Way Guard: A Segmented Counting Bloom Filter Approach

to Reducing Energy for S

Mrinmoy Ghosh® Emre Ozer?

fARM Inc., Austin, TX tARM Ltd., Cambri

ABSTRACT

The design trend of caches in modern processors continuies to
crease their capacity with higher associativity to copewérge
data footprint and take advantage of feature size shrinkckyhun-
fortunately, also leads to higher energy consumption. Phiser
presents a technique using segmented counting Bloom filiéles
“Way Guard” to reduce the number of redundant way lookups in
large set-associative caches to achieve dynamic energypgmav
Our Way Guard mechanism only looks up an average of 25-30%
of the cache ways and saved up to 65% of the L2 energy and up to
70% of the L1 cache energy.

Add

Categories and Subject Descriptors

C.1.0 [Processor Architecture]: General;, B.3.2 [Memoryu&t
tures]: Design Styles€ache memories

General Terms
Design, Experimentation

1. INTRODUCTION

Simon Ford*

N-bit

et-Associative Caches

Stuart Biles# Hsien-Hsin S. Lee*

dge, UK *Georgia Tech, Atlanta, GA

—
[—

Hash Func
0

r

PR

Hash Func
(k=1)
L-bit Counters BEVecto

(b) Counting Bloom Filter

1

Hash Func
(k=1)
Bit Vector

(a) Original

Figure 1: Bloom Filters

detection of events to avoid an associative buffer lookups Tm-
proves energy consumption significantly without adversdigct-
ing performance given the efficient hardware structures.

The rest of this paper is arranged as follows. Section 2 sgla
Bloom filters. Section 3 describes our segmented Bloom filter
its energy-saving feature. Section 4 explains Way Guaitthigce.
Section 5 describes our simulation methodology and arsalsic-
tion 6 reviews prior techniques. Section 7 concludes.

Cache hierarchy has become a main consumer of both staticand BLOOM FILTERS

dynamic energy in processors. Even so, the trend in modern pr
cessor designs continues to increase both capacity andiasso
ity to accommodate the ever-growing workloads and alleviain-
flict misses. For processors employing highly associataehes,
the energy consumption gets even worse as N-tag compa@sens
needed for each parallel lookup of an N-way cache. In facstrob
the energy consumed for such lookups is redundant as thesesgl
data can only be present in one particular way. This redwydan
provides a good opportunity for saving dynamic energy.

In this paper, we propose a technique caNgdy Guardbased
on segmented counting Bloom filters to exploit these eneagy s
ing opportunities. Our scheme uses counting Bloom filtersfto
ficiently skip the lookup of cache lines that do not contaia tb-
quested data to save significant energy in cache accessasm Bl
filters are simple, fast structures that can eliminate thednef
performing associative lookup especially when the lookdgress
space is huge. They can replace the expensive set-assedadi
matching with a simple bit vector that precisely identifiddi@sses
that have not been observed before. This mechanism prowétbs

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ISLPED’09,August 19-21, 2009, San Francisco, California, USA.
Copyright 2009 ACM 978-1-60558-684-7/09/08 ...$10.00.

165

The original Bloom filter concept is depicted in Figure 1(#).
consists of several hash functions and a bit vector. A gNdit
address is hashed inkchash values using different random hash
functions. The output of each hash function isnaibit index that
addresses th&™ entry bit vector, wherenis much smaller thah.

Initially, the Bloom filter bit vector is zero. Whenever &i
bit address is observed, it is hashed to the bit vector andithe
value hashed by eaahbit index is set to one. When a query is
to be made, the giveN-bit address is hashed using the same hash
functions and the bit values are read from the locationsxeddy
them-bit hash value. If at least one of the bits is 0, it indicatest t
this address was definitely not observed before. This isdatrue
miss Whereas, if all of the bit values are 1, the address may have
been observed but with no guarantee, which is callfdsa hit

