Energy Efficient D-TLB and Data Cache using
Semantic-Aware Multilateral Partitioning

Hsien-Hsin S. Lee
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332

leehs @ece.gatech.edu

ABSTRACT

The memory subsystem, including address translations and
cache accesses, consumes a major portion of the overall en-
ergy on a processor. In this paper, we address the memory
energy issues by using a streamlined architectural parti-
tioning technique that effectively reduces energy consump-
tion in the memory subsystem without compromising per-
formance. It is achieved by decoupling the d-TLB lookups
and the data cache accesses, based on the semantic regions
defined by programming languages and software conven-
tion, into discrete reference substreams — stack, global
static, and heap. Their unique access behaviors and lo-
cality characteristics are analyzed and exploited for power
reduction. Our results show that an average of 35% energy
can be reduced in the d-TLB and the data cache. Further-
more, an average of 46% energy can be saved by selectively
multi-porting the semantic-aware d-TLBs and data caches
against their monolithic counterparts.

Categories and Subject Descriptors

B.3.2 [Memory Structures]: Design Styles—Associative
memories, Cache memories, Virtual memory.

General Terms

Design, Experimentation, Performance.

Keywords

low-power cache, low-power TLB, energy optimization, multi-

ported memory structures.

1. INTRODUCTION

Innovations in microarchitecture and prominent advances
in semiconductor process technology enable designers to
create more sophisticated and powerful microprocessors;
at the same time, they also lead to increased energy con-
sumption. Power optimization has become the first prior-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISLPED’03, August 25-27, 2003, Seoul, Korea.

Copyright 2003 ACM 1-58113-682-X/03/0008 ...$5.00.

306

Chinnakrishnan S. Ballapuram
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332

chinnak @ ece.gatech.edu

ity in developing microprocessors for all market segments
from mobile devices to high-end servers. Among all com-
ponents, the memory subsystem including address transla-
tions and cache accesses consumes a major portion of the
overall power on a processor. The translation lookaside
buffer (TLB) draws a considerable amount of power, as it
is typically organized as a fully associative cache and is
accessed for every instruction and data fetch. Also due in
part to more transistors available on a processor die, the
capacity of caches in contemporary microprocessors tends
to increase substantially in order to accommodate new ap-
plication workloads. On the other hand, the philosophy of
exploiting more instruction-level parallelism in superscalar
processors necessitates a multi-ported d-TLB and cache
to enable multiple memory references in parallel, further
exacerbating energy consumption. Without proper man-
agement, the memory hierarchy alone can create serious
problems in power dissipation and thermal control.

The TLB, a content addressable memory to expedite
address translation, stores address mapping information
and provides virtual-to-physical translation for each virtual
address being accessed. When a TLB lookup misses, the
lookup is routed to main memory and the corresponding
address mapping is then reloaded into the TLB. Since a
TLB is typically arranged as a fully associative cache, the
energy consumed for each TLB lookup is quite significant.
Measured data [16, 17] from commercial processors such
as Intel’s StrongARM and Hitachi’s SH-3 reported that as
much as 17% on-chip power is consumed in the TLBs and
the trend is increasing. Similarly, frequently and recently
used data are stored in caches closer to the processor to
alleviate long memory latency. Caches due to their large
capacity can consume over 40% [21] of the overall processor
power.

In this paper, we address these energy issues by using
a streamlined memory architecture partitioning technique
that reduces energy consumption in the memory subsys-
tems without compromising performance. It is achieved
by decoupling data TLB lookups and data cache accesses,
based on the semantic regions defined by programming
languages and software convention, into discrete reference
substreams — stack, global static, and heap. Their unique
access behaviors and locality characteristics are analyzed
and exploited for energy reduction. Our results for the
SPECint2000 and Mibench [13] benchmark suites show
that an average of 35% dynamic power can be reduced in
the d-TLB as well as in the data cache. In addition, this
technique also alleviates the requirement for multi-porting
the ever larger TLBs and caches in multi-issue machines.

Our experiments indicate that an average of 46% power
can be saved by selectively multi-porting the semantic-
aware d-TLBs and data caches against their monolithic
counterparts. Design options in terms of number of TLB
and cache ports for cost-effectiveness and energy efficiency
are also evaluated and reported in the paper.

