, a 26 or more error correc-
tion scheme is required to achieve the same level of SER with the
proposed BE-3LC in Table 9. When using a 256-bit data block, an
error correcting scheme has to be able to correct 20 or more errors.
As shown in Figure 6, those configurations marked in rectangles
have lower information density than that of 3LC PCM,1.33. In
other words, 3LC PCM is more efficient than 4LC PCM to store
data bits at the same level of reliability.

7. CONCLUSION
In this paper, we asked the question of how reliable the widely

studied four-level-cell (4LC) PCM can be by exploiting the schemes
aimed at overcoming the resistance drift problems. We modeled the
resistance drift in MLC PCM and showed that conventional ECC
schemes and scrubbing mechanisms are not usable in 4LC PCM
for minimizing their drift-induced soft errors to a satisfactory relia-
bility level due to their unduly overheads and certain physical lim-
itation. We evaluated architectural approaches to addressing drift
issues in 4LC PCM including efficient scrubbing mechanisms and
multiple error correction schemes. We found that the latestscrub-
bing mechanism still suffers significant performance degradation
(26.7%) compared to the use of 2LC PCM. On the other hand,
the performance of scrubbing mechanism can be alleviated byus-
ing a stronger error correction code for correcting multiple errors,
however, the increase of codeword length compromisesinforma-
tion density, i.e., the number of data bits stored in each cell, to
lower than1.33.

In this paper, we propose tri-level-cell (3LC) PCM to remove
the most drift-error-prone level from 4LC PCM. This new technol-
ogy eliminates the reliability concerns due to drift-induced errors.
Furthermore, by relaxing an acceptable resistance range ofthe in-
termediate level, the programming latency of 3LC PCM can be re-
duced close to that of 2LC PCM, making the performance impact
negligible. Also, we propose a state-mapping〈3, 2〉 conversion to
efficiently store binary data to tri-level (ternary) cells.The state-
mapping〈3, 2〉 conversion scheme can be implemented with sim-
ple logic gates. Another merit of the state-mapping scheme is that
it enables a conventional binary ECC scheme such as a(72, 64)
Hamming code for correcting a ternary cell error while maintaining
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its information density to at least1.33. By using our 3LC PCM, we
can obtain benefits from the inherently increased memory capacity
without concerns of memory reliability and performance degrada-
tion.
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APPENDIX

A. ANALYTICAL ERROR MODEL AND VAL-
IDATION

In building an analytical error model for both 4LC PCM and 3LC
PCM, we continue discussion on top of Table 1 and Table 2. First,
we define two more variables,m = log10 R andn = log10 t. By
substituting Equation (1) withm andn, we obtain

log10(Rdrift(t)) = log10 R + α log10 t = m + nα.

450



Thus, the condition of a soft error can be rewritten as

m+nα > µR + E

nα > µR + E − m,

whereE =

8

<

:

0.5 for storage level 0, 1, and 2 of 4LC PCM
0.5 for storage level 0 of 3LC PCM
1.5 for storage level 1 of 3LC PCM.

As α follows N(µα, σ2
α), nα follows N(nµα, (nσα)2). The prob-

ability for nα to be more thanµR + E − m can be calculated as
follows.

Probability of soft error for a givenm is

= 1 − Φ(
µR + E − m − nµα

nσα
),

whereΦ(x) =
1√
2π

Z x

−∞

e
−x2/2

dx.

(6)

Here, we also take the effect of the iterative writing into account.
As mentioned earlier, cell programming iterates a write-and-verify
sequence untillog10 R is less thanµR+2.75σR or larger thanµR−
2.75σR. Therefore, the probability density function of a random
variablem, f(m) can be expressed as

f(m) =



1

K
φ(m−µR

σR
) µR − 2.75σR < m < µR + 2.75σR

0 otherwise,

where K =

Z µR−2.75σR

µR+2.75σR

φ(
m − µR

σR
)dm,

and φ(x) =
1√
2π

e
−x2/2

.

Therefore, we can obtain the probability of soft error as a func-
tion of time (t = 10n) by integrating Equation (6) with a random
variablem for µR − 2.75σR < m < µR + 2.75σR.

Probability of soft error is

=

Z µR−2.75σR

µR+2.75σR

(1 − Φ(
µR + E − m − nµα

nσα
))f(m)dm.

(7)
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Figure 7: Probability of Soft Error of Four-Level-Cell (4LC )
PCM Over Time

We evaluate Equation (7) for 4LC PCM and also run Monte
Carlo simulations to verify these equations. In the simulation, we
randomly pickedR and α from their corresponding normal dis-
tributions in Table 1 and calculate the drift resistance,Rdrift(t),

to determine if it generates any soft error. For each storagelevel,
the simulator executes one billion trials. Figure 7 shows the re-
sults side by side. We omit the soft error rates for set and reset
states,i.e., , the storage level 0 and 3, because (i) resistance drift
in level-3 states does not lead to a soft error, and (ii) the error rates
of level-0 states are too small to be evaluated and can be ignored.
For example, Mathematica 8.0 shows the first non-zero error rate
for level-0 states whent = 235 or 1090 years, and the error rate
is 2.3 × 10−18. Similarly, note that three data points for storage
level 1 and 2 are missing because either (i) Mathematica 8.0 re-
turns zero for Equation (7) or (ii) Monte Carlo simulation found no
error in one billion trials. By comparing results from two indepen-
dent sources, we validate the accuracy of our theoreticallyderived
Equation (7) by simulation.
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