As the number of hash functions increases, the Bloom filter bi
vector is polluted faster. On the other hand, the probatufitfind-
ing a zero during a query is increased if more hash functioas a
used. The major drawback of the original Bloom filter is thghhi
false hit rate as it can be quickly filled up with all 1's. Alsmce a
bit is set, there is no way to reset it. Thus, as more bits aretse
number of false hits increases. To address this issue, th&ing
Bloom filter [7] shown in Figure 1(b) was proposed for web @ch
sharing to provide capability of resetting entries in theefil First,
an array of counters is added along with the bit vector of tig o
inal Bloom Filter. Each L-bit counter has a one-to-one asdinn
with each bit in the bit vector. Queries to a counting Bloortefil
is similar with a slight modification: when an address is sde

Decoupled
Bit Vector
A Bit Read
0
1

L-Bit Counter:

Hash }
Index|

Allocation/
Deallocation
N-bit Address

Cache Access
Address

M| puplicated
Has Hash Functiol

Index

Hash
Function

Increment/Decrement

‘ —.m

2-1

1 L-Bit.
Countel

ero/Non Zerp
Detector

Figure 2: Segmented Bloom filter

Bit Update

Bit Write

eachm-bit hash index will increment its corresponding counter of
the counter array in addition to setting the bit vector. &inhy,
when an address is removed from the Bloom filter, eadit hash
index will decrement its corresponding counter. If morentibae
hash indexes to the same location for a given address, timtesosi
incremented or decremented only once. Finally, when a eousit
reduced to zero, its associated bit in the bit vector will leaued.

3. SEGMENTED COUNTING BLOOM FIL-
TER

One application of the counting Bloom filter is to keep tra¢k o
the line-fills and replacements of a cache and indicate veneth
address is present in the cache. Query to a counting Blooen filt
consumes less energy and quicker than accessing the ethre.c

Way Guard keeps line-fill and replacement information ofdhehe
way it is guarding. The following two properties are impaoittin
understanding how the Way Guard technique works:

1. If the filter indicates that the address is not present & th
way it is guarding, then the data is certainly not present in
that particular cache way.

2. If the filter indicates that the address is present, theméta
may be present in the given cache way.

As such, the filter provides a completely safe indicationuabo
the absence of data in the cache way it is guarding. Alsoirttis
cation can be performed within a fixed access time, as opposed
previously proposed prediction techniques that contadesimable
variable access times. Figure 3 shows a scenario of an axess
aWay Guard cacheln the example, since the Way Guard filters
of Way 0 and Way 3 indicate a possible hit, only their Tag RAMs
need to be checked, which enables the dynamic energy reducti
Even though the scheme incurs extra hardware, the Way Gobrd o
comprises of a bit-vector and counters. Querying a Way Goialsd
involves checking the bit vector and this consumes muchdass
ergy than looking for the address in the Tag RAM it is guarding
Note that, since the filter must be checked prior to the Tag RAM
being selected, there is a potential performance penatiyeider,
since the filter is fast, the filter access and the Tag RAM selec
process can be potentially contained within a cycle. In toestv
case, the filter would add one extra cycle to the cache acoess t

One implementation variant of tWway Guardtechnique is illus-
trated by the dotted lines in Figure 3. There aré Guards each
guarding a way of an n-way cache. However, note that eachifilte
indexed by the same hash function. Given an address, allties fi

Ghoshet al. has shown a cache miss detection technique using Will check the same index for the presence of the data. Sorcallf

a segmented counting Bloom filter [8]. Their design redrawn i
Figure 2 contains the counter arrdylfits per counter) decoupled
from the bit vector with a duplicated hash function on thevbittor
side. The cache line fill/eviction addresses are sent todhater
array using one hash function while the cache request aslttas
the processor is sent to the bit vector using a copy of the asie
function. The segmented Bloom filter design allows the ceunt
array and bit vector to operate in separate physical logstio

cache accesses all the filters are queried, we propose towifaj
design alternative. In this variant, the vector part of thgnsented
Bloom filters are coalesced to form thi¢gay Guard Matrixshown
by the dotted line table. Each row in the matrix contains ddpit
each guard filter. This bit will be the bit in the bit vector msr
sponding to the index of the row. Thus Matrix][i][k] will cois$ of
the ¢*" row of the bit vector of the Way Guard guarding the’
way. During a cache access, this matrix is first queried agnisho

There are several reasons for a segmented Bloom filter: 1) We by the dotted arrows coming from the address and the row sf bit

only need the bit vector, which is smaller than the countesptain
the outcome of a query. Decoupling the bit vector enable®ifas
and lower energy accesses to the Bloom Filter. Hence thé mfsu
a query issued from the core can be obtained by just lookinhep
bit vector; 2) The update to the counters is not time-criitigith
respect to the core. So, the segmented design allows theecoun
array to run at lower frequency than the bit vector. The wegsot
being smaller provides fast access time, whereas the laogeter
part runs at a lower frequency to save energy. The only aagiti
overhead of the segmented design is the duplication of tkh ha
function hardware. We now describe an innovative appbcatf
the segmented counting Bloom filter to avoid unnecessarfiecac
way lookups.