This paper is organized as follows. Section 2 describes
the memory reference behavior and our motivation for this
work. Section 3 describes semantic-aware d-TLBs, data
cachelets and data address router. Section 4 discusses and
analyzes the performance, energy, and area results of our
scheme. We then discuss related work in Section 5. Finally,
Section 6 concludes our work.

2. MOTIVATION

According to the convention of programming languages,
a specific processor architecture typically partitions a vir-
tual address space into several non-overlapped semantic re-
gions including instruction, static data, and dynamic data.
Static data are comprised of global and read-only data al-
located at compile-time while dynamic data can be fur-
ther decomposed into stack, a storage holding the activa-
tion record created at runtime during subroutine calls, and
heap dynamically allocated by functions such as malloc()
in C. These semantic data regions, created with demands
of different purposes, demonstrate different characteristics
which can be exploited with dedicated hardware.

To investigate this property, data memory reference pat-
terns are analyzed. Using ¢jpeg from MiBench benchmark
suite as an example, Figure 1 illustrates the footprint dis-
tribution of data memory accesses based on the semantic
regions defined by software convention and programming
languages. Each point in the figure represents a data ref-
erence hit at a particular memory address. For both sub-
figures, the low order 12 bits of data address are plotted
on the x-axis while the high order 20 bits on the y-axis.
In other words, the y-axis shows a wvirtual frame number
(VFN) given a 4KB (2'?) page is used. All the points
drawn on the same horizontal line belong to the same vir-
tual memory page. The top figure plots stack accesses
while the figure below plots both the global static and heap
accesses. Due to their wide separation in the VFN, they
are plotted as two separate sub-figures.

The figures show that addresses within a particular se-
mantic region form a semantic band. Obviously, the heap
band is wider and denser than the stack and global static
bands, as the number of unique heap pages accessed is sub-
stantially higher than those of stack and global static re-
gions. Also note that only a very small number of stack
virtual pages relative to the number of global static and
heap pages is needed.

Based on the observation in Figure 1, we now examine
the number of compulsory misses in the d-TLB and in the
data cache for programs from MiBench and SPECint2000*.
The MiBench suite, mimicking EDN’s EEMBC benchmark
suite, is comprised of representative embedded applica-
tions collected from networking, security, telecommunica-
tion, image processing, etc., while the SPEC2000 integer
benchmark suite is often used for evaluating high perfor-
mance systems. All programs were compiled into ARM
binary, our target machine, with -O3 switch.

Figure 2 shows the number of compulsory d-TLB misses,

!Programs from MiBench were run to the end while four
selected programs from SPECint2000 suite were run to 3
billion instructions for all simulated results shown in this
paper.

307

786429 T —T — T T T
Stack page accesses K
=
£
§ 786428* et e s o e
@
£
Il
&
i
=
@
é. 786427 ’- SRR KKK KK KKK 3K K KKK KRB0 TR LIRS
=
786426 iy n o s L . n n
0 500 1000 1500 2000 2500 3000 3500 4600
T i " Global static pag'e accesse; O i
8310 F - - P Heap page accesses ¢
‘1 243
£ 8300 i {.
£
=
=
g
: i 13888)
El
£ 52@038’0”520@0 VPONSIILIL
S gm0 O oo s
g
5
o o]
8270 5 o . o ()
[e]
Q000 00 000 000
8260 — o L . L " s s
0 500 1000 1500 2000 2500 30600 3500 4000

Offset in a data virtual page

Figure 1: Dynamic address footprint distribution
of semantic regions

i.e. the number of unique virtual data memory pages, ac-
cessed by a program from each semantic region. The mem-
ory page size is 4KB, a typical minimum page size used in
modern operating systems. Note that data were plotted at
log scale due to the large amount of heap references. Both
benchmark suites show a similar trend of stack memory
page utilization, which can be satisfied by no more than
5 pages in most of the programs. The number of global
static pages is somewhat dependent on the behavior of a
given application. Nonetheless, it is also significantly less
than the number of heap pages averaging 15 pages.