4. WAY GUARD MECHANISM

In this section, we describe a novel application of counBhgpm
filters to set-associative caches to determine data presemntsave
lookup energy. Figure 3 illustrates the design of a 4-wayheac
with our proposedVay Guardmechanism. As shown, each Way
Guard, structurally the same as the counting Bloom Fil@nsists

obtained for the given index of the address is used to enathje o

the cache ways that may contain the data. This techniqueucan f

ther reduce energy by using the lower energy matrix stractor

filter out unneeded cache lookups going to the Tag RAMs. The bi

vectors which consist of a very large number of one-bit estri

and the majority of the access cost to the bit vector straajaes

in decoding the index. Using one matrix insteach@he bit arrays

savedn-1)decoder access costs for every access to the Way Guard.
One notable point about our technique is that it can be erténd

to other implementations of highly associative caches agsc@AM

tag caches [23]. This can be done by simply adding an AND gate

in the path of every CAM comparator. One input to these AND

gates is obtained from the Way Guard result to effectivetiuoe

tag comparisons. The detailed evaluation is outside thpesob

this paper.

5. EXPERIMENTAL ANALYSIS

5.1 Experimental Framework and Benchmark
We use a modified version of Bochs [10], a full system x86 em-

of a Bit Vector (shown as BV) and an array of counters. Each way Ulator, to evaluate the energy savings by taking all effetsiding
of a set-associative cache is assigned one Way Guard. The pur iThe number of entries we chose is four times of the number of

pose and functionality of these filters are similar to therSexgted
Bloom Filters explained earlier. The only difference istthach

166

cache lines. For a 256KB cache with 32-byte lines, the nuraber
entries in the array is 32768.

i i S F 3= F————-] 3
Data Addres | . Gwar)j/ 0 Way GWaé’) GWac)’r .
uar
Tag I Index I Offset |, - : Lyt uar Guard 1 Lyt | Guar
| —_
| — — —|__BvCounter] BV Counter] BV Counter BVCounte
J SR U S S A — —— e ——— e —— e —— —
JE—_— Hit Linefill Miss Linefill Miss Linefill HIt | inefill
_— Evict Info Evict Info Evict Info Evict Infol
—_———
Way y A y
Guard Tag RAM Tag RAM Tag RAM Tag RAM
Matrix Enable Ckt Enable Ckt Enable Ckt Enable Ckt
Tag RAM Tag RAM l Tag RAM
V Tag \ Tag V Tag
T v]) v 1 v T
)) ' ' ' H H
N 1 1 S 1

Miss

Miss

6

Miss

y
Data RAM
Enable Ckt

Data RAM

A 4

Data RAM
Enable Ckt
Data RAM

y
Data RAM
Enable Ckt

A 4

Data RAM
Enable Ckt
Data RAM Data RAM

3
¢ Data

Figure 3: Way Guard Mechanism — Filtering Out Unnecessary Cahe Way Lookup

the OS into account. The simulations involved running commo
Windows applications like Visual Studio and a set of seveREGP
benchmarks running on Windows NT on the Bochs emulator.

To collect cache statistics, we integrate a cache simukter
hanced with our proposed technique into Bochs, which allogvs
to gather cache statistics of various applications diyeathning on
top of a full OS. Using this framework we can also simulatessal/
different memory hierarchies simultaneously.

The evaluation foWay Guardis performed in two stages. In
the first stage, only the L2 cache is guarded by the Way Guard fil

In the second stage, only L1 caches are guarded by the Way
Guard. So, we used a 4-way 128KB fixed sized L2 cache, and
20 L1 configurations. Similarly, the L1 capacity was varieohfi
8KB up to 64KB and their associativity from 2 to 32 ways. The 32
way L1 is similar to what is employed in XScale processors. We
assume a parallel access L1 cache for all our experimentsisé/e
the a set of seven SPEC benchmarks that were known to steess th
L2 cache. In addition, we also used five MS Windows applicetio
used in desktop systems including the booting of Windows\NFT,
sual Studio compiling the Bochs source code, an MPEG decoder

ters. So, we used a fixed size of a 2-way 16KB L1 cache, and 30 a MP3 decoder, and a simple web browsing application. All the

different configurations of the L2. We varied the capacitygbgdu-
ally doubling its size from 64KB up to 2MB. The associativitas
varied in the same manner from 2 to 32 ways.

above applications show sufficient amount of memory agtitot
properly illustrate our results. Also, the MS Windows bemeinks
help us understand how the Way Guard technique will behawge in

The size of each Way Guard filter was chosen to be four times real multiprocessing environment.

the number of lines of each cache way. We performed experi-
ments with different filter entries and found that havingrftmes
the number of entries gave the best trade-off between fiigop

5.2 Energy Modeling

The L1 and L2 caches, the bit vector, and the counter array

mance and energy savings. The area overhead for all Way Suard were designed using th&rtisan 90nm SRAM library in order to

in the L2 is 6% of the L2 size. Notice that this 6% relative aver
head is irrespective of the cache size, as we always use tinistie
of choosing the Way Guard filter with entries that is four tintlee
number of entries of the number of cache lines it is guaréing.

We use three bits per counter in the Way Guard counter array.

Since the number of filter entries is four times the numbemad,

it is not expected that for a hash function that can evenlyidige
entries, a three bit counter will overflow. We observed tloatafll
the experiments performed we did not have a single occugrehc
a counter overflow. We implemented a policy that in the uyike
event of a counter overflow, we will stop updating entriestfat
particular counter and conservatively indicate a posdifileevery
time a query indexes to that particular counter entry.

get an estimate for the dynamic and static energy consumpfio
the caches and the segmented Bloom filter. The Artisan SRAM
generator is capable of generating synthesizable Veribale dor
SRAMSs in 90nm technology. The generated data-sheet provide
the read and write current of the generated SRAM. This giges u
an estimate of the dynamic energy per access of such a seuctu
The data-sheet also provides a standby current from whictanwe
calculate the leakage energy per cycle of the SRAM.

5.3 Energy Savings for Way Guard

To illustrate the effectiveness of the Way Guard, we shovathe
erage number of ways looked up (for all the benchmark progyam
for hits and misses for all the 30 L2 cache configurations o Fi

We show energy savings results for both the serial access andure 4 and Figure 5. A notable observation of these resulisais t

parallel access versions of the L2 cache. In a serial accashe
data access follows the tag access only when there is a tafpmat
In contrast, for a parallel access cache, the data and tdbvedys
are enabled in parallel, and the correct data is “muxed” out.

2There is also a small overhead of a few logic gates per Waydzuar
but the overhead is negligible compared to the size of trex filt

167

the Way Guard does a very good job in filtering out ways where
the data is not present. In a typical case of a cache hit foraay8
cache, only 2.77 ways need to be looked up for a data access. Th
average number of ways needed to determine a cache miss is sig
nificantly lower than that for hits. To determine a miss, thayWw
Guard cache checks less than 25% of the ways. Another itteres
ing trend is that the performance of the Way Guards contitoies