Figure 3 shows the number of compulsory data cache
misses given a 32-byte data cache line. Similar trends
to the d-TLB are observed. It is worth noting that the
SPECint2000 benchmarks demonstrate huge compulsory
misses in the heap region compared to those shown in the
MiBench. This suggests that data working sets tend to ex-
pand at a faster rate in the heap region than in the stack
and global regions. We now quantify the distribution of
dynamic data references in Figure 4.

In Figure 4, the number of accesses to each semantic re-
gion is normalized to the total number of data references.
In addition to stack, global static, and heap, two additional
regions are illustrated: text and environment (env) associ-
ated with data references. The reason data accessing text
is explained as follows. Instead of using a global pointer to
access global data, the ARM compiles the base addresses
of all the global static data as part of the text space. Each
global data is referenced in an indirect manner through
two instructions. The first instruction, a PC-relative load,
fetches the base address from text region, and the second

[mstack Wglobal Tiheap.

100000 ~
10000 4

)
1000 +

i

100 + -
!
\
s L.I{, j:l~
&

<

of compulsory TLB misses

L&
& '

%,
%

—

r|

&

&
8

&

A

&
&

X3
&C
&

100% - =
"W m
80% o
70%
I 6oy o -
| sox I
405 | - !
! 30%‘ =
20%
10% - i -
o% + - —
S & <
& ¥ E g

N
&

Figure 2: Compulsory data~-TLB misses

: 3§ |

of compulsory cache misses

1. -
s & 3
S
o

- o

&

! - L i

& & &
6’& i

)
4"‘?@

Xed 5
& ¥

&
& 2 .
& X i

Figure 3: Compulsory data cache misses

one retrieves the actual value of the global variable based
on the prior fetched address. This indirect load for global
data not only degrades performance but also causes a po-
tential data duplication inside both the d-TLB and data
cache. This property can be further exploited by reorga-
nizing the instruction-TLB for energy and space savings
purposes, which is beyond the scope of this paper. The
number of accesses to the env region, however, is rather
insignificant as opposed to the other regions. The criti-
cal information conveyed in Figure 4 is that the majority
(~50%) of the dynamic memory accesses go to the stack.
Figure 1, Figure 2, and Figure 3 combined indicate that
although data references largely hit in the stack, these ac-
cesses concentrate on very few memory pages. This leads
to a new opportunity for reorganizing the data memory
architecture for energy and performance optimization.

3. SEMANTIC-AWARE MULTILATERAL
PARTITIONING

From the analysis shown in Section 2, we propose a
new partitioning scheme for memory architectures called
Semantic-Aware Multilateral or SAM partitioning. The
idea is to leverage the data reference characteristics to dis-
perse data memory accesses into discrete SAM substreams
and redirect each stream into their own exclusive architec-
tural component. The SAM memory architecture, as de-

308

Figure 4: Dynamic data memory distribution for
Mibench and SPECint2000

virtual address

1d_data_base register

1d_environ_base registe: Data Address Router

1d_data_bound register

To Processor To Processot

gCache
L]

Unified L2 Cache

Figure 5: SAM memory architecture

picted in Figure 5, exploits the locality and characteristics
demonstrated in each semantic region by (1) reorganizing
the first level TLB structure into two small structures —
stack and global static micro-TLBs [7], while leaving the
second level [9] for all data addresses and (2) splitting the
first level cache into three cachelets. The SAM TLBs and
the SAM Cachelets are hereafter referred to as SAT and
SAC, respectively.

3.1 Semantic-Aware Data TLBs

In the SAM partitioning approach, we implement a Data
Address Router (DAR) that routes each d-TLB lookup to a
stack TLB (sTLB), a global static TLB (gTLB), or a heap
TLB (hTLB) for address translation based on the higher
order bits of the virtual address. Note that the hTLB is
also used as the second level (backing store) TLB for the
sTLB and gTLB. When loading a program for execution,
the system loader communicates the following virtual ad-
dresses: ld_environ_base (top of stack), ld_data_base (global
static base), and ld_data_bound (heap base) to special hard-
ware control registers. The DAR logic routes each address
to its destination based on the ranges derived from the
control registers. Instead of searching the entire fully as-
sociative TLB entries, energy can be saved by filtering out
the lookups by stack and global static regions with less