=
o

Avg # of ways looked ug
o N B [=2] ©

Direct Mapped 2 ways 4 ways 8 ways 16 ways 32 ways

[W64KB D128 KB 256 KB O512KB M 1MB C2MB |

Figure 4: Averaae Number of Ways Looked Up for Hits in an L2 Cade

g ¢
8 6
AN FNHREEE
RRHEEEEE
Direct Mapped 2 ways 4 ways 8 ways 16 ways 32 ways
[m64 KB D128 KB 256 KB 0512 KB W 1MB O 2MB]
Figure 5: Average Number of Ways Looked Up for Misses in an L2 @che
60% case of a cache miss none of the ways have the data. Thuse high
oo | @32V associativity gives a greater chance for indicating abseeading
< ’ L SR to larger energy savings.
2 40% | % WayAm way * By fixing the associativity, the energy savings decreash imit
§ A 8 Way creased cache sizes. One reason for this is that for largee cizes
5 3% 8 way the overhead of the Bloom filter also increases. Also largehes
S o 4 Way contain lower miss rates. So the relative benefits do not tetelp
w A, * account for the larger overheads.
10% - v 2way Another trend that was observed was that the relative energy
) Y overhead of Way Guard increases with associativity andedsers
O n o o I, s with cache size. We found that for a small 64KB L2 cache the rel
Miss Rate ative energy overhead of Way Guard ranges from 16% for a 2-way
cache to 22% for a 32-way cache. Instead, for a 2MB cache, the
| A2MCache & 1M Cache | overhead is only 5% for 2-way to 14% for 32-way. There are two
Figure 6: Energy Savings with respect to Miss Rate reasons why the Way Guard’s overhead increases with atigecia

) o ”)]) ity. First, as the associativity increases, more bits (dh&beach
improve with increasing cache sizes. This has to do withéme s \ay) have to accessed for each access to the cache. Second, as

Slthlty of the Counting Bloom filter performance Wlth itszsl. Our the associativity increasesy the performance of Way Guadim-
experiments showed that a larger counting Bloom filter asnasy- proves leading to less total energy consumption. The refasohe
forms better than a smaller one, even though the size of thenBl relative overhead decreasing with increasing cache sitteatsas
filter is always chosen to be four times the number of cacleslin the cache size increases, the relative energy in acce$sirmthe
each way. For a given associativity, since larger caches laager becomes relatively larger than that of accessing the WaydGua
Way Guards guarding their ways, the performance of the dilter We compared our technique with the Way Halting technique de-
larger caches will be better. scribed in [22]. Way Halting uses a fully associative buffehold

In Figure 6 we try to find out how the total energy savings is af- four tag bits for each line of the cache. When the cache isddok
fected by the miss rate. The energy savings take into acémiht yp, the way halting buffer matches the stored bits for eaghafa
dynamic and leakage energy consumptions of the cache as welkhe corresponding set with the least significant tag bithefad-
as those consumed by the Way Guards. The baseline is a normaljress looked up. If these bits do not match for a particulay, wa
L2 cache without the Way Guard mechanism. The figure shows then the lookup will surely miss that way, and the tag conguari
the savings obtained for two cache sizes (IMB and 2MB) for the for that way is halted, resulting in energy savings. We impgated
“bzip2” from SPEC benchmark. “Bzip2” is chosen for this 8lu the way halting scheme in our Bochs infrastructure. We alsd-m

tration as a typical benchmark showing trends reflected iotlaér eled the power overheads for the way halting technique usieg
benchmarks. We find that the miss rate for a fixed cache side isa Artisan SRAM generator.

most the same for associativities greater than 2. We obteatveve The L2 cache energy savings comparing Way Halting and our
get significant savings for up to 53% for a 32-way 2 MB cache. As \way Guard techniques are shown in Figure 7. The baselineecach
expected for all cache sizes, the savings increase as theiatss for these relative energy numbers is a serial lookup cacha.se-

ity increases. In other words, the effectiveness of the WagrGis rial lookup cache, to reduce the lookup energy consumptia,
increased with higher associativity. The reason behirgliththat comparisons and the retrieval of the data portion of a cdnkete

the Bloom filters are very effective at indicating absencelata, done serially, similar to what was described in Figure 3. Acess
and can predict more than 80% of cache misses [8]. In a set asso jnvolves two steps starting with a tag comparison. Only éfrthis
ciative cache lookup, most of the accesses to ways resulises a tag match will the corresponding data row be accessed fmysup
that counting Bloom filters are usually good in predicting. the the data line. All benchmark programs show similar energy sa

case of a cache hit only one way has the required data and in thejng trends in the serial lookup cache. Thus we report the gém

168

O Way Halting ® Way Guard

37% A
32% -
27%
22%
17% +
12% A
7% A
2% -
-3% |
-8%

64KB 2W
64KB 4W
64KB 8W
512KB 8W
1IMB 2W
1MB 4W
1MB 8W
1MB 16W
1MB 32W
2MB 2W
2MB 4W
2MB 8W
2MB 16W
2MB 32W

64KB 16W
64KB 32W
128KB 2W
128KB 4W
128KB 8W
128KB 16W
128KB 32W
256KB 2W
256KB 4W
256KB 8W
256KB 16W
256KB 32W
512KB 2W
512KB 4W
512KB 16W
512KB 32W

Figure 7: Comparing Way Halting and Way Guard Energy Savingsin a Serial Lookup Cache

means of energy savings for all the benchmarks in Figure 7sé&fe oW ik —————
that since the data of all the ways are not fired up, the prireavy 1o 64K |

ings with the Way Guard lie in the tag comparisons. We find that

for all cache sizes considered, the Way Guard techniquet igemp BW64KB
effective for caches whose associativity is less than 4. réaeon AW 64KB
behind this is, for a 2-way cache, Bloom filters save at mosttag 2W 64KB
comparison for a hit and 2 tag comparisons for a miss. Thig-ben

fit in most cases does not surpass the extra energy cost nfeded 32w 32KB

checking the Bloom filters for each L2 access. In contrashaivs 16W 32KB
energy savings of up to 37% for larger associativity cackzsn- 8W 32KB
pared to the Way Halting scheme , the Way Guard techniquesshow aws2«e
much better energy savings for 27 of the 30 cache configmstio 2W 32KB
In a typical case a IMB 16-way L2 has a 17% energy savings for a mL1D-Cache
Way Guard while the Way Halting scheme only achieves 6.3% sav s,y 16cs L1 kCache

ings. Also for low associativities, the Way Halting techimgodoes
not have any energy savings. For a 2MB 4-way cache, Way galtin
technique results in a 7% energy loss. The reason behinis tthis
high overhead of Way Halting for every cache access, thatieg
comparing four tag bits for every cache way. In contrastWas
Guard technique only involves reading “n” bits from a bit tarc
array, where “n” is the associativity.

We also compared the energy savings of our technique against 16W8ke
Way Halting based on a parallel lookup cache. The resultsgn F BW KB
ure 8 assume that the set-associative cache accesses thdatam 4w 8KB
row for all cache ways in parallel. It can be easily seen that t 2W KB
Way Guard technique performs much better than the Way Hgaltin
technique for 25 of the 30 cache configurations. In a typieskg . .
for a 1 MB 4-way cache, the Way Guard cache shows a saving of Figure 9: Average L1 |- and D-Cache Energy Savings

32%, while Way Halting manages to improve the energy by 21%. caches show huge benefits because it is almost accessedgvery

As expected, the results for a parallel lookup cache shovlasim cle during execution. For every access, with the help of Wasré

trends as the results for a serial lookup cache in terms aitbgty filters, only 25 to 30% of the ways need to be checked.

to cache associativity and cache sizes. We also performed similar experiments for the L1 D-cachee Th
For the L1 cache experiment, we consider the L1 to be a high results are also shown in Figure 9. Similar to the I-cachaltes

performance parallel access cache, where data and tagcassad the savings obtained using Way Guard despite the overheads a

together to achieving a fast hit latency. We applied our Wap@ very impressive. In a typical case of a 32KB 4-way L1 cache, a

technique to both the instruction and data caches. For alexu 52% overall energy saving was shown.

periments we assume a 2-cycle cache access. We assumerthat ou

Way Guard lookup can be fit into these two cycles to not affeet t

L1 cache performance. This assumption is validated by densi 6. RELATED WORK

ing the access times of a typical cache configuration (64Kizag) The initial purpose of Bloom filters was to build memory effi-
and its corresponding Way Guard Bloom filter (2048 entriehea ¢jent database applications. Since then, Bloom filters fawed
way). Using Artisan the access latencies were found to b&8.7 numerous applications in networking and database aress 3,
for the cache and 0.66ns for the Way Guard. The combined sicces 5). They were also applied to microarchitectural blockspiadict-

time fits into 2 cycles of an embedded processor like AMD Geode jnq |oad/store collision in LSQ [20] or optimizing the fregpcy of
NX 1750 running at 1.4GHz. Note that a normal cache access t0 |pad re-execution [19].