N sTLB B gTLB EE1hTLB —/r=stack miss % —+=global miss % -®~heap miss %
1000000000

100000000

10000000

1000000

100000 -

10000

of TLB misses
TLB miss rate

1000 -

of TLB entries

Figure 6: Semantic-aware TLB misses

hardware. Lookups missing in the two-level TLB are di-
rected to main memory. If the virtual address does not
fall under the stack or global static region, it is directed to
the heap TLBs. For example, the upper portion of virtual
memory used by the kernel mode does not fall in the stack
or global static region, thus it is directed to heap TLBs.

Using 181.mcf of SPECint2000 as an example for anal-
ysis, Figure 6 shows the number of TLB misses and miss
rates when discrete SATs are implemented. The number of
misses is plotted at log scale. The number of TLB entries
on the x-axis is exponentially increased from 1 to 512 in or-
der to measure the sensitivity of TLB miss behavior. Not
surprisingly, the number of sTLB misses saturate when the
number of entries reaches two, while the gTLB saturates
at 8 entries. On the other hand, the hTLB misses do not
drop as drastic as its counterparts, containing over 53 mil-
lion misses even with 512 entries. This observation implies
that under a unified TLB structure the more dynamic heap
TLB lines could evict the more stable stack and/or global
TLB lines, thereby leading to unnecessary TLB conflict
misses that can be avoided by using a SAT implementa-
tion. Besides the advantage of eliminating TLB conflict
misses among different semantic regions, the energy can
be reduced due to a major portion of the memory access
distribution being skewed towards the much smaller sTLB
and gTLB. Moreover, multi-porting the micro-TLBs be-
comes more feasible under a given constraint of die area
and access latency. All these advantages will be quantified
later in Section 4.

3.2 Semantic-Aware Data Cachelets

Similar to the SATSs, the first level data cache can be se-
mantically partitioned into discrete semantic-aware cachelets
(SAC). The energy saved could be substantial as energy
dissipated in caches constitutes a major portion of the over-
all energy consumption. Multi-porting the ever-increasing
caches for superscalar processors also exacerbates leakage
dissipation. The SAC scheme provides an alternative solu-
tion that enables selective multi-porting for only the highly
accessed SACs, e.g. stack cache.

Figure 7 shows a similar graph of Figure 6 for data
caches. The size of each SAC varies from 2KB to 256KB.
Again, stack demonstrate very stable working set size with
respect to the other 2 semantic regions. Global misses sat-
urate at a reasonable capacity whereas heap data appear
to be less tractable. Therefore, the majority of the mem-
ory references can be captured by semantically partitioning

309

[mmm'sCache MW gCache 51 hCache =/ sCache miss % ~#—gCache miss % ~®=hCache miss %)
woaooﬂooo-[T 50%

| 45%

100000000

40%

10000000

1000000

100000

10000

of cache misses
™
2
cache miss rate

32
Cache size in KB

Figure 7: Semantic-aware cache misses

the cache structure into a small stack cache (sCachelet),
a small global static cache (gCachelet) and a larger cache
(hCachelet) for accommodating all the rest, including heap,
text, and env for the ARM ISA we simulate. This new SAC
scheme can substantially reduce energy consumption while
retaining the performance. For multi-issue machines, sav-
ings can be higher as only smaller sCachelet and gCachelet
need to be multi-ported.

4. EXPERIMENTS AND ANALYSIS

Our simulation infrastructure is based on Simplescalar
for the ARM ISA [3] for performance evaluation. We in-
tegrated Wattch [6] into the Simplescalar ARM model for
energy simulation and made changes to enable our stud-
ies for the SAM memory architecture. We take the clock-
gating mode 3 from Wattch for all energy numbers in this
paper. This mode is more practical as it considers a con-
stant energy dissipated (i.e. leakage energy) even when
an idle functional unit is clock-gated?. Table 1 lists the
processor parameters used in our baseline machine model.
The SAC sizes used in the following sections are identical
across all benchmark programs. The SAT sizes which are
changed slightly for different benchmarks will be discussed
in Section 4.1.