16W 16KB
8W 16KB

4W 16KB
2W 16KB

32W 8KB

Ll

0% 10% 20% 30% 40% 50% 60% 70% 80%

this processor will also take 2 cycles, as the 0.74ns actressto The earliest work of tracking cache misses with a countirapBi
the cache is larger than the 0.714ns cycle time. filter is given in [17]. A hardware structure calldettywas pro-
~ Wefirst show the geometric means of the normalized energy sav posed to filter out L2 cache snoops in SMPsJeitylike filter is
ings in the L1 I-cache across all the benchmark in Figure ¢hdse also used byPeir et al.[18] for detecting load misses early in the

experiments, our Way Guard technique shows huge benefits up t pipeline so as to initiate speculative execution. Simjladehta
68% for a 32-way cache and more than 50% for a 4-way cache. L1 et a|. [15] also uses dettylike filter to detect L2 misses early to

169

80% \DWayHaIling lWayGuard\

70% m

60% -| .] M

50% -

40% -

30% -+

20% 4

10% -+ ’_I

0% +——— o U e e e A
E§ ¥ 2% &3IF gz &tz Ez trzez z2:zEz z3:83:%%
mmm;; mmm;;’ mmmgg mmm;‘: mmm;g mmm;g
¥ ¥3 &8 $ 3 3 L oL 8 & ¥ % § 5§ £ % 2 33 3 =S 2 33 = =
© © © ¥ ¥ N N N © © 0w O W 8 © o4 o o4 N N S 3 a8 &

Figure 8: Comparing Way Halting and Way Guard Energy Savingsin a Parallel Lookup Cache

stall the instruction fetch for saving energylemik et al[16] pro- 8.

posed early cache miss detection hardware encapsulalddsily [

No Machine (MNM) Their goal is to reduce dynamic cache energy 2]

and to improve performance by bypassing the caches thanigd.

Counting Bloom filters were used in [21] to detect the absenice

synonyms for reducing energy consumption in virtually et (3]

caches. We, on the other hand, propose a decoupled Bloom filte [

structure where the small bit vector can potentially be keighin

the processor core to perform system dynamic and statiggner

conservation of L1 and L2 caches and the core itself. (5]
The most common way prediction mechanism is to predict the (6]

MRU way as proposed in [3]. Similar way prediction technigjue

were studied in [9, 12]. Another PC-based way predictioresah 71

was proposed in [1]. However, way prediction has the disadva

tage of a large performance and energy loss if the prediéion i8]

wrong. One alternative to way prediction is way memoizafiot].

Way memoization keeps way information in the I-cache witlidva

bits that ensure that the way information is correct. Howetves [9]

technique can only be used in I-caches. Their shortcominghea

overcome by our Way Guard. [10]
Instead of predicting one single way, way estimation teghes

were proposed to predict a set of ways where the data is geachn ~ [11]

to be present for a cache hit. Therefore, way estimatiomigales

do not incur a large performance loss for a wrong estimatien, [12]

cause a wrong estimate only results in a lookup in the caclemwh

it is missing the cache. One way estimation technique is¢ne s [13]

try tag [4]. Way Halting [22] is an extension of sentry tagse W [14]

did comparisons of this with our Way Guard scheme and showed

much more energy savings in our method than the sentry tags. A [15]

other way estimation technique similar to Way Guard was psep

in [11]. In which the authors tried to predict lines that haie (16]

cayed. Since this technique incorporates cache decayat wsuit-

able for the L1 caches as it may increase the miss rate coablgie [17]

Our technique does not increase the miss rate and thus has no a

preciable effect on the performance of the system. (18]

7. CONCLUSION [19]
As future applications demand more memory and shrinking fea

ture sizes allow more one-die transistors, processorsnatiméd [20]

to incorporate larger caches with higher associativityeSehlarger

structures, unfortunately, also lead to higher energy wopsion. [21]

This paper presents an efficient use of the counting segh8fem

Filter calledWay Guardo reduce significant dynamic cache energy

by filtering out unnecessary way lookup in a set-associathe. 22]

We showed that our technique can be efficiently applied teadls

of the cache hierarchy, obtaining substantial energy gavaf up [23]

to 70% in both instruction and data L1 caches, and up to 65% for
unified L2 cache. We also showed that our Way Guard outpegform
the recently proposed Way Halting scheme in saving energy.

170

REFERENCES

B. Batson and T. N. Vijaykumar. ReactivAssociative CacheBroc. of Int'l
Conf. on Parallel Architectures and Compilation Techniguz001.