4.1 Performance vs. Energy with SAM

We ran a wide spectrum of simulations to collect data
for making best selection of the optimal TLB entries for
each benchmark application. As discussed in Section 3,
there exists a knee point after which the performance gain

2For the same functional unit, we assume the leakage
power consumes 10% of the dynamic power.

Execution Engine out-of-order

Fetch/Decode Width 4 /4
Issue/Commit Width 4/4
L1 cache hit latency 1 cycle
L2 cache hit latency 6 cycles
Memory latency 150 cycles
TLB hit latency 1 cycle
TLB miss latency 30 cycles
Cache property Direct-mapped, 32B line
L1 Cache baseline 32KB

L1 s/g/hCachelet
L2 Cache

SKB / 8KB / 16KB
Z-way 512KB, 32 bytes line

Table 1: Processor model parameters

[Benchmark: | blowfish | bitcount | cjpeg | djpeg | dijkstra | it | rijndael | patricia | bzip2 | gcc | parser |
dTLBbase 32 32 128 64 64 64 32 256 64 64 64
sTLB 2 2 2 2 2 2 4 2 4 4 4
gT'LB 8 8 8 8 32 8 8 8 16 16 16
hTLB 16 32 128 64 32 64 32 256 64 64 64
Table 2: Cost-effective TLB configuration
L_lPerformance Speed: M d-TLB Energy w/ SAT M L1 d-Cache Energy w/ SAC | EMNMIE_@P B d-TLB Energy w/ SAT m L1 d-Cache Energy w/ SAC]

&

e 3 S & > S 8 < & &) & &S & & & > 2 & & L &

& & T T T | & & & T T T
Figure 8: Design effectiveness of SAM (base- Figure 9: Multi-porting effectiveness of SAM

line=1.0) (baseline=1.0)
Number of d-TLB entries . .
base sTLB ¢TLB hTLB once per cycle, necessitating a multi-ported design. Multi-
64 4 16 64 porting an ever-increasing monolithic TLB and cache ag-
2ports [2 pg”ts hl port L port gravates energy consumption and increases die area. As
ata cache sizes : . .

biss SCachelet | gCachelet | RCachelot shown in Figure 4, the average ratio of memory accesses
KB SKB SKB 16KE to stack, global and heap is close to 2:1:1. In other words,
2 ports 2 ports 1 port 1 port we can multi-port the SAT and SAC by using this ratio.

Table 3: Multi-porting Configuration

is diminishing regardless how many more TLB entries are
added. The rationale behind this is that one could config-
ure the most cost-effective number of TLB entries for an
application by Vy4-gating off the ineffective TLB entries.
Table 2 summarizes the most effective number of TLB en-
tries for each benchmark. In most of the cases, the SAT
approach has slightly more TLB entries than the baseline
without SAM partitioning except for the blowfish, in which
the combined SAT size is slightly smaller than the baseline
case. Using the configuration in Table 2 and other design
parameters in Table 1, we generate the performance as well
as the TLB and cache energy reduction® as shown in Fig-
ure 8. Similar trends are observed in this figure for both
MiBench and SPECint2000, giving an average of 36% en-
ergy reduction in TLBs and 34% in caches with an average
4% performance loss.

4.2 Multi-Porting SAT and SAC
4.2.1 ° Performance vs. Energy

For contemporary applications and workloads, it is ob-
served that one out of every two to three instructions is a
memory operation. It implies that a muiti-issue machine
needs to access memory (dTLB and data cache) more than

3We do not use E*D product as the metric for our anal-
ysis as the E(nergy) component highly depends on what
resources are included into the evaluated system, in which
D({elay) component is measured. The argument is pre-
sented by Lee et al. in [19].

310

Figure 9 evaluates the performance and energy for such a
design using a 4-wide SAM machine with the configura-
tion listed in Table 3. The energy of a SAM design shows
a 47% reduction in data-TLB and 45% reduction in the
data cache with almost on-par performance of a baseline
machine.

4.2.2 Area and Access Latency Estimation

Table 4 evaluates the transistor areas of different SAC
schemes using CACTI 3.0 [15]. As shown in the table,
selective dual-porting SAC effectively reduces the access
time by as much as 50% and transistor area by 32 to 41%.
Also note the leakage energy (not shown in the table) can
be saved proportionally as the transistor count is reduced.

5. RELATED WORK

Many memory partitioning schemes at an architectural
level were proposed for energy reduction. These techniques
can be classified into two categories: horizontal partition-
ing and vertical partitioning. Vertical partitioning tech-
niques such as line buffers [12, 22] and filter caches {18] at-
tempt to capture cache lines in a small intermediate struc-
ture to exploit transient data locality at a cost of perfor-
mance loss. Sub-banking [12], selective cache ways [1], and
PSAC [14] partition the caches into horizontal segments
and only enable the partitions that are being accessed at
runtime. The HP3000 Series II [5] featured a stack cache
with FIFO replacement policy as an extension to main
memory in the absence of a data cache. The CRISP proces-
sor [4] performed register allocation on the 32-entry stack
cache at runtime to avoid the overheads of procedure calls.
Cho et al. {8] proposed a decoupled stack cache to alleviate

[_Cache Model][32KB Unified]| 8KB sCachelet | 8KB gCachelet | 16KB hCachelet | Total SAC area [[Area savings

R/W ports 2 2 1 1
Access time (ns) 1.125 0.826 0.692 0.816
Area in mm 5.304 1.393 0.616 1.095 3.104 41.5%

[~Model 64KB Unified 16KB sCachelet [T6KB gCachelet [32KB hCachelet | Total SAC area || Area savings
["Access time (ns) 1.630 0.949 0.816 0.948
["Areain mm 8.942 2.555 1.095 2.246 5.897 34.1% ‘
[~ Model 128KB Unified [[32KB sCachelet | 32KB gCachelet | 64KB hCachelet | Total SAC area [[Area savings
[Access time (nsy]| 2.238 1.125 | 0.948 [1.196 |
_Area in mm® || 17.24 [5.304 | 2.246] 4.115 | 11.666 ” 32.3% —I

Table 4: Access time and die area comparison

the performance degradation in multi-ported caches. Lee Experimental Research in Computer Systems (CERCS), as

and Tyson proposed region-based caching [20], a prelim-
inary concept for semantic-aware data caches. Collins et
al. [10] studied a pointer cache to enhance indirect loads.
Their mechanism recognizes heap address accesses dynam-
ically based on a method in [11] and inserts them into the
pointer cache.

More recently, Ashok et al. [2] used a compiler-managed
address speculation to enable tagless cache accesses for
power reduction. Kadayif et al. [17] proposed a mecha-
nism that reduces power of the i-TLB by adding a register
called Current Frame Register (CFR) for address transla-
tion. Instead of looking up the i-TLB for each instruction,
the processor fetches the translated address from the CFR
unless there is a memory page change.

6. CONCLUSIONS AND FUTURE WORK

This paper presents a streamlined Semantic-Aware Mul-
tilateral (SAM) memory design technique that effectively
reduces the energy consumption in memory, including data-
TLB and data cache with minimal performance impact.
Due to the unique memory reference characteristics, our
SAM approach reduces dynamic energy by redirecting the
majority number of accesses to the much smaller SA-TLB
(SAT) and SA-Cache (SAC). It is found that the number of
SAT entries in the stack can be as few as 2 to cover almost
all the stack references. We discuss a design of data address
router that splits and routes each access to the correspond-
ing SAT and SAC. Using our technique, we show that an
average of 35% energy can be reduced in the d-TLB and
in the data cache. The effect of multi-porting SAT and
SAC is also investigated. As our experiments indicated,
both energy and transistor area can be substantially re-
duced by 46% and 41% respectively, by multi-porting only
heavily accessed SAC and SAT instead of multi-porting its
ever-increasing monolithic counterpart. This technique is
also orthogonal to prior vertical and horizontal partition-
ing schemes. Prior art such as filter caches or line buffers
can be easily implemented on top of our SAM scheme to
acquire more energy savings.