A. Border and M. Mitzenmacher. Network application obbin filters: A
Survey. In40th Annual Allerton Conference on Communication, Conamnt
Computing 2002.

B. Calder, D. Grunwald, and J. Emer. Predictive seqaassociative cache.
Proc. of the Int'l Symp. on High-Performance Computer Atetture 1996.
Y.-J. Chang, S.-J. Ruan, and F. Lai. Sentry tag: An efficféter scheme for
low power cache. IfProc. the 7th Asia-Pacific Computer Systems Architectures
Conferencg2002.

S. Cohen and Y. Matias. Spectral bloom filters Proceedings of the 2003
ACM SIGMOD International Conference on Management of D20®93.

S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and dckwood. Deep packet
inspection using parallel bloom filters. IEEE Hot Interconnects 12003.

L. Fan, P. Cao, J. Aimeida, and A. Broder. Summary cachsec#lable
wide-area web cache sharing protodBEE/ACM Transactions on Networking
8(3):281-293, 2000.

M. Ghosh, E. Ozer, S. Biles, and H.-H. S. Lee. Efficientt8gs-on-Chip
Energy Management with a Segmented Bloom FiltePiloc. the 19th Int'l
Conf. on Architecture of Computing Syste2806.

K. Inoue, T. Ishihara, and K. Murakami. Way-predicting-@ssociative cache
for high performance and low energy consumptiorPtoc. 1999 International
Symposium on Low Power Electronics and Desii99.

K. Lawton. Welcome to the Bochs x86 PC Emulation Sofevelome Page.
http://www.bochs.com.

G. Keramidas, P. Xekalakis, and S. Kaxiras. Applying&8gto Reduce
Dynamic Power in Set-Associative Caches2007 International Conference
on High Performance Embedded Architectures and Compillensuary 2007.
R. Kessler, R. Jooss, A. Lebeck, and M. Hill. Inexpeadinplementations Of
Set-AssociativityThe 16th Annual Int'l Symp. on Computer Architectdr289.
A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li. Spam#edloom filter for
efficient per-flow traffic measurement. Rroc. IEEE INFOCOM March 2004.
A. Ma, M. Zhang, and K. Asanovic. Way memoization to reddietch energy
in instruction cachedNorkshop on Complexity Effective Desi@001.

N. Mehta, B. Singer, R. |. Bahar, M. Leuchtenburg, and\Riss. Fetch halting
on critical load misses. IRroc the 22nd Int'l Conf. on Computer Desig2004.
G. Memik, G. Reinman, and W. H. Mangione-Smith. JustisayBenefits of
early cache miss determination.Proceedings of the Ninth International
Symposium on High Performance Computer Archite¢c2063.

A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary.yteBnoop filtering
for reduced power in smp servers.Rmoceedings of International Symposium
on High Performance Computer Architecture (HPCA-Jgnuary 2001.

J.-K. Peir, S.-C. Lai, S.-L. Lu, J. Stark, and K. Lai. Bl filtering cache misses
for accurate data speculation and prefetching?toceedings of the 16th
International Conference of Supercomputipgges 189-198, 2002.

A. Roth. Store Vulnerability Window (SVW): Re-Execati Filtering for
Enhanced Load Optimization. Proc. of the 32th Int'l Symp. on Computer
Architecture 2005.

S. Sethumadhavan, R. Desikan, D. Burger, C. R. Mooré Sarw. Keckler.
Scalable hardware memory disambiguation for high ilp pssoes. In
Proceedings of the 36th International Symposium for Miothdecture 2003.
D. H. Woo, M. Ghosh, E. Ozer, S. Biles, and H.-H. S. Leed&eng energy of
virtual cache synonym lookup using bloom filters Rroc. the 2006 Int'l Conf.
on Compilers, Architecture and Synthesis for EmbeddedB8ys2006.

C. Zhang, F. Vahid, J. Yang, and W. Najjar. A way-haltcagche for low-energy
high-performance system&CM Transactions on Architecture and Code
Optimization (TACQ)2(1):34-54, 2005.

M. Zhang and K. Asanovic. Highly-associative cacheddav-power
processors. liKool Chips Workshop in conj. with MICRO-33000.