Future work involves using the compiler to provide ar-
chitectural hints in the ISA for the number of stack and
static pages used in a program. The architecture can use
this information to dynamically configure, e.g. with a Vyq
gating technique, the most cost-effective number of dTLB
entries for an application to optimize the energy consump-
tion. We can further semantically partition the stream of
data addresses present in the text region, a code generation
convention in ARM, to another semantic aware structure
for mitigating aliasing (i.e. conflict misses) and achieving
additional benefits in energy and performance.

7. ACKNOWLEDGEMENTS

This work is sponsored by a grant from the Center for

part of its Industry Affiliates Program at Georgia Tech.
8. REFERENCES

[1] D. H. Albonesi. Selective Cache Ways: On-Demand Cache
Resource Allocation. In MICRO-32, 1999.

[2] R. Ashok, S. Chheda, and C. A. Moritz. Cool-Mem:
Combining Statically Specuative Memory Accessing with
Selective Address Translation for Energy Efficiency.
ASPLOS-X, 2002.

[3] T. M. Austin. Simplescalar 4.0 Release Note.
http://www.simplescalar.com/.

[4] A. D. Berenbaum, D. R. Ditzel, and H. R. McLellan. An
Introduction to the CRISP Architecture. In Proceedings of
the Spring COMPCON, 1987.

[5] R. P. Blake. Exploring a Stack Architecture. IEEE
Computer, May 1977.

[6] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations. ISCA-27, 2000.

[7] J. B. Chen, A. Borg, and N. P. Jouppi. A Simulation Based
Study of TLB Performance. In ISCA-19, 1992.

[8] S. Cho, P.-C. Yew, and G. Lee. Decoupling Local Variables
Accesses in a Wide-Issue Superscalar Processors. In ISCA-26,
1999.

[9] J.-H. Choi, J.-H. Lee, S.-W. Jeong, S.-D. Kim, and C. Weems.
A Low power TLB structure for Embedded Systems. JEEE
Computer TCCA Letter, January 2002.

[10] J. Collins, S. Sair, B. Calder, and D. Tullsen. Pointer Cache
Assisted Prefetching. In MICRO-35, 2002.

[11] R. Cooksey, S. Jourdan, and D. Grunwald. A Stateless,
Content-Directed Data Prefetching Mechanism. ASPLOS-X,
2002.

[12] K. Ghose and M. B. Kamble. Reducing Power in Superscalar
Processor Caches using Subbanking, Multiple Line Buffers
and Bit-Line Segmentation. In ISLPED’99, 1999.

[13}] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A Free, Commercially
Representative Embedded Benchmark Suite. In IEEFE 4th
Workshop on Workload Characterization, 2001.

[14] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas. Cache
Decomposition for Energy-Efficient Processors. In
ISLPED’01, 2001.

[15] N. Jouppi. CACTI 3.0. http://research.compaq.com/wrl
/people/jouppi/CACTLhtml, 1999.

[16] T. Juan, T. Lang, and J. J. Navarro. Reducing TLB Power
Requirements. In Proceedings of the International
Symposium on Low Power Electronics and Design, 1997.

[17} 1. Kadayif, A. Sivasubramaniam, M. Kandemir, G. Kandiraju,
and G. Chen. Generating Physical Addresses Directly for
Saving Instruction TLB Energy. In MICRO-35, 2002.

(18] J. Kin, M. Gupta, and W. H. Mangione-Smith. Filtering
Memory References to Increase Energy Efficiency. IEEE
Transactions on Computers, Vol. 49, No. 1, 2000.

[19] H.-H. S. Lee, J. B. Fryman, A. U. Diril, and Y. S. Dhillon.
The Elusive Metric for Low-Power Architecture Research. In
Workshop on Complezity-Effective Design in conjunction
with ISCA-80, 2003.

[20] H.-H. S. Lee and G. 8. Tyson. Region-Based Caching: An
Energy-Delay Efficient Memory Architecture for Embedded
Processors. In CASES’00, 2000.

[21] J. Montanaro and et al. A 160-MHz, 32-b, 0.5-W CMOS
RISC Microprocessor. Digital Technical Journal, Vol.9 No.1,
November 1996.

[22] C.-L. Su and A. M. Despain. Cache Design Trade-off for
Power and Performance Optimization: A Case Study. In
Proceedings of the International Symposium on Low Power
Design, 1995.

311

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

